WO2020020246A1 - 阵列基板、显示装置和显示装置的空间定位方法 - Google Patents

阵列基板、显示装置和显示装置的空间定位方法 Download PDF

Info

Publication number
WO2020020246A1
WO2020020246A1 PCT/CN2019/097549 CN2019097549W WO2020020246A1 WO 2020020246 A1 WO2020020246 A1 WO 2020020246A1 CN 2019097549 W CN2019097549 W CN 2019097549W WO 2020020246 A1 WO2020020246 A1 WO 2020020246A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
display device
sensing
pixel
Prior art date
Application number
PCT/CN2019/097549
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
刘英明
王鹏鹏
李扬冰
王佳斌
张平
邓立凯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/639,282 priority Critical patent/US11637149B2/en
Publication of WO2020020246A1 publication Critical patent/WO2020020246A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present application relates to, but is not limited to, the field of display and computer technology, and in particular, to an array substrate, a display device, and a spatial positioning method of a display device.
  • An embodiment of the present disclosure provides an array substrate including a base substrate, a pixel layer disposed on one side of the base substrate, and a light source structure having the same light emitting direction as the pixel layer.
  • the light source structure is configured to emit light.
  • the pixel layer includes a plurality of sub-pixels and at least one sensing pixel disposed between the plurality of sub-pixels, the at least one sensing pixel is configured to receive a reflection of the collimated non-visible light reflected by the object to be positioned Light.
  • the pixel layer includes a plurality of sensing pixels arranged in an array disposed between the plurality of sub-pixels
  • the light source structure includes an array arrangement and one-to-one correspondence with the plurality of sensing pixels.
  • a plurality of light sources, and a collimating optical layer disposed on the light-exit side of the plurality of light sources, the plurality of light sources are configured to emit invisible light
  • the collimating optical layer is configured to be incident on the collimating optical layer Of invisible light is converted to collimated invisible light.
  • the light source structure and the pixel layer are respectively disposed on different sides of the base substrate, and the light source structure, the base substrate, and the pixel layer emit light along the light source structure.
  • the directions are set in order.
  • An embodiment of the present disclosure further provides a display device including any of the array substrates described above, and a processing module respectively connected to a light source structure and a sensing pixel in the array substrate, and the processing module is configured to The data related to the collimated non-visible light emitted by the light source structure and the reflected light of the collimated non-visible light received by the sensing pixel reflected by the object to be positioned calculate the distance from the object to be positioned to the display device.
  • the processing module is separately connected to each light source in the light source structure, and the processing module is further configured to modulate non-visible light emitted by each of the light sources, so that the The frequency of non-visible light emitted by each light source in each row along the first direction is different, and the sensing pixels are further configured to demodulate the received reflected light to obtain photoelectric information, and the demodulation frequency of the sensing pixels is The modulation frequency of the corresponding light source is the same.
  • the light source is configured to emit pulsed invisible light
  • S is the distance from the object to be positioned to the display device
  • Fi is the modulation frequency of the invisible light emitted by the i-th light source in the first direction
  • A is the induction
  • the B is the photoelectric information obtained by the sensing pixel performing the second demodulation
  • the c is the light speed of the pulsed non-visible light.
  • the processing module is further configured to sequentially light each row of light sources along the first direction.
  • the display device further includes a shift register disposed in the non-display area and connected to each light source, and the shift register is configured to sequentially light up each row of light sources along the first direction. .
  • the processing module is further configured to sequentially turn on each row of sensing pixels along the first direction, so that each of the sensing pixels reflects non-visible light emitted by a corresponding light source through reflected light reflected by an object to be positioned Receive and demodulate.
  • the processing module is further configured to simultaneously turn on each row of sensing pixels in the second direction, so that the sensing pixels corresponding to the light source and the sensing pixels in the same row in the second direction simultaneously
  • the distance from the object to be positioned to the display device wherein S is the distance from the object to be positioned to the display device, and Si is the distance from the i-th light source that passes through the first direction
  • S is the distance from the object to be positioned to the display device
  • Si is the distance from the i-th light source that passes through the first direction
  • Si1 to Six are the distances calculated from the corresponding sensing pixels in the same row along the second direction
  • the a1 to the ax are the Si1, respectively.
  • the second direction is perpendicular to the first direction, and the frequency of non-visible light emitted by each light source in each row along the second direction is the same.
  • An embodiment of the present disclosure further provides a method for spatially positioning a display device.
  • the array substrate of the display device includes a base substrate, at least one sensing pixel disposed on one side of the base substrate and disposed in a pixel layer, and the same
  • the pixel layer has a light source structure with the same light emitting direction
  • the method includes: collecting related data information of the collimated non-visible light emitted by the light source structure and the reflected light reflected by the collimated non-visible light received by the sensing pixel through an object to be positioned ; And calculating a distance from the object to be located to the display device according to the collected data information.
  • the pixel layer includes a plurality of sensing pixels arranged in an array disposed between a plurality of sub-pixels
  • the light source structure includes an array arranged in a one-to-one correspondence with the plurality of sensing pixels.
  • a plurality of light sources, and a collimating optical layer disposed on the light-exit side of the plurality of light sources the method further includes: modulating non-visible light emitted by each of the light sources, so that the light source structure is along a first direction The frequency of non-visible light emitted by each light source is different.
  • the collected related data information of the reflected light received by the sensing pixel includes photoelectric information obtained by demodulating the received reflected light by the sensing pixel.
  • the light source emits pulsed invisible light
  • the method further comprises: controlling the sensing pixel to perform a first demodulation and a second demodulation on the received reflected light, and the first demodulation
  • the B is the optoelectronic information obtained by the sensing pixel performing the second demodulation
  • the c is the light speed of the pulsed invisible light.
  • the spatial positioning method further includes: sequentially lighting each row of light sources along the first direction.
  • the spatial positioning method further includes: sequentially turning on each row of sensing pixels along the first direction, so that each of the sensing pixels reflects non-visible light emitted by a corresponding light source through a reflection of an object to be positioned The light is received and demodulated.
  • the distance from the object to be positioned to the display device wherein S is the distance from the object to be positioned to the display device, and Si is the distance from the i-th light source that passes through the first direction
  • S is the distance from the object to be positioned to the display device
  • Si is the distance from the i-th light source that passes through the first direction
  • Si1 to Six are the distances calculated from the corresponding sensing pixels in the same row along the second direction
  • the a1 to the ax are the Si1, respectively.
  • the second direction is perpendicular to the first direction, and the frequency of non-visible light emitted by each light source in each row along the second direction is the same.
  • An embodiment of the present disclosure further provides a computer device including a memory and a processor configured to save executable instructions, and the processor is configured to implement the above-mentioned instructions when executing the executable instructions stored in the memory. Spatial positioning method of any display device.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores executable instructions, and when the executable instructions are executed, a spatial positioning method of any display device as described above is implemented.
  • FIG. 1 is a schematic structural diagram of an array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another array substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an array light source in a display device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a pixel layer in a display device according to an embodiment of the present disclosure.
  • FIG. 5 is a timing diagram of a light path in a display device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the implementation of spatial positioning using a display device provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a spatial positioning method of a display device according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of another spatial positioning method for a display device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of still another spatial positioning method for a display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure.
  • the steps shown in the flowchart of the figures may be performed in a computer system by, for example, a set of computer-executable instructions. Also, although the order of the steps is shown in the flowchart, in some cases, the steps may be performed in a different order than that shown.
  • FIG. 1 is a schematic structural diagram of an array substrate provided by an embodiment of the present disclosure.
  • the array substrate 100 provided in this embodiment can be used to form a display panel.
  • the array substrate 100 may include a base substrate 110, a pixel layer 120 disposed on one side of the base substrate 110, and a light source structure 130 having the same light emitting direction as the pixel layer 120.
  • the light source structure 130 can be used to emit collimated non-visible light.
  • the pixel layer 120 may include a sub-pixel 121 and at least one sensing pixel 122 disposed between the sub-pixels 121.
  • the sub-pixels 121 in the embodiments of the present disclosure are shown by taking red, green, and blue (Red, Green, Blue, RGB for short) sub-pixels as examples, and the sensing pixel 122 is denoted as S.
  • the sensing pixel 122 is configured to receive the reflected light of the collimated non-visible light emitted by the light source structure 130 through the object to be positioned to determine the position of the object to be positioned.
  • FIG. 1 is a cross-sectional view of the array substrate 100 taken along a first direction, and FIG. 1 illustrates an object 200 to be positioned, which is located on a light exit side of the array substrate 100.
  • the light source structure 130 in the embodiment of the present disclosure may be disposed on a side of the base substrate 110 away from the pixel layer 120, and the light source structure 130 may emit collimated non-visible light. Collimated light has strong directivity, which can achieve high-precision measurement. Non-visible light does not affect normal display when the array substrate 100 is used for display. In other words, the array substrate 100 can realize the display function through the sub-pixels 121.
  • the sub-pixels 121 can be light-emitting sub-pixels 121 (emitting visible light), and the light source structure 130 is provided for spatial positioning.
  • the light emitted by the light source structure 130 cannot It affects the normal display when the array substrate 100 is used for display. Therefore, the light source structure 130 may be configured to emit non-visible light, for example, infrared light may be emitted without harming the human body.
