WO2020022022A1 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
WO2020022022A1
WO2020022022A1 PCT/JP2019/026665 JP2019026665W WO2020022022A1 WO 2020022022 A1 WO2020022022 A1 WO 2020022022A1 JP 2019026665 W JP2019026665 W JP 2019026665W WO 2020022022 A1 WO2020022022 A1 WO 2020022022A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
face
power storage
terminal
conductive
Prior art date
Application number
PCT/JP2019/026665
Other languages
French (fr)
Japanese (ja)
Inventor
野田知宏
神頭将之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020022022A1 publication Critical patent/WO2020022022A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device.
  • an electric double layer capacitor is widely used in various electronic devices such as mobile phones. Unlike a secondary battery, an electric double layer capacitor does not involve a chemical reaction at the time of charge and discharge, and thus has an excellent charge / discharge cycle life, and is capable of performing charge / discharge in a short time with a large current.
  • Patent Document 1 describes an electric double layer capacitor having a structure in which an electric double layer capacitor element serving as a power storage element is housed in a concave container.
  • a pair of electrodes constituting an electric double layer capacitor element are laminated via a separator, and are electrically connected to a pair of external electrodes provided on the bottom surface of the concave container, respectively. That is, the pair of electrodes of the electric double layer capacitor element are electrically connected to an external circuit via the pair of external electrodes, so that the electric double layer capacitor element can be charged and discharged.
  • an electrode located above in the stacking direction among a pair of electrodes constituting the electric double-layer capacitor element is provided on a lid that covers an upper portion of the concave container. It is electrically connected to an external electrode provided on the bottom surface of the concave container via a metal layer and a through electrode penetrating from the upper surface to the lower surface of the concave container.
  • An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a power storage device in which a conductive path between a power storage element and an external electrode provided in a storage container is shortened to reduce an equivalent series resistance.
  • the power storage device of the present invention includes: A storage element, A housing container for housing the power storage element, A conductive portion that electrically connects the power storage element and an external electrode provided in the storage container, With The electricity storage element, A first main surface and a second main surface extending along the length direction and the width direction; a first side surface and a second side surface extending along the length direction and the thickness direction; A first end surface and a second end surface extending along the thickness direction; A first internal electrode and a second internal electrode, wherein a plurality of the first internal electrodes and the second internal electrodes are alternately stacked in the thickness direction; A first end face electrode provided on the first end face and connected to the plurality of first internal electrodes; a second end face provided on the second end face and connected to the plurality of second internal electrodes; 2 end face electrodes,
  • the storage container A first terminal provided on an inner bottom surface that is a surface facing the second main surface of the power storage element; A first external electrode provided on an outer bottom surface opposite to the inner bottom surface and electrically connected
  • the first conductive resin and the second conductive resin may contain a conductive filler containing at least one selected from the group consisting of copper and nickel.
  • the surface of the conductive filler may be coated with any of gold, silver, and platinum.
  • the first conductive resin and the second conductive resin contain a conductive filler containing silver
  • the first end face electrode and the second end face electrode each include at least one selected from the group consisting of Au, Ni, Pt, Cu, Ti, Cr, Co, Mn, and C;
  • a conductive film containing an alloy containing a seed may be formed.
  • the container includes a first via conductor that connects the first terminal to the first external electrode, a second via conductor that connects the second terminal to the second external electrode, Is further provided, When viewed in the thickness direction, the first via conductor is disposed at a position where at least a part thereof overlaps the first end face electrode, and at least a part of the second via conductor is the second terminal conductor. It may be arranged at a position overlapping the second end face electrode.
  • the first conductive resin is sandwiched between the first end surface electrode and an inner side surface of the storage container facing the first end surface electrode
  • the second conductive resin is The second end face electrode may be sandwiched between the second end face electrode and an inner side face of the container facing the second end face electrode.
  • the storage container has a bottomed cylindrical shape having an opening at one end,
  • the storage container may further include a metal lid for sealing the opening.
  • the storage container has a bottomed cylindrical shape having an opening at one end, Further comprising a metal lid for sealing the opening of the storage container,
  • the insulating resin covering the first main surface of the power storage element may be sandwiched between the first main surface and the metal lid.
  • the first end face of the electric storage element is provided with the first end face electrode connected to the plurality of first internal electrodes, and the second end face is provided with the plurality of second internal electrodes.
  • a connected second end face electrode is provided.
  • a first terminal and a second terminal are provided on an inner bottom surface of the container, and a first external electrode and a second terminal electrically connected to the first terminal are provided on the outer bottom surface.
  • a second external electrode is provided which is electrically connected. Then, the first end face electrode and the first terminal are electrically connected by the first conductive resin, and the second end face electrode and the second terminal are electrically connected by the second conductive resin. Electrically connected.
  • FIG. 2 is a schematic cross-sectional view of the electric double-layer capacitor shown in FIG. 1 along the line II-II. It is a figure which shows the contact resistance between conductive resin and aluminum at the time of using a silver filler, a copper filler, and a nickel filler as a conductive filler, respectively. It is a typical sectional view showing the composition of the electric double layer capacitor in a 2nd embodiment.
  • the figure which shows the contact resistance with the conductive resin containing a silver filler about the case where a gold
  • an electric double layer capacitor will be described as an example of the power storage device of the present invention.
  • the power storage device is not limited to an electric double layer capacitor, and may be a multilayer ceramic capacitor or the like.
  • FIG. 1 is a schematic perspective view showing the configuration of the electric double layer capacitor 100 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the electric double layer capacitor 100 shown in FIG. 1 along the line II-II.
  • L indicates the length direction
  • W indicates the width direction
  • T indicates the thickness direction (the laminating direction of the internal electrodes).
  • the electric double-layer capacitor 100 includes an electric double-layer capacitor element 10, a housing 20, a first conductive resin 30a, a second conductive resin 30b, a lid 40, and a seam ring. 50.
  • the electric double layer capacitor element 10 serving as a power storage element has a substantially rectangular parallelepiped shape, and includes a first main surface 10a and a second main surface 10b, a first side surface and a second side surface, and a first end surface 10c. And a second end face 10d.
  • the first main surface 10a and the second main surface 10b extend along the length direction L and the width direction W.
  • the first side surface and the second side surface extend along the length direction L and the thickness direction T.
  • the first end face 10c and the second end face 10d extend along the width direction W and the thickness direction T.
  • the first main surface 10a and the second main surface 10b, the first side surface and the second side surface, the first end surface 10c and the second end surface 10d correspond to the "surface" of the present invention.
  • the “cuboid shape” includes a shape in which a corner or a ridge is chamfered or a shape in which the corner or the ridge is rounded.
  • a corner portion is a portion where three surfaces of the electric double layer capacitor element 10 intersect, and a ridge portion is a portion where two surfaces of the electric double layer capacitor element 10 intersect.
  • the electric double layer capacitor element 10 has a structure in which a plurality of first internal electrodes 11 and second internal electrodes 12 are alternately stacked via an electrolyte layer 13. That is, the plurality of first internal electrodes 11 and the plurality of second internal electrodes 12 are alternately stacked via the electrolyte layer 13.
  • the number of layers is preferably three or more.
  • the plurality of first internal electrodes 11 are drawn out to the first end face 10c of the electric double layer capacitor element 10, but are not drawn out to the first side face, the second side face, and the second end face 10d.
  • the plurality of second internal electrodes 12 are led out to a second end face 10d opposite to the first end face 10c of the electric double layer capacitor element 10, while the first side face, the second side face, and the second The first end face 10c is not drawn out.
  • the first end face 10c and the second end face 10d are surfaces orthogonal to the main surfaces of the first internal electrode 11 and the second internal electrode 12.
  • the first end face 10c and the second end face 10d are faces opposed in the length direction L of the electric double layer capacitor element 10.
  • the first end face 10c and the second end face 10d may be surfaces facing the width direction W of the electric double layer capacitor element 10.
  • the first internal electrode 11 has a first current collector 11a and a first active material layer 11b.
  • the first current collector 11a is, for example, a metal foil made of at least one metal such as aluminum and copper.
  • metal includes an alloy.
  • the first active material layer 11b is provided on both surfaces of the first current collector 11a. However, when the first internal electrode 11 exists in the outermost layer in the thickness direction T, the first current collector 11a of the first internal electrode 11 is provided with the first active material layer 11b only on one surface. Have been.
  • the first active material layer 11b contains an active material.
  • the first active material layer 11b is a polarizable electrode, and preferably contains, for example, a carbon material such as activated carbon as an active material.
  • the second internal electrode 12 has a second current collector 12a and a second active material layer 12b.
  • the second current collector 12a is, for example, a metal foil made of at least one metal such as aluminum and copper.
  • metal includes an alloy.
  • the second active material layer 12b is provided on both surfaces of the second current collector 12a. However, when the second internal electrode 12 exists in the outermost layer in the thickness direction T, the second current collector 12a of the second internal electrode 12 is provided with the second active material layer 12b only on one surface. Have been.
  • the second active material layer 12b contains an active material.
  • the second active material layer 12b is a polarizable electrode, and preferably contains, for example, a carbon material such as activated carbon as an active material.
  • An electrolyte layer 13 is provided between the first active material layer 11b of the first internal electrode 11 and the second active material layer 12b of the second internal electrode 12.
  • the electrolyte layer 13 is a layer containing an electrolyte.
  • the electrolyte layer 13 may be made of a gel electrolyte which is a gel electrolyte, or may be made of a porous body such as a separator impregnated with an electrolyte.
  • Specific examples of the gel electrolyte include, for example, polymer polyethylene oxide containing an electrolyte.
  • the electrolyte examples include an ionic liquid such as EMITFSI (1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide), EMIBF4 (1-ethyl-3-methylimidazolium borofluoride), or the like.
  • EMITFSI 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • EMIBF4 1-ethyl-3-methylimidazolium borofluoride
  • a solution obtained by dissolving the ionic liquid in an organic solvent such as propylene carbonate or acetonitrile can be used.
  • One of these electrolytes may be used alone, or a plurality of them may be mixed and used.
  • first internal electrodes 11 only the first current collector 11a is exposed on the first end face 10c. Also, of the second internal electrodes 12, only the second current collector 12a is exposed on the second end face 10d. The first active material layer 11b of the first internal electrode 11, the second active material layer 12b of the second internal electrode 12, and the electrolyte layer 13 are exposed on the first end face 10c and the second end face 10d. I haven't.
  • first active material layer 11b Between the first active material layer 11b, the second active material layer 12b, and the electrolyte layer 13, and each of the first end face 10c, the second end face 10d, the first side face, and the second side face Is provided with an insulating layer 16. Due to the insulating layer 16, the first active material layer 11b, the second active material layer 12b, and the electrolyte layer 13 are formed on the first end face 10c, the second end face 10d, the first side face, and the second side face, respectively. Is isolated from
  • the insulating layer 16 is made of, for example, urethane resin, acrylic resin, epoxy resin, polyimide resin, silicon resin, or the like.
  • the first end face electrode 14 is provided on the first end face 10 c of the electric double layer capacitor element 10.
  • the first end face electrode 14 is electrically connected to the plurality of first internal electrodes 11.
  • a second end face electrode 15 is provided on the second end face 10d.
  • the second end face electrode 15 is electrically connected to the plurality of second internal electrodes 12. That is, the plurality of first internal electrodes 11 and the plurality of second internal electrodes 12 are connected in parallel. Thereby, high output density of the electric double layer capacitor element 10 can be realized.
  • the first end face electrode 14 and the second end face electrode 15 are made of, for example, aluminum. In that case, the first end face electrode 14 and the second end face electrode 15 can be formed by aluminum spraying.
  • the container 20 has a concave portion for accommodating the electric double layer capacitor element 10.
  • the storage container 20 is a bottomed cylindrical housing having an opening at one end, a bottom surface facing the opening, and a side wall extending substantially perpendicularly from the bottom surface.
  • the storage container 20 is made of an insulating material, and in this embodiment, is made of, for example, a ceramic material.
  • the storage container 20 includes four side walls: a first side wall 20c, a second side wall 20d, a third side wall, and a fourth side wall.
  • the distance in the thickness direction T of the side wall which is the height of the side wall, is larger than the distance in the thickness direction T of the electric double layer capacitor element 10.
  • a first terminal 21 and a second terminal 22 are provided on an inner bottom surface 20a which is a bottom surface of the container 20 and is a surface on the opening side.
  • the inner bottom surface 20a is a surface facing the second main surface 10b of the electric double layer capacitor element 10.
