WO2020020381A1 - 一种低密度金属基复合材料的制备方法 - Google Patents

一种低密度金属基复合材料的制备方法 Download PDF

Info

Publication number
WO2020020381A1
WO2020020381A1 PCT/CN2019/100500 CN2019100500W WO2020020381A1 WO 2020020381 A1 WO2020020381 A1 WO 2020020381A1 CN 2019100500 W CN2019100500 W CN 2019100500W WO 2020020381 A1 WO2020020381 A1 WO 2020020381A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
density
based composite
low
composite material
Prior art date
Application number
PCT/CN2019/100500
Other languages
English (en)
French (fr)
Inventor
张莹
王继成
李谷南
彭玉云
宁昌州
任怀德
Original Assignee
珠海市润星泰电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市润星泰电器有限公司 filed Critical 珠海市润星泰电器有限公司
Publication of WO2020020381A1 publication Critical patent/WO2020020381A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the technical field of composite material die-casting, and in particular, to a lightweight aluminum-based composite material die-casting method.
  • Die-casting is a special casting process. It is a process of using a die-casting machine to fill metal die-casting mold cavities with high-speed filling of light alloys such as aluminum and magnesium in liquid form into the die-casting mold cavity. Die castings have the characteristics of high strength and less processing.
  • the density of aluminum alloy is 2.7g / cm3, which is a non-ferrous light metal alloy.
  • Semi-solid metal casting technology is a metal forming technology between solid forming and liquid forming. It has the advantages of good liquid flow, low thermal stress, and thin-walled parts can be die-casted.
  • the solid phase of semi-solid slurry The rate is in the range of 20-60%.
  • the semi-solid structure is an integral spherical crystal. The structure is small and dense, and the product is dense.
  • lightweight metal materials such as aluminum foam are produced by the foaming method.
  • the density of this lightweight material with high porosity is between 0.3-0.8 g / cm3, the porosity is between 60-90%, and the pore size is 0.2. ⁇ 7mm, but low strength and brittleness, resulting in low mechanical processing molding rate, difficult to meet the requirements of high-precision dimensions, its strength is low, not suitable for load-bearing parts.
  • the present invention aims to solve the problems described above, and provides a lightweight and low-density die-casting method of a metal-based composite material.
  • a method for preparing a low-density metal-based composite material is provided. (1) preparing a metal or alloy having a density of 1.8 to 8.9 g / m3, and heating to melt to obtain a liquid metal; (2) preparing a density of 0.3-1.2 g / m3 of non-metallic material, crush the non-metallic material into non-metallic particles with a particle size of 500-800 mesh; (3) disperse the non-metallic particles in step (2) to the liquid metal obtained in step (1) A mixed melt is formed in the mixture; (4) The mixed melt obtained in the mechanical stirring step (3) of the stirring rod is added with compressed air argon while stirring, and the stirring speed of the stirring rod is set to 1200 to 2200 rpm.
  • the stirring time is set to 10 to 180 seconds to obtain a semi-solid metal-based composite slurry, wherein the flow rate of the compressed air is set to 8 to 25 liters / minute; (5) the semi-solid metal-based obtained in step (4) The composite slurry was die-cast to obtain a low-density metal-based composite material.
  • the amount of the non-metal particles dispersed in the liquid metal in step (3) is less than or equal to 60% of the liquid metal based on the weight percentage of the liquid metal.
  • the amount of the non-metal particles dispersed in the liquid metal in step (3) is 30-50% of the liquid metal based on the weight percentage of the liquid metal.
  • the non-metal particles are further preheated to 150-350 degrees Celsius in step (2).
  • the temperature of the semi-solid metal-based composite slurry obtained by the stirring in step (4) is controlled at 615-625 degrees Celsius.
  • the amount of argon in the mixed melt in step (4) is set to 3 to 8 kg.
  • the metal or alloy prepared in step (1) is metal aluminum, metal copper, aluminum-based alloy, copper-based alloy, or a mixture thereof.
  • the density of the non-metallic material prepared in step (2) is 0.3 to 0.6 g / m3, and the non-metallic material contains 50% to 70% of graphite or / and carbon nanotubes.
  • the density of the obtained low-density metal-based composite material is less than 1.0 g / m3.
  • the preparation method of the low-density metal-based composite material of the present invention applies a semi-solid rheological die-casting process to the production of a low-density lightweight composite material, and uses a liquid metal-solid non-metal mixture to prepare a semi-solid slurry die-casting to produce a low-density composite material.
  • the low density in the low-density metal-based composite material of the present invention is that the density is reduced by 60% or more compared with the metal-based material as a raw material.
  • the non-metallic material added by the present invention is mainly used to reduce the density of the metallic collective material.
  • the selected density of the present invention is 0.3 to 1.2. G / m3 non-metallic material.
  • the amount of non-metallic materials is calculated as the weight percentage of liquid metal.