  • the light emitting direction of the light source structure 130 is the same as the light emitting direction of the pixel layer 120. It can be understood that the general array substrate 100 emits light from one side for viewing by a user, that is, the light emitting direction of the light source structure 130 and the light emitting direction of the pixel layer 120 can both point at the viewing user.
  • the pixel layer 120 of the array substrate 100 includes not only the sub-pixels 121 for display, but also a sensing pixel 122 provided between the sub-pixels 121.
  • the sensing pixel 122 serves as a light source structure 130 (emission end).
  • the corresponding receiving end can receive the reflected light emitted by the light source structure 130 and reflected back to the object 200 to be positioned (for example, the viewing user).
  • the reflected light can be collimated non-visible light emitted by the light source structure 130.
  • the light returned after diffuse reflection occurs on the object 200 to be positioned.
  • a light source structure 130 that emits collimated non-visible light and a sensing pixel 122 that receives the reflected light of the collimated non-visible light reflected by the object to be positioned are used. After the collimated non-visible light emitted by the light source structure 130 is reflected by the object 200 to be positioned, The light path reaching the sensing pixel 122 is a round-trip light path for collimating non-visible light.
  • a processor configured in the display device, for example, an integrated circuit (Integrated Circuit (IC) chip) can calculate the to-be-positioned object 200 to 200 by measuring the above-mentioned round-trip optical path.
  • IC Integrated Circuit
  • the distance of the display device can measure the time of emitting and receiving light.
  • the processor can be connected to the light source structure 130, so that the emission time of the collimated non-visible light can be known.
  • the processor can be connected to the sensing pixel 122. It is connected so that when the sensing pixel 122 receives the reflected light, it can feed back the receiving time to the processor, and the processor can calculate the distance from the object 200 to be displayed to the display device based on known data information.
  • the object 200 to be positioned may be a relatively large object, and multiple sensing pixels 122 may be provided for spatial positioning.
  • the multiple sensing pixels 122 receive the light source structure 130 and are sent by the object 200 to be positioned.
  • the reflected light reflected by the processor may calculate the spatial position of the object 200 to be located according to the round-trip optical path through which the reflected light received by the sensing pixels 122 passes.
  • the light source structure 130 and the pixel layer 120 may be disposed on different sides of the base substrate 110.
  • FIG. 1 illustrates that the light source structure 130 and the pixel layer 120 are disposed on different sides of the base substrate 110 as examples.
  • the light source structure 130 and the pixel layer 120 may also be disposed on the same side of the base substrate 110.
  • the array substrate according to the embodiment of the present disclosure can be used to form, for example, a liquid crystal display (Liquid Crystal Display, LCD for short), a top emission organic electroluminescence display (Organic Electroluminescent Display, OLED for short), or a bottom emission OLED.
  • the array substrate 100 may further include a thin film transistor (TFT) for controlling the switching of the sub-pixel 121, an electrode layer 140, a packaging layer 150, and the like.
  • TFT thin film transistor
  • the array substrate 100 provided in the embodiment of the present disclosure integrates a hardware structure for realizing the spatial positioning function, and the hardware structure for realizing the spatial positioning function when performing the spatial positioning It does not affect the normal display when the array substrate 100 is used for display, and its spatial positioning function operates independently.
  • the array substrate 100 provided in the embodiment of the present disclosure is applied to a 3D display interactive scene, such as a somatosensory game. There is no need to set up additional hardware facilities dedicated to spatial positioning. On the one hand, the hardware cost of additional hardware facilities is saved. In terms of aspects, the limitation of the spatial range of the 3D display interaction can be reduced as much as possible, and the practicability of the array substrate 100 is improved.
  • a sensing pixel 122 is disposed between the sub-pixels 121 of the pixel layer 120 and a light source structure 130 that emits collimated non-visible light having the same light exiting direction as the pixel layer 120 is provided.
  • the sensing pixel 122 The reflected light reflected by the collimated non-visible light emitted by the light source structure 130 through the object 200 to be positioned can be received.
  • the processor configured in the display device can be based on the collimation emitted by the light source structure 130.
  • the array substrate 100 provided in the embodiment of the present disclosure has a reasonable modification to the structure of a conventional array substrate.
  • the structure and functions for spatial positioning are integrated in the array substrate 100. Therefore, when the array substrate 100 is applied to a display device, When the array substrate 100 is used for normal display, it can cooperate with the processor in the display device to perform spatial positioning, and the structure of the array substrate 100 is simple and easy to implement.
  • the hardware structure for spatial positioning does not need to occupy additional space.
  • the invisible light may use infrared light that is not harmful to the human body, which is beneficial to the user for performing 3D display interaction with the display device to which the array substrate 100 belongs.
  • the density of the sensing pixels 122 in the pixel layer 120 may be configured according to the accuracy of spatial positioning, for example, each pixel (for example, including three GRB sub-subs The pixel 121) may correspond to one sensing pixel 122, and the drawings of the embodiments of the present disclosure show the configuration as an example.
  • each pixel may correspond to two sensing pixels 122, or multiple pixels may correspond to one sensing pixel 122, or one or more sub-pixels 121 may correspond to one sensing pixel 122.
  • one or more sub-pixels 121 may be disposed between adjacent sensing pixels 122.
  • the sensing pixels 122 in the embodiment of the present disclosure may be, for example, photosensitive sensors, and the embodiments of the present disclosure do not limit the density and number of the sensing pixels 122, as long as the spatial positioning requiring accuracy can be achieved.
  • FIG. 2 is a schematic structural diagram of another array substrate according to an embodiment of the present disclosure.
  • the pixel layer 120 includes the sensing pixels 122 arranged in an array arranged between the pixels, and the light source structure 130 may include an array arrangement.
  • the light source 131 is used to emit invisible light.
  • the light source 131 in the embodiment of the present disclosure may be, for example, an infrared OLED array, or a Mirco OLED array.
  • the collimating optical layer 132 is used to convert non-visible light incident on the collimating optical layer 132 into collimated non-visible light.
  • the collimating optical layer 132 may be implemented by, for example, a collimating thick hole structure, or may be implemented by other structures.
  • the light sources 131 arranged in the above array are disposed on a side of the collimating optical layer 132 that is far from the substrate 110.
  • the combined structure of the arrayed light sources 131 and the collimating optical layer 132 is used to implement a light source structure 130 for emitting collimated non-visible light.
  • the general light source 131 is a point light source
  • a collimating optical layer 132 is provided on the light exit side, and the light incident on the collimating optical layer 132 can be converted into collimated light, thereby achieving the purpose of the light source structure 130 to emit collimated non-visible light.
  • each sensing pixel 122 in the pixel layer 120 may be set in a one-to-one relationship, that is, each sensing pixel 122 is mainly used to receive the reflected light of the collimated non-visible light emitted by the corresponding light source 131. In this way, the accuracy of spatial positioning can be improved.
  • an embodiment of the present disclosure further provides a display device.
  • the display device includes the array substrate 100 in any of the foregoing embodiments of the present disclosure, and a light source separately from the array substrate 100.
  • the processing module is connected to the structure 130 and the sensing pixel 122.
  • the processing module in the embodiment of the present disclosure is configured to calculate the to-be-positioned object 200 according to related data information of the collimated and invisible light emitted by the light source structure 130 and the reflected light reflected by the collimated and invisible light reflected by the to-be-positioned object 200.
  • the distance to the display device is configured to calculate the to-be-positioned object 200 according to related data information of the collimated and invisible light emitted by the light source structure 130 and the reflected light reflected by the collimated and invisible light reflected by the to-be-positioned object 200. The distance to the display device.
  • the processing module is generally implemented by a combination of hardware and software.
  • the processing module may be a processor in a display device, such as an IC chip, and the processor is configured with functional software to implement the processing module to be implemented.
  • the processing module may calculate the distance from the object to be positioned 200 to the display device according to the round-trip light path of the collimated non-visible light emitted by the light source structure 130 to the sensing pixel 122 after being reflected by the object to be positioned 200.
  • the light source structure 130 may be recorded The time when the light is emitted and the light is received by the sensing pixel 122.
  • the processing module can be connected to the light source structure 130 to know the emission time of the light source structure 130 to emit collimated non-visible light.
  • the processing module can feed back the reception time to the processing module, and the processing module can calculate the distance from the object 200 to be located to the display device according to the known data information.
  • the object 200 to be positioned may be a relatively large object.
  • the multiple sensing pixels 122 receive the light source structure 130 and are reflected by the object 200 to be positioned.
  • the processing module can calculate the spatial position of the object 200 to be located according to the round-trip optical path through which the reflected light received by the sensing pixels 122 passes.
  • the hardware structure of the array substrate 100 in the display device according to the embodiment of the present disclosure reference may be made to the embodiment shown in FIG. 1 or FIG. 2, and the light source structure 130 and the pixel layer 120 may be disposed on the base substrate 110. Different sides or the same side, the specific setting method may be the same as the above embodiment. In addition, the advantages and beneficial effects of the display device according to the embodiment of the present disclosure compared with the related art are also the same as those of the above embodiment, and will not be repeated here.
  • the light source structure 130 can emit collimated non-visible light
  • the sensing pixel 122 can receive the reflected light of the collimated non-visible light reflected by the object 200 to be positioned.
  • the processing module in the display device connected to the light source structure 130 and the sensing pixel 122 may calculate the distance between the object to be positioned 200 and the display device according to the data information of the collimated invisible light and the sensing pixel 122 receiving the reflected light from the light source structure 130. The spatial positioning is achieved.
  • the display device integrates the structure and function for realizing spatial positioning in the display device by rationally modifying the structure of the conventional display device, so that the display device can perform spatial positioning while displaying normally, and the display
  • the structure of the device is simple and easy to implement, and the hardware structure for spatial positioning does not need to occupy additional space.
  • the invisible light can use infrared light that is not harmful to the human body, which is beneficial to the 3D display interaction between the user and the display device.