  • one end of the first terminal 21 is in contact with the first side wall 20c of the storage container 20, and one end of the second terminal 22 is in contact with the second side wall 20d of the storage container 20. ing.
  • the first side wall 20c is a side wall facing the first end face 10c of the electric double layer capacitor element 10 among the four side walls of the container 20, and the second side wall 20d is a side wall of the electric double layer capacitor element.
  • 10 is a side wall facing the second end face 10d.
  • the third side wall is a side wall facing the third end face of the electric double layer capacitor element 10
  • the fourth side wall is a side wall facing the fourth end face of the electric double layer capacitor element 10.
  • first external electrode 23 and a second external electrode 24 are provided on an outer bottom surface 20b which is a surface opposite to the inner bottom surface on the bottom surface of the housing container 20.
  • the first external electrode 23 is electrically connected to the first terminal 21 via the first via conductor 25.
  • the second external electrode 24 is electrically connected to the second terminal 22 via the second via conductor 26.
  • first via conductors 25 are provided side by side in the width direction W on the first side wall 20 c side of the bottom surface of the storage container 20.
  • second via conductors 26 are provided side by side in the width direction W on the second side wall 20 d side of the bottom surface of the storage container 20.
  • the number of first via conductors 25 and second via conductors 26 is not limited to three.
  • the first via conductor 25 When viewed in the thickness direction T, the first via conductor 25 is disposed at a position where at least a part thereof overlaps the first end face electrode 14, and the second via conductor 26 has at least a part thereof Are arranged at positions overlapping with the end face electrodes 15.
  • a conductive path from the first end face electrode 14 to the first external electrode 23 via the first terminal 21 and the first via conductor 25, and the second end face electrode 15 Therefore, the conductive path to the second external electrode 24 via the second terminal 22 and the second via conductor 26 can be shortened, and the equivalent series resistance of the electric double layer capacitor 100 can be reduced. it can.
  • a conductive part as a conductive part for electrically connecting the electric double layer capacitor element 10, the first external electrode 23 and the second external electrode 24 is provided. Resin is provided. More specifically, at least a portion between the first end face electrode 14 and the first side wall 20c of the storage container 20 facing the first end face electrode 14, and the first end face electrode 14, A first conductive resin 30a is provided in a part between the one end face electrode 14 and the inner bottom surface 20a of the storage container 20 facing the same.
  • a second conductive resin 30b is provided in a part between the inner container 15 and the inner bottom surface 20a of the opposite container 20.
  • the first conductive resin 30a provided on the first end face electrode 14 side is provided between the first end face electrode 14 and the inner side face of the first side wall 20c on the side of the electric double layer capacitor element. It is sandwiched. Further, the second conductive resin 30b provided on the second end face electrode 15 side is formed between the second end face electrode 15 and the inner side face which is the face of the second side wall 20d on the electric double layer capacitor element side. It is sandwiched between.
  • the first conductive resin 30a and the second conductive resin 30b are provided, the electric double layer capacitor is provided via the first conductive resin 30a and the second conductive resin 30b.
  • the fixability between the element 10 and the container 20 can be improved. That is, the first conductive resin 30a and the second conductive resin 30b also have a function as an adhesive.
  • the first conductive resin 30a functioning as a conductive part electrically connects the first end face electrode 14 and the first terminal 21.
  • the second conductive resin 30b which also functions as a conductive portion, electrically connects between the second end face electrode 15 and the second terminal 22.
  • the plurality of first internal electrodes 11 of the electric double layer capacitor element 10 are connected via the first end face electrode 14, the first conductive resin 30a, the first terminal 21, and the first via conductor 25. And is electrically connected to the first external electrode 23. Further, the plurality of second internal electrodes 12 are connected to the second external electrode via the second end face electrode 15, the second conductive resin 30b, the second terminal 22, and the second via conductor 26. 24 is electrically connected.
  • the first conductive resin 30a and the second conductive resin 30b are obtained by hardening a fluid conductive paste.
  • a resin paste containing a conductive filler can be used.
  • a silver filler having high conductivity and being chemically stable can be used.
  • an epoxy resin can be used as the resin paste.
  • the conductive filler is not limited to the silver filler, and for example, a conductive filler containing at least one selected from the group consisting of copper and nickel may be used.
  • a conductive filler containing at least one selected from the group consisting of copper and nickel may be used.
  • copper and nickel are used as conductive fillers contained in the first conductive resin 30a and the second conductive resin 30b for the following reason. It is preferable to use a conductive filler containing at least one selected from the group consisting of:
  • FIG. 3 is a diagram showing the contact resistance between the conductive resin and aluminum when a silver filler, a copper filler, and a nickel filler are used as the conductive filler, respectively.
  • a silver filler, a copper filler, and a nickel filler are used as the conductive filler, respectively.
  • five conductive resin samples formed using a resin paste containing a silver filler, a copper filler, and a nickel filler, respectively, were prepared, and the contact resistance between aluminum and aluminum was measured. The average and variation were determined.
  • the contact resistance of the conductive resin containing the copper filler and the conductive resin containing the nickel filler is smaller than the contact resistance of the conductive resin containing the silver filler, and the variation is small.
  • silver has a high contact resistance with aluminum and a large variation in contact resistance.
  • copper and nickel have lower contact resistance with aluminum than silver, and have less variation in contact resistance. Therefore, when the first end face electrode 14 and the second end face electrode 15 are made of aluminum, as the conductive filler contained in the resin paste for forming the first conductive resin 30a and the second conductive resin 30b, It is preferred to use a conductive filler containing at least one selected from the group consisting of copper and nickel.
  • the output characteristics of the electric double layer capacitor 100 are improved by reducing the contact resistance between the first end face electrode 14 and the second end face electrode 15. In addition, since the variation in the contact resistance is reduced, the quality stability of the electric double layer capacitor 100 is improved. Further, copper and nickel are inexpensive as compared with silver, so that the cost can be reduced.
  • the surface of the conductive filler is coated with gold, silver, or platinum. You may make it. The coating may be performed on the entire surface of the conductive filler, or may be performed on a part thereof. Since gold, silver, and platinum have high resistance to an electrolytic solution and are chemically stable, it is more preferable to coat the surface of the conductive filler with one of gold, silver, and platinum.
  • the linear expansion coefficients of the first conductive resin 30a and the second conductive resin 30b are smaller than the linear expansion coefficients of the first end face electrode 14 and the second end face electrode 15, and It is larger than the coefficient of linear expansion. Therefore, the first conductive resin 30a is provided between the first end surface electrode 14 and the housing container 20, and the second conductive resin 30b is provided between the second end surface electrode 15 and the housing container 20. As a result, the coefficient of linear expansion changes stepwise, and it is possible to absorb deformation when heat is applied during mounting.
  • the lid 40 is provided to seal the opening above the storage container 20.
  • a seam ring 50 is provided between the lid 40 and the storage container 20, and can prevent moisture and the like from entering the interface between the lid 40 and the storage container 20.
  • the lid 40 is made of metal. When the lid 40 is made of metal, airtightness can be easily obtained as compared with the case where the lid 40 is made of ceramic.
  • the first end face 10 c of the electric double layer capacitor element 10 has the first end face electrode electrically connected to the plurality of first internal electrodes 11.
  • the second end face electrode 15 electrically connected to the plurality of second internal electrodes 12 is formed on the second end face 10d.
  • a first terminal 21 and a second terminal 22 are provided on the inner bottom surface 20a of the housing container 20, and a first external terminal electrically connected to the first terminal 21 is provided on the outer bottom surface 20b.
  • An electrode 23 and a second external electrode 24 that is electrically connected to the second terminal 22 are provided.
  • the first terminal 21 and the first end face electrode 14 are electrically connected via the first conductive resin 30a, and the second terminal 22 and the second end face electrode 15 are connected to the second conductive face. It is electrically connected via the conductive resin 30b.
  • the conductive paths between the plurality of first internal electrodes 11 and the first external electrodes 23 and between the plurality of second internal electrodes 12 and the second external electrodes 24 are shortened. And the equivalent series resistance of the electric double layer capacitor 100 can be reduced. Thus, the output characteristics of the electric double layer capacitor 100 can be improved.
  • the first end face electrode 14 and the first terminal 21 are connected by a first conductive resin 30a, and the second end face electrode 15 and the second terminal 22 are connected by a second conductive material. Since the connection is made by the resin 30b, the gap between the electric double layer capacitor element 10 and the housing container 20 can be made smaller than in the case where the connection is made by a connection portion formed by welding or thermal spraying. Therefore, the size of the electric double layer capacitor element 10 can be made as large as possible with respect to the volume of the storage container 20, so that the capacity and output of the electric double layer capacitor 100 can be increased.
  • FIG. 4 is a schematic cross-sectional view illustrating a configuration of an electric double layer capacitor 100A according to the second embodiment.
  • the electric double layer capacitor 100A according to the second embodiment is different from the electric double layer capacitor 100 according to the first embodiment shown in FIG.
  • the first conductive resin 30a and the second conductive resin 30b will be described as those obtained by curing a resin paste containing a silver filler.
  • the conductive film 60 is opposed to the inner side surface of the first side wall 20 c of the housing container 20, and faces the surface of the first end face electrode 14 and the inner side surface of the second side wall 20 d of the housing container 20. Are provided on the surface of the end surface electrode 15.
  • the conductive film 60 is a thin film having a thickness of, for example, 100 nm or more and 300 nm or less, and is at least one selected from the group consisting of Au, Ni, Pt, Cu, Ti, Cr, Co, Mn, and C, or at least one of Contains an alloy containing seeds.
  • the conductive film 60 can be formed by, for example, sputtering.
  • the conductive film 60 may be formed after performing reverse sputtering on the surfaces of the first end face electrode 14 and the second end face electrode 15.
  • the oxide film of the first end face electrode 14 and the second end face electrode 15 can be removed, and the first end face can be removed.
  • the adhesion between the electrode 14 and the second end face electrode 15 and the conductive film 60 can be improved.
  • FIG. 5 shows the contact resistance between a thin film in the case where a thin film of Au (gold) is provided on the surface of aluminum and a conductive resin formed using a resin paste containing a silver filler, and the contact resistance between the thin film and the surface of aluminum. It is a figure which shows the contact resistance between the aluminum which does not provide a thin film of Au, and the conductive resin formed using the resin paste containing a silver filler. Here, five samples were prepared, and the average value and the variation of the contact resistance were determined.
  • a silver filler is used as a conductive filler included in a resin paste for forming the first conductive resin 30a and the second conductive resin 30b, and the first end face electrode 14 and the second end face electrode 15 are used.
  • a silver filler is used as a conductive filler included in a resin paste for forming the first conductive resin 30a and the second conductive resin 30b, and the first end face electrode 14 and the second end face electrode 15 are used.
  • contact between the first conductive resin 30a and the first end face electrode 14 and between the second conductive resin 30b and the second end face electrode 15 are made. Resistance increases.
  • the Au thin film and the first conductive resin 30a and the second conductive resin 30b formed by using a resin paste containing a silver filler are used.
  • the contact resistance is low and the variation is small. Therefore, by forming the conductive film 60 containing Au on the surface of the first end face electrode 14 and the surface of the second end face electrode 15 made of aluminum, the contact resistance is reduced and the variation in the contact resistance is reduced. be able to.
  • a thin film made of Ni, Pt, Cu, Ti, Cr, Co, Mn, C, or an alloy containing them is formed instead of the Au thin film.
  • the electric double layer capacitor 100A in the second embodiment Au, Ni, Pt, Cu, Ti, Cr, Co, and the like are formed on the surface of the first end surface electrode 14 and the surface of the second end surface electrode 15. Since the conductive film 60 containing at least one selected from the group consisting of Mn and C or an alloy containing the at least one type is formed, compared to a configuration in which the conductive film 60 is not formed, The contact resistance between the first conductive resin 30a and the second conductive resin 30b can be reduced, and the variation in the contact resistance can be reduced. Thus, the output characteristics of the electric double layer capacitor 100A can be further improved, and the quality stability of the electric double layer capacitor 100A can be further improved.
  • FIG. 6 is a schematic cross-sectional view illustrating a configuration of an electric double layer capacitor 100B according to the third embodiment.
  • the first conductive resin 30a and the second conductive resin 30b of the first end face 10c and the second end face 10d of the electric double layer capacitor element 10 are different from each other. It differs from the electric double layer capacitor 100 in the first embodiment in that the portion not provided and the first main surface 10a, the first side surface, and the second side surface are covered with the insulating resin 70. .