  • the addition of non-metallic materials at 30 to 60% has achieved unexpected results, and the low-density metal composite materials that are worthy have good performance in anti-electromagnetic interference and shock absorption, and can be used in aerospace Field or automotive industry. If the size of the added non-metallic material is too large, it will cause insufficient wetting with the molten metal, which will result in the presence of unmelted non-metallic particles in the prepared low-density metal matrix composite material, which will affect its quality.
  • the preparation method of the low-density metal-based composite material of the present invention forms a semi-solid metal-based composite slurry by destroying the solidification process of a mixed melt of metal and non-metal, in which uniform spherical crystals are uniformly dispersed to make the metal-based composite obtained by die-casting.
  • the internal structure of the material is small and dense, which can be used to prepare workpieces with high dimensional accuracy.
  • the semi-solid metal-based composite slurry has a solid phase ratio of 20 to 60% and can be die-cast into thin-walled parts. It has a wide range of applications in energy, chemistry, aerospace, military, and biology.
  • semi-solid rheological die-casting is used instead of traditional ball milling, liquid die-casting, and composite lamination and sintering to prepare metal-nonmetal composite materials, and unexpected results are obtained.
  • the semi-solid and semi-solid process refines the crystals in the slurry to obtain particle size Smaller slurry, significantly improve material hardness, strength and other properties.
  • the low-density metal matrix composites obtained by die-casting work together with the metal and metal mixtures to make the composites have higher porosity and more uniform dispersion of pore gaps, resulting in low density.
  • the density of metal-based composite materials is more than 60% lower than that of metal-based materials, the tensile strength is over 200 MPa, and the hardness is over 80 kgf / mm2, which can be used as lightweight load-bearing parts.
  • compressed air is added to the mixed melt, and the compressed air stimulates the mixed melt, accelerates the collision of crystals in the mixed solution, and takes away the heat of the stirring rod to control the temperature of the prepared semi-solid metal-based composite slurry.
  • the strength and plasticity of the metal-based low-density composite material obtained by die-casting in this temperature range are better, and the elongation can reach more than 18%.
  • the die-casting method of the low-density metal-based composite material of the present invention is simple in operation, large in processing capacity, and limited in material selection.
  • the raw materials can be adjusted according to different properties in the application field, and the dependence of low-density metals on high-quality aluminum ore in the current industrial application is improved. Making full use of low and medium grade metals to improve their quality is conducive to the sustainable development of resources.
  • the basic idea of the present invention is that 1S prepares a metal or alloy having a density of 1.8 to 8.9 g / m3, and is heated to melt to obtain a liquid metal, and the temperature of the liquid metal is set to 720 to 750 degrees Celsius.
  • the prepared metal or alloy is one or more of metal aluminum, metal copper, aluminum-based alloy, copper-based alloy, or other metals or alloys.
  • the prepared metal is an aluminum alloy, and the density of the low-density metal-based composite material prepared under the conditions can reach 0.85 to 0.98 g / m3.
  • 2S prepares non-metal materials with a density of 0.3-1.2 g / m3, and crushes the non-metal materials into non-metal particles with a particle size of 500-800 mesh.
  • the density of the prepared non-metallic material is 0.3 to 0.6 g / m3, and the density of the low-density metal-based composite material obtained under this condition is lower.
  • the prepared non-metallic material contains 50% to 70% of graphite or / and carbon nanotubes.
  • the low-density metal-based composite material obtained under this condition has both low density and high strength, and also has electrical and thermal conductivity properties.
  • the carbon in graphite or / and carbon nanotubes increases the plasticity of the low-density metal-based composite material in the semi-solid metal-based composite slurry, so that it has better ductility, and graphite or carbon nanotubes and metal-based materials Combined to form a skeleton structure that can be used as a load bearing member.
  • one or more of 50%, 60%, 65%, or 70% of graphite or / and carbon nanotubes can be selected, and the balance is diamond, silicon carbide, glass steel, or quartz.
  • non-metal particles Preferably, the non-metal particles are preheated to 180 to 200 degrees Celsius. Under this condition, the time required for the non-metal particles to fully wet with the liquid metal is shorter, and the resulting semi-solid metal-based composite slurry has better fluidity and die-casting. Higher dimensional accuracy.
  • non-metal particles may be selected to be preheated to 180, 185, 190, 195, or 200 degrees Celsius.
  • the non-metal particles dispersed in the liquid metal are less than or equal to 60% of the liquid metal based on the weight percentage of the liquid metal.
