WO2020019890A1 - Layer assembly, vehicle window and method for manufacturing layer assembly - Google Patents

Layer assembly, vehicle window and method for manufacturing layer assembly Download PDF

Info

Publication number
WO2020019890A1
WO2020019890A1 PCT/CN2019/090845 CN2019090845W WO2020019890A1 WO 2020019890 A1 WO2020019890 A1 WO 2020019890A1 CN 2019090845 W CN2019090845 W CN 2019090845W WO 2020019890 A1 WO2020019890 A1 WO 2020019890A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
layer assembly
resin layers
wedge
Prior art date
Application number
PCT/CN2019/090845
Other languages
French (fr)
Inventor
Xiaofeng Guo
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2020019890A1 publication Critical patent/WO2020019890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10568Shape of the cross-section varying in thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10798Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • G02B2027/0121Parasitic image effect attenuation by suitable positioning of the parasitic images

Definitions

  • the present disclosure generally relates to a layer assembly, and more particularly to a layer assembly having both HUD (Head Up Display) performance and acoustic-isolation performance.
  • the present disclosure also relates to a vehicle window including the layer assembly and a method for manufacturing the layer assembly.
  • a front windshield of a vehicle is generally comprised of laminated glass, and the laminated glass generally includes two glass plates and an intermediate resin layer interposed between the two glass plates.
  • more and more vehicles provide HUD function on the front windshield, so that information related to the vehicle or to driving can be directly projected on the front windshield, and the driver can get needed information from the front windshield with his head positioned up and does not need to look down at a dashboard.
  • a projected image will be reflected twice at the interface between the inner side glass plate of the laminated glass and the air and at the interface between the outer side glass plate and the air, and the positions of virtual images generated by the two reflections do not coincide with each other.
  • the driver would observe a “ghosting” of the image. Therefore, a “wedge-shaped” intermediate resin layer, that is, an intermediate resin layer having a gradually varied thickness is generally used in the laminated glass for HUD, thereby ensuring that the overall cross section of the laminated glass is wedge-shaped.
  • the virtual images which are generated by the two reflections of the projected image at the interface between the inner side glass plate of the laminated glass and the air and at the interface between the outer side glass plate and the air, coincide with each other, thereby eliminating the ghosting.
  • an acoustic-isolation function has been provided on vehicle windows of some vehicles, so as to better isolate sound inside the vehicles from sound outside the vehicles.
  • the isolation effect of the vehicle windows still needs to be improved.
  • the present disclosure is intended to provide a layer assembly that not only has HUD performance, but also provides good acoustic-isolation performance.
  • An aspect of the present disclosure provides a layer assembly.
  • the layer assembly has a wedge-shaped cross section in a first direction.
  • the layer assembly comprises a plurality of resin layers, and materials of at least three pairs of adjacent resin layers of the plurality of resin layers are different.
  • the “wedge-shaped” in the present disclosure means that the layer assembly has a gradually varied thickness in at least one direction, which is not only applicable to the case where the layer assembly extends strictly along a plane, but also applicable to the case where the layer assembly extends along a curved face.
  • the layer assembly when the layer assembly is disposed as an intermediate layer between two curved glass plates, the layer assembly would match the curvatures of the two glass plates and extend along a curved face.
  • the layer assembly has a wedge-shaped cross section
  • a laminated glass formed by interposing the layer assembly as an intermediate layer between two glass plates would have good HUD performance.
  • the laminated glass also has a wedge-shaped cross section due to the wedge-shaped cross section of the layer assembly.
  • the acoustic-isolation performance of the layer assembly As for the acoustic-isolation performance of the layer assembly, a study by the applicant found that that acoustic wave can not only be continuously attenuated with the increase of travel distance when travelling inside a single medium, but also be more significantly attenuated when travelling through an interface between two different mediums.
  • the layer assembly of the present disclosure since materials of at least three pairs of adjacent resin layers of the inner layer structures thereof are different, at least three interfaces between different mediums are formed between the at least three pairs of adjacent resin layers. If taking two outermost surfaces of the layer assembly into account, the acoustic wave can be significantly attenuated at least five times by the layer assembly. Thus, the layer assembly has excellent acoustic-isolation performance.
  • the layer assembly of the present disclosure allows multiple significant attenuation of the acoustic wave at interfaces between different mediums, a better acoustic-isolation effect can be achieved by the layer assembly with a same total thickness, even with a smaller total thickness.
  • the plurality of resin layers comprises at least two acoustic layers.
  • the “acoustic layer” in the present disclosure refers to a layer structure made of a material which can more significantly attenuate the acoustic wave compared to other common mediums.
  • the provision of the at least two acoustic layers ensures that the acoustic wave can be significantly attenuated inside a single medium of each acoustic layer in the layer assembly of the present disclosure.
  • materials of at least four pairs of adjacent resin layers of the plurality of resin layers are different, and two resin layers of the plurality of resin layers having the lowest hardness are not adjacent and are not exposed to outermost sides of the layer assembly. If taking the two outermost surfaces of the layer assembly into account, the acoustic wave can be attenuated at least six times by the layer assembly at interfaces between different mediums. Further, in the layer assembly, the resin layers having a lower hardness are interposed between the resin layers having a higher hardness, thereby the overall structure of the layer assembly is better supported, which can help the layer assembly to maintain its shape.
  • the attenuation effect on the acoustic wave at the interface between two different mediums is more significant when the difference between the acoustic properties of the two mediums is greater.
  • the resin layers having a higher hardness and the resin layers having a lower hardness are alternately disposed.