  • the insulating resin 70 is provided so as to fill the gap.
  • the insulating resin 70 is provided between the electric double layer capacitor element 10 and the housing 20 and between the electric double layer capacitor element 10 and the lid 40.
  • the insulating resin 70 can be formed by the following method. That is, after the electric double layer capacitor element 10 is accommodated in the container 20, an insulating liquid resin is poured so as to cover the electric double layer capacitor element 10. As the liquid resin, for example, an epoxy resin or a silicone resin can be used. The poured liquid resin enters a gap between the storage container 20 and the electric double layer capacitor element 10. Further, the upper surface of the electric double layer capacitor element 10 is covered with a liquid resin. Thereafter, the liquid resin is cured by heating. Thus, the insulating resin 70 is formed. The liquid resin may be cured by leaving it for a predetermined time without heating.
  • the electric double layer capacitor 100B of the third embodiment since the electric double layer capacitor element 10 is covered with the insulating resin 70, the electrolyte leaked from the electric double layer capacitor element 10 for some reason. Even in this case, it is possible to suppress the electrolytic solution from adhering to the first conductive resin 30a and the second conductive resin 30b, and to the first terminal 21 and the second terminal 22 of the container 20. Thereby, corrosion due to the electrolytic solution adhering to the conductive resin 30 and the first terminal 21 and the second terminal 22 can be suppressed, and the reliability of the electric double layer capacitor 100B can be improved.
  • the electric double layer capacitor element 10 and the storage container 20 can be more firmly fixed by the insulating resin 70, when the electric double layer capacitor 100B is shocked, the electric double layer capacitor element 10 Disconnection due to detachment from the storage container 20 can be suppressed.
  • the gap between the electric double layer capacitor element 10 and the lid 40 for example, between the first end face electrode 14 and the lid 40, or between the second end face electrode 15 and the lid 40 is formed. Shorting can be suppressed.
  • the electric double layer capacitor element 10 is not limited to the above-described configuration as long as the electric double layer capacitor element 10 has a structure in which a plurality of first internal electrodes 11 and second internal electrodes 12 are alternately stacked.

Abstract

This electricity storage device (an electric double layer capacitor 100) is provided with an electricity storage element (an electric double layer capacitor element 10), a container 20 and a conductive part. The electricity storage element is provided with: first internal electrodes 11 and second internal electrodes 12; a first end face electrode 14 which is provided on a first end face and is electrically connected to the plurality of first internal electrodes 11; and a second end face electrode 15 which is provided on a second end face and is electrically connected to the plurality of second internal electrodes 12. The container 20 is provided with: a first terminal 21 and a second terminal 22, which are provided on the inner bottom surface; and a first external electrode 23 and a second external electrode 24, which are provided on the outer bottom surface, and which are electrically connected to the first terminal and the second terminal, respectively. The conductive part is provided with: a first conductive resin 30a which electrically connects the first end face electrode and the first terminal to each other; and a second conductive resin 30b which electrically connects the second end face electrode and the second terminal to each other.

Description

蓄電デバイスPower storage device
 本発明は、蓄電デバイスに関する。 The present invention relates to a power storage device.
 従来、電気化学キャパシタや二次電池などの蓄電デバイスが種々知られている。例えば、携帯電話などの種々の電子機器などには電気二重層キャパシタが広く使用されている。電気二重層キャパシタは、二次電池と異なり、充放電に際して化学反応を伴わないため、充放電サイクル寿命に優れ、大電流で短時間のうちに充放電を行うことができるという特徴がある。 Conventionally, various power storage devices such as electrochemical capacitors and secondary batteries are known. For example, electric double layer capacitors are widely used in various electronic devices such as mobile phones. Unlike a secondary battery, an electric double layer capacitor does not involve a chemical reaction at the time of charge and discharge, and thus has an excellent charge / discharge cycle life, and is capable of performing charge / discharge in a short time with a large current.
 特許文献1には、蓄電素子である電気二重層キャパシタ素子を凹状容器に収容した構造の電気二重層キャパシタが記載されている。この電気二重層キャパシタでは、電気二重層キャパシタ素子を構成する一対の電極がセパレータを介して積層されており、凹状容器の底面に設けられた一対の外部電極とそれぞれ電気的に接続されている。すなわち、電気二重層キャパシタ素子の一対の電極は、一対の外部電極を介して外部の回路と電気的に接続されて、電気二重層キャパシタ素子が充放電可能に構成されている。 Patent Document 1 describes an electric double layer capacitor having a structure in which an electric double layer capacitor element serving as a power storage element is housed in a concave container. In this electric double layer capacitor, a pair of electrodes constituting an electric double layer capacitor element are laminated via a separator, and are electrically connected to a pair of external electrodes provided on the bottom surface of the concave container, respectively. That is, the pair of electrodes of the electric double layer capacitor element are electrically connected to an external circuit via the pair of external electrodes, so that the electric double layer capacitor element can be charged and discharged.
特開2012-44074号公報JP 2012-44074 A
 しかしながら、特許文献1に記載の電気二重層キャパシタでは、電気二重層キャパシタ素子を構成する一対の電極のうち、積層方向の上方に位置する電極は、凹状容器の上部を覆う蓋に設けられている金属層、および、凹状容器の上面から下面へと貫通する貫通電極を介して、凹状容器の底面に設けられている外部電極と電気的に接続されている。 However, in the electric double-layer capacitor described in Patent Literature 1, an electrode located above in the stacking direction among a pair of electrodes constituting the electric double-layer capacitor element is provided on a lid that covers an upper portion of the concave container. It is electrically connected to an external electrode provided on the bottom surface of the concave container via a metal layer and a through electrode penetrating from the upper surface to the lower surface of the concave container.
 このように、蓄電素子と収容容器に設けられている外部電極との間の導電経路が長くなると、蓄電デバイスの等価直列抵抗が大きくなるという問題がある。 As described above, there is a problem that when the conductive path between the power storage element and the external electrode provided in the storage container becomes longer, the equivalent series resistance of the power storage device increases.
 本発明は、上記課題を解決するものであり、蓄電素子と、収容容器に設けられている外部電極との間の導電経路を短くして等価直列抵抗を小さくした蓄電デバイスを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a power storage device in which a conductive path between a power storage element and an external electrode provided in a storage container is shortened to reduce an equivalent series resistance. And
 本発明の蓄電デバイスは、
 蓄電素子と、
 前記蓄電素子を収容する収容容器と、
 前記蓄電素子と前記収容容器に設けられている外部電極とを電気的に接続する導電部と、
を備え、
 前記蓄電素子は、
 長さ方向および幅方向に沿って延びる第1の主面および第2の主面と、前記長さ方向および厚み方向に沿って延びる第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる第1の端面および第2の端面と、を有し、
 第1の内部電極と第2の内部電極とを備え、前記第1の内部電極と前記第2の内部電極が前記厚み方向に交互に複数積層されており、
 前記第1の端面に設けられ、複数の前記第1の内部電極と接続された第1の端面電極と、前記第2の端面に設けられ、複数の前記第2の内部電極と接続された第2の端面電極とを備え、
 前記収容容器は、
 前記蓄電素子の前記第2の主面と対向する面である内側底面に設けられた第1の端子と、
 前記内側底面と反対側の面である外側底面に設けられ、前記第1の端子と電気的に接続されている第1の外部電極と、
 前記内側底面に設けられた第2の端子と、
 前記外側底面に設けられ、前記第2の端子と電気的に接続されている第2の外部電極と、
を備え、
 前記導電部は、
 前記第1の端面電極と前記第1の端子との間を電気的に接続する第1の導電性樹脂と、
 前記第2の端面電極と前記第2の端子との間を電気的に接続する第2の導電性樹脂と、
を備えることを特徴とする。
The power storage device of the present invention includes:
A storage element,
A housing container for housing the power storage element,
A conductive portion that electrically connects the power storage element and an external electrode provided in the storage container,
With
The electricity storage element,
A first main surface and a second main surface extending along the length direction and the width direction; a first side surface and a second side surface extending along the length direction and the thickness direction; A first end surface and a second end surface extending along the thickness direction;
A first internal electrode and a second internal electrode, wherein a plurality of the first internal electrodes and the second internal electrodes are alternately stacked in the thickness direction;
A first end face electrode provided on the first end face and connected to the plurality of first internal electrodes; a second end face provided on the second end face and connected to the plurality of second internal electrodes; 2 end face electrodes,
The storage container,
A first terminal provided on an inner bottom surface that is a surface facing the second main surface of the power storage element;
A first external electrode provided on an outer bottom surface opposite to the inner bottom surface and electrically connected to the first terminal;
A second terminal provided on the inner bottom surface;
A second external electrode provided on the outer bottom surface and electrically connected to the second terminal;
With
The conductive portion,
A first conductive resin that electrically connects between the first end face electrode and the first terminal;
A second conductive resin that electrically connects between the second end surface electrode and the second terminal;
It is characterized by having.
 前記第1の導電性樹脂および前記第2の導電性樹脂は、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを含有していてもよい。 The first conductive resin and the second conductive resin may contain a conductive filler containing at least one selected from the group consisting of copper and nickel.
 前記導電性フィラーは、その表面が金、銀、および、白金のいずれかで被覆されていてもよい。 表面 The surface of the conductive filler may be coated with any of gold, silver, and platinum.
 前記第1の導電性樹脂および前記第2の導電性樹脂は、銀を含む導電性フィラーを含有しており、
 前記第1の端面電極および前記第2の端面電極には、Au、Ni、Pt、Cu、Ti、Cr、Co、Mn、および、Cからなる群より選択される少なくとも1種、または前記少なくとも1種を含む合金を含有する導電膜が形成されていてもよい。
The first conductive resin and the second conductive resin contain a conductive filler containing silver,
The first end face electrode and the second end face electrode each include at least one selected from the group consisting of Au, Ni, Pt, Cu, Ti, Cr, Co, Mn, and C; A conductive film containing an alloy containing a seed may be formed.
 前記蓄電素子の前記第1の端面および前記第2の端面のうち、前記第1の導電性樹脂および前記第2の導電性樹脂が設けられていない部分と、前記第1の主面、前記第1の側面、および前記第2の側面とが絶縁性樹脂によって覆われていてもよい。 A portion of the first end face and the second end face of the power storage element where the first conductive resin and the second conductive resin are not provided; a first main surface; The first side surface and the second side surface may be covered with an insulating resin.
 前記収容容器は、前記第1の端子と前記第1の外部電極とを接続する第1のビア導体と、前記第2の端子と前記第2の外部電極とを接続する第2のビア導体とをさらに備えており、
 前記厚み方向に見たときに、前記第1のビア導体は、その少なくとも一部が前記第1の端面電極と重なる位置に配置され、前記第2のビア導体は、その少なくとも一部が前記第2の端面電極と重なる位置に配置されていてもよい。
The container includes a first via conductor that connects the first terminal to the first external electrode, a second via conductor that connects the second terminal to the second external electrode, Is further provided,
When viewed in the thickness direction, the first via conductor is disposed at a position where at least a part thereof overlaps the first end face electrode, and at least a part of the second via conductor is the second terminal conductor. It may be arranged at a position overlapping the second end face electrode.
 前記第1の導電性樹脂は、前記第1の端面電極と、前記第1の端面電極と対向する前記収容容器の内側側面との間に挟まれており、前記第2の導電性樹脂は、前記第2の端面電極と、前記第2の端面電極と対向する前記収容容器の内側側面との間に挟まれていてもよい。 The first conductive resin is sandwiched between the first end surface electrode and an inner side surface of the storage container facing the first end surface electrode, and the second conductive resin is The second end face electrode may be sandwiched between the second end face electrode and an inner side face of the container facing the second end face electrode.
 前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
 前記収容容器の開口部を封止するための金属製の蓋をさらに備えていてもよい。
The storage container has a bottomed cylindrical shape having an opening at one end,
The storage container may further include a metal lid for sealing the opening.
 前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
 前記収容容器の前記開口部を封止するための金属製の蓋をさらに備え、
 前記蓄電素子の前記第1の主面を覆っている前記絶縁性樹脂は、前記第1の主面と前記金属製の蓋との間に挟まれていてもよい。
The storage container has a bottomed cylindrical shape having an opening at one end,
Further comprising a metal lid for sealing the opening of the storage container,
The insulating resin covering the first main surface of the power storage element may be sandwiched between the first main surface and the metal lid.