  • the non-metal particles are added in an amount of 30 to 50% of the liquid metal based on the weight percentage of the liquid metal. Under this condition, avoiding the excessively large proportion of the non-metal material from meeting the die-casting filling conditions or the die-casting. Filling conditions, but the problem of low die-casting molding rate, the prepared low-density metal matrix composite material has high strength and high molding rate, and can be electroplated without grinding, saving the production process.
  • the amount of non-metal particles to be added may be selected as 30%, 35%, 40%, 45%, or 50% of the liquid metal based on the weight percentage of the liquid metal.
  • the 4S stirrer mechanically stirs the mixed melt obtained in 3S. While stirring, argon is added to the mixed melt, the argon volume is set to 3 to 8 kg, the stirring speed of the stirrer is set to 1200 to 2200 rpm, and the stirring time. It is set to 10 to 180 seconds to obtain a semi-solid metal-based composite slurry having a temperature of 615 to 625 degrees Celsius, wherein the flow rate of argon gas is set to 8 to 25 liters / minute.
  • the stirring speed of the stirring rod is set to 1800 to 2000 revolutions per minute. Under this condition, the temperature of the semi-solid metal-based composite slurry obtained by stirring is closer to 620 degrees Celsius.
  • the solid non-metal particles and the liquid metal are mixed in the liquid metal.
  • the interior is tightly combined with metal crystals to form a uniform and non-separated semi-solid composite with good fluidity.
  • 1800 rpm, 1900 rpm, or 2000 rpm can be selected.
  • the stirring time is set to 10 to 30 seconds, and the wall thickness of the die-casting part of the low-density metal matrix composite material prepared under this condition is thinner, and the wall thickness of the same metal liquid die-casting part is reduced by 30 to 50. %.
  • the stirring time may be selected to be set to 10, 15, 20, 25, or 30 seconds.
  • the amount of argon is set to 3 to 6 kg.
  • the argon gas amount can be selected to be 3 kg, 4 kg, 5 kg, or 6.
  • the flow rate of the argon gas is set to 12 to 15 liters / minute.
  • the argon gas can take away a large amount of heat around the stirring rod, avoid the contamination of the stirring rod and cause contamination of the semi-solid metal matrix composite slurry, and reduce Strength of Low Density Metal Matrix Composites.
  • the flow rate of argon gas may be selected to be 12 liters / minute, 13 liters / minute, 14 liters / minute, or 15 liters / minute.
  • the semi-solid metal-based composite slurry obtained in step (4) is die-casted at an injection speed of 1.5 to 2.5 m / s, a specific injection pressure of 30 to 80 MPa, and a supercharging pressure of 60 to 80 MPa.
  • a low-density metal matrix composite material is obtained by die-casting with a holding pressure of 7 to 30 seconds.
  • the shot speed is 1.8 to 2.2 m / s.
  • the shot time is shortened, the solidification time is shortened, and the molding rate is higher.
  • the injection specific pressure is 45 to 80 MPa, and the molding rate of the low-density metal matrix composite material obtained under this condition is as high as 95% or more.
  • 45 MPa and 55 MPa can be selected.
  • the supercharging pressure is 60 to 70 MPa.
  • the low-density metal matrix composite material obtained by die-casting has higher strength and more wear resistance.
  • 60 MPa and 65 MPa can be selected.
  • the holding time is set to 10 to 15 seconds.
  • the low-density metal-based composite material obtained under this condition is more complete and has a high molding rate, and the low-density metal-based composite material that is not shaped due to the short holding time is also avoided. Excessive dwell time results in increased production cycles.
  • the method of preparing the low-density metal-based composite materials in the examples of the present invention is given in the form of a list below.
  • an aluminum alloy is used as the metal base, and a mixture of graphite and carbon nanotubes is used as a non-metal material, different pulping conditions are used. Influence on the density of low-density metal matrix composites.
  • Table 1 the density table of the low-density metal matrix composite material of the present invention shown in Table 1.
  • the method for preparing a low-density metal-based composite material according to the present invention utilizes the advantages of high-strength metal structure performance and the low-density performance of lightweight non-metal materials to die-cast a low-density high-strength composite material for lightweight structural parts and expands semi-solid Application areas of technology.
  • the preparation method of the low-density metal-based composite material of the present invention makes full use of low- and medium-grade metals to improve its quality, which is beneficial to the sustainable development of resources.
  • the method for preparing the low-density metal-based composite material of the present invention has a simple process, strong operability, large processing capacity, and limited selection of raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明提供一种低密度金属基复合材料的制备方法,(1)准备密度为1.8~8.9克/立方米的金属或合金,加热至熔融得到液态金属;(2)准备密度为0.3~1.2克/立方米的非金属材料,将非金属材料破碎为粒度500~800目的非金属颗粒;(2)将步骤(2)中的非金属颗粒分散至步骤(1)得到的液态金属中形成混合熔液;(4)搅拌棒机械搅拌步骤(3)得到的混合熔液,搅拌同时向混合熔液中加入氩气,搅拌棒的搅拌速度设定为1200~2200转/分钟,搅拌时间设定为10~180秒,得到半固态金属基复合浆料,其中,压缩空气的流量设定为8~25升/分钟;(5)将步骤(4)得到的半固态金属基复合浆料压铸成型得到低密度金属基复合材料。