  • the light source structure 130 of the array substrate 100 includes a light source 131 and a collimating optical layer 132, and the processing module is connected to each light source 131 in the light source structure 130.
  • the processing module is further configured to modulate the invisible light emitted by each light source 131, so that the frequency of the invisible light emitted by each light source 131 in the first direction of the light source structure 130 is different, and the sensing pixel 122 is further configured to reflect the received reflection.
  • the light is demodulated to obtain photoelectric information, and the demodulation frequency of the sensing pixel 122 is the same as the modulation frequency of the corresponding light source 131.
  • the processing module modulates the invisible light emitted by each light source 131 in the first direction (for example, the X-axis direction) of the array substrate 100, so that the invisible light emitted by each light source 131 in the first direction Different frequencies.
  • FIG. 3 is a schematic diagram of an array light source in a display device according to an embodiment of the present disclosure.
  • the light sources 131 in the light source structure 130 are arranged in a n-m array arrangement, and each row along the first direction ( For example, each row) includes n light sources 131.
  • Each row (for example, each column) along the second direction (the second direction is perpendicular to the first direction, for example, the Y-axis direction) includes m light sources 131.
  • FIG. 3 The array row in FIG. 3
  • the light source 131 of the cloth is identified by Lij.
  • Lij represents the ith light source 131 in the first direction and the j-th light source 131 in the second direction.
  • the invisible light emitted by the n light sources 131 in each row along the first direction is modulated by the processing module.
  • the frequencies of the emitted light are F1, F2, ..., Fi, ..., Fn, respectively.
  • FIG. 4 is a schematic diagram of a pixel layer in a display device provided by an embodiment of the present disclosure, and FIG. 4 takes each pixel in the pixel layer 120 (including three RGB light-emitting sub-pixels 121) corresponding to one sensing pixel 122 as an example.
  • the arrangement form of the sensing pixels 122 in the pixel layer 120 is the same as that of the light source 131, and is also in the form of an n * m array arrangement.
  • the sensing pixels 122 arranged in the array in FIG. 4 are identified by Sij, and Sij represents the first
  • the demodulation frequencies of the i-th sensing pixel 122 in the direction and the j-th sensing pixel 122 in the second direction, that is, the n sensing pixels 122 in each row along the first direction are F1, F2, ..., Fi, ..., Fn, respectively.
  • the processing module modulates the light emitted by each light source 131, and it has been described above that the modulation frequency of the n light sources 131 in each row along the first direction is different, so that The i-th light source 131 is described as an example.
  • the modulation frequency of the light source 131 is Fi.
  • the sensing pixel 122 corresponding to the light source 131 demodulates the received reflected light at the same frequency (Fi), and recovers the photoelectricity of Fi. information. Therefore, even if the n sensing pixels 122 in a certain row along the first direction perform demodulation at the same time, since the demodulation frequencies are different, they are the above-mentioned F1, F2, ..., Fi, ..., Fn, and adjacent sensing pixels. 122 does not interfere with each other.
  • the light source 131 may emit pulsed invisible light.
  • the processing module can be used to control the sensing pixel 122 to perform the first demodulation and the second demodulation on the received reflected light, and the first demodulation and the second demodulation differ by 1/4 pulse period.
  • the distance from the object 200 to the display device can be calculated according to the following formula (1).
  • S is the distance from the object to be positioned 200 to the display device
  • Fi is the modulation frequency of the invisible light emitted by the i-th light source 131 in the first direction
  • A is the first demodulation obtained by the sensing pixel 122
  • B is the photoelectric information obtained by the second demodulation of the sensing pixel 122
  • c is the light speed of the pulsed invisible light. It should be noted that in the calculation of the above formula (1), A and B are photoelectric information obtained by performing the first demodulation and the second demodulation of the same sensing pixel 122, respectively.
  • the light source 131 emits pulsed infrared light, for example.
  • the pulsed infrared light is collimated by the collimating optical layer 132 and irradiates the object 200 to be positioned, and then generates diffuse reflection.
  • the reflected light is received by the corresponding sensing pixel 122.
  • the modulation frequency of the light emitted by a processing source 131 by the processing module is the same as the demodulation frequency of the corresponding sensing pixel 122 for demodulation, that is, the sensing pixel 122 can demodulate the reflected light it receives to obtain the corresponding frequency of photoelectricity. information.
  • the sensing pixel 122 in the embodiment of the present disclosure may adopt a multi-phase sampling method, and obtain the difference between the two samples by fast sampling, so as to calculate the distance from the object 200 to be displayed to the display device, for example, two The sub-sampling (corresponding to the first demodulation and the second demodulation) differs by 1/4 pulse period.
  • FIG. 5 shows a timing diagram of an optical path in a display device provided by an embodiment of the present disclosure, and FIG. 5 shows The pulse period and timing of the pulsed non-visible light emitted by the light source 131, the round-trip time experienced by the reflected light, and the time period for two samples (demodulation) in each measurement can be seen.
  • the two samples differ by 1/4 Pulse period.
  • the photoelectric information of a specific frequency (for example, Fi) in different phases can be obtained through the multi-phase sampling mechanism inside the sensing pixel 122, so as to obtain the distance between the corresponding light source 131 (light source corresponding to the Fi frequency) and the object 200 to be located.
  • a specific frequency for example, Fi
  • sampling method and the timing chart shown in FIG. 5 are only used for a schematic description of the embodiment of the present disclosure, and the embodiment of the present disclosure does not limit the sampling form to only two samplings, nor does it limit the time between two samplings.
  • the difference is 1/4 pulse period, and the sampling times of the sensing pixel 122 and the difference time between the two samples can be configured according to the actual situation.
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure may further include a shift register 160 disposed in the non-display area and connected to each light source 131, and the shift register 160 is configured to sequentially light up each row of light sources along the first direction.
  • the display device shown in FIG. 6 only shows the light sources 131 and the shift register 160 arranged in an array.
  • FIG. 6 shows the structure based on the structure of the array light source 131 shown in FIG. 3.
  • the connection manner of the m-row light sources 131 in one direction indicates the connection relationship between the shift register 160 and each light source 131 in the m-row light sources.
  • a shift register 160 may be provided in a non-display area around the display area of the array substrate 100, and the shift register 160 is respectively connected to each light source 131.
  • the module can be connected to each light source 131 separately.
  • the shift register 160 (or processing module) is used to control the light sources 131 in the light source structure 130 to light up in a certain order, for example, row by row or column by column. The same time period is in the first direction. Bright light sources have different modulation frequencies.
  • the sensing pixels 122 may be turned on in any of the following two ways.
  • the processing module in the embodiment of the present disclosure may be configured to sequentially turn on each row of sensing pixels 122 along the first direction, so that each sensing pixel 122 reflects the object 200 to be positioned emitted by a corresponding light source 131 thereof. The reflected light is received and demodulated.
  • each row (row or column) of light sources 131 along the first direction in the light source structure 130 lights up row by row (row or column), and simultaneously The modulation frequency of each row of light sources 131 is different. Therefore, the switching form of the sensing pixels 122 in the pixel layer 120 can also be turned on row by row in the first direction to receive the reflected light and demodulate. When each row of light sources 131 is lit, the corresponding rows of sensing pixels 122 are turned on.
  • the modulation frequency of the outgoing light of each light source 131 in the n light sources in each row along the first direction is different, for example, F1, F2, ..., Fi, ..., Fn, respectively, corresponding to the n light sources 131.
  • the demodulation frequencies of the n sensing pixels 122 are also different, and are respectively F1, F2, ..., Fi, ..., Fn.
  • the processing module in the embodiment of the present disclosure may be configured to simultaneously turn on each row of the sensing pixels 122 along the second direction, the sensing pixels 122 corresponding to each of the lighting light sources 131 and the same row thereof along the second direction.
  • the sensing pixels 122 at the same time receive and demodulate the reflected light emitted by the light source 131 and reflected by the object 200 to be positioned, and then calculate the distance from the object 200 to the display device according to the following formula (2).
  • S is the distance from the object to be positioned 200 to the display device
  • Si is the distance calculated by the corresponding sensing pixel 122 of the i-th light source 131 in the first direction
  • Si1 to Six are the distances obtained through the above.
  • a1 to ax are the coefficients of Si1 to Six mapped to Si, respectively
  • the second direction is perpendicular to the first direction and is along the second direction.
  • the frequency of the invisible light emitted by each light source 131 in each row is the same
  • x is a positive integer less than m-1
  • m is the number of sensing pixels 122 in each row along the second direction.
  • FIG. 7 is a schematic diagram showing the implementation of spatial positioning using a display device provided in an embodiment of the present disclosure, and FIG. 7 only shows a cross-sectional view of the array substrate 100 taken along the second direction.
  • the light source Lij indicates that the light source 131 is located at the i-th position in the first direction and the j-th position in the second direction.
  • a row of light sources 131 along the first direction where the light source 131 is located, and the non-visible light reflected by the object 200 to be positioned emitted by the light source Lij can be correspondingly sensed by the sensing pixel Sij (indicating that the sensing pixel 122 is located in the first direction) (I-th position in the second direction, j-th position in the second direction) and demodulation.
  • the sensing pixels 122 including, for example, Si (j-1), Si ( j + 1), Si (j-2), Si (j + 2), etc.
  • the sensing pixels 122 include, for example, Si (j-1), Si ( j + 1), Si (j-2), Si (j + 2), etc.
  • the sensing pixels 122 include, for example, Si (j-1), Si ( j + 1), Si (j-2), Si (j + 2), etc.
  • the sensing pixels 122 in the same row can also receive and demodulate the invisible light reflected by the object 200 to be positioned, emitted by the light source Lij. Then, these sensing pixels 122 in the same row as the sensing pixels Sij in the second direction can be calculated by calculation.
  • the outgoing distance is mapped to the row (row or column) in the first direction where the light source Lij is located And then calculating an average distance obtained from the final values obtained.
  • the method provided in the embodiment shown in FIG. 7 is beneficial to eliminate the jitter of the distance value due to noise.
  • the embodiments of the present disclosure further provide a spatial positioning method of the display device, and the spatial positioning method of the display device is performed by using the display device provided by any one of the foregoing embodiments of the present disclosure.
  • FIG. 8 is a flowchart of a spatial positioning method of a display device according to an embodiment of the present disclosure.