 本発明の蓄電デバイスでは、蓄電素子の第1の端面に、複数の第1の内部電極と接続された第1の端面電極が設けられ、第2の端面に、複数の第2の内部電極と接続された第2の端面電極が設けられている。また、収容容器の内側底面には第1の端子および第2の端子が設けられ、外側底面には、第1の端子と電気的に接続された第1の外部電極および第2の端子と電気的に接続された第2の外部電極が設けられている。そして、第1の端面電極と第1の端子との間を第1の導電性樹脂によって電気的に接続し、第2の端面電極と第2の端子との間を第2の導電性樹脂によって電気的に接続している。そのような構成により、第1の内部電極と第1の外部電極との間、および、第2の内部電極と第2の外部電極との間の導電経路を短くして等価直列抵抗を低減することができ、電気的特性を向上させることができる。 In the electric storage device of the present invention, the first end face of the electric storage element is provided with the first end face electrode connected to the plurality of first internal electrodes, and the second end face is provided with the plurality of second internal electrodes. A connected second end face electrode is provided. A first terminal and a second terminal are provided on an inner bottom surface of the container, and a first external electrode and a second terminal electrically connected to the first terminal are provided on the outer bottom surface. A second external electrode is provided which is electrically connected. Then, the first end face electrode and the first terminal are electrically connected by the first conductive resin, and the second end face electrode and the second terminal are electrically connected by the second conductive resin. Electrically connected. With such a configuration, the conductive paths between the first internal electrode and the first external electrode and between the second internal electrode and the second external electrode are shortened to reduce the equivalent series resistance. And electrical characteristics can be improved.
第1の実施形態における電気二重層キャパシタの構成を示す模式的斜視図である。It is a typical perspective view showing the composition of the electric double layer capacitor in a 1st embodiment. 図1に示す電気二重層キャパシタのII-II線に沿った模式的断面図である。FIG. 2 is a schematic cross-sectional view of the electric double-layer capacitor shown in FIG. 1 along the line II-II. 導電性フィラーとして、銀フィラー、銅フィラーおよびニッケルフィラーをそれぞれ用いた場合の導電性樹脂とアルミニウムとの間の接触抵抗を示す図である。It is a figure which shows the contact resistance between conductive resin and aluminum at the time of using a silver filler, a copper filler, and a nickel filler as a conductive filler, respectively. 第2の実施形態における電気二重層キャパシタの構成を示す模式的断面図である。It is a typical sectional view showing the composition of the electric double layer capacitor in a 2nd embodiment. 第1の端面電極および第2の端面電極の表面に、金の薄膜を設けた場合および金の薄膜を設けない場合のそれぞれについて、銀フィラーを含む導電性樹脂との間の接触抵抗を示す図である。The figure which shows the contact resistance with the conductive resin containing a silver filler about the case where a gold | metal thin film is provided and the case where a gold | metal thin film is not provided on the surface of a 1st end surface electrode and a 2nd end surface electrode, respectively. It is. 第3の実施形態における電気二重層キャパシタの構成を示す模式的断面図である。It is a typical sectional view showing the composition of the electric double layer capacitor in a 3rd embodiment.
 以下に本発明の実施形態を示して、本発明の特徴とするところを具体的に説明する。以下の説明では、本発明の蓄電デバイスとして、電気二重層キャパシタを一例に挙げて説明する。ただし、蓄電デバイスが電気二重層キャパシタに限定されることはなく、積層セラミックコンデンサなどであってもよい。 (4) Embodiments of the present invention will be described below to specifically describe features of the present invention. In the following description, an electric double layer capacitor will be described as an example of the power storage device of the present invention. However, the power storage device is not limited to an electric double layer capacitor, and may be a multilayer ceramic capacitor or the like.
 <第1の実施形態>
 図1は、本発明の第1の実施形態における電気二重層キャパシタ100の構成を示す模式的斜視図である。図2は、図1に示す電気二重層キャパシタ100のII-II線に沿った模式的断面図である。図1において、Lは長さ方向、Wは幅方向、Tは厚み方向(内部電極の積層方向)をそれぞれ示す。
<First embodiment>
FIG. 1 is a schematic perspective view showing the configuration of the electric double layer capacitor 100 according to the first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the electric double layer capacitor 100 shown in FIG. 1 along the line II-II. In FIG. 1, L indicates the length direction, W indicates the width direction, and T indicates the thickness direction (the laminating direction of the internal electrodes).
 第1の実施形態における電気二重層キャパシタ100は、電気二重層キャパシタ素子10と、収容容器20と、第1の導電性樹脂30aと、第2の導電性樹脂30bと、蓋40と、シームリング50とを備える。 The electric double-layer capacitor 100 according to the first embodiment includes an electric double-layer capacitor element 10, a housing 20, a first conductive resin 30a, a second conductive resin 30b, a lid 40, and a seam ring. 50.
 蓄電素子である電気二重層キャパシタ素子10は、略直方体形状であって、第1の主面10aおよび第2の主面10bと、第1の側面および第2の側面と、第1の端面10cおよび第2の端面10dとを有する。第1の主面10aおよび第2の主面10bは、長さ方向Lおよび幅方向Wに沿って延びている。第1の側面および第2の側面は、長さ方向Lおよび厚み方向Tに沿って延びている。第1の端面10cおよび第2の端面10dは、幅方向Wおよび厚み方向Tに沿って延びている。これらの第1の主面10aおよび第2の主面10b、第1の側面および第2の側面、第1の端面10cおよび第2の端面10dが、本発明の「表面」に相当する。 The electric double layer capacitor element 10 serving as a power storage element has a substantially rectangular parallelepiped shape, and includes a first main surface 10a and a second main surface 10b, a first side surface and a second side surface, and a first end surface 10c. And a second end face 10d. The first main surface 10a and the second main surface 10b extend along the length direction L and the width direction W. The first side surface and the second side surface extend along the length direction L and the thickness direction T. The first end face 10c and the second end face 10d extend along the width direction W and the thickness direction T. The first main surface 10a and the second main surface 10b, the first side surface and the second side surface, the first end surface 10c and the second end surface 10d correspond to the "surface" of the present invention.
 なお、本発明において、「直方体形状」には、角部や稜線部が面取りされた形状や丸められた形状も含まれる。角部は、電気二重層キャパシタ素子10の3面が交わる部分であり、稜線部は、電気二重層キャパシタ素子10の2面が交わる部分である。 In the present invention, the “cuboid shape” includes a shape in which a corner or a ridge is chamfered or a shape in which the corner or the ridge is rounded. A corner portion is a portion where three surfaces of the electric double layer capacitor element 10 intersect, and a ridge portion is a portion where two surfaces of the electric double layer capacitor element 10 intersect.
 電気二重層キャパシタ素子10は、第1の内部電極11と第2の内部電極12とが電解質層13を介して交互に複数積層された構造を有する。すなわち、複数の第1の内部電極11と複数の第2の内部電極12とが電解質層13を介して交互に積層されている。第1の内部電極と第2の内部電極12との間に電解質層13が挟まれた構成を1層ととらえた場合、積層数は、3層以上であることが好ましい。 The electric double layer capacitor element 10 has a structure in which a plurality of first internal electrodes 11 and second internal electrodes 12 are alternately stacked via an electrolyte layer 13. That is, the plurality of first internal electrodes 11 and the plurality of second internal electrodes 12 are alternately stacked via the electrolyte layer 13. When the configuration in which the electrolyte layer 13 is interposed between the first internal electrode and the second internal electrode 12 is regarded as one layer, the number of layers is preferably three or more.
 複数の第1の内部電極11は、電気二重層キャパシタ素子10の第1の端面10cに引き出されている一方、第1の側面、第2の側面および第2の端面10dには引き出されていない。また、複数の第2の内部電極12は、電気二重層キャパシタ素子10の第1の端面10cと対向する第2の端面10dに引き出されている一方、第1の側面、第2の側面および第1の端面10cには引き出されていない。 The plurality of first internal electrodes 11 are drawn out to the first end face 10c of the electric double layer capacitor element 10, but are not drawn out to the first side face, the second side face, and the second end face 10d. . Further, the plurality of second internal electrodes 12 are led out to a second end face 10d opposite to the first end face 10c of the electric double layer capacitor element 10, while the first side face, the second side face, and the second The first end face 10c is not drawn out.
 第1の端面10cおよび第2の端面10dは、第1の内部電極11および第2の内部電極12の主面と直交する面である。本実施形態において、第1の端面10cおよび第2の端面10dは、電気二重層キャパシタ素子10の長さ方向Lに対向する面である。ただし、第1の端面10cおよび第2の端面10dは、電気二重層キャパシタ素子10の幅方向Wに対向する面であってもよい。 The first end face 10c and the second end face 10d are surfaces orthogonal to the main surfaces of the first internal electrode 11 and the second internal electrode 12. In the present embodiment, the first end face 10c and the second end face 10d are faces opposed in the length direction L of the electric double layer capacitor element 10. However, the first end face 10c and the second end face 10d may be surfaces facing the width direction W of the electric double layer capacitor element 10.
 第1の内部電極11は、第1の集電体11aと、第1の活物質層11bとを有する。 The first internal electrode 11 has a first current collector 11a and a first active material layer 11b.
 第1の集電体11aは、例えば、アルミニウム、銅等の少なくとも一種の金属からなる金属箔等である。なお、本発明において、「金属」には、合金が含まれるものとする。 The first current collector 11a is, for example, a metal foil made of at least one metal such as aluminum and copper. In the present invention, “metal” includes an alloy.
 第1の活物質層11bは、第1の集電体11aの両面に設けられている。ただし、厚み方向Tの最外層に第1の内部電極11が存在する場合、その第1の内部電極11の第1の集電体11aには、片面にのみ第1の活物質層11bが設けられている。第1の活物質層11bは、活物質を含む。第1の活物質層11bは、分極性電極であって、例えば、活性炭などの炭素材料を活物質として含んでいることが好ましい。 The first active material layer 11b is provided on both surfaces of the first current collector 11a. However, when the first internal electrode 11 exists in the outermost layer in the thickness direction T, the first current collector 11a of the first internal electrode 11 is provided with the first active material layer 11b only on one surface. Have been. The first active material layer 11b contains an active material. The first active material layer 11b is a polarizable electrode, and preferably contains, for example, a carbon material such as activated carbon as an active material.
 第2の内部電極12は、第2の集電体12aと、第2の活物質層12bとを有する。 The second internal electrode 12 has a second current collector 12a and a second active material layer 12b.
 第2の集電体12aは、例えば、アルミニウム、銅等の少なくとも一種の金属からなる金属箔等である。なお、本発明において、「金属」には、合金が含まれるものとする。 The second current collector 12a is, for example, a metal foil made of at least one metal such as aluminum and copper. In the present invention, “metal” includes an alloy.
 第2の活物質層12bは、第2の集電体12aの両面に設けられている。ただし、厚み方向Tの最外層に第2の内部電極12が存在する場合、その第2の内部電極12の第2の集電体12aには、片面にのみ第2の活物質層12bが設けられている。第2の活物質層12bは、活物質を含む。第2の活物質層12bは、分極性電極であって、例えば、活性炭などの炭素材料を活物質として含んでいることが好ましい。 The second active material layer 12b is provided on both surfaces of the second current collector 12a. However, when the second internal electrode 12 exists in the outermost layer in the thickness direction T, the second current collector 12a of the second internal electrode 12 is provided with the second active material layer 12b only on one surface. Have been. The second active material layer 12b contains an active material. The second active material layer 12b is a polarizable electrode, and preferably contains, for example, a carbon material such as activated carbon as an active material.
 第1の内部電極11の第1の活物質層11bと、第2の内部電極12の第2の活物質層12bとの間には、電解質層13が設けられている。電解質層13は、電解質を含む層である。電解質層13は、ゲル状の電解質であるゲル電解質からなっていてもよいし、電解液が含浸したセパレータ等の多孔質体からなっていてもよい。ゲル電解質の具体例としては、例えば、電解質を含む高分子ポリエチレンオキサイド等が挙げられる。 電解 An electrolyte layer 13 is provided between the first active material layer 11b of the first internal electrode 11 and the second active material layer 12b of the second internal electrode 12. The electrolyte layer 13 is a layer containing an electrolyte. The electrolyte layer 13 may be made of a gel electrolyte which is a gel electrolyte, or may be made of a porous body such as a separator impregnated with an electrolyte. Specific examples of the gel electrolyte include, for example, polymer polyethylene oxide containing an electrolyte.