Description

一种低密度金属基复合材料的制备方法
本申请要求在2018年12月14日提交中国专利局、申请号为201811531067.2、发明名称为“一种低密度金属基复合材料的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及但不限于一种复合材料压铸技术领域,尤其涉及一种轻量化铝基复合材料的压铸方法。
背景技术
压铸是一种特种铸造工艺,是用压铸机通过高压把铝、镁等轻合金以液态形式高速充填到金属压铸模具型腔生产金属压铸结构件的过程。压铸件具有强度高、少加工的特性,铝合金的密度为2.7g/cm3,属有色轻金属合金。半固态金属铸造工艺技术是一种介于固态成形与液态成形之间的金属成形技术,具有液态流动性好、热应力低、可压铸成形薄壁零部件的优点,半固态浆料的固相率在20-60%,半固态组织是元整的球状晶,这种组织细小致密,产品致密性较好。
目前,轻量化金属材料例如泡沫铝是用发泡法生产的,这种高孔隙率的轻量化材料密度在0.3~0.8g/cm3之间,孔隙率在60~90%之间,孔径在0.2~7mm之间,但强度低、脆性大,导致其机械加工成型率低、难以满足对尺寸有高精度要求的领域其强度较低,不适合做承重受力件使用。
因此,提供一种降低金属材料密度的同时改善其强度性能的金属材料的制备方法是本领域急需解决的技术问题。
发明内容
本发明旨在解决上面描述的问题,提供一种轻量化低密度的金属基复合材料的压铸方法。
根据本发明的一个方面提供一种低密度金属基复合材料的制备方法,(1)准备密度为1.8~8.9克/立方米的金属或合金,加热至熔融得到液态金属;(2)准备密度为0.3~1.2克/立方米的非金属材料,将非金属材料破碎为粒度500~800目的非金属颗粒;(3)将步骤(2) 中的非金属颗粒分散至步骤(1)得到的液态金属中形成混合熔液;(4)搅拌棒机械搅拌步骤(3)得到的混合熔液,搅拌同时向混合熔液中加入压缩空气氩气,搅拌棒的搅拌速度设定为1200~2200转/分钟,搅拌时间设定为10~180秒,得到半固态金属基复合浆料,其中,压缩空气的流量设定为8~25升/分钟;(5)将步骤(4)得到的半固态金属基复合浆料压铸成型得到低密度金属基复合材料。
可选择地,步骤(3)中分散至液态金属中的非金属颗粒的加入量,以液态金属的重量百分比计,小于或等于液态金属的60%。
可选择地,步骤(3)中分散至液态金属中的非金属颗粒的加入量,以液态金属的重量百分比计,为液态金属的30~50%。
可选择地,步骤(2)中进一步将非金属颗粒预热至到150~350摄氏度。
可选择地,步骤(4)中搅拌得到的半固态金属基复合浆料温度控制在615~625摄氏度。
可选择地,步骤(4)向混合熔液中氩气量设定为3~8千克。
可选择地,步骤(1)中准备的金属或合金为金属铝、金属铜、铝基合金、铜基合金或其混合物。
可选择地,步骤(2)中准备的非金属材料的密度为0.3~0.6克/立方米,非金属材料中包含50%~70%的石墨或/和碳纳米管。
可选择地,获得的低密度金属基复合材料密度小于1.0克/立方米。
本发明的低密度金属基复合材料的制备方法将半固态流变压铸工艺应用低密度轻量化复合材料生产中,用液态金属-固态非金属混合制备成半固态浆料压铸生产低密度复合材料,利用金属基材料的高强度组织性能优势和轻质非金属材料的低密度性能压铸出降低密度同时兼顾强度性能的金属基复合材料拓展了半固态工艺的应用领域。
本发明的低密度金属基复合材料中的低密度是密度与作为原料的金属基材料相比,密度降低60%及以上。
本发明选择加入的非金属材料主要用于降低金属集体材料的密度,加入的非金属材料的密度越小则得到的低密度金属基复合材料的密度越小,本发明选择加入密度为0.3~1.2克/立方米的非金属材料。非金属材料的加入量越大则得到的金属基复合材料的密度越小,但是非金属材料的加入量过大无法形成半固态浆料,因此非金属材料的加入量以液态金属的重量百分比计,小于或等于液态金属的60%,非金属材料的加入量为30~60%取得了意想不到的效果,值得的低密度金属复合材料在抗电磁干扰、减震方面有良好表现,可用于航天领域或汽车工业。加入的非金属材料的尺寸过大则会导致与金属熔液浸润不够导致制备得到的低密度 金属基复合材料中存在未熔化的非金属颗粒影响其品质,加入的非金属材料的粒度越小,非金属材料与金属熔液的浸润则更完全,制备得到的金属基复合材料密度更低,但是破碎非金属材料至越小尺寸所需工艺要求越高,因此本发明中选择将非金属材料破碎成粒度500-800目的非金属颗粒。