  • the spatial positioning method provided by the embodiment of the present disclosure is executed by a display device, and the method may include the following steps S210 and S220.
  • S210 Collect relevant data information of the collimated non-visible light emitted by the light source structure and the reflected light of the collimated non-visible light received by the sensing pixel and reflected by the object to be positioned.
  • the array substrate of the display device for performing the spatial positioning method may include a base substrate, at least one sensing pixel disposed on one side of the base substrate and arranged in the pixel layer, and the same as the pixel layer.
  • Light source structure in light emitting direction is a hardware basis for the display device to perform spatial positioning.
  • the display device in the embodiment of the present disclosure further includes a processing module for executing program processing, and the processing module is respectively connected to the light source structure and the sensing pixel.
  • the hardware structure of the display device For functions implemented by the structures and the respective structures, reference may be made to the description of the array substrate 100 in the embodiment shown in FIG. 1 and FIG. 2 and the display device in the embodiments shown in FIG. 3 to FIG. 7, and therefore will not be repeated here.
  • the light source structure can emit collimated non-visible light, and the collimated non-visible light emitted by the light source structure reaches the sensing pixel after being reflected by the object to be positioned, that is, the round-trip optical path of collimated non-visible light emitted by the light source structure.
  • the steps in the embodiment of the present disclosure are performed by a processing module, that is, the processing module can send collimated non-visible light and sensing pixels by collecting the light source structure to receive related data information of the reflected light of the collimated non-visible light reflected by the object to be positioned, according to the light source structure.
  • the round-trip optical path of the collimated non-visible light is used to calculate the distance from the object to be positioned to the display device. For example, recording the time when the light source structure emits the collimated non-visible light and the sensing pixel receives the reflected light of the collimated non-visible light reflected by the object to be positioned.
  • the processing module can be connected to the light source structure to know the emission time of the collimated non-visible light emitted by the light source structure, and the processing module can be connected to the sensing pixel, so that when the sensing pixel receives the reflected light, the receiving time can be fed back to the processing module.
  • the processing module may calculate the distance from the object to be located to the display device according to the known data information.
  • the object to be positioned may be a relatively large object.
  • the display device may be provided with multiple sensing pixels to perform spatial positioning.
  • the multiple sensing pixels receive the light source structure and are reflected by the object to be positioned. Reflected light, the processing module can calculate the spatial position of the object to be located according to the round-trip optical path that the reflected light received by the sensing pixels passes through.
  • the spatial positioning method provided by the embodiment of the present disclosure is executed by a display device integrated with the function for realizing the spatial positioning, and the hardware structure of the display device for realizing the spatial positioning function is When performing the spatial positioning, the normal display of the display device is not affected, and its spatial positioning function operates independently.
  • the spatial positioning method of the display device provided in the embodiment of the present disclosure is applied to a 3D display interactive scene, such as a somatosensory game, without the need to set up additional hardware facilities dedicated to spatial positioning, on the one hand, it saves the hardware cost of additional hardware facilities.
  • the limitation of the spatial range of the 3D display interaction can be reduced as much as possible, which improves the practicability of the method.
  • the spatial positioning method of the display device provided by the present disclosure is based on the hardware configuration of the display device in the above-mentioned embodiments of the present disclosure, and collects the light source structure to emit collimated non-visible light and sense pixels to receive the reflected light of the collimated non-visible light reflected by the object to be positioned Relevant data information, and then calculate the distance from the object to be located to the display device according to the data information, that is, to achieve spatial positioning.
  • the method for spatial positioning of a display device integrates a structure and a function of realizing spatial positioning in a display device by rationally modifying the structure of a conventional display device, so that the display device can perform spatial positioning while displaying normally, and
  • the display device has a simple structure and is easy to implement, and the hardware structure for spatial positioning does not need to occupy additional space.
  • the invisible light can use infrared light that is not harmful to the human body, which is beneficial to the 3D display interaction between the user and the display device.
  • FIG. 9 is a flowchart of another spatial positioning method for a display device according to an embodiment of the present disclosure.
  • the pixel layer of the display device may include sensing pixels arranged in an array
  • the light source structure of the display device may include light sources arranged in an array and corresponding to the sensing pixels in a one-to-one manner, and a light source disposed on the light emitting side of the light source.
  • the collimated optical layer adopts a combination structure of an array of light sources and a collimated optical layer to realize collimated non-visible light.
  • the method provided in the embodiment of the present disclosure may further include step S200 before S210.
  • S200 Modulate the invisible light emitted by each light source, so that the frequency of the invisible light emitted by each light source along the first direction of the light source structure is different.
  • the processing module can modulate the invisible light emitted by the light source, correspondingly, the sensing pixel demodulates the received reflected light to obtain photoelectric information, and the demodulation frequency of the sensing pixel and the modulation of the corresponding light source The frequency is the same. Therefore, the related data information of the reflected light received by the sensing pixel collected by the processing module includes: the photoelectric information obtained by the sensing pixel demodulating the received reflected light. It should be noted that, for the structure of the arrayed light sources and the arrayed sensing pixels, refer to FIG. 3 and FIG. 4 in the foregoing embodiment.
  • the processing module modulates the frequency of the invisible light emitted by the light source and the sensing pixels. The configuration manner of the demodulated frequency has been described in detail in the specific examples shown in FIG. 3 and FIG. 4, so it will not be repeated here.
  • the light source may emit pulsed non-visible light.
  • the method provided in the embodiment of the present disclosure may further include step S201.
  • S201 Control the sensing pixel to perform first demodulation and second demodulation on the reflected light received by the object to be positioned to calculate the distance from the object to be positioned to the display device.
  • the first demodulation and the second demodulation may differ by 1/4 pulse period.
  • the distance from the object to be positioned to the display device can be calculated according to the following formula (1).
  • S is the distance from the object 200 to the display device
  • Fi is the modulation frequency of the invisible light emitted by the i-th light source 131 in the first direction
  • A is the photoelectricity obtained by the first demodulation of the sensing pixel 122.
  • Information B is the photoelectric information obtained by the second demodulation of the sensing pixel
  • c is the light speed of the pulsed invisible light. It should be noted that in the calculation of the above formula (1), A and B are the photoelectric information obtained by performing the first demodulation and the second demodulation of the same sensing pixel, respectively.
  • the timing diagram of the sensing pixel performing two samplings (corresponding to the first demodulation and the second demodulation) can be shown in FIG. 5.
  • the implementation of the two sampling and calculating the distance is described in the above embodiment. Has been described in detail, so it will not be repeated here.
  • FIG. 10 is a flowchart of still another spatial positioning method for a display device according to an embodiment of the present disclosure. Based on the embodiment shown in FIG. 8, the method provided by the embodiment of the present disclosure may further include step S202 before S210.
  • a shift register may be provided in a non-display area around the display area of the array substrate, and the shift register is respectively connected to each light source.
  • the processing module and each Light sources are connected.
  • S202 in the embodiment of the present disclosure may be executed by a processing module or a shift register, that is, a shift register (or a processing module) may be used to control the light sources in the light source structure to light up in a certain order, such as row by row or column by column. Lit, the modulation frequency of a row of light sources along the first direction lit in the same time period is different.
  • step S203 may be further included after step S202.
  • S203 Turn on each row of sensing pixels in the first direction in turn, so that each sensing pixel receives and demodulates the reflected light emitted by the corresponding light source and reflected by the object to be positioned.
  • step S204 may be further included after step S202.
  • S is the distance from the object to be positioned to the display device
  • Si is the distance calculated by the corresponding sensing pixel of the i-th light source in the first direction
  • Si1 to Six are the corresponding sensing pixels through the above.
  • the distance calculated by the sensing pixels in the same row along the second direction, a1 to ax are the coefficients of Si1 to Six mapped to Si, respectively
  • the second direction is perpendicular to the first direction, and each light source in each row along the second direction
  • the frequency of the invisible light emitted is the same
  • x is a positive integer less than m-1
  • m is the number of sensing pixels in each row along the second direction.
  • FIG. 11 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure.
  • the computer device 30 provided by the embodiment of the present disclosure may include a memory 31 and a processor 32.
  • the memory 31 is configured to store executable instructions.
  • the processor 32 is configured to implement a spatial positioning method of the display device provided by any one of the foregoing embodiments of the present disclosure when executing the executable instructions stored in the memory 31.
  • the implementation manner of the computer device 30 provided by the embodiment of the present disclosure is basically the same as the implementation manner of the spatial positioning method of the display device provided by the foregoing embodiments of the present disclosure, and details are not described herein.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores executable instructions. When the executable instructions are executed, the method for spatial positioning of a display device provided by any of the foregoing embodiments of the present disclosure may be implemented. .
  • the implementation manner of the computer-readable storage medium provided by the embodiment of the present disclosure is basically the same as the implementation manner of the spatial positioning method of the display device provided by the foregoing embodiment of the present disclosure, and details are not described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种阵列基板(100)、一种显示装置和一种显示装置的空间定位方法。显示装置包括衬底基板(110)、设置于衬底基板(110)一侧的像素层(120)、与像素层(120)具有相同出光方向的光源结构(130)、以及处理模块,光源结构(130)配置为发出准直非可见光,像素层(120)包括多个子像素(121)和设置于多个子像素(121)之间的至少一个感应像素(122),该至少一个感应像素(122)配置为接收光源结构(130)发出的准直非可见光经待定位物体(200)反射的反射光,处理模块分别与感应像素(122)和光源结构(130)相连接,根据光源结构(130)发出的准直非可见光和感应像素(122)接收的该准直非可见光经待定位物体(200)反射的反射光的相关数据信息,计算待定位物体(200)到显示装置的距离。