 電解質の具体例としては、例えば、EMITFSI(1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド)、EMIBF4(ホウフッ化1-エチル-3-メチルイミダゾリウム)等のイオン性液体、または,そのイオン性液体をプロピレンカーボネート,アセトニトリル等の有機溶媒に溶かしたものを用いることができる。これらの電解質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。 Specific examples of the electrolyte include an ionic liquid such as EMITFSI (1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide), EMIBF4 (1-ethyl-3-methylimidazolium borofluoride), or the like. A solution obtained by dissolving the ionic liquid in an organic solvent such as propylene carbonate or acetonitrile can be used. One of these electrolytes may be used alone, or a plurality of them may be mixed and used.
 本実施形態では、第1の内部電極11のうち、第1の集電体11aのみが第1の端面10cに露出している。また、第2の内部電極12のうち、第2の集電体12aのみが第2の端面10dに露出している。第1の内部電極11の第1の活物質層11b、第2の内部電極12の第2の活物質層12b、および電解質層13は、第1の端面10cおよび第2の端面10dには露出していない。 In the present embodiment, of the first internal electrodes 11, only the first current collector 11a is exposed on the first end face 10c. Also, of the second internal electrodes 12, only the second current collector 12a is exposed on the second end face 10d. The first active material layer 11b of the first internal electrode 11, the second active material layer 12b of the second internal electrode 12, and the electrolyte layer 13 are exposed on the first end face 10c and the second end face 10d. I haven't.
 第1の活物質層11b、第2の活物質層12b、および電解質層13と、第1の端面10c、第2の端面10d、第1の側面、および第2の側面のそれぞれとの間には、絶縁層16が設けられている。絶縁層16により、第1の活物質層11b、第2の活物質層12b、および電解質層13が第1の端面10c、第2の端面10d、第1の側面、および第2の側面のそれぞれから隔離されている。 Between the first active material layer 11b, the second active material layer 12b, and the electrolyte layer 13, and each of the first end face 10c, the second end face 10d, the first side face, and the second side face Is provided with an insulating layer 16. Due to the insulating layer 16, the first active material layer 11b, the second active material layer 12b, and the electrolyte layer 13 are formed on the first end face 10c, the second end face 10d, the first side face, and the second side face, respectively. Is isolated from
 なお、絶縁層16は、例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、シリコン樹脂等からなる。 The insulating layer 16 is made of, for example, urethane resin, acrylic resin, epoxy resin, polyimide resin, silicon resin, or the like.
 電気二重層キャパシタ素子10の第1の端面10cには、第1の端面電極14が設けられている。第1の端面電極14は、複数の第1の内部電極11と電気的に接続されている。また、第2の端面10dには、第2の端面電極15が設けられている。第2の端面電極15は、複数の第2の内部電極12と電気的に接続されている。すなわち、複数の第1の内部電極11と複数の第2の内部電極12は、並列に接続されている。これにより、電気二重層キャパシタ素子10の高出力密度化を実現することができる。 The first end face electrode 14 is provided on the first end face 10 c of the electric double layer capacitor element 10. The first end face electrode 14 is electrically connected to the plurality of first internal electrodes 11. A second end face electrode 15 is provided on the second end face 10d. The second end face electrode 15 is electrically connected to the plurality of second internal electrodes 12. That is, the plurality of first internal electrodes 11 and the plurality of second internal electrodes 12 are connected in parallel. Thereby, high output density of the electric double layer capacitor element 10 can be realized.
 第1の端面電極14および第2の端面電極15は、例えばアルミニウムからなる。その場合、第1の端面電極14および第2の端面電極15は、アルミニウム溶射によって形成することができる。 The first end face electrode 14 and the second end face electrode 15 are made of, for example, aluminum. In that case, the first end face electrode 14 and the second end face electrode 15 can be formed by aluminum spraying.
 収容容器20は、電気二重層キャパシタ素子10を収容する凹部を備える。具体的には、収容容器20は、一端に開口部を有し、開口部に対向する底面と、底面から略垂直に連なる側壁とを備える有底筒状の筐体である。収容容器20は、絶縁性材料からなり、本実施形態では、例えばセラミック材料からなる。収容容器20は、第1の側壁20c、第2の側壁20d、第3の側壁、および第4の側壁の4つの側壁を備える。なお、側壁の高さである側壁の厚み方向Tの距離は、電気二重層キャパシタ素子10の厚み方向Tの距離よりも大きい。 The container 20 has a concave portion for accommodating the electric double layer capacitor element 10. Specifically, the storage container 20 is a bottomed cylindrical housing having an opening at one end, a bottom surface facing the opening, and a side wall extending substantially perpendicularly from the bottom surface. The storage container 20 is made of an insulating material, and in this embodiment, is made of, for example, a ceramic material. The storage container 20 includes four side walls: a first side wall 20c, a second side wall 20d, a third side wall, and a fourth side wall. The distance in the thickness direction T of the side wall, which is the height of the side wall, is larger than the distance in the thickness direction T of the electric double layer capacitor element 10.
 収容容器20の底面であって、開口部側の面である内側底面20aには、第1の端子21と第2の端子22とが設けられている。内側底面20aは、電気二重層キャパシタ素子10の第2の主面10bと対向する面である。本実施形態では、第1の端子21の一端は、収容容器20の第1の側壁20cと当接しており、第2の端子22の一端は、収容容器20の第2の側壁20dと当接している。 第 A first terminal 21 and a second terminal 22 are provided on an inner bottom surface 20a which is a bottom surface of the container 20 and is a surface on the opening side. The inner bottom surface 20a is a surface facing the second main surface 10b of the electric double layer capacitor element 10. In the present embodiment, one end of the first terminal 21 is in contact with the first side wall 20c of the storage container 20, and one end of the second terminal 22 is in contact with the second side wall 20d of the storage container 20. ing.
 なお、第1の側壁20cは、収容容器20の4つの側壁のうち、電気二重層キャパシタ素子10の第1の端面10cに対向する側壁であり、第2の側壁20dは、電気二重層キャパシタ素子10の第2の端面10dに対向する側壁である。また、第3の側壁は、電気二重層キャパシタ素子10の第3の端面に対向する側壁であり、第4の側壁は、電気二重層キャパシタ素子10の第4の端面に対向する側壁である。 The first side wall 20c is a side wall facing the first end face 10c of the electric double layer capacitor element 10 among the four side walls of the container 20, and the second side wall 20d is a side wall of the electric double layer capacitor element. 10 is a side wall facing the second end face 10d. Further, the third side wall is a side wall facing the third end face of the electric double layer capacitor element 10, and the fourth side wall is a side wall facing the fourth end face of the electric double layer capacitor element 10.
 収容容器20の底面であって、内側底面とは反対側の面である外側底面20bには、第1の外部電極23と第2の外部電極24が設けられている。第1の外部電極23は、第1のビア導体25を介して、第1の端子21と電気的に接続されている。また、第2の外部電極24は、第2のビア導体26を介して、第2の端子22と電気的に接続されている。 1A first external electrode 23 and a second external electrode 24 are provided on an outer bottom surface 20b which is a surface opposite to the inner bottom surface on the bottom surface of the housing container 20. The first external electrode 23 is electrically connected to the first terminal 21 via the first via conductor 25. Further, the second external electrode 24 is electrically connected to the second terminal 22 via the second via conductor 26.
 本実施形態では、第1のビア導体25は、収容容器20の底面の第1の側壁20c側において、幅方向Wに並んで3つ設けられている。また、第2のビア導体26は、収容容器20の底面の第2の側壁20d側において、幅方向Wに並んで3つ設けられている。ただし、第1のビア導体25および第2のビア導体26の数が3つに限定されることはない。 In the present embodiment, three first via conductors 25 are provided side by side in the width direction W on the first side wall 20 c side of the bottom surface of the storage container 20. Further, three second via conductors 26 are provided side by side in the width direction W on the second side wall 20 d side of the bottom surface of the storage container 20. However, the number of first via conductors 25 and second via conductors 26 is not limited to three.
 厚み方向Tに見たときに、第1のビア導体25は、その少なくとも一部が第1の端面電極14と重なる位置に配置され、第2のビア導体26は、その少なくとも一部が第2の端面電極15と重なる位置に配置されている。そのような配置により、第1の端面電極14から、第1の端子21、第1のビア導体25を介して、第1の外部電極23へと至る導電経路、および、第2の端面電極15から、第2の端子22、第2のビア導体26を介して、第2の外部電極24へと至る導電経路を短くすることができ、電気二重層キャパシタ100の等価直列抵抗を小さくすることができる。 When viewed in the thickness direction T, the first via conductor 25 is disposed at a position where at least a part thereof overlaps the first end face electrode 14, and the second via conductor 26 has at least a part thereof Are arranged at positions overlapping with the end face electrodes 15. With such an arrangement, a conductive path from the first end face electrode 14 to the first external electrode 23 via the first terminal 21 and the first via conductor 25, and the second end face electrode 15 Therefore, the conductive path to the second external electrode 24 via the second terminal 22 and the second via conductor 26 can be shortened, and the equivalent series resistance of the electric double layer capacitor 100 can be reduced. it can.
 電気二重層キャパシタ素子10と収容容器20との間には、電気二重層キャパシタ素子10と、第1の外部電極23および第2の外部電極24とを電気的に接続する導電部としての導電性樹脂が設けられている。より具体的には、少なくとも第1の端面電極14と、第1の端面電極14と対向する収容容器20の第1の側壁20cとの間の一部、および第1の端面電極14と、第1の端面電極14と対向する収容容器20の内側底面20aとの間の一部には、第1の導電性樹脂30aが設けられている。また、少なくとも第2の端面電極15と、第2の端面電極15と対向する収容容器20の第2の側壁20dとの間の一部、および第2の端面電極15と、第2の端面電極15と対向する収容容器20の内側底面20aとの間の一部には、第2の導電性樹脂30bが設けられている。 Between the electric double layer capacitor element 10 and the container 20, a conductive part as a conductive part for electrically connecting the electric double layer capacitor element 10, the first external electrode 23 and the second external electrode 24 is provided. Resin is provided. More specifically, at least a portion between the first end face electrode 14 and the first side wall 20c of the storage container 20 facing the first end face electrode 14, and the first end face electrode 14, A first conductive resin 30a is provided in a part between the one end face electrode 14 and the inner bottom surface 20a of the storage container 20 facing the same. Further, at least a portion between the second end face electrode 15 and the second side wall 20 d of the storage container 20 facing the second end face electrode 15, the second end face electrode 15, and the second end face electrode A second conductive resin 30b is provided in a part between the inner container 15 and the inner bottom surface 20a of the opposite container 20.
 第1の端面電極14側に設けられている第1の導電性樹脂30aは、第1の端面電極14と第1の側壁20cの電気二重層キャパシタ素子側の面である内側側面との間に挟まれている。また、第2の端面電極15側に設けられている第2の導電性樹脂30bは、第2の端面電極15と第2の側壁20dの電気二重層キャパシタ素子側の面である内側側面との間に挟まれている。このように、第1の導電性樹脂30aおよび第2の導電性樹脂30bが設けられていることにより、第1の導電性樹脂30aおよび第2の導電性樹脂30bを介して、電気二重層キャパシタ素子10と収容容器20との間の固着性を向上させることができる。すなわち、第1の導電性樹脂30aおよび第2の導電性樹脂30bは、接着剤としての機能も有する。 The first conductive resin 30a provided on the first end face electrode 14 side is provided between the first end face electrode 14 and the inner side face of the first side wall 20c on the side of the electric double layer capacitor element. It is sandwiched. Further, the second conductive resin 30b provided on the second end face electrode 15 side is formed between the second end face electrode 15 and the inner side face which is the face of the second side wall 20d on the electric double layer capacitor element side. It is sandwiched between. As described above, since the first conductive resin 30a and the second conductive resin 30b are provided, the electric double layer capacitor is provided via the first conductive resin 30a and the second conductive resin 30b. The fixability between the element 10 and the container 20 can be improved. That is, the first conductive resin 30a and the second conductive resin 30b also have a function as an adhesive.
 導電部として機能する第1の導電性樹脂30aは、第1の端面電極14と第1の端子21との間を電気的に接続する。同じく導電部として機能する第2の導電性樹脂30bは、第2の端面電極15と第2の端子22との間を電気的に接続する。 The first conductive resin 30a functioning as a conductive part electrically connects the first end face electrode 14 and the first terminal 21. The second conductive resin 30b, which also functions as a conductive portion, electrically connects between the second end face electrode 15 and the second terminal 22.