本发明的低密度金属基复合材料的制备方法通过破坏金属与非金属的混合熔液的固化过程形成半固态金属基复合浆料,其中均匀分散着元整的球状晶体使得压铸得到的金属基复合材料的内部组织细小致密,可用于制备高尺寸精度的工件。半固态金属基复合浆料的固相率为20~60%,可压铸成形薄壁零部件,在能源、化学化工、航空、军工、生物等多个领域具有广泛的应用前景。
本发明采用半固态流变压铸代替传统的球磨、液态压铸以及复合层压烧结等方法制备金属-非金属复合材料,得到了意想不到的效果,半固态半固态工艺细化浆液中晶体,获得粒度更小的浆料,显著提高材料硬度、强度等性能,压铸得到的低密度金属基复合材料中金属与分金属混合物协同使得复合材料孔隙率更高,孔隙隙径更均匀分散,得到的低密度金属基复合材料密度较金属基同比下降60%以上、抗拉强度达到200兆帕以上、硬度达到布氏力度80公斤力/平方毫米以上,可以作为轻量化承重受力件。
本发明在搅拌过程中,向混合熔液中加入压缩空气,压缩空气刺激混合熔液,加速混合溶液中晶体碰撞同时带走搅拌棒的热量以将制备的半固态金属基复合浆料的温度控制在620±5℃,在此温度范围内压铸得到的金属基低密度复合材料强度及塑性更好,延伸率可达18%以上。
本发明的低密度金属基复合材料的压铸方法操作简单、处理量大、材料选择限制少,可根据应用领域不同的性能调节原料,改善了当前工业上应用低密度金属对于优质铝矿的依赖,充分利用中低品相金属提升其品质,有利于资源的可持续发展。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明的基本思想是,1S准备密度为1.8~8.9克/立方米的金属或合金,加热至熔融得到液态金属,液态金属的温度设定为720~750摄氏度。可选择地,准备的金属或合金为金属铝、金属铜、铝基合金、铜基合金或其它金属或合金中的一种及以上。优选地,准备的金属为铝合金,在此条件下制备得到的低密度金属基复合材料的密度可达到0.85~0.98克/立方米。
2S准备密度为0.3~1.2克/立方米的非金属材料,将非金属材料破碎为粒度500~800目的非金属颗粒。优选地,准备的非金属材料的密度为0.3~0.6克/立方米,在此条件下得到的低密度金属基复合材料的密度更低。优选地,准备的非金属材料中包含50%~70%的石墨或/和碳纳米管,在此条件下得到的低密度金属基复合材料兼具低密度、高强度的同时,导电、导热性能良好,石墨或/和碳纳米管中的碳在半固态金属基复合浆料中增加了低密度金属基复合材料的塑性,使具有更加好的延展性,且石墨或碳纳米管与金属基材料结合形成可作为承重受力件骨架结构。例如在实际操作过程中,可以选择包含50%、60%、65%或70%的石墨或/和碳纳米管、余量为金刚石、碳化硅、玻璃钢、石英中的一种或以上。
3S将非金属颗粒预热至到150~350摄氏度分散到液态金属中形成混合熔液。优选地,非金属颗粒预热至到180~200摄氏度,在此条件下非金属颗粒与液态金属完全浸润所需时间更短,得到的半固态金属基复合浆料的流动性更好,压铸件尺寸精度更高。例如,在具体实施过程中,可以选择将非金属颗粒预热至到180、185、190、195或200摄氏度。分散至液态金属中的非金属颗粒以液态金属的重量百分比计,小于或等于液态金属的60%。优选地,非金属颗粒的加入量,以液态金属的重量百分比计,为液态金属的30~50%,在此条件下避免因非金属材料占比过大无法满足压铸充型条件或虽满足压铸充型条件但压铸成型率低的问题,制备得到的低密度金属基复合材料强度高、成型率高,无需打磨即可进行电镀,节约生产工艺。例如,在具体实施过程中,可以选择非金属颗粒的加入量,以液态金属的重量百分比计,为液态金属的30%、35%、40%、45%或50%。