Description

阵列基板、显示装置和显示装置的空间定位方法
相关申请的交叉引用
本申请要求于2018年7月24日提交的中国专利申请No.201810822085.X的优先权,该中国专利申请的内容通过引用的方式全文合并于此。
技术领域
本申请涉及但不限于显示和计算机技术领域,尤其涉及阵列基板、显示装置和显示装置的空间定位方法。
背景技术
目前市场中已使用的空间定位或三维(3 Dimensions,简称为3D)位置检测的仪器或设备需要配置专门的硬件设施,并搭载用于执行空间定位或3D位置检测的功能软件,成本较高,并且要额外占用一定的空间,使这类设备的应用范围受物理位置的影响较大,且实用性较差。
公开内容
本公开实施例提供一种阵列基板,包括衬底基板、设置于所述衬底基板一侧的像素层、以及与所述像素层具有相同出光方向的光源结构,所述光源结构配置为发出准直非可见光,所述像素层包括多个子像素和设置于所述多个子像素之间的至少一个感应像素,所述至少一个感应像素配置为接收所述准直非可见光经待定位物体反射的反射光。
在一些实施方式中,所述像素层包括设置于所述多个子像素之间的阵列排布的多个感应像素,所述光源结构包括阵列排布的且与所述多个感应像素一一对应的多个光源、以及设置于所述多个光源的出 光侧的准直光学层,所述多个光源配置为发出非可见光,所述准直光学层配置为将入射到所述准直光学层的非可见光转换为准直非可见光。
在一些实施方式中,所述光源结构和所述像素层分别设置在所述衬底基板的不同侧,且所述光源结构、所述衬底基板和所述像素层沿所述光源结构的出光方向依次设置。
本公开实施例还提供一种显示装置,包括如上所述的任一阵列基板、以及分别与所述阵列基板中的光源结构和感应像素相连接的处理模块,所述处理模块配置为根据所述光源结构发出的准直非可见光和所述感应像素接收的该准直非可见光经待定位物体反射的反射光的相关数据信息,计算待定位物体到所述显示装置的距离。
在一些实施方式中,所述处理模块分别与所述光源结构中的每个光源相连接,所述处理模块还配置为对每个所述光源发出的非可见光进行调制,使得所述光源结构的沿第一方向的每排的各个光源发出的非可见光的频率不同,所述感应像素还配置为对接收到的反射光进行解调,以得到光电信息,并且所述感应像素的解调频率与对应光源的调制频率相同。
在一些实施方式中,所述光源配置为发出脉冲非可见光,所述处理模块配置为控制所述感应像素对接收到的反射光进行第一次解调和第二次解调,且所述第一次解调和所述第二次解调的相差为1/4个脉冲周期,从而根据2S=1/4Fi*c*A/(A+B)计算出待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Fi为所述第一方向上第i个光源发出的非可见光的调制频率,所述A为所述感应像素进行第一次解调得到的光电信息,所述B为所述感应像素进行第二次解调得到的光电信息,所述c为所述脉冲非可见光的光速。
在一些实施方式中,所述处理模块还配置为依次点亮沿所述第一方向的每排光源。
在一些实施方式中,所述显示装置还包括设置于非显示区、且与每个光源相连接的移位寄存器,所述移位寄存器配置为依次点亮沿 所述第一方向的每排光源。
在一些实施方式中,所述处理模块还配置为依次接通沿所述第一方向的每排感应像素,使得每个所述感应像素对对应光源发出的非可见光经待定位物体反射的反射光进行接收和解调。
在一些实施方式中,所述处理模块还配置为同时接通沿第二方向的每排感应像素,使得与点亮光源对应的感应像素和其沿第二方向的同一排的感应像素同时对所述点亮光源发出的非可见光经待定位物体反射的反射光进行接收和解调,从而根据S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)计算出待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Si为通过所述第一方向上的第i个点亮光源的对应感应像素计算得到的距离,所述Si1到所述Six为通过所述对应感应像素的沿第二方向的同一排的感应像素计算得到的距离,所述a1到所述ax分别为所述Si1到所述Six向所述Si映射的系数,所述第二方向与所述第一方向垂直,且沿所述第二方向的每排的各个光源发出的非可见光的频率相同。
本公开实施例还提供一种显示装置的空间定位方法,所述显示装置的阵列基板包括衬底基板、设置于衬底基板一侧且设置于像素层中的至少一个感应像素、以及与所述像素层具有相同出光方向的光源结构,所述方法包括:采集所述光源结构发出的准直非可见光和所述感应像素接收的该准直非可见光经待定位物体反射的反射光的相关数据信息;以及根据采集的所述数据信息,计算待定位物体到所述显示装置的距离。
在一些实施方式中,所述像素层包括设置于多个子像素之间的阵列排布的多个感应像素,所述光源结构中包括阵列排布的且与所述多个感应像素一一对应的多个光源、以及设置于所述多个光源的出光侧的准直光学层,所述方法还包括:对每个所述光源发出的非可见光进行调制,使得所述光源结构的沿第一方向的各个光源发出的非可见光的频率不同,其中,采集到的感应像素接收的所述反射光的相关数据信息包括所述感应像素对接收到的反射光进行解调得到的光电信 息。
在一些实施方式中,所述光源发出脉冲非可见光,所述方法还包括:控制所述感应像素对接收到的反射光进行第一次解调和第二次解调,且所述第一次解调和所述第二次解调的相差为1/4个脉冲周期,根据2S=1/4Fi*c*A/(A+B)计算待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Fi为所述第一方向上第i个光源发出的非可见光的调制频率,所述A为所述感应像素进行第一次解调得到的光电信息,所述B为所述感应像素进行第二次解调得到的光电信息,所述c为所述脉冲非可见光的光速。
在一些实施方式中,所述空间定位方法还包括:依次点亮沿所述第一方向的每排光源。
在一些实施方式中,所述空间定位方法还包括:依次接通沿所述第一方向的每排感应像素,使得每个所述感应像素对对应光源发出的非可见光经待定位物体反射的反射光进行接收和解调。
在一些实施方式中,所述空间定位方法还包括:同时接通沿第二方向的每排感应像素,使得与点亮光源对应的感应像素和其沿第二方向的同一排的感应像素同时对所述点亮光源发出的非可见光经待定位物体反射的反射光进行接收和解调,根据S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)计算出待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Si为通过所述第一方向上的第i个点亮光源的对应感应像素计算得到的距离,所述Si1到所述Six为通过所述对应感应像素的沿第二方向的同一排的感应像素计算得到的距离,所述a1到所述ax分别为所述Si1到所述Six向所述Si映射的系数,所述第二方向与所述第一方向垂直,且沿所述第二方向的每排的各个光源发出的非可见光的频率相同。
本公开实施例还提供一种计算机设备,包括存储器和处理器,所述存储器配置为保存可执行指令,所述处理器配置为在执行所述存储器保存的所述可执行指令时实现如上所述的任一显示装置的空间定位方法。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被执行时实现如上所述的任一显示装置的空间定位方法。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的一种阵列基板的结构示意图;
图2为本公开实施例提供的又一种阵列基板的结构示意图;
图3为本公开实施例提供的显示装置中阵列光源的示意图;
图4为本公开实施例提供的显示装置中像素层的示意图;
图5为本公开实施例提供的显示装置中光路的时序图;
图6为本公开实施例提供的一种显示装置的结构示意图;
图7为采用本公开实施例提供的显示装置进行空间定位的实现原理示意图;
图8为本公开实施例提供的一种显示装置的空间定位方法的流程图;
图9为本公开实施例提供的另一种显示装置的空间定位方法的流程图;
图10为本公开实施例提供的又一种显示装置的空间定位方法的流程图;以及
图11为本公开实施例提供的一种计算机设备的结构示意图。
具体实施方式
为使本公开的技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在计算机***中由诸如一组计算机可执行指令执行。并且,虽然在流程图中示出了各步骤的顺序, 但是在某些情况下,可以以不同于所示出的顺序执行各步骤。
由于相关技术中执行空间定位或3D位置检测的仪器或设备需要配置专门的硬件设施,并且要额外占用一定的空间,使这类设备的应用范围受物理位置的影响较大,且实用性较差。随着显示技术的发展,显示装置作为人们日常生活中不可缺少的工具和娱乐设施,在家庭和公共场所的各个角落随处可见。基于显示装置的广泛应用程度,本公开实施例提出一种在显示装置中集成空间定位能力的方案。
本公开提供的以下几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本公开实施例提供的一种阵列基板的结构示意图。本实施例提供的阵列基板100可用于形成显示面板。该阵列基板100可以包括衬底基板110、设置于衬底基板110一侧的像素层120、与像素层120具有相同出光方向的光源结构130。
光源结构130可用于发出准直非可见光。
像素层120可包括子像素121和设置于各子像素121之间的至少一个感应像素122。本公开各实施例中的子像素121以红、绿、蓝(Red、Green、Blue,简称为RGB)子像素为例予以示出,感应像素122表示为S。
感应像素122用于接收光源结构130发出的准直非可见光经待定位物体反射的反射光,以确定待定位物体的位置。
图1所示为阵列基板100的沿第一方向截取的剖视图,且图1中示出了待定位物体200,该待定位物体200位于阵列基板100的出光侧。本公开实施例中的光源结构130可以设置于衬底基板110的远离像素层120的一侧,该光源结构130可发出准直非可见光。准直光具有较强的方向性,可以实现精度较高的测量。非可见光不会影响阵列基板100用于显示时的正常显示。也就是说,阵列基板100可通过子像素121实现显示功能,例如子像素121可以为发光子像素121(发出可见光),光源结构130为实现空间定位而设置,该光源结构130所发出的光不能影响阵列基板100用于显示时的正常显示,因此,可以配置光源结构130发出非可见光,例如可以发出对人体没有伤害的 红外光。而且,光源结构130的出光方向与像素层120的出光方向相同。可以理解的是,通常的阵列基板100从一侧发光以供用户观看,也就是说,光源结构130的出光方向与像素层120的出光方向可均指向观看用户。
在本公开实施例中,阵列基板100的像素层120中不仅包括用于显示的子像素121,在子像素121之间还设置有感应像素122,感应像素122作为与光源结构130(发射端)相对应的接收端,可以接收由光源结构130发出的、且照射到待定位物体200(例如观看用户)上被反射回的反射光,该反射光可以为光源结构130发出的准直非可见光在待定位物体200上发生漫反射后返回的光。
本公开实施例采用发出准直非可见光的光源结构130和接收该准直非可见光经待定位物体反射的反射光的感应像素122,光源结构130发出的准直非可见光经待定位物体200反射后到达感应像素122的光路即准直非可见光的往返光路。将本公开实施例提供的阵列基板100应用于显示装置中时,显示装置中配置的处理器,例如集成电路(Integrated Circuit,简称为IC)芯片可以通过测量上述往返光路来计算待定位物体200到显示装置的距离,例如可测量发出光和接收光的时间,可以理解的是,处理器可与光源结构130连接,从而可以获知发出准直非可见光的发射时间,处理器可与感应像素122相连接,从而感应像素122在接收到反射光时,可以将接收时间反馈给处理器,处理器可以根据已知的数据信息计算待定位物体200到显示装置的距离。
实际应用中,待定位物体200可能是一体积较大的物体,可设置多个感应像素122来进行空间定位,该情况下,多个感应像素122接收到光源结构130发出且由待定位物体200反射回的反射光,处理器可根据这些感应像素122接收到的反射光所经过的往返光路来计算出待定位物体200的空间位置。