 すなわち、電気二重層キャパシタ素子10の複数の第1の内部電極11は、第1の端面電極14、第1の導電性樹脂30a、第1の端子21、および、第1のビア導体25を介して、第1の外部電極23と電気的に接続されている。また、複数の第2の内部電極12は、第2の端面電極15、第2の導電性樹脂30b、第2の端子22、および、第2のビア導体26を介して、第2の外部電極24と電気的に接続されている。 That is, the plurality of first internal electrodes 11 of the electric double layer capacitor element 10 are connected via the first end face electrode 14, the first conductive resin 30a, the first terminal 21, and the first via conductor 25. And is electrically connected to the first external electrode 23. Further, the plurality of second internal electrodes 12 are connected to the second external electrode via the second end face electrode 15, the second conductive resin 30b, the second terminal 22, and the second via conductor 26. 24 is electrically connected.
 第1の導電性樹脂30aおよび第2の導電性樹脂30bは、流動性のある導電性ペーストが硬化したものである。導電性ペーストとして、導電性フィラーを含有する樹脂ペーストを用いることができる。導電性フィラーとして、例えば、導電率が高く、化学的に安定している銀フィラーを用いることができる。また、樹脂ペーストとして、例えばエポキシ樹脂を用いることができる。 {Circle around (1)} The first conductive resin 30a and the second conductive resin 30b are obtained by hardening a fluid conductive paste. As the conductive paste, a resin paste containing a conductive filler can be used. As the conductive filler, for example, a silver filler having high conductivity and being chemically stable can be used. Further, for example, an epoxy resin can be used as the resin paste.
 ただし、導電性フィラーが銀フィラーに限定されることはなく、例えば、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを用いるようにしてもよい。第1の端面電極14および第2の端面電極15がアルミニウムからなる場合、以下の理由より、第1の導電性樹脂30aおよび第2の導電性樹脂30bに含まれる導電性フィラーとして、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを用いることが好ましい。 However, the conductive filler is not limited to the silver filler, and for example, a conductive filler containing at least one selected from the group consisting of copper and nickel may be used. When the first end face electrode 14 and the second end face electrode 15 are made of aluminum, copper and nickel are used as conductive fillers contained in the first conductive resin 30a and the second conductive resin 30b for the following reason. It is preferable to use a conductive filler containing at least one selected from the group consisting of:
 図3は、導電性フィラーとして、銀フィラー、銅フィラーおよびニッケルフィラーをそれぞれ用いた場合の導電性樹脂とアルミニウムとの間の接触抵抗を示す図である。ここでは、接触抵抗を測定するために、銀フィラー、銅フィラーおよびニッケルフィラーをそれぞれ含む樹脂ペーストを用いて形成された導電性樹脂の試料を5個用意して、アルミニウムとの間の接触抵抗の平均値とバラツキを求めた。 FIG. 3 is a diagram showing the contact resistance between the conductive resin and aluminum when a silver filler, a copper filler, and a nickel filler are used as the conductive filler, respectively. Here, in order to measure the contact resistance, five conductive resin samples formed using a resin paste containing a silver filler, a copper filler, and a nickel filler, respectively, were prepared, and the contact resistance between aluminum and aluminum was measured. The average and variation were determined.
 図3に示すように、銅フィラーを含む導電性樹脂およびニッケルフィラーを含む導電性樹脂の接触抵抗は、銀フィラーを含む導電性樹脂の接触抵抗と比べて小さく、かつ、バラツキが小さい。 (3) As shown in FIG. 3, the contact resistance of the conductive resin containing the copper filler and the conductive resin containing the nickel filler is smaller than the contact resistance of the conductive resin containing the silver filler, and the variation is small.
 すなわち、銀は、アルミニウムとの接触抵抗が高く、また、接触抵抗のバラツキが大きい。一方、銅およびニッケルは、銀と比べてアルミニウムとの接触抵抗が低く、また、接触抵抗のバラツキが小さい。したがって、第1の端面電極14および第2の端面電極15がアルミニウムからなる場合、第1の導電性樹脂30aおよび第2の導電性樹脂30bを形成するための樹脂ペーストに含まれる導電性フィラーとして、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを用いることが好ましい。第1の端面電極14および第2の端面電極15との接触抵抗が低減することにより、電気二重層キャパシタ100の出力特性が向上する。また、接触抵抗のバラツキが低減することにより、電気二重層キャパシタ100の品質安定性が向上する。また、銅およびニッケルは、銀と比べて安価であるため、コストを低減することができる。 That is, silver has a high contact resistance with aluminum and a large variation in contact resistance. On the other hand, copper and nickel have lower contact resistance with aluminum than silver, and have less variation in contact resistance. Therefore, when the first end face electrode 14 and the second end face electrode 15 are made of aluminum, as the conductive filler contained in the resin paste for forming the first conductive resin 30a and the second conductive resin 30b, It is preferred to use a conductive filler containing at least one selected from the group consisting of copper and nickel. The output characteristics of the electric double layer capacitor 100 are improved by reducing the contact resistance between the first end face electrode 14 and the second end face electrode 15. In addition, since the variation in the contact resistance is reduced, the quality stability of the electric double layer capacitor 100 is improved. Further, copper and nickel are inexpensive as compared with silver, so that the cost can be reduced.
 また、導電性フィラーとして、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを用いた場合に、導電性フィラーの表面を、金、銀、および、白金のいずれかで被覆するようにしてもよい。被覆は、導電性フィラーの表面全体に対して行われていてもよいし、一部に対して行われていてもよい。金、銀、および、白金は、電解液に対する耐性が高く、化学的に安定しているので、導電性フィラーの表面を金、銀、および、白金のいずれかで被覆すれば、より好ましい。 When a conductive filler containing at least one selected from the group consisting of copper and nickel is used as the conductive filler, the surface of the conductive filler is coated with gold, silver, or platinum. You may make it. The coating may be performed on the entire surface of the conductive filler, or may be performed on a part thereof. Since gold, silver, and platinum have high resistance to an electrolytic solution and are chemically stable, it is more preferable to coat the surface of the conductive filler with one of gold, silver, and platinum.
 ここで、第1の導電性樹脂30aおよび第2の導電性樹脂30bの線膨張係数は、第1の端面電極14および第2の端面電極15の線膨張係数より小さく、かつ、収容容器20の線膨張係数よりも大きい。したがって、第1の導電性樹脂30aが第1の端面電極14と収容容器20との間に設けられ、第2の導電性樹脂30bが第2の端面電極15と収容容器20との間に設けられることにより、線膨張係数が段階的に変化し、実装時に熱が加わったときの変形を吸収することができる。 Here, the linear expansion coefficients of the first conductive resin 30a and the second conductive resin 30b are smaller than the linear expansion coefficients of the first end face electrode 14 and the second end face electrode 15, and It is larger than the coefficient of linear expansion. Therefore, the first conductive resin 30a is provided between the first end surface electrode 14 and the housing container 20, and the second conductive resin 30b is provided between the second end surface electrode 15 and the housing container 20. As a result, the coefficient of linear expansion changes stepwise, and it is possible to absorb deformation when heat is applied during mounting.
 蓋40は、収容容器20の上方の開口部を封止するために設けられている。蓋40と収容容器20との間にはシームリング50が設けられており、蓋40と収容容器20との界面から水分等が侵入することを抑制することができる。本実施形態において、蓋40は金属製である。蓋40を金属製とすることにより、セラミック製とした場合と比べて、気密性を容易に得ることができる。 The lid 40 is provided to seal the opening above the storage container 20. A seam ring 50 is provided between the lid 40 and the storage container 20, and can prevent moisture and the like from entering the interface between the lid 40 and the storage container 20. In the present embodiment, the lid 40 is made of metal. When the lid 40 is made of metal, airtightness can be easily obtained as compared with the case where the lid 40 is made of ceramic.
 上述したように、本実施形態における電気二重層キャパシタ100では、電気二重層キャパシタ素子10の第1の端面10cに、複数の第1の内部電極11と電気的に接続された第1の端面電極14が形成され、第2の端面10dに、複数の第2の内部電極12と電気的に接続された第2の端面電極15が形成されている。また、収容容器20の内側底面20aには、第1の端子21と第2の端子22が設けられ、外側底面20bには、第1の端子21と電気的に接続されている第1の外部電極23、および、第2の端子22と電気的に接続されている第2の外部電極24が設けられている。そして、第1の端子21と第1の端面電極14とが第1の導電性樹脂30aを介して電気的に接続され、第2の端子22と第2の端面電極15とが第2の導電性樹脂30bを介して電気的に接続されている。そのような構成により、複数の第1の内部電極11と第1の外部電極23との間、および、複数の第2の内部電極12と第2の外部電極24との間の導電経路を短くすることができ、電気二重層キャパシタ100の等価直列抵抗を小さくすることができる。これにより、電気二重層キャパシタ100の出力特性を向上させることができる。 As described above, in the electric double layer capacitor 100 of the present embodiment, the first end face 10 c of the electric double layer capacitor element 10 has the first end face electrode electrically connected to the plurality of first internal electrodes 11. The second end face electrode 15 electrically connected to the plurality of second internal electrodes 12 is formed on the second end face 10d. A first terminal 21 and a second terminal 22 are provided on the inner bottom surface 20a of the housing container 20, and a first external terminal electrically connected to the first terminal 21 is provided on the outer bottom surface 20b. An electrode 23 and a second external electrode 24 that is electrically connected to the second terminal 22 are provided. Then, the first terminal 21 and the first end face electrode 14 are electrically connected via the first conductive resin 30a, and the second terminal 22 and the second end face electrode 15 are connected to the second conductive face. It is electrically connected via the conductive resin 30b. With such a configuration, the conductive paths between the plurality of first internal electrodes 11 and the first external electrodes 23 and between the plurality of second internal electrodes 12 and the second external electrodes 24 are shortened. And the equivalent series resistance of the electric double layer capacitor 100 can be reduced. Thus, the output characteristics of the electric double layer capacitor 100 can be improved.
 また、第1の端面電極14と第1の端子21との間を第1の導電性樹脂30aによって接続し、第2の端面電極15と第2の端子22との間を第2の導電性樹脂30bによって接続しているので、溶接または溶射によって形成される接続部によって接続する構成と比べて、電気二重層キャパシタ素子10と収容容器20との間の隙間を小さくすることができる。したがって、収容容器20の容積に対して、電気二重層キャパシタ素子10のサイズをできるだけ大きくすることができるので、電気二重層キャパシタ100の高容量化および高出力化を実現することができる。 The first end face electrode 14 and the first terminal 21 are connected by a first conductive resin 30a, and the second end face electrode 15 and the second terminal 22 are connected by a second conductive material. Since the connection is made by the resin 30b, the gap between the electric double layer capacitor element 10 and the housing container 20 can be made smaller than in the case where the connection is made by a connection portion formed by welding or thermal spraying. Therefore, the size of the electric double layer capacitor element 10 can be made as large as possible with respect to the volume of the storage container 20, so that the capacity and output of the electric double layer capacitor 100 can be increased.
 <第2の実施形態>
 図4は、第2の実施形態における電気二重層キャパシタ100Aの構成を示す模式的断面図である。第2の実施形態における電気二重層キャパシタ100Aは、図1に示す第1の実施形態における電気二重層キャパシタ100に対して、導電膜60をさらに備える。また、第1の導電性樹脂30aおよび第2の導電性樹脂30bは、銀フィラーを含有する樹脂ペーストが硬化したものとして説明する。
<Second embodiment>
FIG. 4 is a schematic cross-sectional view illustrating a configuration of an electric double layer capacitor 100A according to the second embodiment. The electric double layer capacitor 100A according to the second embodiment is different from the electric double layer capacitor 100 according to the first embodiment shown in FIG. The first conductive resin 30a and the second conductive resin 30b will be described as those obtained by curing a resin paste containing a silver filler.
 導電膜60は、収容容器20の第1の側壁20cの内側側面と対向する、第1の端面電極14の表面、および、収容容器20の第2の側壁20dの内側側面と対向する、第2の端面電極15の表面に設けられている。導電膜60は、厚みが例えば100nm以上300nm以下の薄膜であり、Au、Ni、Pt、Cu、Ti、Cr、Co、Mn、および、Cからなる群より選択される少なくとも1種または上記少なくとも1種を含む合金を含有する。 The conductive film 60 is opposed to the inner side surface of the first side wall 20 c of the housing container 20, and faces the surface of the first end face electrode 14 and the inner side surface of the second side wall 20 d of the housing container 20. Are provided on the surface of the end surface electrode 15. The conductive film 60 is a thin film having a thickness of, for example, 100 nm or more and 300 nm or less, and is at least one selected from the group consisting of Au, Ni, Pt, Cu, Ti, Cr, Co, Mn, and C, or at least one of Contains an alloy containing seeds.