4S搅拌棒机械搅拌3S得到的混合熔液,搅拌同时向混合熔液中加入氩气,氩气量设定为3~8千克,搅拌棒的搅拌速度设定为1200~2200转/分钟,搅拌时间设定为10~180秒,得到温度为615~625摄氏度的半固态金属基复合浆料,其中,氩气的流量设定为8~25升/分钟。优选地,搅拌棒的搅拌速度设定为1800~2000转/分钟,在此条件下搅拌得到的半固态金属基复合浆料的温度更接近620摄氏度,固态非金属颗粒与液态金属混合在液态金属内部与金属晶体紧密结合形成均匀不分离的半固态复合,具有良好的流动性。例如,在具体实施过程中,可以选择1800转/分钟、1900转/分钟或2000转/分钟。优选地,搅拌时间设定为10~30秒,在此条件下制备得到的低密度金属基复合材料的压铸件壁厚更薄,比相同的金属液态压铸件 的壁厚克减薄30~50%。例如,在具体实施过程中,可以选择搅拌时间设定为10、15、20、25或30秒。优选地,氩气量设定为3~6千克,在此条件下压缩空气刺激混合熔液运动,增加混合溶液中金属与非金属碰撞使其结合更紧密、分布更分散,但是又能避免引起混业熔液翻滚引入其它杂质或在半固态金属基复合浆料中形成夹杂的气泡,在此条件下压制备得到的低密度金属基复合材料的密度更轻。例如,在具体实施过程中,可以选择氩气量为3千克、4千克、5千克或6。优选地,氩气的流量设定为12~15升/分钟,在此条件下氩气能够带走大量搅拌棒周围的热量,避免搅拌棒腐蚀造成半固态金属基复合浆料污染,降低制备得到的低密度金属基复合材料的强度。例如,在具体实施过程中,可以选择氩气的流量为12升/分钟、13升/分钟、14升/分钟或15升/分钟。
5S将步骤(4)得到的半固态金属基复合浆料以1.5~2.5米/秒的压射速度、30~80兆帕的压射比压、60~80兆帕的增压压力压铸成型,保压7~30秒压铸成型得到低密度金属基复合材料。优选地,压射速度为1.8~2.2米/秒的压射速度,在此压射速度下压射,凝固时间缩短,成型率更高,例如在实际操作过程中,可以选择1.8米/秒、1.9米/秒、2.0米/秒或2.2米/秒的压射速度。优选地,压射比压为45~80兆帕,在此条件下的得到的低密度金属基复合材料的成型率高达95%以上,例如在实际操作过程中,可以选择45兆帕、55兆帕、65兆帕以及80兆帕的压射比压。优选地,增压压力为60~70兆帕,在此条件下压铸得到的低密度金属基复合材料强度更高,更耐磨损,例如在实际操作过程中,可以选择60兆帕、65兆帕或70兆帕的增压压力。优选地,保压时间设定为10~15秒,在此条件下得到的低密度金属基复合材料更完整且成型率高,避免因保压时间短造成低密度金属基复合材料未定型也避免保压时间过长导致生产周期增长。
下面进一步通过列表的方式,给出本发明的实施例中的低密度金属基复合材料的制备方法在选用铝合金作为金属基、石墨与碳纳米管的混合物作为非金属材料时,不同制浆条件下对低密度金属基复合材料的密度影响。具体请参见表1示出的本发明低密度金属基复合材料的密度表。
表1A
Figure PCTCN2019100500-appb-000001
Figure PCTCN2019100500-appb-000002
表1B
Figure PCTCN2019100500-appb-000003
表1C
Figure PCTCN2019100500-appb-000004
Figure PCTCN2019100500-appb-000005
上面描述的内容可以单独地或者以各种方式组合起来实施,而这些变型方式都在本发明的保护范围之内。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
1、本发明的低密度金属基复合材料的制备方法,利用金属高强度组织性能优势和轻质非金属材料的低密度性能压铸出低密度高强度复合材料用于轻量化结构件,拓展半固态技术的 应用领域。
2、本发明的低密度金属基复合材料的制备方法,充分利用中低品相金属提升其品质,有利于资源的可持续发展。
3、本发明的低密度金属基复合材料的制备方法,工艺简单、可操作性强、处理量大、原材料选择限制少。