在本公开实施例中,光源结构130和像素层120可以设置于衬底基板110的不同侧,图1以光源结构130和像素层120分别设置于衬底基板110的不同侧为例予以示出,然而,光源结构130和像素层 120还可以设置于衬底基板110的同侧。本公开实施例的阵列基板例如可用于形成液晶显示器(Liquid Crystal Display,简称为LCD)、顶发光型有机电致发光显示器(Organic Electroluminance Display,简称为OLED)、或底发光型OLED等。在一些实施方式中,阵列基板100中还可包括控制子像素121开关的薄膜晶体管(Thin Film Transistor,简称为TFT)、电极层140、封装层150等。
与相关技术中用于实现空间定位的设备相比,本公开实施例提供的阵列基板100中集成有用于实现空间定位功能的硬件结构,且用于实现空间定位功能的硬件结构在执行空间定位时不会影响阵列基板100用于显示时的正常显示,其空间定位功能是独立运行的。将本公开实施例提供的阵列基板100应用于3D显示交互场景中,例如体感游戏等场景,无需额外设置专门用于空间定位的硬件设施,一方面节省了额外配置硬件设施的硬件成本,另一方面可以尽可能降低3D显示交互受空间范围的限制,提高了阵列基板100的实用性。
本公开实施例提供的阵列基板100通过在像素层120的子像素121之间设置感应像素122、以及设置与像素层120具有相同出光方向的可以发出准直非可见光的光源结构130,感应像素122可以接收到光源结构130发出的准直非可见光经待定位物体200反射的反射光,将该阵列基板100应用于显示装置中时,显示装置中配置的处理器可以根据光源结构130发出的准直非可见光和感应像素122接收的反射光的相关数据信息,计算待定位物体200到显示装置的距离,即实现了空间定位。本公开实施例提供的阵列基板100通过对传统阵列基板的结构进行合理的改造,在阵列基板100中集成了用于实现空间定位的结构和功能,因此将该阵列基板100应用于显示装置中时,在阵列基板100用于正常显示的同时可以配合显示装置中的处理器进行空间定位,并且该阵列基板100的结构简单,易于实现,用于空间定位的硬件结构不需要额外占用其它空间。另外,非可见光可以采用对人体无伤害的红外光,有利于用户与该阵列基板100所属的显示装置之间进行3D显示交互。
在本公开实施例中,在像素层120中设置多个感应像素122的 情况下,像素层120中感应像素122的密度可以根据空间定位的精度进行配置,例如每个像素(例如包括GRB三个子像素121)可对应一个感应像素122,本公开各实施例的附图均以该配置为例予以示出。另外,每个像素也可对应2个感应像素122,或者,多个像素可对应一个感应像素122,或者,一个或多个子像素121可对应一个感应像素122。作为示例,相邻感应像素122之间可设置有一个或多个子像素121。本公开实施例中的感应像素122例如可以为光敏传感器,并且本公开实施例不限制感应像素122的密度和数量,只要可以实现要求精度的空间定位即可。
图2为本公开实施例提供的又一种阵列基板的结构示意图。在图1所示阵列基板100的结构基础上,本实施例提供的阵列基板100中,像素层120包括设置于各像素之间的阵列排布的感应像素122,光源结构130可以包括阵列排布的、且与感应像素122一一对应的光源131、以及设置于光源131的出光侧的准直光学层132,即所述准直光学层132设置在光源131与像素层120之间。
光源131用于发出非可见光。本公开实施例中的光源131例如可以是红外OLED阵列、或者是微型(Mirco)OLED阵列。
准直光学层132用于将入射到准直光学层132的非可见光转换为准直非可见光。该准直光学层132例如可以采用准直厚孔结构实现,也可采用其它结构实现,上述阵列排布的光源131设置在准直光学层132的远离衬底基板110的一侧。
在本公开实施例中,采用阵列排布的光源131和准直光学层132的组合结构实现用于发出准直非可见光的光源结构130,由于一般的光源131为点光源,通过在光源131的出光侧设置准直光学层132,可以将入射到准直光学层132的光转换为准直光,从而实现光源结构130发出准直非可见光的目的。另外,光源131与像素层120中的感应像素122可以设置为一一对应的关系,即每个感应像素122主要用于对与其对应的光源131发出的经准直的非可见光的反射光进行接收,这样,可以提高空间定位的精度。
基于本公开上述各实施例提供的阵列基板100,本公开实施例还提供一种显示装置,该显示装置包括本公开上述任一实施例中的阵列基板100、以及分别与阵列基板100中的光源结构130和感应像素122相连接的处理模块。
本公开实施例中的处理模块用于根据光源结构130发出的准直非可见光和感应像素122接收的该准直非可见光经待定位物体200反射的反射光的相关数据信息,计算待定位物体200到显示装置的距离。
在本公开实施例中,处理模块通常以硬件结合软件的方式实现,该处理模块可以是显示装置中的处理器,例如IC芯片,该处理器中配置有功能软件,可以实现处理模块要实现的功能。在具体实现中,处理模块可以根据光源结构130发出的准直非可见光经待定位物体200反射后到达感应像素122的往返光路来计算待定位物体200到显示装置的距离,例如可记录光源结构130发出光和感应像素122接收光的时间,可以理解的是,处理模块可与光源结构130连接以获知光源结构130发出准直非可见光的发射时间,处理模块可与感应像素122相连接,从而感应像素122在接收到反射光时,可以将接收时间反馈给处理模块,处理模块可以根据已知的数据信息计算待定位物体200到该显示装置的距离。
实际应用中,待定位物体200可能是一体积较大的物体,在设置多个感应像素122来进行空间定位的情况下,多个感应像素122接收到光源结构130发出且由待定位物体200反射回的反射光,处理模块可根据这些感应像素122接收到的反射光所经过的往返光路来计算出待定位物体200的空间位置。
需要说明的是,本公开实施例的显示装置中阵列基板100的硬件结构可以参照上述结合图1或图2所示的实施例,并且光源结构130和像素层120可以设置于衬底基板110的不同侧或相同侧,具体设置方式可与上述实施例相同,另外,本公开实施例的显示装置相比于相关技术的优势和有益效果也与上述实施例相同,故在此不再赘述。
本公开提供的显示装置中,基于上述实施例中阵列基板100的 结构特征,光源结构130可以发出准直非可见光,感应像素122可以接收到该准直非可见光经待定位物体200反射的反射光,显示装置中与光源结构130和感应像素122相连接的处理模块可以根据光源结构130发出准直非可见光和感应像素122接收反射光的相关数据信息,计算待定位物体200到显示装置的距离,即实现了空间定位。本公开提供的显示装置通过对传统显示装置的结构进行合理的改造,在显示装置中集成了用于实现空间定位的结构和功能,使得显示装置在正常显示的同时可以进行空间定位,并且该显示装置的结构简单,易于实现,用于空间定位的硬件结构不需要额外占用其它空间。另外,非可见光可以采用对人体无伤害的红外光,有利于用户与显示装置之间进行3D显示交互。
在一些实施方式中,本公开实施例提供的显示装置中,其阵列基板100的光源结构130包括光源131和准直光学层132,处理模块分别与光源结构130中的每个光源131相连接,处理模块还用于对每个光源131发出的非可见光进行调制,使得光源结构130在第一方向上的每个光源131发出的非可见光的频率不同,感应像素122还用于对接收到的反射光进行解调,以得到光电信息,并且感应像素122的解调频率与对应光源131的调制频率相同。
本公开实施例中,处理模块对阵列基板100的第一方向(例如为X轴方向)上的每个光源131发出的非可见光进行调制,使得第一方向上的各光源131发出的非可见光的频率不同。举例来说,图3所示为本公开实施例提供的显示装置中的阵列光源的示意图,光源结构130中的光源131设置为n术m阵列排布的形式,沿第一方向的每排(例如每行)包括n个光源131,沿第二方向(该第二方向与第一方向垂直,例如为Y轴方向)的每排(例如每列)包括m个光源131,图3中阵列排布的光源131以Lij标识,Lij代表第一方向上第i个、第二方向上第j个光源131,沿第一方向的每排的n个光源131发出的非可见光经过处理模块的调制后,出射光的频率分别为F1、F2、…、Fi、…、Fn。相应地,图4所示为本公开实施例提供的显示装置中的像素层的示意图,图4以像素层120中每个像素(包括RGB三个发光 子像素121)对应一个感应像素122为例予以示出,该像素层120中感应像素122的设置形式与光源131的相同,同样为n*m阵列排布的形式,图4中阵列排布的感应像素122以Sij标识,Sij代表第一方向上第i个、第二方向上第j个感应像素122,即沿第一方向的每排的n个感应像素122的解调频率分别为F1、F2、…、Fi、…、Fn。
基于上述图3和图4所示的光源131和感应像素122一一对应的结构特征,本公开实施例中的光源131发出非可见光后,经待定位物体200反射的反射光被相应的感应像素122接收到,由于处理模块对每个光源131发出的光进行了调制,且上述已经说明沿第一方向的每排的n个光源131的调制频率不同,以沿第一方向的某一排的第i个光源131为例予以说明,该光源131的调制频率为Fi,与该光源131对应的感应像素122以相同的频率(Fi)对接收到的反射光进行解调,恢复得到Fi的光电信息。因此,即使沿第一方向的某一排的n个感应像素122同时执行解调,由于其解调频率各不相同,分别为上述F1、F2、…、Fi、…、Fn,相邻感应像素122之间互不干扰。
在本公开实施例中,光源131可以发出脉冲非可见光。
处理模块可用于控制感应像素122对接收到的反射光进行第一次解调和第二次解调,且第一次解调和第二次解调相差1/4个脉冲周期,该情况下,可根据以下(1)式计算出待定位物体200到显示装置的距离。
2S=1/4Fi*c*A/(A+B)     (1)
上述(1)式中,S为待定位物体200到显示装置的距离,Fi为第一方向上第i个光源131发出的非可见光的调制频率,A为感应像素122进行第一次解调得到的光电信息,B为感应像素122进行第二次解调得到的光电信息,c为脉冲非可见光的光速。需要说明的是,上述(1)式的计算中,A和B为同一个感应像素122进行第一次解调和第二次解调分别得到的光电信息。
在本公开实施例中,光源131例如发出脉冲红外光,该脉冲红外光通过准直光学层132准直后照射到待定位物体200,然后产生漫反射,反射光被相应的感应像素122接收到,上述已经说明处理模块 对某个光源131发出的光的调制频率与对应感应像素122执行解调的解调频率相同,即感应像素122可以解调其接收到的反射光来得到相应频率的光电信息。
在实际应用中,本公开实施例中的感应像素122可以采用多相位采样的方式,通过快速采样得到两次采样之间的差值,从而计算待定位物体200到显示装置的距离,例如,两次采样(对应于第一次解调和第二次解调)相差1/4个脉冲周期,图5所示为本公开实施例提供的显示装置中的光路的时序图,图5中示出了光源131发出的脉冲非可见光的脉冲周期和时序、反射光所经历的往返时间、以及每次测量中两次采样(解调)的时间段,可以看出,两次采样相差1/4个脉冲周期。本公开实施例可以通过感应像素122内部的多相位采样机制,获得不同相位下特定频率(例如Fi)的光电信息,从而得到相应光源131(Fi频率对应的光源)与待定位物体200的距离。
需要说明的是,上述采样方式和图5所示时序图仅用于本公开实施例的示意性说明,本公开实施例不限制采样形式仅为两次采样,也不限制两次采样之间必须相差1/4个脉冲周期,可以根据实际情况配置感应像素122的采样次数、以及两次采样之间相差的时间。
在本公开实施例中,处理模块还可用于依次点亮沿第一方向的每排光源。图6所示为本公开实施例提供的一种显示装置的结构示意图。本公开实施例提供的显示装置还可以包括设置于非显示区、且与每个光源131相连接的移位寄存器160,该移位寄存器160用于依次点亮沿第一方向的每排光源。图6所示显示装置仅示出阵列排布的光源131和移位寄存器160,图6以图3所示阵列光源131的结构为基础予以示出,且图6以移位寄存器160与沿第一方向的m排光源131连接的方式表示移位寄存器160与m排光源中每个光源131的连接关系。