  • the layer assembly of the present disclosure can have a significant attenuation effect on acoustic waves at the interface between mediums with different hardnesses.
  • the layer assembly comprises three first resin layers and two second resin layers.
  • the two second resin layers are not adjacent and are not exposed to outermost sides of the layer assembly.
  • the second resin layers have a hardness less than that of the first resin layers.
  • first and “second” in the “first resin layer” and the “second resin layer” are used to respectively refer to a first resin material and a second resin material.
  • first resin layer or “second resin layer” regardless of the shape of its cross section.
  • the layer assembly is formed by heating and pressurizing at least two layer elements after being stacked, and each of the layer elements comprises two first resin layers and one second resin layer interposed between the two first resin layers.
  • fusion bonding between the layer elements and/or formation of the wedge-shaped cross section (s) of all or part of the inner layer structures of the layer elements can realized by heating and pressurizing operation without changing the multilayer structure of the layer assembly and the layer elements.
  • the present disclosure does not limit the occasion where the heating and pressurizing operation on the layer elements is performed.
  • the heating and pressurizing operation may be used in the occasion where the layer elements are simply bonded with each other, or occur in the occasion where the at least two layer elements are stacked between two glass plates and then an entire laminated glass structure is heated and pressurized.
  • the first resin layers which originally and respectively belong to two layer elements and are in contact with each other, are fused into a single first resin layer, so that a finally formed layer assembly includes at least one five-layer structure in the form of a first resin layer /a second resin layer/a first resin layer (formed by two original first resin layers by fusion) /a second resin layer /a first resin layer.
  • each of the at least two layer elements has a uniform thickness before being stacked, heated and pressurized. Therefore, there is no need to prepare layer elements with a wedge-shaped thickness in advance, so that cost can be reduced.
  • the overall wedge-shaped thickness configuration of the layer assembly is formed during heating and pressurizing after the layer elements are stacked.
  • At least one of the at least two layer elements has a wedge-shaped cross section in the first direction before being stacked, heated and pressurized, and the layer element having a wedge-shaped cross section in the first direction is formed by preheating and pressurizing a layer element with a uniform thickness. That is, before the layer elements are stacked, at least one of the layer elements is shaped to have a wedge-shaped thickness configuration by heating and pressurizing in advance, so that complexity of parameter control of the heating and pressurizing operation after the layer elements are stacked can be reduced.
  • At least one first resin layer and/or at least one second resin layer of the layer assembly have/has a wedge-shaped cross section in the first direction. That is, the overall wedge-shaped thickness configuration of the layer assembly can be achieved by any one or more of the resin layers therein shaped to have a wedge-shaped cross section.
  • the cross section of the layer assembly has a shape with a wedge angle of 0.2-0.7 mrad in the first direction. This angle range ensures good HUD performance.
  • material of the first resin layer is PVB (polyvinyl butyral) and/or PET (polyethylene terephthalate)
  • material of the second resin layer is modified PVB, EVA (ethylene-vinyl acetate copolymer) , PU (polyurethane) resin, PVC (polyethylene) resin and silicone resin or any combination thereof.
  • the “modified PVB” in the present disclosure may include physically modified PVB and chemically modified PVB.
  • the physically modified PVB may be a material formed by PVB matrix and other fillers, such as organic material, inorganic material, rubber, thermoplastic elastomer, other plastics, or some additives, added to the PVB matrix by known methods, such as mixture or mixing.
  • the chemically modified PVB may be a material obtained by changing the chemical composition of the PVB matrix by chemical reaction such as functional group modification or condensation polymerization.
  • the present disclosure also provides a vehicle window comprising two glass plates.
  • the vehicle window further comprises a layer assembly as described above, and the layer assembly is disposed between the two glass plates.
  • the present disclosure also provides a method for manufacturing a layer assembly.
  • the manufacturing method comprises:
  • step 1 providing at least two layer elements, wherein each of the layer elements comprises two first resin layers and one second resin layer interposed between the two first resin layers, and the second resin layers have a hardness less than that of the first resin layer;
  • step 2 heating and pressurizing the at least two layer elements after being stacked to form the layer assembly, wherein the layer assembly has a wedge-shaped cross section in a first direction.
  • the stacking, heating and pressurizing of the at least two layer elements in step 2 may occur in the occasion where the layer elements are simply bonded with each other, or where the at least two layer elements are stacked between the two glass plates and then an entire laminated glass structure is heated and pressurized.
  • the second resin layer is an acoustic layer.
  • each of the layer elements in the step 1 has a uniform thickness, or at least one of the at least two layer elements in the step 1 has a wedge-shaped cross section in the first direction.
  • the layer element having a wedge-shaped cross section in the first direction is formed by heating and pressurizing a layer element with a uniform thickness.
  • Fig. 1 is a schematic cross-sectional view showing a layer assembly of Embodiment 1 of the present disclosure
  • Fig. 2 is a schematic cross-sectional view showing a layer assembly of Embodiment 2 of the present disclosure
  • Fig. 3 is a schematic view showing a method for manufacturing the layer assembly of Embodiment 1 of the present disclosure
  • Fig. 4 is a schematic view showing a method for manufacturing the layer assembly of Embodiment 2 of the present disclosure.
  • Fig. 5 is a schematic view showing a vehicle window of the present disclosure when it is used for HUD.
  • the present embodiment provides a layer assembly 100 having a wedge-shaped cross section with a gradually varied thickness.
  • the wedge shape has a wedge angle of 0.5 mrad. That is, if the layer assembly 100 has an extension length of 1 m and the narrower end of the wedge-shaped cross section of the layer assembly 100 has a thickness T1 of 0.7 mm, the wider end of the wedge-shaped cross section thereof would have a thickness T2 of 1.2 mm.
  • the layer assembly 100 includes three first resin layers 101, 103, and 105, and two second resin layers 102 and 104.