Claims (9)

  1. 一种低密度金属基复合材料的制备方法,其特征在于,包括以下步骤:
    (1)准备密度为1.8~8.9克/立方米的金属或合金,加热至熔融得到液态金属;
    (2)准备密度为0.3~1.2克/立方米的非金属材料,将非金属材料破碎为粒度500~800目的非金属颗粒;
    (3)将步骤(2)中的非金属颗粒分散至步骤(1)得到的液态金属中形成混合熔液;
    (4)搅拌棒机械搅拌步骤(3)得到的混合熔液,搅拌同时向混合熔液中加入氩气,搅拌棒的搅拌速度设定为1200~2200转/分钟,搅拌时间设定为10~180秒,得到半固态金属基复合浆料,其中,压缩空气的流量设定为8~25升/分钟;
    (5)将步骤(4)得到的半固态金属基复合浆料压铸成型得到低密度金属基复合材料。
  2. 如权利要求1所述的低密度金属基复合材料的制备方法,其特征在于,步骤(3)中分散至所述液态金属中的所述非金属颗粒的加入量,以所述液态金属的重量百分比计,小于或等于所述液态金属的60%。
  3. 如权利要求2所述的低密度金属基复合材料的制备方法,其特征在于,步骤(3)中分散至所述液态金属中的所述非金属颗粒的加入量,以所述液态金属的重量百分比计,为所述液态金属的30~50%。
  4. 如权利要求1所述的低密度金属基复合材料的制备方法,其特征在于,步骤(2)中进一步将所述非金属颗粒预热至到150~350摄氏度。
  5. 如权利要求1所述的金属基复合材料的制备方法,其特征在于,步骤(4)中搅拌得到的所述半固态金属基复合浆料温度控制在615~625摄氏度。
  6. 如权利要求5所述的低密度金属基复合材料的制备方法,其特征在于,步骤(4)向所述混合熔液中氩气量设定为3~8千克。
  7. 如权利要求1~6中任一项所述的低密度金属基复合材料的制备方法,其特征在于,步骤(1)中准备的金属或合金为金属铝、金属铜、铝基合金、铜基合金或其混合物。
  8. 如权利要求7所述的低密度金属基复合材料的制备方法,其特征在于,步骤(2)中准备的所述非金属材料的密度为0.3~0.6克/立方米,所述非金属材料中包含50%~70%的石墨 或/和碳纳米管。
  9. 如权利要求8所述的低密度金属基复合材料的制备方法,其特征在于,获得的低密度金属基复合材料密度大于0.8小于1.0克/立方米。
PCT/CN2019/100500 2018-12-14 2019-08-14 一种低密度金属基复合材料的制备方法 WO2020020381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811531067.2 2018-12-14
CN201811531067.2A CN109735736B (zh) 2018-12-14 2018-12-14 一种低密度金属基复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2020020381A1 true WO2020020381A1 (zh) 2020-01-30