在本公开实施例中,可以在阵列基板100的显示区周边的非显示区设置移位寄存器160,且该移位寄存器160分别与每个光源131相连接,另外,上述实施例中已经说明处理模块可分别与每个光源131相连接。本公开实施例采用移位寄存器160(或处理模块)控制 光源结构130中的光源131按照一定的次序点亮,例如逐行点亮、或逐列点亮,同一时间段在第一方向上点亮的光源的调制频率不同。
对于本公开实施例的依次点亮沿第一方向的每排光源方式,可以采用以下两种方式中的任一种接通感应像素122。
第一种方式,本公开实施例中的处理模块可用于依次接通沿第一方向的每排感应像素122,使得每个感应像素122对与其对应的光源131发出的经待定位物体200反射的反射光进行接收和解调。
基于本公开上述实施例中的调制和解调的实现方式,光源结构130中的沿第一方向的各排(行或列)光源131逐排(行或列)点亮,且同时点亮的每排光源131的调制频率不同,因此,像素层120中感应像素122的接通形式同样可以是沿第一方向的各排感应像素122逐排接通,以接收反射光并进行解调,即在点亮每排光源131时接通对应排的感应像素122。举例来说,沿第一方向的每排的n个光源中每个光源131的出射光的调制频率不同,例如分别为F1、F2、…、Fi、…、Fn,与该n个光源131对应的n个感应像素122的解调频率也不相同,分别为F1、F2、…、Fi、…、Fn。
第二种方式,本公开实施例中的处理模块可用于同时接通沿第二方向的每排感应像素122,与每个点亮光源131对应的感应像素122和其沿第二方向的同一排的感应像素122同时对该点亮光源131发出的经待定位物体200反射的反射光进行接收和解调,然后可根据以下(2)式计算出待定位物体200到显示装置的距离。
S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)   (2)
上述(2)式中,S为待定位物体200到显示装置的距离,Si为通过第一方向上的第i个点亮光源131的对应感应像素122计算得到的距离,Si1到Six为通过上述对应感应像素122的沿第二方向的同一排的感应像素122计算得到的距离,a1到ax分别为Si1到Six向Si映射的系数,第二方向与第一方向垂直,且沿第二方向的每排的各光源131发出的非可见光的频率相同,x为小于m-1的正整数,m为沿第二方向的每排感应像素122的个数。
图7所示为采用本公开实施例提供的显示装置进行空间定位的 实现原理示意图,图7中仅示出了沿第二方向截取的阵列基板100的剖视图。参考图3和图4所示的光源131和感应像素122的结构,本公开实施例中,假设光源Lij(表示该光源131位于第一方向上的第i个位置、第二方向上的第j个位置)所在的沿第一方向的一排光源131点亮,光源Lij发出的经待定位物体200反射后的非可见光可以被与其对应的感应像素Sij(表示该感应像素122位于第一方向上的第i个位置、第二方向的第j个位置)接收和解调,另外,与感应像素Sij在沿第二方向的同一排的感应像素122(例如包括Si(j-1)、Si(j+1)、Si(j-2)、Si(j+2)等)的解调频率与感应像素Sij的解调频率相同,均为Fi,因此这些与感应像素Sij在沿第二方向的同一排的感应像素122也可以接收和解调光源Lij发出的经待定位物体200反射后的非可见光,然后可通过计算将这些与感应像素Sij在沿第二方向的同一排的感应像素122计算出的距离映射到光源Lij所在的沿第一方向的排(行或列),再对得到的距离计算平均值得到最终的距离值。图7所示实施例提供的方式有利于消除由于噪声带来的距离值的抖动。
基于本公开上述各实施例提供的显示装置,本公开实施例还提供一种显示装置的空间定位方法,该显示装置的空间定位方法采用本公开上述任一实施例提供的显示装置执行。
图8所示为本公开实施例提供的一种显示装置的空间定位方法的流程图。本公开实施例提供的空间定位方法由显示装置执行,该方法可以包括如下步骤S210和S220。
S210,采集光源结构发出的准直非可见光和感应像素接收的该准直非可见光经待定位物体反射的反射光的相关数据信息。
S220,根据采集的数据信息,计算待定位物体到显示装置的距离。
在本公开实施例中,用于执行空间定位方法的显示装置的阵列基板可以包括衬底基板、设置于衬底基板一侧且排布于像素层中的至少一个感应像素、与像素层具有相同出光方向的光源结构。上述结构 为显示装置执行空间定位的硬件基础,本公开实施例中的显示装置还包括用于执行程序处理的处理模块,该处理模块分别与光源结构和感应像素相连接,该显示装置的硬件结构和各结构实现的功能可以参照本公开的图1和图2所示实施例中的阵列基板100以及图3到图7所示实施例中的显示装置的描述,故在此不再赘述。
本公开实施例中,光源结构可以发出准直非可见光,光源结构发出的准直非可见光经待定位物体反射后到达感应像素的光路即光源结构发出的准直非可见光的往返光路。本公开实施例中的步骤由处理模块执行,即处理模块可以通过采集光源结构发出准直非可见光和感应像素接收该准直非可见光经待定位物体反射的反射光的相关数据信息,根据光源结构发出的准直非可见光的往返光路来计算待定位物体到显示装置的距离,例如记录光源结构发出准直非可见光和感应像素接收该准直非可见光经待定位物体反射的反射光的时间,可以理解的是,处理模块可与光源结构连接以获知光源结构发出准直非可见光的发射时间,处理模块可与感应像素相连接,从而感应像素接收到反射光时,可以将接收时间反馈给处理模块,处理模块可以根据已知的数据信息计算待定位物体到显示装置的距离。
实际应用中,待定位物体可能是一体积较大的物体,显示装置可设置多个感应像素来执行空间定位,该情况下,多个感应像素接收到光源结构发出且由待定位物体反射回的反射光,处理模块可根据这些感应像素接收到的反射光所经过的往返光路来计算出待定位物体的空间位置。
与相关技术中用于实现空间定位的设备相比,本公开实施例提供的空间定位方法由集成有用于实现空间定位功能的显示装置执行,且显示装置中用于实现空间定位功能的硬件结构在执行空间定位时不会影响显示装置的正常显示,其空间定位功能是独立运行的。将本公开实施例提供的显示装置的空间定位方法应用于3D显示交互场景中,例如体感游戏等场景,无需额外设置专门用于空间定位的硬件设施,一方面节省了额外配置硬件设施的硬件成本,另一方面可以尽可能降低3D显示交互受空间范围的限制,提高了该方法的实用性。
本公开提供的显示装置的空间定位方法基于本公开上述实施例中显示装置的硬件配置,通过采集光源结构发出准直非可见光和感应像素接收该准直非可见光经待定位物体反射的反射光的相关数据信息,然后根据这些数据信息计算出待定位物体到显示装置的距离,即实现了空间定位。本公开提供的显示装置的空间定位方法通过对传统显示装置的结构进行合理的改造,在显示装置中集成了实现空间定位的结构和功能,使得显示装置在正常显示的同时可以进行空间定位,并且该显示装置的结构简单,易于实现,用于空间定位的硬件结构不需要额外占用其它空间。另外,非可见光可以采用对人体无伤害的红外光,有利于用户与显示装置之间进行3D显示交互。
图9为本公开实施例提供的另一种显示装置的空间定位方法的流程图。本公开实施例中,显示装置的像素层可包括阵列排布的感应像素,显示装置的光源结构可以包括阵列排布的且与感应像素一一对应的光源、以及设置于光源的出光侧的准直光学层,采用阵列排布的光源和准直光学层的组合结构实现出射准直非可见光。在图8所示实施例的基础上,本公开实施例提供的方法在S210之前还可以包括步骤S200。
S200,对每个光源发出的非可见光进行调制,使得光源结构的沿第一方向的各个光源发出的非可见光的频率不同。
本公开实施例中,由于处理模块可以对光源发出的非可见光进行调制,相应地,感应像素对接收到的反射光进行解调,得到光电信息,并且感应像素的解调频率与对应光源的调制频率相同,因此,处理模块采集到的感应像素接收的反射光的相关数据信息包括:感应像素对接收到的反射光进行解调得到的光电信息。需要说明的是,阵列排布的光源和阵列排布的感应像素的结构可以参照上述实施例中的图3和图4所示,处理模块对光源发出的非可见光进行调制的频率以及感应像素进行解调的频率的配置方式在图3和图4所示具体示例中已经详细描述,故在此不再赘述。
在本公开实施例中,光源可以发出脉冲非可见光。该情况下,本公开实施例提供的方法还可以包括步骤S201。
S201,控制感应像素对接收到经待定位物体反射的反射光进行第一次解调和第二次解调,以计算待定位物体到显示装置的距离。第一次解调和第二次解调可相差1/4个脉冲周期。
可根据以下(1)式计算出待定位物体到显示装置的距离。
2S=1/4Fi*c*A/(A+B)       (1)
上述(1)式中,S为物体200到显示装置的距离,Fi为第一方向上第i个光源131发出的非可见光的调制频率,A为感应像素122进行第一次解调得到的光电信息,B为感应像素进行第二次解调得到的光电信息,c为脉冲非可见光的光速。需要说明的是,上述式(1)的计算中,A和B为同一个感应像素进行第一次解调和第二次解调分别得到的光电信息。
本公开实施例中,感应像素进行两次采样(对应于第一次解调和第二次解调)的时序图可以参照图5所示,两次采样和计算距离的实现方式在上述实施例中已经详细描述,故在此不再赘述。
图10为本公开实施例提供的又一种显示装置的空间定位方法的流程图。在图8所示实施例的基础上,本公开实施例提供的方法在S210之前还可以包括步骤S202。
S202,依次点亮沿第一方向的每排光源。
在本公开实施例中,可以在阵列基板的显示区周边的非显示区设置移位寄存器,且该移位寄存器分别与每个光源相连接,另外,上述实施例中已经说明处理模块分别与每个光源相连接。本公开实施例中的S202可以由处理模块或移位寄存器执行,即可以采用移位寄存器(或处理模块)控制光源结构中的光源按照一定的次序点亮,例如逐行点亮、或逐列点亮,同一时间段点亮的沿第一方向的一排光源的调制频率不同。
在本公开实施例的一些实施方式中,步骤S202之后还可以包括步骤S203。
S203,依次接通沿第一方向的每排感应像素,使得每个感应像素对对应光源发出的经待定位物体反射的反射光进行接收和解调。
在本公开实施例的一些实施方式中,步骤S202之后还可以包括 步骤S204。
S204,同时接通像素层中沿第二方向的每排感应像素,使得与点亮光源对应的感应像素和其沿第二方向的同一排的感应像素同时对该点亮光源发出的非可见光经待定位物体反射的反射光进行接收和解调,然后可根据以下(2)式计算待定位物体到显示装置的距离。
S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)   (2)
上述(2)式中,S为待定位物体到显示装置的距离,Si为通过第一方向上的第i个点亮光源的对应感应像素计算得到的距离,Si1到Six为通过上述对应感应像素的沿第二方向的同一排的感应像素计算得到的距离,a1到ax分别为Si1到Six向Si映射的系数,第二方向与第一方向垂直,且沿第二方向的每排的各光源发出的非可见光的频率相同,x为小于m-1的正整数,m为沿第二方向的每排感应像素的个数。
需要说明的是,S203和S204的实现方式在上述实施例中已经详细描述,故在此不再赘述。另外,图10所示实施例中S203和S204为可选的,可择一执行。
图11为本公开实施例提供的一种计算机设备的结构示意图。本公开实施例提供的计算机设备30可以包括存储器31和处理器32。
存储器31用于保存可执行指令。
处理器32用于在执行存储器31保存的可执行指令时实现本公开上述任一实施例提供的显示装置的空间定位方法。
本公开实施例提供的计算机设备30的实施方式与本公开上述实施例提供的显示装置的空间定位方法的实施方式基本相同,在此不做赘述。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有可执行指令,该可执行指令被执行时可以实现本公开上述任一实施例提供的显示装置的空间定位方法。本公开实施例提供的计算机可读存储介质的实施方式与本公开上述实施例提供的显示装置的空间定位方法的实施方式基本相同,在此不做赘述。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的示例实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的保护范围须以所附的权利要求书所界定的范围为准。

