WO2020024080A1 - Control channel repetition for uplink and downlink communication - Google Patents

Control channel repetition for uplink and downlink communication Download PDF

Info

Publication number
WO2020024080A1
WO2020024080A1 PCT/CN2018/097690 CN2018097690W WO2020024080A1 WO 2020024080 A1 WO2020024080 A1 WO 2020024080A1 CN 2018097690 W CN2018097690 W CN 2018097690W WO 2020024080 A1 WO2020024080 A1 WO 2020024080A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
time
slot
receiving
successfully decoded
Prior art date
Application number
PCT/CN2018/097690
Other languages
French (fr)
Inventor
Changlong Xu
Liangming WU
Kai Chen
Jian Li
Hao Xu
Jing Jiang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2018/097690 priority Critical patent/WO2020024080A1/en
Publication of WO2020024080A1 publication Critical patent/WO2020024080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for control channel repetition for uplink and downlink communication.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) .
  • BSs base stations
  • UEs user equipments
  • a set of one or more base stations may define an eNodeB (eNB) .
  • eNB eNodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a base station or distributed unit may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
  • New Radio (e.g., 5G) is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • Certain aspects provide a method wireless communication performed at a user equipment (UE) .
  • the method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH.
  • the method further includes determining whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receiving, in the first slot, the PDCCH at a second time that is later than the first time, and receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH.
  • the method further includes, when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and receiving the PDSCH at the second time and the third time based on the PDCCH.
  • Certain aspects provide a method wireless communication performed at a user equipment (UE) .
  • the method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH.
  • the method further includes determining whether the PDCCH is successfully decoded.
  • the method includes receiving, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time.
  • PDCCH physical downlink control channel
  • the method further includes attempting to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time.
  • the method further includes transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  • PUSCH physical uplink shared channel
  • the user equipment includes a means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time.
  • the UE further includes a means for attempting to successfully decode the PDCCH.
  • the UE further includes a means for determining whether the PDCCH is successfully decoded.
  • the UE further includes a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time, and a means for receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH.
  • PDSCH physical downlink shared channel
  • the user equipment includes a means fora means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time.
  • the user equipment includes a means for attempting to successfully decode the PDCCH.
  • the user equipment includes a means for determining whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the user equipment includes a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time.
  • the user equipment includes a means for combining the PDCCH received at the first time and the second time, and a means for receiving to successfully decode the combined PDCCH.
  • the user equipment When it is determined the PDCCH is successfully decoded, the user equipment includes a means for transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time.
  • the user equipment includes a means for transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  • PUSCH physical uplink shared channel
  • Certain aspects provide a non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication.
  • the method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH.
  • the method further includes determining whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receiving, in the first slot, the PDCCH at a second time that is later than the first time, and receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH.
  • the method further includes, when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and receiving the PDSCH at the second time and the third time based on the PDCCH.
  • Certain aspects provide a non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication.
  • the method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH.
  • the method further includes determining whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the method includes receiving, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time.
  • PDCCH physical downlink control channel
  • the method further includes attempting to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time.
  • the method further includes transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  • PUSCH physical uplink shared channel
  • a radar detection apparatus including a memory and a processor.
  • the processor is configured to cause the UE to receive, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempt to successfully decode the PDCCH.
  • the processor is further configured to cause the UE to determine whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receive, in the first slot, the PDCCH at a second time that is later than the first time, and receive, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH.
  • PDSCH physical downlink shared channel
  • a user equipment including a memory and a processor.
  • the processor is configured to cause the UE to receive, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempt to successfully decode the PDCCH.
  • the processor is further configured to cause the UE to determine whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the processor is further configured to cause the UE to receive, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time.
  • PDCCH physical downlink control channel
  • the processor is further configured to cause the UE to attempt to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmit an acknowledgment, and not receive, in the first slot, the PDCCH at the second time.
  • the processor is further configured to cause the UE to transmit, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  • PUSCH physical uplink shared channel
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
  • RAN radio access network
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
  • NR new radio
  • FIG. 7 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
  • FIG. 8 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
  • FIG. 9 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
  • FIG. 10 illustrates a flow diagram for an example control channel repetition for downlink communication, in accordance with certain aspects of the disclosure.
  • FIG. 11 illustrates a flow diagram for an example control channel repetition for uplink communication, in accordance with certain aspects of the disclosure.
  • FIG. 12 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for control channel repetition for uplink and downlink communication.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • New Radio is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • New radio (NR) access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be a New Radio (NR) or 5G network.
  • NR New Radio
  • 5G 5th Generation
  • the wireless network 100 may include a number of base stations (BSs) 110 and other network entities.
  • a BS may be a station that communicates with user equipments (UEs) .
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used.
  • gNB next generation NodeB
  • NR BS new radio base station
  • 5G NB access point
  • AP access point
  • TRP transmission reception point
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a base station may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • Wireless communication network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • Wireless communication network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • ANC 202 may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202.
  • the backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202.
  • ANC 202 may include one or more transmission reception points (TRPs) 208 (e.g., cells, BSs, gNBs, etc. ) .
  • TRPs transmission reception points
  • the TRPs 208 may be a distributed unit (DU) .
  • TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) .
  • a single ANC e.g., ANC 202
  • ANC e.g., ANC 202
  • RaaS radio as a service
  • TRPs 208 may be connected to more than one ANC.
  • TRPs 208 may each include one or more antenna ports.
  • TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types.
  • the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
  • NG-AN next generation access node
  • the logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202.
  • An inter-TRP interface may not be used.
  • Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • FIG. 3 illustrates an example physical architecture of a distributed Radio Access Network (RAN) 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • C-CU 302 may be centrally deployed.
  • C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU 304 may host core network functions locally.
  • the C-RU 304 may have distributed deployment.
  • the C-RU 304 may be close to the network edge.
  • a DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted inFIG. 1) , which may be used to implement aspects of the present disclosure.
  • antennas 452, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • data e.g., for the physical uplink shared channel (PUSCH)
  • control information e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for BS 110 and UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and/or DUs
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device.
  • RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in, for example, a femto cell deployment.
  • a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • the basic transmission time interval (TTI) or packet duration is the 1 ms subframe.
  • a subframe is still 1 ms, but the basic TTI is referred to as a slot.
  • a subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, . . . slots) depending on the subcarrier spacing.
  • the NR RB is 12 consecutive frequency subcarriers.
  • NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc.
  • the symbol and slot lengths scale with the subcarrier spacing.
  • the CP length also depends on the subcarrier spacing.
  • FIG. 6 is a diagram showing an example of a frame format 600 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots depending on the subcarrier spacing.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • the SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
  • RMSI remaining minimum
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • URLLC generally refers to relatively tight (e.g., stringent) requirements for successful delivery of information (e.g., control information, data, etc. ) within a deadline (e.g., 1 ms) with very high probability (e.g., 99.999%) of success from a sending device to a receiving device.
  • the requirements may be for both a control channel (e.g., physical downlink control channel (PDCCH) ) and a data channel (e.g., physical downlink shared channel (PDSCH) , and/or physical uplink shared channel (PUSCH) ) .
  • the requirements for the control channel may be more stringent than for the data channel.
  • the receiving device may receive encoded data indicative of the information from the sending device and successfully decode the encoded data to receive the information.
  • control channel repetition for uplink and downlink communications that allows the receiving device (e.g., UE) to combine (e.g., using soft combining techniques) different copies of the same data.
  • a data channel e.g., PDSCH (data)
  • the corresponding control channel e.g., PDCCH (control information)
  • the control channel may include data (e.g., downlink control information (DCI) ) indicative of parameters (e.g., time resources and/or frequency resources) for receiving the data channel.
  • DCI downlink control information
  • certain aspects of the present disclosure provide apparatus and techniques for control channel repetition for uplink and downlink URLLC communication. Such control channel repetition can improve the successful decoding of the control channel, which can thereby improve successful decoding of the data channel.
  • URLLC has very stringent reliability and latency requirements. For example, a 32-byte packet needs to be received with high reliability (e.g., a reliability of 10 -5 block error rate) within a delay bound (e.g., of 1ms) .
  • high reliability e.g., a reliability of 10 -5 block error rate
  • delay bound e.g., of 1ms
  • a UE can monitor a control channel (e.g., PDCCH) (e.g., perform detection such as blind detection) for control information (e.g., DCI) of the UE transmitted by a BS (e.g., BS 110 of FIG. 1) .
  • PDCCH control channel
  • DCI control information
  • the UE is unable to decode the PDCCH (e.g., corrupted data, incomplete transmission, etc. ) .
  • the BS may retransmit the PDCCH with the control information to the UE.
  • the UE to improve the chances of decoding the PDCCH, can use error correction techniques referred to as combining as explained below.
  • Chase combining is a technique that retains received encoded data (e.g., encoded data of the PDCCH) that is not successfully decoded in a buffer (i.e., memory) (e.g., as a “soft bit” or estimate of the actual value of the data) .
  • the UE can then receive one or more retransmissions of the encoded data and combine the one or more received retransmissions with the received encoded data and then attempt to decode the combined encoded data, which improves the chance of successfully decoding the data.
  • a UE can receive the decoded control information and thus receive and decode the corresponding data sooner, rather than having to wait to successfully decode a single PDCCH in a future slot, which may not satisfy URLLC.
  • Incremental redundancy is another aspect of combining where the retransmissions contain additional information (e.g., resource information) . Together, chase combining and incremental redundancy are referred to as soft combining. It will be appreciated that Chase combining requires a smaller buffer than soft combining as there is no need to store and process certain additional information.
  • FIG. 7 depicts certain wireless communication resources 700 (e.g., time resources, frequency resources, etc. ) used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) .
  • wireless communication resources 700 include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) .
  • the wireless communication resources 700 shown correspond to a single slot N.
  • the BS transmits a first PDCCH 710 and a first PDSCH 712 as a pair.
  • FIG. 1 depicts certain wireless communication resources 700 (e.g., time resources, frequency resources, etc. ) used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) .
  • wireless communication resources 700 include time along a horizontal axis (e.g.
  • the UE performs blind detection on the first PDCCH 710 for control information.
  • the UE may successfully decode PDCCH 710 (e.g., decode and detect a scheduling DCI that indicates parameters (e.g., time resources and/or frequency resources) for receiving the PDSCH 712) .
  • the UE may send an acknowledgement (ACK) (e.g., PDCCH-ACK) to the base station after the PDCCH 710 is successfully decoded.
  • ACK acknowledgement
  • the base station may receive the ACK, and omit sending PDCCH 720.
  • the base station may reduce the power of PDSCH 722 because it is likely to be received and decoded if PDCCH 710 was successfully received and decoded.
  • the UE may not successfully decode PDCCH 710 (e.g., fail to decode and detect the DCI) .
  • the UE may receive and attempt to combine PDCCH 720 with PDCCH 710 using combining techniques such as soft-combining.
  • reducing the power of a PDSCH 722 is not efficient because the PDSCH 712 may have been successfully received and decoded by the UE, and therefore resources relating to PDSCH 722 are unnecessarily used for redundant transmission. It will be further appreciated that the wireless communication resources used for PDCCH 720 are wasted if PDCCH 710 is received by the UE and ACK is transmitted to the base station as the resources corresponding to PDCCH 720 go largely unused as they either include the same information already received and decoded by the UE as PDCCH 710 or go unused.
  • PDSCH 722 is in different resources (e.g., time) than PDSCH 712, additional control information signaling of PDSCH 722 resources are needed. Large memory resources are also used to store the entire PDSCH 712 since resources specific to the UE are unknown until the UE combines and decodes PDCCH 720 and PDCCH 710. This additional use of processing power and storage reduce the capabilities of the UE.
  • PDSCH is only communicated after a repeated series of PDCCH are communicated.
  • there is a delay in sending the PDSCH which require additional memory and processing power as the successive PDSCH require additional control information to combine and decode.
  • PDSCH and PDCCH are overlapped in time, meaning they are transmitted on shared time resources over different frequency resources.
  • the UE may be configured to send an ACK when it successfully decodes the PDSCH, meaning it has also necessarily decoded the PDCCH to determine which PDSCH resources to receive and decode.
  • the UE may further be configured to send a negative ACK (NACK) when it is unable to successfully decode the PDSCH, meaning it has also necessarily decoded the PDCCH to determine which PDSCH resources to try and receive and decode.
  • NACK negative ACK
  • the BS stops sending PDCCH, and when an ACK is received, both the PDCCH and PDSCH repetition are terminated. It will be appreciated that in this case, the resources for the successive PDCCH and PDSCH are wasted if an ACK is received.