Family

ID=66359366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100500 WO2020020381A1 (zh) 2018-12-14 2019-08-14 一种低密度金属基复合材料的制备方法

Country Status (2)

Country Link
CN (1) CN109735736B (zh)
WO (1) WO2020020381A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735736B (zh) * 2018-12-14 2019-11-29 珠海市润星泰电器有限公司 一种低密度金属基复合材料的制备方法
CN112063901B (zh) * 2020-09-09 2021-11-05 南昌工程学院 高强度耐磨式自润滑轴承高温复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829164B2 (ja) * 2002-04-16 2006-10-04 九州三井アルミニウム工業株式会社 半溶融成形用素材の製造方法
CN105821256A (zh) * 2016-05-11 2016-08-03 合肥海源机械有限公司 一种活塞环用耐磨损复合材料
CN109735736A (zh) * 2018-12-14 2019-05-10 珠海市润星泰电器有限公司 一种低密度金属基复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061833B2 (ja) * 2013-10-17 2017-01-18 有限会社ティミス 鋳造用金属塊状体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829164B2 (ja) * 2002-04-16 2006-10-04 九州三井アルミニウム工業株式会社 半溶融成形用素材の製造方法
CN105821256A (zh) * 2016-05-11 2016-08-03 合肥海源机械有限公司 一种活塞环用耐磨损复合材料
CN109735736A (zh) * 2018-12-14 2019-05-10 珠海市润星泰电器有限公司 一种低密度金属基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, ZIYUAN ET AL: "Fabrication of Graphite-Aluminium Matrix Composite and Its Wear Resistance", HOT WORKING TECHNOLOGY, no. 5, pages 14 *

Also Published As

Publication number Publication date
CN109735736B (zh) 2019-11-29
CN109735736A (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN104726756B (zh) 高性能铍铝合金及其制备方法
Ervina Efzan et al. Fabrication method of aluminum matrix composite (AMCs): a review
Amirkhanlou et al. Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique
CN110423915B (zh) 一种铝基复合材料的制备方法
CN106086726A (zh) SiC纳米线增强铝基复合材料及其制备方法
CN110438379B (zh) 一种含锂的镁/铝基复合材料的制备方法
CN110423914B (zh) 一种稀土镁合金复合材料的制备方法
KR101310622B1 (ko) 마그네슘 합금 칩 및 그것을 이용한 성형품의 제조 방법
CN104878233A (zh) 一种铝钛硼合金锭的制备方法
WO2020020381A1 (zh) 一种低密度金属基复合材料的制备方法
Bolat et al. An investigation on the effect of heat treatment on the compression behavior of aluminum matrix syntactic foam fabricated by sandwich infiltration casting
US20210062315A1 (en) Preparation method of a lithium-containing magnesium/aluminum matrix composite
Jayalakshmi et al. Light metal matrix composites
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
Wang et al. A new approach for preparing SiC particle-reinforced aluminum matrix composites by applying electromagnetic field
Jamshidi-Alashti et al. Semisolid melt squeezing procedure for production of open-cell Al–Si foams
CN110438373B (zh) 一种镁基复合材料的制备方法
RU2567779C1 (ru) Способ получения модифицированных алюминиевых сплавов
Dayanand et al. A Review on synthesis of AlB2 reinforced aluminium matrix composites
CN111378861B (zh) 一种原位合成双相颗粒增强铝基复合材料的制备方法
Li et al. Effects of reheating time on microstructure and tensile properties of SiC p/2024 Al-based composites fabricated using powder thixoforming
Amosov et al. Fabrication of Al-AlN nanocomposites
CN110129608B (zh) SiC颗粒增强AZ91镁基复合材料及其制备方法、应用和散热器外壳
CN108385040A (zh) 一种短切碳纤维增强镁铝基复合材料及其制备方法
CN113373367A (zh) 一种含多尺度混合颗粒的铝中间合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841426

Country of ref document: EP

Kind code of ref document: A1