  • planes (when the layer assembly 100 extends along a plane) or curved faces (when the layer assembly 100 extends along a curved face) P1-P6 are interfaces between different mediums, which can significantly attenuate acoustic wave.
  • the acoustic wave would be continuously attenuated with increase of its travel distance inside each of the first or second resin layers.
  • Material of the first resin layers is PVB, and material of the second resin layers is modified PVB. Since the second resin layers have a lower hardness than that of the first resin layers (which means the first and second resin layers have a large difference in acoustic properties) , the acoustic wave would be significantly attenuated at the interfaces P2-P5.
  • the second resin layers have a lower hardness than that of the first resin layers, attenuation rate of the acoustic wave inside the second resin layers is higher than that inside the first resin layers.
  • the second resin layers have a stronger attenuation effect on the acoustic wave, and both of the second resin layers in the present embodiment are acoustic layers.
  • first resin layers having a higher hardness are located at the outer sides of the layer assembly 100, and the second resin layers having a lower hardness are spaced apart, so that the first resin layers can better support and retain the overall structure of the layer assembly 100.
  • each of the first resin layers 101, 103, and 105 has a wedge-shaped cross section, and each of the second resin layers 102 and 104 has a uniform thickness in this direction.
  • the layer assembly 100 includes five resin layers in the present embodiment, it may also include more or less resin layers. However, the materials and the number of the resin layers should at least ensure that three interfaces between different mediums are formed inside the layer assembly, thus ensuring good acoustic-isolation effect.
  • the materials of the layers 101, 103, and 105 are same in this embodiment, their materials may not be same. Similarly, the materials of the layers 102 and 104 may be different.
  • the material of the first resin layer may be selected from PET, or a combination of PVB and PET
  • the material of the second resin layer may be selected from EVA, PU resin, PVC resin and silicone resin, or any combination of any of these and various components in modified PVB.
  • the present embodiment provides a layer assembly 200.
  • the layer assembly 200 differs from the layer assembly 100 of Embodiment 1 only in that, in this embodiment, each of the cross sections of layers 201-205 in the plane of the drawing has a wedge shape.
  • the number and the positions of distribution of the layer structures having a uniform thickness and of the layer structures having a wedge-shaped cross section among these inner layer structures may be selected according to specific applications, as long as the overall cross section of the layer assembly has a wedge shape and there are at least three interfaces between different mediums inside the layer assembly.
  • the present embodiment provides a method for manufacturing the layer assembly 100 of Embodiment 1.
  • step S1 two layer elements 100a and 100b are provided.
  • the layer element 100a includes first resin layers 101 and 103a and a second resin layer 102
  • the layer element 100b includes first resin layers 103b and 105 and a second resin layer 104.
  • each of the layer elements 100a and 100b has a uniform thickness.
  • step S2 the layer elements 100a and 100b are respectively heated and pressurized, so that the layers 101, 103a, 103b, and 105 are slightly melted, and thus deformed and finally shaped into a wedge shape.
  • step S3 the layer elements 100a and 100b are stacked, and are heated and pressurized again, so that the layers 103a and 103b are slightly melted and integrated into a single first resin layer 103 by fusion.
  • heating and pressurizing treatment are performed on both layer elements in the step S2 in the present embodiment to change the shapes of their cross sections
  • the step S2 for the layer element subjected to the heating and pressurizing treatment, only the first resin layer on one side thereof is deformed to obtain a wedge-shaped cross section, and the shape of the first resin layer on the other side thereof remains unchanged.
  • the layer element 100a in the step S2, only its layer 101 is deformed to have a wedge shape, while the shape of the cross section of the layer 103a remains unchanged.
  • step S2 may even be skipped, and the step S3 is performed immediately after the step S1.
  • the inner layer structures of the layer assembly 100 that do not have a cross section with an expected shape immediately before entering the step S3 and the shape of the overall cross section of the layer assembly 100 will eventually be shaped into the expected shape by heating and pressurizing in the step S3.
  • the heating and pressurizing may only be performed on the stacked layer elements, or may be performed on the entire laminated glass structure formed by interposing the layer elements between two glass plates.
  • more layer elements may also be adaptively used in the manufacturing method. And those layer elements may be/may not be separately subjected to heating and pressurizing treatment in advance, and then they may be heated and pressurized after being stacked to form a final layer assembly 100.
  • the present embodiment provides a method for manufacturing the layer assembly 200 of Embodiment 2.
  • step S1’ two layer elements 200a and 200b are provided.
  • the layer element 200a includes first resin layers 201 and 203a and a second resin layer 202
  • the layer element 200b includes first resin layers 203b and 205 and a second resin layer 204.
  • each of the layer elements 200a and 200b has a uniform thickness.
  • step S2’ the layer elements 200a and 200b are respectively heated and pressurized, so that each of the inner layer structures of the two layer elements is slightly melted, and thus deformed and shaped into a wedge shape.
  • step S3’ the layer elements 200a and 200b are stacked, and are heated and pressurized again, so that the layers 203a and 203b are slightly melted and integrated into a single first resin layer 203 by fusion.
  • the present embodiment provides a vehicle window 300.
  • the vehicle window 300 includes two glass plates.
  • a layer assembly according to Embodiment 1 or 2 or various variations mentioned therein is interposed between the two glass plates. Since the layer assembly of the present disclosure has a wedge-shaped cross section, the vehicle window 300 also has a wedge-shaped cross section.
  • a portion of projected light is reflected on a first side surface of the vehicle window 300 (e.g., reflected at point B1) to enter a human eye C, which enables the user to observe a virtual image D1.
  • the wedge angle of the wedge-shaped cross section of the layer assembly in this embodiment is 0.5 mrad
  • a wedge angle in the range of 0.2-0.7 mrad is advantageous for the HUD function.
  • the vehicle window 300 of the present embodiment would also have excellent acoustic-isolation performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