  • FIG. 8 depicts certain wireless communication resources (e.g., time resources, frequency resources, etc. ) 800a and 800b used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) .
  • wireless communication resources 800a and 800b each include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) .
  • the wireless communication resources 800a correspond to a single slot N
  • wireless communication resources 800b correspond to a single slot N.
  • Wireless communication resources 800a and 800b both depict a first PDCCH 810 transmitted from a BS to a UE. It will be appreciated that in certain aspects, the UE performs blind detection on the first PDCCH 810 for control information. In certain aspects, the UE may successfully decode PDCCH 810 (e.g., decode and detect a scheduling DCI that indicates parameters (e.g., time resources and/or frequency resources) for receiving the PDSCH 822. In this case, the UE may transmit an ACK, and the BS can then forgo sending a PDCCH retransmission.
  • PDCCH 810 e.g., decode and detect a scheduling DCI that indicates parameters (e.g., time resources and/or frequency resources) for receiving the PDSCH 822.
  • the UE may transmit an ACK, and the BS can then forgo sending a PDCCH retransmission.
  • the resources for PDCCH retransmission may be allocated to PDSCH 822, thus resources are not wasted by a PDCCH retransmission or go unused. It will be appreciated that techniques described in FIG. 8 improve the performance of PDCCH signaling by more efficient resource allocation.
  • PDCCH 810 may not be successfully decoded by the UE.
  • Wireless communication resources 800b shows a case where PDCCH 810 was not successfully decoded.
  • the base station sends PDCCH 812 retransmission paired with a PDSCH 822 in slot N.
  • the UE uses combining to decode the control information from PDCCH 810 and PDCCH 812 to obtain the resource information for PDSCH 822 (e.g., downlink control information (DCI) indicative of parameters for receiving the PDSCH 822) .
  • DCI downlink control information
  • FIG. 9 depicts techniques for control channel repetition for uplink communication in accordance with certain aspects of the disclosure.
  • FIG. 9 depicts certain wireless communication resources 900a and 900b (e.g., time resources, frequency resources, etc. ) used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) .
  • wireless communication resources 900a and 900b each include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) .
  • the wireless communication resources 900a correspond to a single slot N and wireless communication resources 900b correspond to a single slot N.
  • wireless communication resources 900a and 900b both depict a first PDCCH 910 transmitted in slot N from a BS to a UE.
  • PDCCH 910 is not successfully decoded by the UE after PDCCH 910.
  • the BS sends a PDCCH 912 retransmission in the same slot N.
  • the UE uses combining to decode control information from PDCCH 910 and PDCCH 912 to obtain the resource information for sending a PUSCH 920 in slot N+1.
  • the control information may comprise an uplink grant for the UE indicating resources (e.g., time, frequency, etc. ) for the UE to transmit on the PUSCH 920.
  • PDCCH 910 is successfully decoded by the UE, as shown by wireless communication resources 900b.
  • the UE sends an ACK, and the BS will forgo retransmission of a PDCCH.
  • the UE will then send PUSCH 920 in slot N+1.
  • FIG. 10 shows operations 1000 of a method of wireless communication performed at a UE, in accordance with certain aspects of the disclosure.
  • Operations 1000 begin at block 1002, where the UE receives in a first slot a physical downlink control channel (PDCCH) at a first time (e.g., by monitor a control channel (e.g., PDCCH and performing detection such as blind detection) .
  • PDCCH physical downlink control channel
  • the UE attempts to successfully decode the PDCCH and determines whether the PDCCH is successfully decoded.
  • the operation proceed to block 1006, where the UE receives in the first slot, the PDCCH at a second time that is later than the first time, and receives in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH.
  • PDSCH physical downlink shared channel
  • UE may combine the PDCCH received at the first time and the PDCCH received at the second time (e.g., to obtain downlink control information (DCI) indicative of parameters for receiving the PDSCH (e.g., time resources and frequency resources) ) .
  • DCI downlink control information
  • the operations 1000 end at block 1006. If the PDCCH is successfully decoded, the operations proceed to block 1008, where the UE transmits an acknowledgment (ACK) , and receives the PDSCH at the second time and the third time based on the PDCCH.
  • ACK acknowledgment
  • FIG. 11 shows operations 1100 of a method of wireless communication performed at a UE in accordance with certain aspects of the disclosure.
  • Operations 1100 begin at block 1102 by receiving in a first slot a physical downlink control channel (PDCCH) at a first time.
  • PDCCH physical downlink control channel
  • the UE attempts to successfully decode the PDCCH and determines whether the PDCCH is successfully decoded.
  • the operations proceed to block 1106, where the UE receives in the first slot the PDCCH at a second time that is later than the first time.
  • the UE combines the PDCCH received at the first time and the second time and attempts to successfully decode the combined PDCCH.
  • the PDCCH may include downlink control information (DCI) indicative of parameters for sending a physical uplink shared channel (PUSCH) (e.g., time resources and frequency resources) .
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • the UE transmits in a second slot, a PUSCH based on the PDCCH decoded in the first slot.
  • the operations proceed to block 1110, where the UE transmits an acknowledgment (ACK) to the BS. Then, at block 1112, the UE transmits in a second slot, a PUSCH based on the PDCCH decoded in the first slot. It will be appreciated that in this case, the UE does not receive in the first slot the PDCCH at the second time (e.g., because the BS did not send a second PDCCH) based on the BS receiving the ACK.
  • ACK acknowledgment
  • the approaches presented herein may be enabled based on UE capability or base station capability, either of which may be communicated using known signaling techniques.
  • FIG. 12 illustrates a communications device 1200 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated inFIG. 10 and FIG. 11.
  • the communications device 1200 includes a processing system 1202 coupled to a transceiver 1208.
  • the transceiver 1208 is configured to transmit and receive signals for the communications device 1200 via an antenna 1210, such as the various signal described herein.
  • the processing system 1202 may be configured to perform processing functions for the communications device 1200, including processing signals received and/or to be transmitted by the communications device 1200.
  • the processing system 1202 includes a processor 1204 coupled to a computer-readable medium/memory 1212 via a bus 1206.
  • the computer-readable medium/memory 1212 is configured to store instructions that when executed by processor 1204, cause the processor 1204 to perform the operations illustrated in FIG. 10 and FIG. 11, or other operations for performing the various techniques discussed herein.
  • the processing system 1202 further includes a receiving component 1214 for performing the operations illustrated in FIG. 10 block 1002 and 1006, and FIG. 11 blocks 1102 and 1106. Additionally, the processing system 1202 includes an attempting component 1216 for performing the operations illustrated in FIG. 10 block 1004 and FIG. 11 block 1104 and 1108. Additionally, the processing system 1202 includes a determining component 1218 for performing the operations illustrated in FIG. 10 blocks 1004, 1006, and 1008, and FIG. 11 blocks 1104, 1106, and 1110. Additionally, the processing system 1202 includes a combining component 1220 for performing the operations illustrated in FIG. 11 block 1108. Additionally, the processing system 1202 includes a transmitting component 1222 for performing the operations illustrated in FIG. 10 block 1008 and FIG. 11 block 1112.
  • the receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be coupled to the processor 1204 via bus 1206.
  • the receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be hardware circuits.
  • the receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be software components that are executed and run on processor 1204.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for wireless communication performed at a user equipment (UE). The techniques include receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH. The techniques further include determining whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receiving, in the first slot, the PDCCH at a second time that is later than the first time, and receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. The techniques further include, when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and receiving the PDSCH at the second time and the third time based on the PDCCH.