Claims (17)

  1. 一种阵列基板,包括衬底基板、设置于所述衬底基板一侧的像素层、以及与所述像素层具有相同出光方向的光源结构,其中,
    所述光源结构被配置为发出准直非可见光,
    所述像素层包括多个子像素和设置于所述多个子像素之间的至少一个感应像素,所述至少一个感应像素配置为接收所述光源结构发出的准直非可见光经待定位物体反射的反射光,以确定待定位物体的位置。
  2. 根据权利要求1所述的阵列基板,其中,所述像素层包括设置于所述多个子像素之间的阵列排布的多个感应像素,所述光源结构包括阵列排布的且与所述多个感应像素一一对应的多个光源、以及设置于所述多个光源的出光侧的准直光学层,
    所述多个光源配置为发出非可见光,
    所述准直光学层配置为将入射到所述准直光学层的非可见光转换为准直非可见光。
  3. 根据权利要求1或2所述的阵列基板,其中,所述光源结构和所述像素层分别设置在所述衬底基板的不同侧,且所述光源结构、所述衬底基板和所述像素层沿所述光源结构的出光方向依次设置。
  4. 一种显示装置,包括如权利要求1所述的阵列基板、以及分别与所述阵列基板中的光源结构和感应像素相连接的处理模块,
    所述处理模块配置为根据所述光源结构发出的准直非可见光和所述感应像素接收的该准直非可见光经待定位物体反射的反射光的相关数据信息,计算待定位物体到所述显示装置的距离。
  5. 根据权利要求4所述的显示装置,其中,所述阵列基板的像素层包括设置于所述多个子像素之间的阵列排布的多个感应像素,所 述光源结构包括阵列排布的且与所述多个感应像素一一对应的多个光源、以及设置于所述多个光源的出光侧的准直光学层,所述多个光源配置为发出非可见光,所述准直光学层配置为将入射到所述准直光学层的非可见光转换为准直非可见光,所述处理模块分别与所述光源结构中的每个光源相连接,
    所述处理模块还配置为对每个所述光源发出的非可见光进行调制,使得所述光源结构的沿第一方向的每排的各个光源发出的非可见光的频率不同,
    所述感应像素还配置为对接收到的反射光进行解调,以得到光电信息,并且所述感应像素的解调频率与对应光源的调制频率相同。
  6. 根据权利要求5所述的显示装置,其中,
    所述光源配置为发出脉冲非可见光,
    所述处理模块配置为控制所述感应像素对接收到的反射光进行第一次解调和第二次解调,且所述第一次解调和所述第二次解调的相差为1/4个脉冲周期,从而根据2S=1/4Fi*c*A/(A+B)计算出待定位物体到所述显示装置的距离,其中,所述S为待定位物体到所述显示装置的距离,所述Fi为所述第一方向上第i个光源发出的非可见光的调制频率,所述A为所述感应像素进行第一次解调得到的光电信息,所述B为所述感应像素进行第二次解调得到的光电信息,所述c为所述脉冲非可见光的光速。
  7. 根据权利要求5所述的显示装置,其中,
    所述处理模块还配置为依次点亮沿所述第一方向的每排光源。
  8. 根据权利要求5所述的显示装置,还包括:
    设置于非显示区、且与每个光源相连接的移位寄存器,所述移位寄存器配置为依次点亮沿所述第一方向的每排光源。
  9. 根据权利要求7或8所述的显示装置,其中,
    所述处理模块还配置为依次接通沿所述第一方向的每排感应像素,使得每个所述感应像素对对应光源发出的非可见光经待定位物体反射的反射光进行接收和解调。
  10. 根据权利要求7或8所述的显示装置,其中,
    所述处理模块还配置为同时接通沿第二方向的每排感应像素,使得与点亮光源对应的感应像素和其沿第二方向的同一排的感应像素同时对所述点亮光源发出的非可见光经待定位物体反射的反射光进行接收和解调,从而根据S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)计算出待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Si为通过所述第一方向上的第i个点亮光源的对应感应像素计算得到的距离,所述Si1到所述Six为通过所述对应感应像素的沿第二方向的同一排的感应像素计算得到的距离,所述a1到所述ax分别为所述Si1到所述Six向所述Si映射的系数,所述第二方向与所述第一方向垂直,且沿所述第二方向的每排的各个光源发出的非可见光的频率相同。
  11. 一种显示装置的空间定位方法,其中,所述显示装置的阵列基板包括衬底基板、设置于衬底基板一侧且设置于像素层中的至少一个感应像素、以及与所述像素层具有相同出光方向的光源结构,所述方法包括:
    采集所述光源结构发出的准直非可见光和所述至少一个感应像素接收的该准直非可见光经待定位物体反射的反射光的相关数据信息;以及
    根据采集的所述数据信息,计算待定位物体到所述显示装置的距离。
  12. 根据权利要求11所述的显示装置的空间定位方法,其中,所述像素层包括设置于多个子像素之间的阵列排布的多个感应像素,所述光源结构中包括阵列排布的且与所述多个感应像素一一对应的 多个光源、以及设置于所述多个光源的出光侧的准直光学层,所述方法还包括:
    对每个所述光源发出的非可见光进行调制,使得所述光源结构的沿第一方向的各个光源发出的非可见光的频率不同,
    其中,采集到的感应像素接收的反射光的相关数据信息包括所述感应像素对接收到的反射光进行解调得到的光电信息。
  13. 根据权利要求12所述的显示装置的空间定位方法,其中,所述光源发出脉冲非可见光,所述方法还包括:
    控制所述感应像素对接收到的反射光进行第一次解调和第二次解调,且所述第一次解调和所述第二次解调的相差为1/4个脉冲周期,根据2S=1/4Fi*c*A/(A+B)计算待定位物体到所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Fi为所述第一方向上第i个光源发出的非可见光的调制频率,所述A为所述感应像素进行第一次解调得到的光电信息,所述B为所述感应像素进行第二次解调得到的光电信息,所述c为所述脉冲非可见光的光速。
  14. 根据权利要求12所述的显示装置的空间定位方法,还包括:
    依次点亮沿所述第一方向的每排光源。
  15. 根据权利要求14所述的显示装置的空间定位方法,还包括:
    依次接通沿所述第一方向的每排感应像素,使得每个所述感应像素对对应光源发出的非可见光经待定位物体反射的反射光进行接收和解调。
  16. 根据权利要求14所述的显示装置的空间定位方法,还包括:
    同时接通沿第二方向的每排感应像素,使得与点亮光源对应的感应像素和其沿第二方向的同一排的感应像素同时对所述点亮光源发出的非可见光经待定位物体反射的反射光进行接收和解调,根据S=(Si+a1*Si1+a2*Si2+……+ax*Six)/(1+x)计算出待定位物体到 所述显示装置的距离,其中,所述S为所述待定位物体到所述显示装置的距离,所述Si为通过所述第一方向上的第i个点亮光源的对应感应像素计算得到的距离,所述Si1到所述Six为通过所述对应感应像素的沿第二方向的同一排的感应像素计算得到的距离,所述a1到所述ax分别为所述Si1到所述Six向所述Si映射的系数,所述第二方向与所述第一方向垂直,且沿所述第二方向的每排的各个光源发出的非可见光的频率相同。
  17. 一种计算机设备,包括存储器和处理器,
    所述存储器配置为保存可执行指令;
    所述处理器配置为在执行所述存储器保存的所述可执行指令时实现如权利要求11至16中任一项所述的显示装置的空间定位方法。
PCT/CN2019/097549 2018-07-24 2019-07-24 阵列基板、显示装置和显示装置的空间定位方法 WO2020020246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/639,282 US11637149B2 (en) 2018-07-24 2019-07-24 Array substrate, display device and spatial positioning method of display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810822085.XA CN109001927B (zh) 2018-07-24 2018-07-24 一种显示面板、显示装置和显示装置的空间定位方法
CN201810822085.X 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020020246A1 true WO2020020246A1 (zh) 2020-01-30

Family

ID=64596923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097549 WO2020020246A1 (zh) 2018-07-24 2019-07-24 阵列基板、显示装置和显示装置的空间定位方法

Country Status (3)

Country Link
US (1) US11637149B2 (zh)
CN (1) CN109001927B (zh)
WO (1) WO2020020246A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001927B (zh) * 2018-07-24 2021-10-01 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813994A (zh) * 2010-04-16 2010-08-25 华映视讯(吴江)有限公司 触控位置辨识方法
US9105546B2 (en) * 2012-09-19 2015-08-11 Semiconductor Components Industries, Llc Imaging systems with backside illuminated near infrared imaging pixels
CN105893992A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 指纹识别结构和方法、显示装置
CN107507592A (zh) * 2017-09-06 2017-12-22 京东方科技集团股份有限公司 显示装置及其控制方法
JP2018036314A (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 偏光イメージセンサーおよび偏光イメージセンサーの製造方法
CN109001927A (zh) * 2018-07-24 2018-12-14 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893683B2 (ja) * 2008-04-11 2012-03-07 ソニー株式会社 画像表示装置
KR101467509B1 (ko) * 2008-07-25 2014-12-01 삼성전자주식회사 이미지 센서 및 이미지 센서 동작 방법
US8648702B2 (en) * 2010-08-20 2014-02-11 Denso International America, Inc. Combined time-of-flight and image sensor systems
US9666620B2 (en) * 2014-10-06 2017-05-30 Visera Technologies Company Limited Stacked filter and image sensor containing the same
CN108110017A (zh) * 2016-11-24 2018-06-01 比亚迪股份有限公司 复合像素单元及其制备方法、像素阵列及其应用
CN106874866B (zh) * 2017-02-13 2019-09-03 京东方科技集团股份有限公司 显示装置及其控制方法
US20180284496A1 (en) * 2017-03-30 2018-10-04 HKC Corporation Limited Display apparatus
CN107316885B (zh) * 2017-06-30 2020-09-25 联想(北京)有限公司 一种有机发光二极管oled显示屏及一种电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813994A (zh) * 2010-04-16 2010-08-25 华映视讯(吴江)有限公司 触控位置辨识方法
US9105546B2 (en) * 2012-09-19 2015-08-11 Semiconductor Components Industries, Llc Imaging systems with backside illuminated near infrared imaging pixels
CN105893992A (zh) * 2016-05-31 2016-08-24 京东方科技集团股份有限公司 指纹识别结构和方法、显示装置
JP2018036314A (ja) * 2016-08-29 2018-03-08 富士フイルム株式会社 偏光イメージセンサーおよび偏光イメージセンサーの製造方法
CN107507592A (zh) * 2017-09-06 2017-12-22 京东方科技集团股份有限公司 显示装置及其控制方法
CN109001927A (zh) * 2018-07-24 2018-12-14 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的空间定位方法

Also Published As

Publication number Publication date
CN109001927A (zh) 2018-12-14
CN109001927B (zh) 2021-10-01
US11637149B2 (en) 2023-04-25
US20200266242A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
US10747978B2 (en) Organic light-emitting display panel manufacturing method thereof as well as electronic device
US10867155B2 (en) Fingerprint identification display panel and fabricating method thereof, fingerprint identification display device
CN106959757B (zh) 一种显示面板及显示设备
US10678043B2 (en) Display panel, display device and method for controlling the same
US10545616B2 (en) Touch display panel, flexible display panel and display apparatus
CN106233305B (zh) 指纹感测设备
US8502756B2 (en) Image display device with imaging unit
CN108766254B (zh) 可折叠显示面板、显示装置、图像补偿方法及其装置
US20110037732A1 (en) Detecting device, display device, and object proximity distance measuring method
CN102136225B (zh) 具有摄像装置的图像显示装置
US20060244693A1 (en) Image display unit and method of detecting object
JP4893683B2 (ja) 画像表示装置
TW201118849A (en) Information input device, information input program, and electronic instrument
US20220246893A1 (en) Display Device
US20240036682A1 (en) Electronic Devices Having Moisture-Insensitive Optical Touch Sensors
WO2019148805A1 (zh) 显示组件及其制备方法、显示装置
WO2020020246A1 (zh) 阵列基板、显示装置和显示装置的空间定位方法
CN113380186A (zh) 一种显示面板和显示装置
JP2011150583A (ja) 撮像装置付き画像表示装置
US10504443B2 (en) Display device and method for operating the display device
US20220115443A1 (en) Display device and image sensing method thereof
CN110767724B (zh) 显示装置及其oled面板
TWI252708B (en) Electroluminescent display device
WO2018209672A1 (zh) 显示模组
CN112257631B (zh) 显示模组及显示模组的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19841964

Country of ref document: EP

Kind code of ref document: A1