A layer assembly (100) has a wedge-shaped cross section in a first direction. The layer assembly (100) comprises a plurality of resin layers. Materials of at least three pairs of adjacent resin layers of the plurality of resin layers are different. A vehicle window (300) and a method for manufacturing a layer assembly (100) are also provided. A window with good HUD performance and acoustic-isolation performance is obtained.

Description

LAYER ASSEMBLY, VEHICLE WINDOW AND METHOD FOR MANUFACTURING LAYER ASSEMBLY TECHNICAL FIELD
The present disclosure generally relates to a layer assembly, and more particularly to a layer assembly having both HUD (Head Up Display) performance and acoustic-isolation performance. The present disclosure also relates to a vehicle window including the layer assembly and a method for manufacturing the layer assembly.
BACKGROUND
A front windshield of a vehicle is generally comprised of laminated glass, and the laminated glass generally includes two glass plates and an intermediate resin layer interposed between the two glass plates.
At present, more and more vehicles provide HUD function on the front windshield, so that information related to the vehicle or to driving can be directly projected on the front windshield, and the driver can get needed information from the front windshield with his head positioned up and does not need to look down at a dashboard.
However, when the HUD function is realized on a common laminated glass, a projected image will be reflected twice at the interface between the inner side glass plate of the laminated glass and the air and at the interface between the outer side glass plate and the air, and the positions of virtual images generated by the two reflections do not coincide with each other. As a result, the driver would observe a “ghosting” of the image. Therefore, a “wedge-shaped” intermediate resin layer, that is, an intermediate resin layer having a gradually varied thickness is generally used in the laminated glass for HUD, thereby ensuring that the overall cross section of the laminated glass is wedge-shaped. By this wedge-shaped cross section of the laminated glass, the virtual images, which are generated by the two reflections of the projected image at the interface between the inner side glass plate of the laminated glass and the air and at the interface between the outer side glass plate and the air, coincide with each other, thereby eliminating the ghosting.
In addition, an acoustic-isolation function has been provided on vehicle windows of some vehicles, so as to better isolate sound inside the vehicles from sound outside the vehicles. However, the isolation effect of the vehicle windows still needs to be improved.
SUMMARY
The present disclosure is intended to provide a layer assembly that not only has HUD performance, but also provides good acoustic-isolation performance.
An aspect of the present disclosure provides a layer assembly. The layer assembly has a wedge-shaped cross section in a first direction. The layer assembly comprises a plurality of resin layers, and materials of at least three pairs of adjacent resin layers of the plurality of resin layers are different.
The “wedge-shaped” in the present disclosure means that the layer assembly has a gradually varied thickness in at least one direction, which is not only applicable to the case where the layer assembly extends strictly along a plane, but also applicable to the case where the layer assembly extends along a curved face. For example, when the layer assembly is disposed as an intermediate layer between two curved glass plates, the layer assembly would match the curvatures of the two glass plates and extend along a curved face.
Since the layer assembly has a wedge-shaped cross section, a laminated glass formed by interposing the layer assembly as an intermediate layer between two glass plates would have good HUD performance. This is because the laminated glass also has a wedge-shaped cross section due to the wedge-shaped cross section of the layer assembly. Thus, when an image is projected on the laminated glass, virtual images, which are generated by the two reflections of the projected image at the interface between the inner side glass plate of the laminated glass and the air and at the interface between the outer side glass plate and the air, coincide with each other, thereby eliminating the ghosting.
As for the acoustic-isolation performance of the layer assembly, a study by the applicant found that that acoustic wave can not only be continuously attenuated with the increase of travel distance when travelling inside a single medium, but also be more significantly attenuated when travelling through an interface between two different mediums. For the layer assembly of the present disclosure, since materials of at least three pairs of  adjacent resin layers of the inner layer structures thereof are different, at least three interfaces between different mediums are formed between the at least three pairs of adjacent resin layers. If taking two outermost surfaces of the layer assembly into account, the acoustic wave can be significantly attenuated at least five times by the layer assembly. Thus, the layer assembly has excellent acoustic-isolation performance. Further, since the layer assembly of the present disclosure allows multiple significant attenuation of the acoustic wave at interfaces between different mediums, a better acoustic-isolation effect can be achieved by the layer assembly with a same total thickness, even with a smaller total thickness.
Preferably, the plurality of resin layers comprises at least two acoustic layers. The “acoustic layer” in the present disclosure refers to a layer structure made of a material which can more significantly attenuate the acoustic wave compared to other common mediums. The provision of the at least two acoustic layers ensures that the acoustic wave can be significantly attenuated inside a single medium of each acoustic layer in the layer assembly of the present disclosure.