 導電膜60は、例えばスパッタリングによって形成することができる。また、導電膜60を形成する際に、第1の端面電極14および第2の端面電極15の表面に逆スパッタリングを行ってから、導電膜60を形成するようにしてもよい。第1の端面電極14および第2の端面電極15の表面に逆スパッタリングを行うことにより、第1の端面電極14および第2の端面電極15の酸化膜を除去することができ、第1の端面電極14および第2の端面電極15と導電膜60との密着性を向上させることができる。 The conductive film 60 can be formed by, for example, sputtering. When forming the conductive film 60, the conductive film 60 may be formed after performing reverse sputtering on the surfaces of the first end face electrode 14 and the second end face electrode 15. By performing reverse sputtering on the surfaces of the first end face electrode 14 and the second end face electrode 15, the oxide film of the first end face electrode 14 and the second end face electrode 15 can be removed, and the first end face can be removed. The adhesion between the electrode 14 and the second end face electrode 15 and the conductive film 60 can be improved.
 図5は、アルミニウムの表面にAu(金)の薄膜を設けた場合の薄膜と、銀フィラーを含む樹脂ペーストを用いて形成された導電性樹脂との間の接触抵抗、および、アルミニウムの表面にAuの薄膜を設けない場合のアルミニウムと、銀フィラーを含む樹脂ペーストを用いて形成された導電性樹脂との間の接触抵抗を示す図である。ここでも、試料を5個用意して、接触抵抗の平均値とバラツキを求めた。 FIG. 5 shows the contact resistance between a thin film in the case where a thin film of Au (gold) is provided on the surface of aluminum and a conductive resin formed using a resin paste containing a silver filler, and the contact resistance between the thin film and the surface of aluminum. It is a figure which shows the contact resistance between the aluminum which does not provide a thin film of Au, and the conductive resin formed using the resin paste containing a silver filler. Here, five samples were prepared, and the average value and the variation of the contact resistance were determined.
 上述したように、銀は、アルミニウムとの接触抵抗が高く、また、接触抵抗のバラツキが大きい。したがって、第1の導電性樹脂30aおよび第2の導電性樹脂30bを形成するための樹脂ペーストに含まれる導電性フィラーとして銀フィラーを用い、第1の端面電極14および第2の端面電極15がアルミニウムからなる場合、図5に示すように、第1の導電性樹脂30aと第1の端面電極14との間、および第2の導電性樹脂30bと第2の端面電極15との間の接触抵抗が高くなる。 銀 As described above, silver has a high contact resistance with aluminum and a large variation in the contact resistance. Therefore, a silver filler is used as a conductive filler included in a resin paste for forming the first conductive resin 30a and the second conductive resin 30b, and the first end face electrode 14 and the second end face electrode 15 are used. When made of aluminum, as shown in FIG. 5, contact between the first conductive resin 30a and the first end face electrode 14 and between the second conductive resin 30b and the second end face electrode 15 are made. Resistance increases.
 一方、アルミニウムの表面にAuの薄膜を設けた場合、Auの薄膜と、銀フィラーを含む樹脂ペーストを用いて形成された第1の導電性樹脂30aおよび第2の導電性樹脂30bとの間の接触抵抗は低く、バラツキも小さい。したがって、アルミニウムからなる第1の端面電極14の表面および第2の端面電極15の表面にAuを含む導電膜60を形成することにより、接触抵抗を低減し、かつ、接触抵抗のバラツキを小さくすることができる。Auの薄膜の代わりに、Ni、Pt、Cu、Ti、Cr、Co、Mn、C、またはそれらを含む合金からなる薄膜を形成した場合も同様である。 On the other hand, when an Au thin film is provided on the surface of aluminum, the Au thin film and the first conductive resin 30a and the second conductive resin 30b formed by using a resin paste containing a silver filler are used. The contact resistance is low and the variation is small. Therefore, by forming the conductive film 60 containing Au on the surface of the first end face electrode 14 and the surface of the second end face electrode 15 made of aluminum, the contact resistance is reduced and the variation in the contact resistance is reduced. be able to. The same applies to the case where a thin film made of Ni, Pt, Cu, Ti, Cr, Co, Mn, C, or an alloy containing them is formed instead of the Au thin film.
 すなわち、第2の実施形態における電気二重層キャパシタ100Aによれば、第1の端面電極14の表面および第2の端面電極15の表面に、Au、Ni、Pt、Cu、Ti、Cr、Co、Mn、および、Cからなる群より選択される少なくとも1種または上記少なくとも1種を含む合金を含有する導電膜60が形成されているので、上記導電膜60が形成されていない構成と比べて、第1の導電性樹脂30aおよび第2の導電性樹脂30bとの接触抵抗を低減し、かつ、接触抵抗のバラツキを低減することができる。これにより、電気二重層キャパシタ100Aの出力特性をさらに向上させるとともに、電気二重層キャパシタ100Aの品質安定性をさらに向上させることができる。 That is, according to the electric double layer capacitor 100A in the second embodiment, Au, Ni, Pt, Cu, Ti, Cr, Co, and the like are formed on the surface of the first end surface electrode 14 and the surface of the second end surface electrode 15. Since the conductive film 60 containing at least one selected from the group consisting of Mn and C or an alloy containing the at least one type is formed, compared to a configuration in which the conductive film 60 is not formed, The contact resistance between the first conductive resin 30a and the second conductive resin 30b can be reduced, and the variation in the contact resistance can be reduced. Thus, the output characteristics of the electric double layer capacitor 100A can be further improved, and the quality stability of the electric double layer capacitor 100A can be further improved.
 <第3の実施形態>
 図6は、第3の実施形態における電気二重層キャパシタ100Bの構成を示す模式的断面図である。第3の実施形態における電気二重層キャパシタ100Bは、電気二重層キャパシタ素子10の第1の端面10cおよび第2の端面10dのうち、第1の導電性樹脂30aおよび第2の導電性樹脂30bが設けられていない部分と、第1の主面10a、第1の側面、および第2の側面が絶縁性樹脂70によって覆われている点で、第1の実施形態における電気二重層キャパシタ100と異なる。
<Third embodiment>
FIG. 6 is a schematic cross-sectional view illustrating a configuration of an electric double layer capacitor 100B according to the third embodiment. In the electric double layer capacitor 100B according to the third embodiment, the first conductive resin 30a and the second conductive resin 30b of the first end face 10c and the second end face 10d of the electric double layer capacitor element 10 are different from each other. It differs from the electric double layer capacitor 100 in the first embodiment in that the portion not provided and the first main surface 10a, the first side surface, and the second side surface are covered with the insulating resin 70. .
 すなわち、第1の実施形態における電気二重層キャパシタ100では、電気二重層キャパシタ素子10と収容容器20との間、および、電気二重層キャパシタ素子10と蓋40との間に空隙が存在しているが、第3の実施形態における電気二重層キャパシタ100Bでは、上記空隙を埋めるように、絶縁性樹脂70が設けられている。換言すると、絶縁性樹脂70は、電気二重層キャパシタ素子10と収容容器20との間、および、電気二重層キャパシタ素子10と蓋40との間に挟まれる態様で設けられている。 That is, in the electric double layer capacitor 100 according to the first embodiment, a gap exists between the electric double layer capacitor element 10 and the housing 20 and between the electric double layer capacitor element 10 and the lid 40. However, in the electric double layer capacitor 100 </ b> B according to the third embodiment, the insulating resin 70 is provided so as to fill the gap. In other words, the insulating resin 70 is provided between the electric double layer capacitor element 10 and the housing 20 and between the electric double layer capacitor element 10 and the lid 40.
 絶縁性樹脂70は、以下のような方法により形成することができる。すなわち、収容容器20内に電気二重層キャパシタ素子10を収容した後、電気二重層キャパシタ素子10を覆うように、絶縁性の液状樹脂を流し込む。液状樹脂として、例えば、エポキシ樹脂やシリコン樹脂を用いることができる。流し込まれた液状樹脂は、収容容器20と電気二重層キャパシタ素子10との間の空隙に入り込む。また、液状樹脂で、電気二重層キャパシタ素子10の上面を覆うようにする。その後、加熱することによって、液状樹脂を硬化させる。これにより、絶縁性樹脂70が形成される。なお、加熱をせずに、所定の時間放置することによって、液状樹脂を硬化させるようにしてもよい。 The insulating resin 70 can be formed by the following method. That is, after the electric double layer capacitor element 10 is accommodated in the container 20, an insulating liquid resin is poured so as to cover the electric double layer capacitor element 10. As the liquid resin, for example, an epoxy resin or a silicone resin can be used. The poured liquid resin enters a gap between the storage container 20 and the electric double layer capacitor element 10. Further, the upper surface of the electric double layer capacitor element 10 is covered with a liquid resin. Thereafter, the liquid resin is cured by heating. Thus, the insulating resin 70 is formed. The liquid resin may be cured by leaving it for a predetermined time without heating.
 第3の実施形態における電気二重層キャパシタ100Bによれば、電気二重層キャパシタ素子10が絶縁性樹脂70で覆われているので、何らかの理由によって、電気二重層キャパシタ素子10から電解液が漏れ出た場合でも、電解液が第1の導電性樹脂30aおよび第2の導電性樹脂30bや、収容容器20の第1の端子21および第2の端子22に付着することを抑制することができる。これにより、電解液が導電性樹脂30や第1の端子21および第2の端子22に付着することによる腐食を抑制することができ、電気二重層キャパシタ100Bの信頼性を向上させることができる。 According to the electric double layer capacitor 100B of the third embodiment, since the electric double layer capacitor element 10 is covered with the insulating resin 70, the electrolyte leaked from the electric double layer capacitor element 10 for some reason. Even in this case, it is possible to suppress the electrolytic solution from adhering to the first conductive resin 30a and the second conductive resin 30b, and to the first terminal 21 and the second terminal 22 of the container 20. Thereby, corrosion due to the electrolytic solution adhering to the conductive resin 30 and the first terminal 21 and the second terminal 22 can be suppressed, and the reliability of the electric double layer capacitor 100B can be improved.
 また、絶縁性樹脂70によって、電気二重層キャパシタ素子10と収容容器20とをより強固に固定することができるので、電気二重層キャパシタ100Bに衝撃が加わったときに、電気二重層キャパシタ素子10が収容容器20から外れることによる断線を抑制することができる。 Further, since the electric double layer capacitor element 10 and the storage container 20 can be more firmly fixed by the insulating resin 70, when the electric double layer capacitor 100B is shocked, the electric double layer capacitor element 10 Disconnection due to detachment from the storage container 20 can be suppressed.
 また、電気二重層キャパシタ素子10と金属製の蓋40との間、より詳しくは、電気二重層キャパシタ素子10の第1の主面10aと金属製の蓋40との間に挟まれる形で、絶縁性樹脂70が存在するので、電気二重層キャパシタ素子10と蓋40との間、例えば第1の端面電極14と蓋40との間や、第2の端面電極15と蓋40との間がショートすることを抑制することができる。 Further, between the electric double layer capacitor element 10 and the metal lid 40, more specifically, between the first main surface 10 a of the electric double layer capacitor element 10 and the metal lid 40, Because of the presence of the insulating resin 70, the gap between the electric double layer capacitor element 10 and the lid 40, for example, between the first end face electrode 14 and the lid 40, or between the second end face electrode 15 and the lid 40 is formed. Shorting can be suppressed.
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。例えば、上述した各実施形態の特徴は、適宜組み合わせることができる。 The present invention is not limited to the above embodiment, and various applications and modifications can be made within the scope of the present invention. For example, the features of the embodiments described above can be combined as appropriate.
 電気二重層キャパシタ素子10は、第1の内部電極11と第2の内部電極12が交互に複数積層された構造を有していれば、上述した構成に限定されることはない。 The electric double layer capacitor element 10 is not limited to the above-described configuration as long as the electric double layer capacitor element 10 has a structure in which a plurality of first internal electrodes 11 and second internal electrodes 12 are alternately stacked.