Description

CONTROL CHANNEL REPETITION FOR UPLINK AND DOWNLINK COMMUNICATION
INTRODUCTION
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for control channel repetition for uplink and downlink communication.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
In some examples, a wireless multiple-access communication system may include a number of base stations (BSs) , which are each capable of simultaneously supporting communication for multiple communication devices, otherwise known as user equipments (UEs) . In an LTE or LTE-A network, a set of one or more base stations may define an eNodeB (eNB) . In other examples (e.g., in a next generation, a new radio (NR) , or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more distributed units, in communication with a central unit, may define an access node (e.g., which may be  referred to as a base station, 5G NB, next generation NodeB (gNB or gNodeB) , TRP, etc. ) . A base station or distributed unit may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New Radio (NR) (e.g., 5G) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects provide a method wireless communication performed at a user equipment (UE) . The method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH. The method further includes determining whether the PDCCH is successfully  decoded, and when it is determined the PDCCH is not successfully decoded, receiving, in the first slot, the PDCCH at a second time that is later than the first time, and receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. The method further includes, when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and receiving the PDSCH at the second time and the third time based on the PDCCH.
Certain aspects provide a method wireless communication performed at a user equipment (UE) . The method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH. The method further includes determining whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the method includes receiving, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time. When it is determined the PDCCH is not successfully decoded, the method further includes attempting to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time. The method further includes transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
Certain aspects provide a means for means for wireless communication performed by a user equipment (UE) . The user equipment includes a means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time. The UE further includes a means for attempting to successfully decode the PDCCH. The UE further includes a means for determining whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the UE further includes a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time, and a means for receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. When it is determined the PDCCH is successfully decoded the UE further includes a means for transmitting an acknowledgment, and a means for receiving the PDSCH at the second time and the third time based on the PDCCH.
Certain aspects provide a means for means for wireless communication performed by a user equipment (UE) . The user equipment includes a means fora means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time. The user equipment includes a means for attempting to successfully decode the PDCCH. The user equipment includes a means for determining whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the user equipment includes a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time. The user equipment includes a means for combining the PDCCH received at the first time and the second time, and a means for receiving to successfully decode the combined PDCCH. When it is determined the PDCCH is successfully decoded, the user equipment includes a means for transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time. The user equipment includes a means for transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
Certain aspects provide a non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication. The method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH. The method further includes determining whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receiving, in the first slot, the PDCCH at a second time that is later than the first time, and receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. The method further includes, when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and receiving the PDSCH at the second time and the third time based on the PDCCH.
Certain aspects provide a non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication. The method includes receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempting to successfully decode the PDCCH. The method further includes determining whether the PDCCH is successfully decoded. When it is determined the  PDCCH is not successfully decoded, the method includes receiving, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time. When it is determined the PDCCH is not successfully decoded, the method further includes attempting to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmitting an acknowledgment, and not receiving, in the first slot, the PDCCH at the second time. The method further includes transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
Certain aspects provide a radar detection apparatus including a memory and a processor. The processor is configured to cause the UE to receive, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempt to successfully decode the PDCCH. The processor is further configured to cause the UE to determine whether the PDCCH is successfully decoded, and when it is determined the PDCCH is not successfully decoded, receive, in the first slot, the PDCCH at a second time that is later than the first time, and receive, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. When it is determined the PDCCH is successfully decoded, the processor is further configured to cause the UE to transmit an acknowledgment, and receive the PDSCH at the second time and the third time based on the PDCCH.
Certain aspects provide a user equipment (UE) including a memory and a processor. The processor is configured to cause the UE to receive, in a first slot, a physical downlink control channel (PDCCH) at a first time and attempt to successfully decode the PDCCH. The processor is further configured to cause the UE to determine whether the PDCCH is successfully decoded. When it is determined the PDCCH is not successfully decoded, the processor is further configured to cause the UE to receive, in the first slot, the PDCCH at a second time that is later than the first time and combining the PDCCH received at the first time and the second time. When it is determined the PDCCH is not successfully decoded, the processor is further configured to cause the UE to attempt to successfully decode the combined PDCCH, and when it is determined the PDCCH is successfully decoded, transmit an acknowledgment, and not receive, in the first slot, the PDCCH at the second time. The processor is further configured to cause  the UE to transmit, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed radio access network (RAN) , in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
FIG. 6 illustrates an example of a frame format for a new radio (NR) system, in accordance with certain aspects of the present disclosure.
FIG. 7 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
FIG. 8 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
FIG. 9 illustrates an example control channel repetition for uplink and downlink communication, in accordance with certain aspects of the disclosure.
FIG. 10 illustrates a flow diagram for an example control channel repetition for downlink communication, in accordance with certain aspects of the disclosure.
FIG. 11 illustrates a flow diagram for an example control channel repetition for uplink communication, in accordance with certain aspects of the disclosure.
FIG. 12 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for control channel repetition for uplink and downlink communication.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an  order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication technologies, such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
New Radio (NR) is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using  terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
New radio (NR) access (e.g., 5G technology) may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Example Wireless Communications System
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be a New Radio (NR) or 5G network.
As illustrated in FIG. 1, the wireless network 100 may include a number of base stations (BSs) 110 and other network entities. A BS may be a station that communicates with user equipments (UEs) . Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and next generation NodeB (gNB) , new radio base station (NR BS) , 5G NB, access point (AP) , or transmission reception point (TRP) may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces, such as a direct physical connection, a wireless connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A base station (BS) may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown inFIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
Wireless communication network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of  BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
Wireless communication network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another (e.g., directly or indirectly) via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for  example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” (RB) ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast Fourier Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR. NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
In some examples, access to the air interface may be scheduled, wherein a. A scheduling entity (e.g., a base station) allocates resources for communication among  some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
InFIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink. A finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
FIG. 2 illustrates an example logical architecture of a distributed Radio Access Network (RAN) 200, which may be implemented in the wireless communication network 100 illustrated in FIG. 1. A 5G access node 206 may include an access node controller (ANC) 202. ANC 202 may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the Next Generation Core Network (NG-CN) 204 may terminate at ANC 202. The backhaul interface to neighboring next generation access Nodes (NG-ANs) 210 may terminate at ANC 202. ANC 202 may include one or more transmission reception points (TRPs) 208 (e.g., cells, BSs, gNBs, etc. ) .
The TRPs 208 may be a distributed unit (DU) . TRPs 208 may be connected to a single ANC (e.g., ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, TRPs 208 may be connected to more than one ANC. TRPs 208 may each include one or more antenna ports. TRPs 208 may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The logical architecture of distributed RAN 200 may support fronthauling solutions across different deployment types. For example, the logical architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The logical architecture of distributed RAN 200 may share features and/or components with LTE. For example, next generation access node (NG-AN) 210 may support dual connectivity with NR and may share a common fronthaul for LTE and NR.
The logical architecture of distributed RAN 200 may enable cooperation between and among TRPs 208, for example, within a TRP and/or across TRPs via ANC 202. An inter-TRP interface may not be used.
Logical functions may be dynamically distributed in the logical architecture of distributed RAN 200. As will be described in more detail with reference to FIG. 5, the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU (e.g., TRP 208) or CU (e.g., ANC 202) .
FIG. 3 illustrates an example physical architecture of a distributed Radio Access Network (RAN) 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. C-CU 302 may be centrally deployed. C-CU 302 functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU 304 may host core network functions locally. The C-RU 304 may have distributed deployment. The C-RU 304 may be close to the network edge.
DU 306 may host one or more TRPs (Edge Node (EN) , an Edge Unit (EU) , a Radio Head (RH) , a Smart Radio Head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of BS 110 and UE 120 (as depicted inFIG. 1) , which may be used to implement aspects of the present disclosure. For example, antennas 452,  processors  466, 458, 464, and/or controller/processor 480 of the  UE 120 and/or antennas 434,  processors  420, 460, 438, and/or controller/processor 440 of the BS 110 may be used to perform the various techniques and methods described herein.
At the BS 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and cell-specific reference signal (CRS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) in transceivers 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide  decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at UE 120, a transmit processor 464 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 462 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators in transceivers 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct the operation at the base station 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the BS 110 may perform or direct the execution of processes for the techniques described herein. The  memories  442 and 482 may store data and program codes for BS 110 and UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure. The illustrated communications protocol stacks may be implemented by devices operating in a wireless communication system, such as a 5G system (e.g., a system that supports uplink-based mobility) . Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530. In various examples, the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated  implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
A first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) . In the first option 505-a, an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit, and an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU. In various examples the CU and the DU may be collocated or non-collocated. The first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
A second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device. In the second option, RRC layer 510, PDCP layer 515, RLC layer 520, MAC layer 525, and PHY layer 530 may each be implemented by the AN. The second option 505-b may be useful in, for example, a femto cell deployment.
Regardless of whether a network access device implements part or all of a protocol stack, a UE may implement an entire protocol stack as shown in 505-c (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
In LTE, the basic transmission time interval (TTI) or packet duration is the 1 ms subframe. In NR, a subframe is still 1 ms, but the basic TTI is referred to as a slot. A subframe contains a variable number of slots (e.g., 1, 2, 4, 8, 16, . . . slots) depending on the subcarrier spacing. The NR RB is 12 consecutive frequency subcarriers. NR may support a base subcarrier spacing of 15 KHz and other subcarrier spacing may be defined with respect to the base subcarrier spacing, for example, 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. The symbol and slot lengths scale with the subcarrier spacing. The CP length also depends on the subcarrier spacing.
FIG. 6 is a diagram showing an example of a frame format 600 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each  subframe may include a variable number of slots depending on the subcarrier spacing. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the subcarrier spacing. The symbol periods in each slot may be assigned indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 6. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc. The SS blocks may be organized into SS bursts to support beam sweeping. Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed  spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
A UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) . When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting a pilot signal to a network. When operating in the RRC common state, the UE may select a common set of resources for transmitting a pilot signal to the network. In either case, a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof. Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE. One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals, may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
Example Control Channel Repetition for Uplink and Downlink Communication
Certain aspects of the present disclosure may be used for URLLC. URLLC generally refers to relatively tight (e.g., stringent) requirements for successful delivery of information (e.g., control information, data, etc. ) within a deadline (e.g., 1 ms) with very high probability (e.g., 99.999%) of success from a sending device to a receiving device. The requirements may be for both a control channel (e.g., physical downlink control channel (PDCCH) ) and a data channel (e.g., physical downlink shared channel (PDSCH) , and/or physical uplink shared channel (PUSCH) ) . In some aspects, the requirements for the control channel may be more stringent than for the data channel. For information to be successfully delivered to a receiving device, the receiving device may receive encoded data indicative of the information from the sending device and successfully decode the encoded data to receive the information.
The chances of decoding the encoded data at the receiving device can be improved with the use of control channel repetition for uplink and downlink communications that allows the receiving device (e.g., UE) to combine (e.g., using soft combining techniques) different copies of the same data. For example, a data channel (e.g., PDSCH (data) ) may not be successfully decoded if the corresponding control channel (e.g., PDCCH (control information) ) is not successfully decoded by the UE. For example, the control channel may include data (e.g., downlink control information (DCI) ) indicative of parameters (e.g., time resources and/or frequency resources) for receiving the data channel. Accordingly, certain aspects of the present disclosure provide apparatus and techniques for control channel repetition for uplink and downlink URLLC communication. Such control channel repetition can improve the successful decoding of the control channel, which can thereby improve successful decoding of the data channel.
As noted above, URLLC has very stringent reliability and latency requirements. For example, a 32-byte packet needs to be received with high reliability (e.g., a reliability of 10 -5 block error rate) within a delay bound (e.g., of 1ms) .
A UE (e.g., UE 120 of FIG. 1) can monitor a control channel (e.g., PDCCH) (e.g., perform detection such as blind detection) for control information (e.g., DCI) of the UE transmitted by a BS (e.g., BS 110 of FIG. 1) . However, in certain aspects, the UE is unable to decode the PDCCH (e.g., corrupted data, incomplete transmission, etc. ) . The BS may retransmit the PDCCH with the control information to the UE. The UE, to improve the chances of decoding the PDCCH, can use error correction techniques referred to as combining as explained below. For example, Chase combining is a technique that retains received encoded data (e.g., encoded data of the PDCCH) that is not successfully decoded in a buffer (i.e., memory) (e.g., as a “soft bit” or estimate of the actual value of the data) . The UE can then receive one or more retransmissions of the encoded data and combine the one or more received retransmissions with the received encoded data and then attempt to decode the combined encoded data, which improves the chance of successfully decoding the data. In this case, a UE can receive the decoded control information and thus receive and decode the corresponding data sooner, rather than having to wait to successfully decode a single PDCCH in a future slot, which may not satisfy URLLC. Incremental redundancy is another aspect of  combining where the retransmissions contain additional information (e.g., resource information) . Together, chase combining and incremental redundancy are referred to as soft combining. It will be appreciated that Chase combining requires a smaller buffer than soft combining as there is no need to store and process certain additional information.
Certain aspects use combining as explained below. For example, FIG. 7 depicts certain wireless communication resources 700 (e.g., time resources, frequency resources, etc. ) used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) . For example, wireless communication resources 700 include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) . In certain aspects, the wireless communication resources 700 shown correspond to a single slot N. As shown, the BS transmits a first PDCCH 710 and a first PDSCH 712 as a pair. FIG. 7 further shows a successive transmission of a second pair that includes a second PDCCH 720 and a second PDSCH 722 at a later time than first PDCCH 710 and first PDSCH 712 in slot N. It will be appreciated that in certain aspects, the UE performs blind detection on the first PDCCH 710 for control information. In certain aspects, the UE may successfully decode PDCCH 710 (e.g., decode and detect a scheduling DCI that indicates parameters (e.g., time resources and/or frequency resources) for receiving the PDSCH 712) . In certain aspects, the UE may send an acknowledgement (ACK) (e.g., PDCCH-ACK) to the base station after the PDCCH 710 is successfully decoded. In this case, the base station may receive the ACK, and omit sending PDCCH 720. In certain aspects, the base station may reduce the power of PDSCH 722 because it is likely to be received and decoded if PDCCH 710 was successfully received and decoded. In other aspects, the UE may not successfully decode PDCCH 710 (e.g., fail to decode and detect the DCI) . In this case, the UE may receive and attempt to combine PDCCH 720 with PDCCH 710 using combining techniques such as soft-combining.
In certain aspects, it will be appreciated that reducing the power of a PDSCH 722 is not efficient because the PDSCH 712 may have been successfully received and decoded by the UE, and therefore resources relating to PDSCH 722 are unnecessarily used for redundant transmission. It will be further appreciated that the wireless communication resources used for PDCCH 720 are wasted if PDCCH 710 is received by the UE and ACK is transmitted to the base station as the resources corresponding to  PDCCH 720 go largely unused as they either include the same information already received and decoded by the UE as PDCCH 710 or go unused. Additionally, because PDSCH 722 is in different resources (e.g., time) than PDSCH 712, additional control information signaling of PDSCH 722 resources are needed. Large memory resources are also used to store the entire PDSCH 712 since resources specific to the UE are unknown until the UE combines and decodes PDCCH 720 and PDCCH 710. This additional use of processing power and storage reduce the capabilities of the UE.
In certain aspects, PDSCH is only communicated after a repeated series of PDCCH are communicated. However, in this case, there is a delay in sending the PDSCH, which require additional memory and processing power as the successive PDSCH require additional control information to combine and decode.
In certain aspects, PDSCH and PDCCH are overlapped in time, meaning they are transmitted on shared time resources over different frequency resources. The UE may be configured to send an ACK when it successfully decodes the PDSCH, meaning it has also necessarily decoded the PDCCH to determine which PDSCH resources to receive and decode. The UE may further be configured to send a negative ACK (NACK) when it is unable to successfully decode the PDSCH, meaning it has also necessarily decoded the PDCCH to determine which PDSCH resources to try and receive and decode. In this case, when the BS receives a NACK, the BS stops sending PDCCH, and when an ACK is received, both the PDCCH and PDSCH repetition are terminated. It will be appreciated that in this case, the resources for the successive PDCCH and PDSCH are wasted if an ACK is received.
FIG. 8 depicts certain wireless communication resources (e.g., time resources, frequency resources, etc. ) 800a and 800b used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) . For example,  wireless communication resources  800a and 800b each include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) . In certain aspects, the wireless communication resources 800a correspond to a single slot N and wireless communication resources 800b correspond to a single slot N.
Wireless communication resources  800a and 800b both depict a first PDCCH 810 transmitted from a BS to a UE. It will be appreciated that in certain aspects, the UE performs blind detection on the first PDCCH 810 for control  information. In certain aspects, the UE may successfully decode PDCCH 810 (e.g., decode and detect a scheduling DCI that indicates parameters (e.g., time resources and/or frequency resources) for receiving the PDSCH 822. In this case, the UE may transmit an ACK, and the BS can then forgo sending a PDCCH retransmission. In this case, because the UE does not need a PDCCH retransmission to decode PDSCH 822, the resources for PDCCH retransmission may be allocated to PDSCH 822, thus resources are not wasted by a PDCCH retransmission or go unused. It will be appreciated that techniques described in FIG. 8 improve the performance of PDCCH signaling by more efficient resource allocation.
In other aspects, PDCCH 810 may not be successfully decoded by the UE. Wireless communication resources 800b shows a case where PDCCH 810 was not successfully decoded. In this case, (e.g., when an ACK is not sent by the UE to the base station) the base station sends PDCCH 812 retransmission paired with a PDSCH 822 in slot N. In this case, the UE uses combining to decode the control information from PDCCH 810 and PDCCH 812 to obtain the resource information for PDSCH 822 (e.g., downlink control information (DCI) indicative of parameters for receiving the PDSCH 822) . It will be appreciated that only one data packet is transmitted in this case, which may provide benefits of reduced processing and memory usage as a first PDSCH is not stored and combined with PDSCH 822.
FIG. 9 depicts techniques for control channel repetition for uplink communication in accordance with certain aspects of the disclosure. FIG. 9 depicts certain  wireless communication resources  900a and 900b (e.g., time resources, frequency resources, etc. ) used for communication between at least a BS (e.g., BS 110 of FIG. 1) and a UE (e.g., UE 120 of FIG. 1) . For example,  wireless communication resources  900a and 900b each include time along a horizontal axis (e.g. X-axis) and frequency along a vertical axis (e.g., Y-axis) . In certain aspects, the wireless communication resources 900a correspond to a single slot N and wireless communication resources 900b correspond to a single slot N.
In certain aspects,  wireless communication resources  900a and 900b both depict a first PDCCH 910 transmitted in slot N from a BS to a UE. In wireless communication resources 900a, PDCCH 910 is not successfully decoded by the UE after PDCCH 910. In this case, the BS sends a PDCCH 912 retransmission in the same  slot N. The UE uses combining to decode control information from PDCCH 910 and PDCCH 912 to obtain the resource information for sending a PUSCH 920 in slot N+1. For example, the control information may comprise an uplink grant for the UE indicating resources (e.g., time, frequency, etc. ) for the UE to transmit on the PUSCH 920.
In other aspects, PDCCH 910 is successfully decoded by the UE, as shown by wireless communication resources 900b. In this case, the UE sends an ACK, and the BS will forgo retransmission of a PDCCH. Thus, it will be appreciated that resources are not wasted by retransmission when PDCCH 910 is successfully decoded. In this case, the UE will then send PUSCH 920 in slot N+1.
FIG. 10 shows operations 1000 of a method of wireless communication performed at a UE, in accordance with certain aspects of the disclosure. Operations 1000 begin at block 1002, where the UE receives in a first slot a physical downlink control channel (PDCCH) at a first time (e.g., by monitor a control channel (e.g., PDCCH and performing detection such as blind detection) . At block 1004, the UE attempts to successfully decode the PDCCH and determines whether the PDCCH is successfully decoded.
If the PDCCH is not successfully decoded at block 1004, the operation proceed to block 1006, where the UE receives in the first slot, the PDCCH at a second time that is later than the first time, and receives in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH. It will be appreciated that UE may combine the PDCCH received at the first time and the PDCCH received at the second time (e.g., to obtain downlink control information (DCI) indicative of parameters for receiving the PDSCH (e.g., time resources and frequency resources) ) . In certain aspects, the operations 1000 end at block 1006. If the PDCCH is successfully decoded, the operations proceed to block 1008, where the UE transmits an acknowledgment (ACK) , and receives the PDSCH at the second time and the third time based on the PDCCH.
FIG. 11 shows operations 1100 of a method of wireless communication performed at a UE in accordance with certain aspects of the disclosure. Operations 1100 begin at block 1102 by receiving in a first slot a physical downlink control channel  (PDCCH) at a first time. At block 1104, the UE attempts to successfully decode the PDCCH and determines whether the PDCCH is successfully decoded.
If the PDCCH is not successfully decoded, the operations proceed to block 1106, where the UE receives in the first slot the PDCCH at a second time that is later than the first time. At block 1108, the UE combines the PDCCH received at the first time and the second time and attempts to successfully decode the combined PDCCH. It will be appreciated that the PDCCH may include downlink control information (DCI) indicative of parameters for sending a physical uplink shared channel (PUSCH) (e.g., time resources and frequency resources) . Then, at block 1112, the UE transmits in a second slot, a PUSCH based on the PDCCH decoded in the first slot.
If the PDCCH is successfully decoded at block 1104, the operations proceed to block 1110, where the UE transmits an acknowledgment (ACK) to the BS. Then, at block 1112, the UE transmits in a second slot, a PUSCH based on the PDCCH decoded in the first slot. It will be appreciated that in this case, the UE does not receive in the first slot the PDCCH at the second time (e.g., because the BS did not send a second PDCCH) based on the BS receiving the ACK.
In some cases, the approaches presented herein may be enabled based on UE capability or base station capability, either of which may be communicated using known signaling techniques.
FIG. 12 illustrates a communications device 1200 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated inFIG. 10 and FIG. 11. The communications device 1200 includes a processing system 1202 coupled to a transceiver 1208. The transceiver 1208 is configured to transmit and receive signals for the communications device 1200 via an antenna 1210, such as the various signal described herein. The processing system 1202 may be configured to perform processing functions for the communications device 1200, including processing signals received and/or to be transmitted by the communications device 1200.
The processing system 1202 includes a processor 1204 coupled to a computer-readable medium/memory 1212 via a bus 1206. In certain aspects, the  computer-readable medium/memory 1212 is configured to store instructions that when executed by processor 1204, cause the processor 1204 to perform the operations illustrated in FIG. 10 and FIG. 11, or other operations for performing the various techniques discussed herein.
In certain aspects, the processing system 1202 further includes a receiving component 1214 for performing the operations illustrated in FIG. 10  block  1002 and 1006, and FIG. 11  blocks  1102 and 1106. Additionally, the processing system 1202 includes an attempting component 1216 for performing the operations illustrated in FIG. 10 block 1004 and FIG. 11  block  1104 and 1108. Additionally, the processing system 1202 includes a determining component 1218 for performing the operations illustrated in FIG. 10  blocks  1004, 1006, and 1008, and FIG. 11  blocks  1104, 1106, and 1110. Additionally, the processing system 1202 includes a combining component 1220 for performing the operations illustrated in FIG. 11 block 1108. Additionally, the processing system 1202 includes a transmitting component 1222 for performing the operations illustrated in FIG. 10 block 1008 and FIG. 11 block 1112.
The receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be coupled to the processor 1204 via bus 1206. In certain aspects, the receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be hardware circuits. In certain aspects, the receiving component 1214, attempting component 1216, determining component 1218, combining component 1220, and transmitting component 1222 may be software components that are executed and run on processor 1204.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any  combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be  construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a  software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2018097690-appb-000001
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for performing the operations described herein and illustrated in FIG. 10 andFIG. 11.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (16)

  1. A method of wireless communication performed at a user equipment (UE) , the method comprising:
    receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempting to successfully decode the PDCCH;
    determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receiving, in the first slot, the PDCCH at a second time that is later than the first time; and
    receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH; and
    when it is determined the PDCCH is successfully decoded:
    transmitting an acknowledgment; and
    receiving the PDSCH at the second time and the third time based on the PDCCH.
  2. The method of claim 1, further comprising, when it is determined the PDCCH is not successfully decoded:
    combining the PDCCH received at the first time and the second time; and
    attempting to successfully decode the combined PDCCH.
  3. The method of claim 1, wherein the PDCCH comprises downlink control information (DCI) indicative of parameters for receiving the PDSCH.
  4. The method of claim 3, wherein the parameters comprise time resources and frequency resources, wherein the time resources indicate the third time.
  5. A method of wireless communication performed at a user equipment (UE) , the method comprising:
    receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempting to successfully decode the PDCCH;
    determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receiving, in the first slot, the PDCCH at a second time that is later than the first time;
    combining the PDCCH received at the first time and the second time; and
    attempting to successfully decode the combined PDCCH;
    when it is determined the PDCCH is successfully decoded:
    transmitting an acknowledgment; and
    not receiving, in the first slot, the PDCCH at the second time; and
    transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  6. The method of claim 1, wherein the PDCCH comprises an uplink grant for the PUSCH.
  7. A means for wireless communication performed by a user equipment (UE) , comprising:
    a means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    a means for attempting to successfully decode the PDCCH;
    a means for determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time; and
    a means for receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH; and
    when it is determined the PDCCH is successfully decoded:
    a means for transmitting an acknowledgment; and
    a means for receiving the PDSCH at the second time and the third time based on the PDCCH.
  8. The UE of claim 7, further comprising, when it is determined the PDCCH is not successfully decoded:
    a means for receiving combining the PDCCH received at the first time and the second time; and
    a means for receiving attempting to successfully decode the combined PDCCH.
  9. The UE of claim 7, wherein the PDCCH comprises downlink control information (DCI) indicative of parameters for receiving the PDSCH.
  10. The UE of claim 9, wherein the parameters comprise time resources and frequency resources, wherein the time resources indicate the third time.
  11. A means for wireless communication performed by a user equipment (UE) , comprising:
    a means for receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    a means for attempting to successfully decode the PDCCH;
    a means for determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    a means for receiving, in the first slot, the PDCCH at a second time that is later than the first time;
    a means for combining the PDCCH received at the first time and the second time; and
    a means for receiving to successfully decode the combined PDCCH;
    when it is determined the PDCCH is successfully decoded:
    a means for transmitting an acknowledgment; and
    not receiving, in the first slot, the PDCCH at the second time; and
    a means for transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  12. The UE of claim 11, wherein the PDCCH comprises an uplink grant for the PUSCH.
  13. A non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication comprising:
    receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempting to successfully decode the PDCCH;
    determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receiving, in the first slot, the PDCCH at a second time that is later than the first time; and
    receiving, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH; and
    when it is determined the PDCCH is successfully decoded:
    transmitting an acknowledgment; and
    receiving the PDSCH at the second time and the third time based on the PDCCH.
  14. A non-transitory computer readable storage medium that stores instructions that when executed by a processor of a user equipment (UE) cause the UE to perform a method of wireless communication comprising:
    receiving, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempting to successfully decode the PDCCH;
    determining whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receiving, in the first slot, the PDCCH at a second time that is later than the first time;
    combining the PDCCH received at the first time and the second time; and
    attempting to successfully decode the combined PDCCH;
    when it is determined the PDCCH is successfully decoded:
    transmitting an acknowledgment; and
    not receiving, in the first slot, the PDCCH at the second time; and
    transmitting, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
  15. A user equipment (UE) comprising:
    a memory; and
    a processor configured to cause the UE to:
    receive, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempt to successfully decode the PDCCH;
    determine whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receive, in the first slot, the PDCCH at a second time that is later than the first time; and
    receive, in the first slot, a physical downlink shared channel (PDSCH) at a third time that is later than the second time based on the PDCCH; and
    when it is determined the PDCCH is successfully decoded:
    transmit an acknowledgment; and
    receive the PDSCH at the second time and the third time based on the PDCCH.
  16. A user equipment (UE) comprising:
    a memory; and
    a processor configured to cause the UE to:
    receive, in a first slot, a physical downlink control channel (PDCCH) at a first time;
    attempt to successfully decode the PDCCH;
    determine whether the PDCCH is successfully decoded;
    when it is determined the PDCCH is not successfully decoded:
    receive, in the first slot, the PDCCH at a second time that is later than the first time;
    combined the PDCCH received at the first time and the second time; and
    attempt to successfully decode the combined PDCCH;
    when it is determined the PDCCH is successfully decoded:
    transmit an acknowledgment; and
    not receive, in the first slot, the PDCCH at the second time; and
    transmit, in a second slot, a physical uplink shared channel (PUSCH) based on the PDCCH.
PCT/CN2018/097690 2018-07-28 2018-07-28 Control channel repetition for uplink and downlink communication WO2020024080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097690 WO2020024080A1 (en) 2018-07-28 2018-07-28 Control channel repetition for uplink and downlink communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097690 WO2020024080A1 (en) 2018-07-28 2018-07-28 Control channel repetition for uplink and downlink communication

Publications (1)

Publication Number Publication Date
WO2020024080A1 true WO2020024080A1 (en) 2020-02-06

Family

ID=69230466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097690 WO2020024080A1 (en) 2018-07-28 2018-07-28 Control channel repetition for uplink and downlink communication

Country Status (1)

Country Link
WO (1) WO2020024080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213542A4 (en) * 2020-09-09 2024-04-10 Beijing Xiaomi Mobile Software Co Ltd Downlink transmission method, downlink transmission apparatus, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051270A1 (en) * 2010-08-24 2012-03-01 Qualcomm Incorporated Handling ambiguous relay physical downlink control channel (r-pdcch) decoding for a relay node
US20150146609A1 (en) * 2009-09-21 2015-05-28 Lg Electronics Inc. Repeater for receiving signals from a base station in a wireless communication system, and signal receiving method
US20170026941A1 (en) * 2015-07-24 2017-01-26 Apple Inc. Apparatus, System, and Method for Blind Decoding PCFICH for Wireless Communication Devices
WO2017192224A1 (en) * 2016-05-04 2017-11-09 Intel IP Corporation Downlink control channel transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150146609A1 (en) * 2009-09-21 2015-05-28 Lg Electronics Inc. Repeater for receiving signals from a base station in a wireless communication system, and signal receiving method
US20120051270A1 (en) * 2010-08-24 2012-03-01 Qualcomm Incorporated Handling ambiguous relay physical downlink control channel (r-pdcch) decoding for a relay node
US20170026941A1 (en) * 2015-07-24 2017-01-26 Apple Inc. Apparatus, System, and Method for Blind Decoding PCFICH for Wireless Communication Devices
WO2017192224A1 (en) * 2016-05-04 2017-11-09 Intel IP Corporation Downlink control channel transmissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213542A4 (en) * 2020-09-09 2024-04-10 Beijing Xiaomi Mobile Software Co Ltd Downlink transmission method, downlink transmission apparatus, and storage medium

Similar Documents

Publication Publication Date Title
EP3713146B1 (en) Slot format indicator (sfi) and slot aggregation level indication in group common pdcch and sfi conflict handling
US20190349917A1 (en) Uplink control information multiplexing on physical uplink shared channels in new radio
EP3782321B1 (en) Demodulation reference signal (dmrs) time-domain bundling and multiple codeword transmission and processing
EP4044481A1 (en) Physical downlink control channel (pdcch) repetition and decoding for ultra-reliability low latency communication (urllc)
US10757042B2 (en) Buffer management for multiple radio access technologies
WO2020056726A1 (en) Uplink control information multiplexing on physical uplink control channel
US11082187B2 (en) Rate-matching for single downlink control information multi-transmission reception point transmissions
EP3704908A1 (en) Timing advance granularity for uplink with different numerologies
EP3776968B1 (en) Collision handling for csi reporting on pusch
EP3753160B1 (en) Response-based resource management
US10856319B2 (en) Link dependent scheduling request format for URLLC
WO2020034055A1 (en) Layer mapping for multi-trp transmission
US11456825B2 (en) Non-numeric feedback timing indicators for HARQ-ACK
WO2020024080A1 (en) Control channel repetition for uplink and downlink communication
WO2021035495A1 (en) Deactivation time for semi-persistent channel state information (sp-csi)
WO2022227048A1 (en) Pucch reset after per-trp beam failure recovery
EP3603205B1 (en) Reliable delivery of system information
WO2020087493A1 (en) MPDCCH TRANSMISSION IN LTE CONTROL REGION FOR eMTC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928323

Country of ref document: EP

Kind code of ref document: A1