Preferably, materials of at least four pairs of adjacent resin layers of the plurality of resin layers are different, and two resin layers of the plurality of resin layers having the lowest hardness are not adjacent and are not exposed to outermost sides of the layer assembly. If taking the two outermost surfaces of the layer assembly into account, the acoustic wave can be attenuated at least six times by the layer assembly at interfaces between different mediums. Further, in the layer assembly, the resin layers having a lower hardness are interposed between the resin layers having a higher hardness, thereby the overall structure of the layer assembly is better supported, which can help the layer assembly to maintain its shape. Further, a study by the applicant also found that the attenuation effect on the acoustic wave at the interface between two different mediums is more significant when the difference between the acoustic properties of the two mediums is greater. In the layer assembly of the present disclosure, the resin layers having a higher hardness and the resin layers having a lower hardness are alternately disposed. And since a large difference between the hardnesses of different mediums means a large difference between the acoustic properties thereof, the layer assembly of the present disclosure can have a significant attenuation effect on acoustic waves at the interface between mediums with different hardnesses.
Preferably, the layer assembly comprises three first resin layers and two second resin layers. The two second resin layers are not adjacent and are not exposed to outermost sides of the layer assembly. The second resin layers have a hardness less than that of the first resin layers.
In the present disclosure, “first” and “second” in the “first resin layer” and the “second resin layer” are used to respectively refer to a first resin material and a second resin material. Thus, in the present disclosure, as long as the resin material of the first or second resin layer does not change, it is referred to as “first resin layer” or “second resin layer” regardless of the shape of its cross section.
Preferably, the layer assembly is formed by heating and pressurizing at least two layer elements after being stacked, and each of the layer elements comprises two first resin layers and one second resin layer interposed between the two first resin layers. A study by the applicant found that fusion bonding between the layer elements and/or formation of the wedge-shaped cross section (s) of all or part of the inner layer structures of the layer elements can realized by heating and pressurizing operation without changing the multilayer structure of the layer assembly and the layer elements. The present disclosure does not limit the occasion where the heating and pressurizing operation on the layer elements is performed. The heating and pressurizing operation may be used in the occasion where the layer elements are simply bonded with each other, or occur in the occasion where the at least two layer elements are stacked between two glass plates and then an entire laminated glass structure is heated and pressurized. After being heated and pressurized, the first resin layers, which originally and respectively belong to two layer elements and are in contact with each other, are fused into a single first resin layer, so that a finally formed layer assembly includes at least one five-layer structure in the form of a first resin layer /a second resin layer/a first resin layer (formed by two original first resin layers by fusion) /a second resin layer /a first resin layer.
Preferably, each of the at least two layer elements has a uniform thickness before being stacked, heated and pressurized. Therefore, there is no need to prepare layer elements with a wedge-shaped thickness in advance, so that cost can be reduced. The overall wedge-shaped  thickness configuration of the layer assembly is formed during heating and pressurizing after the layer elements are stacked.
Preferably, at least one of the at least two layer elements has a wedge-shaped cross section in the first direction before being stacked, heated and pressurized, and the layer element having a wedge-shaped cross section in the first direction is formed by preheating and pressurizing a layer element with a uniform thickness. That is, before the layer elements are stacked, at least one of the layer elements is shaped to have a wedge-shaped thickness configuration by heating and pressurizing in advance, so that complexity of parameter control of the heating and pressurizing operation after the layer elements are stacked can be reduced.
Preferably, at least one first resin layer and/or at least one second resin layer of the layer assembly have/has a wedge-shaped cross section in the first direction. That is, the overall wedge-shaped thickness configuration of the layer assembly can be achieved by any one or more of the resin layers therein shaped to have a wedge-shaped cross section.
Preferably, the cross section of the layer assembly has a shape with a wedge angle of 0.2-0.7 mrad in the first direction. This angle range ensures good HUD performance.
Preferably, material of the first resin layer is PVB (polyvinyl butyral) and/or PET (polyethylene terephthalate) , and material of the second resin layer is modified PVB, EVA (ethylene-vinyl acetate copolymer) , PU (polyurethane) resin, PVC (polyethylene) resin and silicone resin or any combination thereof.
The “modified PVB” in the present disclosure may include physically modified PVB and chemically modified PVB. The physically modified PVB may be a material formed by PVB matrix and other fillers, such as organic material, inorganic material, rubber, thermoplastic elastomer, other plastics, or some additives, added to the PVB matrix by known methods, such as mixture or mixing. The chemically modified PVB may be a material obtained by changing the chemical composition of the PVB matrix by chemical reaction such as functional group modification or condensation polymerization.
The present disclosure also provides a vehicle window comprising two glass plates. The vehicle window further comprises a layer assembly as described above, and the layer assembly is disposed between the two glass plates.
The present disclosure also provides a method for manufacturing a layer assembly. The manufacturing method comprises:
step 1, providing at least two layer elements, wherein each of the layer elements comprises two first resin layers and one second resin layer interposed between the two first resin layers, and the second resin layers have a hardness less than that of the first resin layer; and
step 2, heating and pressurizing the at least two layer elements after being stacked to form the layer assembly, wherein the layer assembly has a wedge-shaped cross section in a first direction.
As described above, the stacking, heating and pressurizing of the at least two layer elements in step 2 may occur in the occasion where the layer elements are simply bonded with each other, or where the at least two layer elements are stacked between the two glass plates and then an entire laminated glass structure is heated and pressurized.
Preferably, the second resin layer is an acoustic layer.
Preferably, each of the layer elements in the step 1 has a uniform thickness, or at least one of the at least two layer elements in the step 1 has a wedge-shaped cross section in the first direction.
Preferably, the layer element having a wedge-shaped cross section in the first direction is formed by heating and pressurizing a layer element with a uniform thickness.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the present disclosure and constitute a part of this specification, are intended to illustrate the present disclosure together with the embodiments below and do not limit the present disclosure. In the drawings:
Fig. 1 is a schematic cross-sectional view showing a layer assembly of Embodiment 1 of the present disclosure;
Fig. 2 is a schematic cross-sectional view showing a layer assembly of Embodiment 2 of the present disclosure;
Fig. 3 is a schematic view showing a method for manufacturing the layer assembly of Embodiment 1 of the present disclosure;
Fig. 4 is a schematic view showing a method for manufacturing the layer assembly of Embodiment 2 of the present disclosure; and
Fig. 5 is a schematic view showing a vehicle window of the present disclosure when it is used for HUD.
It is understood that the drawings are not drawn to scale.
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
As shown in Fig. 1, the present embodiment provides a layer assembly 100 having a wedge-shaped cross section with a gradually varied thickness. The wedge shape has a wedge angle of 0.5 mrad. That is, if the layer assembly 100 has an extension length of 1 m and the narrower end of the wedge-shaped cross section of the layer assembly 100 has a thickness T1 of 0.7 mm, the wider end of the wedge-shaped cross section thereof would have a thickness T2 of 1.2 mm.
The layer assembly 100 includes three first resin layers 101, 103, and 105, and two second resin layers 102 and 104. Thus planes (when the layer assembly 100 extends along a plane) or curved faces (when the layer assembly 100 extends along a curved face) P1-P6 are interfaces between different mediums, which can significantly attenuate acoustic wave. Certainly, the acoustic wave would be continuously attenuated with increase of its travel distance inside each of the first or second resin layers.
Material of the first resin layers is PVB, and material of the second resin layers is modified PVB. Since the second resin layers have a lower hardness than that of the first resin layers (which means the first and second resin layers have a large difference in acoustic properties) , the acoustic wave would be significantly attenuated at the interfaces P2-P5.
In addition, since the second resin layers have a lower hardness than that of the first resin layers, attenuation rate of the acoustic wave inside the second resin layers is higher than that inside the first resin layers. Thus, the second resin layers have a stronger attenuation  effect on the acoustic wave, and both of the second resin layers in the present embodiment are acoustic layers.
In addition, the first resin layers having a higher hardness are located at the outer sides of the layer assembly 100, and the second resin layers having a lower hardness are spaced apart, so that the first resin layers can better support and retain the overall structure of the layer assembly 100.
Further, in the layer assembly 100, each of the first resin layers 101, 103, and 105 has a wedge-shaped cross section, and each of the second resin layers 102 and 104 has a uniform thickness in this direction.
Although the layer assembly 100 includes five resin layers in the present embodiment, it may also include more or less resin layers. However, the materials and the number of the resin layers should at least ensure that three interfaces between different mediums are formed inside the layer assembly, thus ensuring good acoustic-isolation effect.
Although the materials of the  layers  101, 103, and 105 are same in this embodiment, their materials may not be same. Similarly, the materials of the  layers  102 and 104 may be different.
In addition, the material of the first resin layer may be selected from PET, or a combination of PVB and PET, and the material of the second resin layer may be selected from EVA, PU resin, PVC resin and silicone resin, or any combination of any of these and various components in modified PVB.
Embodiment 2
As shown in Fig. 2, the present embodiment provides a layer assembly 200. The layer assembly 200 differs from the layer assembly 100 of Embodiment 1 only in that, in this embodiment, each of the cross sections of layers 201-205 in the plane of the drawing has a wedge shape.
Further, variations of the various implementations mentioned in Embodiment 1 are also applicable to the present embodiment.
Further, for a layer assembly including five inner layer structures which is similar to those of Embodiments 1 and 2, even for a layer assembly including fewer or more inner layer structures, the number and the positions of distribution of the layer structures having a  uniform thickness and of the layer structures having a wedge-shaped cross section among these inner layer structures may be selected according to specific applications, as long as the overall cross section of the layer assembly has a wedge shape and there are at least three interfaces between different mediums inside the layer assembly.
Embodiment 3
Referring to Fig. 3, the present embodiment provides a method for manufacturing the layer assembly 100 of Embodiment 1.
In step S1, two  layer elements  100a and 100b are provided. The layer element 100a includes first resin layers 101 and 103a and a second resin layer 102, and the layer element 100b includes first resin layers 103b and 105 and a second resin layer 104. At this time, each of the  layer elements  100a and 100b has a uniform thickness.
In step S2, the  layer elements  100a and 100b are respectively heated and pressurized, so that the  layers  101, 103a, 103b, and 105 are slightly melted, and thus deformed and finally shaped into a wedge shape.
In step S3, the  layer elements  100a and 100b are stacked, and are heated and pressurized again, so that the  layers  103a and 103b are slightly melted and integrated into a single first resin layer 103 by fusion.
Although heating and pressurizing treatment are performed on both layer elements in the step S2 in the present embodiment to change the shapes of their cross sections, it is also possible to perform the heating and pressurizing treatment on only one layer element to change the shape of its cross section and perform no treatment on the other layer element such that the shape of its cross section remains unchanged before and after the step S2. Optionally, in the step S2, for the layer element subjected to the heating and pressurizing treatment, only the first resin layer on one side thereof is deformed to obtain a wedge-shaped cross section, and the shape of the first resin layer on the other side thereof remains unchanged. For example, for the layer element 100a, in the step S2, only its layer 101 is deformed to have a wedge shape, while the shape of the cross section of the layer 103a remains unchanged. Further, the step S2 may even be skipped, and the step S3 is performed immediately after the step S1. In these cases, the inner layer structures of the layer assembly 100 that do not have a cross section with an expected shape immediately before entering the step S3 and the shape of the  overall cross section of the layer assembly 100 will eventually be shaped into the expected shape by heating and pressurizing in the step S3.
For the step S3, the heating and pressurizing may only be performed on the stacked layer elements, or may be performed on the entire laminated glass structure formed by interposing the layer elements between two glass plates.
When the layer assembly 100 includes more layer structures, more layer elements may also be adaptively used in the manufacturing method. And those layer elements may be/may not be separately subjected to heating and pressurizing treatment in advance, and then they may be heated and pressurized after being stacked to form a final layer assembly 100.
Embodiment 4
Referring to Fig. 4, the present embodiment provides a method for manufacturing the layer assembly 200 of Embodiment 2.
In step S1’ , two  layer elements  200a and 200b are provided. The layer element 200a includes first resin layers 201 and 203a and a second resin layer 202, and the layer element 200b includes first resin layers 203b and 205 and a second resin layer 204. At this time, each of the  layer elements  200a and 200b has a uniform thickness.
In step S2’ , the  layer elements  200a and 200b are respectively heated and pressurized, so that each of the inner layer structures of the two layer elements is slightly melted, and thus deformed and shaped into a wedge shape.
In step S3’ , the  layer elements  200a and 200b are stacked, and are heated and pressurized again, so that the  layers  203a and 203b are slightly melted and integrated into a single first resin layer 203 by fusion.
Further, variations of the various implementations mentioned in Embodiment 3 are also applicable to the present embodiment.
Embodiment 5
Referring to Fig. 5, the present embodiment provides a vehicle window 300. The vehicle window 300 includes two glass plates. A layer assembly according to Embodiment 1 or 2 or various variations mentioned therein is interposed between the two glass plates. Since the layer assembly of the present disclosure has a wedge-shaped cross section, the vehicle window 300 also has a wedge-shaped cross section.
The HUD function of the vehicle window 300 will be explained below with reference to Fig. 5. For the sake of clarity, in Fig. 5, inner layer structures of the vehicle window 300 are not depicted, and only the outer surfaces of both sides of the vehicle window 300 are depicted. When an image A is projected toward the vehicle window 300, a portion of projected light is reflected on a first side surface of the vehicle window 300 (e.g., reflected at point B1) to enter a human eye C, which enables the user to observe a virtual image D1. At the same time, another portion of the light is refracted on the first side surface of the vehicle window 300 (e.g., refracted at point B2) to reach a second side surface of the vehicle window 300 and is reflected thereon (e.g., reflected at point B3) . Then it returns to the first side surface and is refracted on the first side surface to finally enter the human eye C, which enables the user to observe a virtual image D2. In the present disclosure, since the entire vehicle window 300 has a wedge-shaped cross section, the light in the two paths may exit the vehicle window 300 at the same point (point B1) and travel toward the human eye. Thus, the virtual images D1 and D2 observed by the human eye actually coincide with each other, so that the user would not observe a ghosting of the projected image.
In addition, although the wedge angle of the wedge-shaped cross section of the layer assembly in this embodiment is 0.5 mrad, a wedge angle in the range of 0.2-0.7 mrad is advantageous for the HUD function.
In addition, since the layer assembly in the above embodiments is used in the vehicle window 300 of the present embodiment, the vehicle window 300 would also have excellent acoustic-isolation performance.
It would be appreciated by those skilled in the art that modifications may be made to the above-described embodiments without departing from the inventive concept of the present disclosure. Therefore, it is understood that the present disclosure is not limited to the specific embodiments disclosed and is intended to cover all modifications within the spirit and scope of the present disclosure defined by the appended claims.

Claims (19)

  1. A layer assembly, wherein it has a wedge-shaped cross section in a first direction and comprises a plurality of resin layers, and materials of at least three pairs of adjacent resin layers of the plurality of resin layers are different.
  2. The layer assembly according to claim 1, wherein the plurality of resin layers comprise at least two acoustic layers.
  3. The layer assembly according to claim 1 or 2, wherein materials of at least four pairs of adjacent resin layers of the plurality of resin layers are different, and two resin layers of the plurality of resin layers having the lowest hardness are not adjacent and are not exposed to outermost sides of the layer assembly.
  4. The layer assembly according to any of claims 1 to 3, wherein it comprises three first resin layers and two second resin layers; the two second resin layers are not adjacent and are not exposed to outermost sides of the layer assembly; and the second resin layers have a hardness less than that of the first resin layers.
  5. The layer assembly according to claim 4, wherein the layer assembly is formed by heating and pressurizing at least two layer elements after being stacked, and each of the layer elements comprises two first resin layers and one second resin layer interposed between the two first resin layers.
  6. The layer assembly according to claim 5, wherein each of the at least two layer elements has a uniform thickness before being stacked, heated and pressurized.
  7. The layer assembly according to claim 5, wherein at least one of the at least two layer elements has a wedge-shaped cross section in the first direction before being stacked, heated and pressurized, and the layer element having a wedge-shaped cross section in the first direction is formed by preheating and pressurizing a layer element with a uniform thickness.
  8. The layer assembly according to any of claims 4 to 7, wherein at least one first resin layer and/or at least one second resin layer of the layer assembly have/has a wedge-shaped cross section in the first direction.
  9. The layer assembly according to any of claims 1 to 8, wherein the cross section of the layer assembly has a shape with a wedge angle of 0.2-0.7 mrad in the first direction.
  10. The layer assembly according to any of claims 1 to 9, wherein material of the first resin layer is PVB and/or PET, and material of the second resin layer is modified PVB, EVA, PU resin, PVC resin, silicone resin or any combination thereof.
  11. A vehicle window comprising two glass plates, wherein it further comprises a layer assembly according to any of claims 1 to 10, and the layer assembly is disposed between the two glass plates.
  12. A method for manufacturing a layer assembly, wherein it comprises:
    step 1, providing at least two layer elements, each of the layer elements comprising two first resin layers and one second resin layer interposed between the two first resin layers, and the second resin layers having a hardness less than that of the first resin layer; and
    step 2, heating and pressurizing the at least two layer elements after being stacked to form the layer assembly, the layer assembly having a wedge-shaped cross section in a first direction.
  13. The method according to claim 12, wherein the second resin layer is an acoustic layer.
  14. The method according to claim 12 or 13, wherein each of the layer elements in the step 1 has a uniform thickness.
  15. The method according to claim 12 or 13, wherein at least one of the at least two layer  elements in the step 1 has a wedge-shaped cross section in the first direction.
  16. The method according to claim 15, wherein the layer element having a wedge-shaped cross section in the first direction is formed by heating and pressurizing a layer element with a uniform thickness.
  17. The method according to any of claims 12 to 16, wherein at least one first resin layer and/or at least one second resin layer of the layer assembly have/has a wedge-shaped cross section in the first direction.
  18. The method according to any of claims 12 to 17, wherein the cross section of the layer assembly has a shape with a wedge angle of 0.2-0.7 mrad in the first direction.
  19. The method according to any of claims 12 to 18, wherein material of the first resin layer is PVB and/or PET, and material of the second resin layer is modified PVB, EVA, PU resin, PVC resin, silicone resin or any combination thereof.
PCT/CN2019/090845 2018-07-23 2019-06-12 Layer assembly, vehicle window and method for manufacturing layer assembly WO2020019890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810810616.3A CN110744870A (en) 2018-07-23 2018-07-23 Layer assembly, vehicle window and method for producing a layer assembly
CN201810810616.3 2018-07-23

Publications (1)

Publication Number Publication Date
WO2020019890A1 true WO2020019890A1 (en) 2020-01-30

Family

ID=69181270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090845 WO2020019890A1 (en) 2018-07-23 2019-06-12 Layer assembly, vehicle window and method for manufacturing layer assembly

Country Status (3)

Country Link
CN (1) CN110744870A (en)
AR (1) AR115616A1 (en)
WO (1) WO2020019890A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534152B2 (en) * 1989-09-28 2003-03-18 Ppg Industries Ohio, Inc. Windshield for head-up display system
EP1800855A1 (en) * 2005-12-26 2007-06-27 Asahi Glass Company, Limited Laminated glass for vehicle
US20080176043A1 (en) * 2007-01-24 2008-07-24 Asahi Glass Company, Limited Laminated glass for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534152B2 (en) * 1989-09-28 2003-03-18 Ppg Industries Ohio, Inc. Windshield for head-up display system
EP1800855A1 (en) * 2005-12-26 2007-06-27 Asahi Glass Company, Limited Laminated glass for vehicle
US20080176043A1 (en) * 2007-01-24 2008-07-24 Asahi Glass Company, Limited Laminated glass for vehicle

Also Published As

Publication number Publication date
CN110744870A (en) 2020-02-04
AR115616A1 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP7460005B2 (en) Laminated Glass
US10353200B2 (en) Laminated glass
EP3412448B1 (en) Laminated glass
KR102401304B1 (en) Interlayer with enhanced optical performance
KR101334563B1 (en) Laminated glass for vehicle
JP7114982B2 (en) laminated glass
JPWO2017090561A1 (en) Laminated glass
JP7003929B2 (en) Laminated glass
US10029541B2 (en) Laminated glass
WO2017090562A1 (en) Laminated glass
US11535008B2 (en) Laminated glass
KR20190040290A (en) Composite sheet glass for head-up display
US11022873B2 (en) Transparent screen, transparent screen assembly, manufacturing method of transparent screen, and manufacturing method of transparent screen assembly
KR102274626B1 (en) Method for producing thermoplastic composite film
WO2018216574A1 (en) Laminated glass
CN112424138A (en) Laminated glass
JP7059780B2 (en) Laminated glass
WO2020019890A1 (en) Layer assembly, vehicle window and method for manufacturing layer assembly
US11458707B2 (en) Laminated glass
JP4371654B2 (en) An interlayer film for laminated glass and laminated glass.
JP7363547B2 (en) laminated glass
WO2023127677A1 (en) Laminated glass and method for manufacturing laminated glass
US20220105709A1 (en) Glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840538

Country of ref document: EP

Kind code of ref document: A1