10  電気二重層キャパシタ素子
11  第1の内部電極
12  第2の内部電極
13  電解質層
14  第1の端面電極
15  第2の端面電極
16  絶縁層
20  収容容器
21  第1の端子
22  第2の端子
23  第1の外部電極
24  第2の外部電極
25  第1のビア導体
26  第2のビア導体
30a 第1の導電性樹脂
30b 第2の導電性樹脂
40  蓋
50  シームリング
60  導電膜
70  絶縁性樹脂
100、100A、100B 電気二重層キャパシタ
Reference Signs List 10 electric double layer capacitor element 11 first internal electrode 12 second internal electrode 13 electrolyte layer 14 first end face electrode 15 second end face electrode 16 insulating layer 20 container 21 first terminal 22 second terminal 23 First external electrode 24 Second external electrode 25 First via conductor 26 Second via conductor 30a First conductive resin 30b Second conductive resin 40 Cover 50 Seam ring 60 Conductive film 70 Insulating resin 100 , 100A, 100B Electric double layer capacitor

Claims (9)

  1.  蓄電素子と、
     前記蓄電素子を収容する収容容器と、
     前記蓄電素子と前記収容容器に設けられている外部電極とを電気的に接続する導電部と、
    を備え、
     前記蓄電素子は、
     長さ方向および幅方向に沿って延びる第1の主面および第2の主面と、前記長さ方向および厚み方向に沿って延びる第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる第1の端面および第2の端面と、を有し、
     第1の内部電極と第2の内部電極とを備え、前記第1の内部電極と前記第2の内部電極が前記厚み方向に交互に複数積層されており、
     前記第1の端面に設けられ、複数の前記第1の内部電極と接続された第1の端面電極と、前記第2の端面に設けられ、複数の前記第2の内部電極と接続された第2の端面電極とを備え、
     前記収容容器は、
     前記蓄電素子と対向する面である内側底面に設けられた第1の端子と、
     前記内側底面と反対側の面である外側底面に設けられ、前記第1の端子と電気的に接続されている第1の外部電極と、
     前記内側底面に設けられた第2の端子と、
     前記外側底面に設けられ、前記第2の端子と電気的に接続されている第2の外部電極と、
    を備え、
     前記導電部は、
     前記第1の端面電極と前記第1の端子との間を電気的に接続する第1の導電性樹脂と、
     前記第2の端面電極と前記第2の端子との間を電気的に接続する第2の導電性樹脂と、
    を備えることを特徴とする蓄電デバイス。
    A storage element,
    A housing container for housing the power storage element,
    A conductive portion that electrically connects the power storage element and an external electrode provided in the storage container,
    With
    The electricity storage element,
    A first main surface and a second main surface extending along the length direction and the width direction; a first side surface and a second side surface extending along the length direction and the thickness direction; A first end surface and a second end surface extending along the thickness direction;
    A first internal electrode and a second internal electrode, wherein a plurality of the first internal electrodes and the second internal electrodes are alternately stacked in the thickness direction;
    A first end face electrode provided on the first end face and connected to the plurality of first internal electrodes; a second end face provided on the second end face and connected to the plurality of second internal electrodes; 2 end face electrodes,
    The storage container,
    A first terminal provided on an inner bottom surface that is a surface facing the power storage element;
    A first external electrode provided on an outer bottom surface opposite to the inner bottom surface and electrically connected to the first terminal;
    A second terminal provided on the inner bottom surface;
    A second external electrode provided on the outer bottom surface and electrically connected to the second terminal;
    With
    The conductive portion,
    A first conductive resin that electrically connects between the first end face electrode and the first terminal;
    A second conductive resin that electrically connects between the second end surface electrode and the second terminal;
    A power storage device comprising:
  2.  前記第1の導電性樹脂および前記第2の導電性樹脂は、銅およびニッケルからなる群より選択される少なくとも1種を含む導電性フィラーを含有することを特徴とする請求項1に記載の蓄電デバイス。 The power storage device according to claim 1, wherein the first conductive resin and the second conductive resin contain a conductive filler containing at least one selected from the group consisting of copper and nickel. device.
  3.  前記導電性フィラーは、その表面が金、銀、および、白金のいずれかで被覆されていることを特徴とする請求項2に記載の蓄電デバイス。 The power storage device according to claim 2, wherein the surface of the conductive filler is coated with any of gold, silver, and platinum.
  4.  前記第1の導電性樹脂および前記第2の導電性樹脂は、銀を含む導電性フィラーを含有しており、
     前記第1の端面電極および前記第2の端面電極には、Au、Ni、Pt、Cu、Ti、Cr、Co、Mn、および、Cからなる群より選択される少なくとも1種、または前記少なくとも1種を含む合金を含有する導電膜が形成されていることを特徴とする請求項1に記載の蓄電デバイス。
    The first conductive resin and the second conductive resin contain a conductive filler containing silver,
    The first end face electrode and the second end face electrode each include at least one selected from the group consisting of Au, Ni, Pt, Cu, Ti, Cr, Co, Mn, and C; The power storage device according to claim 1, wherein a conductive film containing an alloy containing a seed is formed.
  5.  前記蓄電素子の前記第1の端面および前記第2の端面のうち、前記第1の導電性樹脂および前記第2の導電性樹脂が設けられていない部分と、前記第1の主面、前記第1の側面、および前記第2の側面とが絶縁性樹脂によって覆われていることを特徴とする請求項1~4のいずれかに記載の蓄電デバイス。 A portion of the first end face and the second end face of the power storage element where the first conductive resin and the second conductive resin are not provided; a first main surface; The power storage device according to claim 1, wherein the first side surface and the second side surface are covered with an insulating resin.
  6.  前記収容容器は、前記第1の端子と前記第1の外部電極とを接続する第1のビア導体と、前記第2の端子と前記第2の外部電極とを接続する第2のビア導体とをさらに備えており、
     前記厚み方向に見たときに、前記第1のビア導体は、その少なくとも一部が前記第1の端面電極と重なる位置に配置され、前記第2のビア導体は、その少なくとも一部が前記第2の端面電極と重なる位置に配置されていることを特徴とする請求項1~5のいずれかに記載の蓄電デバイス。
    The container includes a first via conductor that connects the first terminal to the first external electrode, a second via conductor that connects the second terminal to the second external electrode, Is further provided,
    When viewed in the thickness direction, the first via conductor is disposed at a position where at least a part thereof overlaps the first end face electrode, and at least a part of the second via conductor is the second terminal conductor. The power storage device according to any one of claims 1 to 5, wherein the power storage device is disposed at a position overlapping the second end face electrode.
  7.  前記第1の導電性樹脂は、前記第1の端面電極と、前記第1の端面電極と対向する前記収容容器の内側側面との間に挟まれており、前記第2の導電性樹脂は、前記第2の端面電極と、前記第2の端面電極と対向する前記収容容器の内側側面との間に挟まれていることを特徴とする請求項1~6のいずれかに記載の蓄電デバイス。 The first conductive resin is sandwiched between the first end surface electrode and an inner side surface of the storage container facing the first end surface electrode, and the second conductive resin is The power storage device according to any one of claims 1 to 6, wherein the power storage device is sandwiched between the second end surface electrode and an inner side surface of the storage container facing the second end surface electrode.
  8.  前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
     前記収容容器の前記開口部を封止するための金属製の蓋をさらに備えることを特徴とする請求項1~7のいずれかに記載の蓄電デバイス。
    The storage container has a bottomed cylindrical shape having an opening at one end,
    The power storage device according to any one of claims 1 to 7, further comprising a metal lid for sealing the opening of the storage container.
  9.  前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
     前記収容容器の前記開口部を封止するための金属製の蓋をさらに備え、
     前記蓄電素子の前記第1の主面を覆っている前記絶縁性樹脂は、前記第1の主面と前記金属製の蓋との間に挟まれていることを特徴とする請求項5に記載の蓄電デバイス。
    The storage container has a bottomed cylindrical shape having an opening at one end,
    Further comprising a metal lid for sealing the opening of the storage container,
    The insulating resin covering the first main surface of the power storage element is sandwiched between the first main surface and the metal lid. Power storage device.
PCT/JP2019/026665 2018-07-26 2019-07-04 Electricity storage device WO2020022022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018140137 2018-07-26
JP2018-140137 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022022A1 true WO2020022022A1 (en) 2020-01-30

Family

ID=69181472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026665 WO2020022022A1 (en) 2018-07-26 2019-07-04 Electricity storage device

Country Status (1)

Country Link
WO (1) WO2020022022A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030424A1 (en) * 2020-08-07 2022-02-10 京セラ株式会社 Battery package, and battery module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223623A (en) * 1988-07-12 1990-01-25 Sharp Corp Formation of electrode
JPH08236796A (en) * 1994-11-04 1996-09-13 Canon Inc Current collecting electrode, photovoltaic element using the same and manufacture thereof
JP2004179090A (en) * 2002-11-28 2004-06-24 Kyocera Corp Layered battery
JP2004200094A (en) * 2002-12-20 2004-07-15 Yazaki Corp Connecting method of terminal and electric wire
JP2009093968A (en) * 2007-10-10 2009-04-30 Seiko Epson Corp Whole-solid lithium secondary battery
JP2012222345A (en) * 2011-04-07 2012-11-12 Avx Corp Housing configuration for solid electrolytic capacitor assembly
WO2013001908A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Power storage device element and power storage device
WO2013002119A1 (en) * 2011-06-28 2013-01-03 株式会社 村田製作所 Power storage device and method of manufacturing thereof
JP2013030750A (en) * 2011-06-24 2013-02-07 Seiko Instruments Inc Electrochemical cell and manufacturing method of the same
JP2016173915A (en) * 2015-03-17 2016-09-29 古河機械金属株式会社 Bipolar type lithium ion battery and manufacturing method thereof
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223623A (en) * 1988-07-12 1990-01-25 Sharp Corp Formation of electrode
JPH08236796A (en) * 1994-11-04 1996-09-13 Canon Inc Current collecting electrode, photovoltaic element using the same and manufacture thereof
JP2004179090A (en) * 2002-11-28 2004-06-24 Kyocera Corp Layered battery
JP2004200094A (en) * 2002-12-20 2004-07-15 Yazaki Corp Connecting method of terminal and electric wire
JP2009093968A (en) * 2007-10-10 2009-04-30 Seiko Epson Corp Whole-solid lithium secondary battery
JP2012222345A (en) * 2011-04-07 2012-11-12 Avx Corp Housing configuration for solid electrolytic capacitor assembly
JP2013030750A (en) * 2011-06-24 2013-02-07 Seiko Instruments Inc Electrochemical cell and manufacturing method of the same
WO2013001908A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Power storage device element and power storage device
WO2013002119A1 (en) * 2011-06-28 2013-01-03 株式会社 村田製作所 Power storage device and method of manufacturing thereof
JP2016173915A (en) * 2015-03-17 2016-09-29 古河機械金属株式会社 Bipolar type lithium ion battery and manufacturing method thereof
JP2017010627A (en) * 2015-06-17 2017-01-12 セイコーインスツル株式会社 Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030424A1 (en) * 2020-08-07 2022-02-10 京セラ株式会社 Battery package, and battery module

Similar Documents

Publication Publication Date Title
JP5069834B2 (en) Electrochemical energy storage device with improved enclosure mechanism
JP4440850B2 (en) Secondary battery
US5367431A (en) Thin power supply unit
US8895175B2 (en) Intercellular separation structure body and laminate type solid secondary battery provided with the same
CN102195025B (en) Electrode assembly and secondary battery using the same
US9831533B2 (en) Energy storage structures and fabrication methods thereof
KR20080096165A (en) Pouch type secondary battery and the fabrication method thereof
CN103503196A (en) Secondary battery with enhanced contact resistance
US20090029246A1 (en) Pouch-type secondary battery
JP4199948B2 (en) Electrode extraction structure of sheet-like secondary battery
KR100865399B1 (en) Secondary battery
WO2020022022A1 (en) Electricity storage device
JP5679271B2 (en) Battery cover with electrode terminal, method for manufacturing battery cover with electrode terminal, and sealed battery
JP2013021326A (en) Super capacitor cell and super capacitor module including multiple cells
JP2005222887A (en) Electrode winding type battery
US11942270B2 (en) Electricity storage device with sintered body
US10680272B2 (en) Power storage device
JP2005079080A (en) Thin battery pack
JP2014090039A (en) Electrochemical device
JP2004342643A (en) Electric double layer capacitor
KR100551395B1 (en) Method of fabricating pouch type lithium secondary battery
WO2020100716A1 (en) Power storage device and power storage pack
KR100739431B1 (en) Secondary battery improved in electric conductivity and electrical conductor plate electrically connecting electronic parts
JP2020061431A (en) Power storage device
WO2019176694A1 (en) Lead member and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP