WO2020019637A1 - 一种彩色滤光板和显示器 - Google Patents

一种彩色滤光板和显示器 Download PDF

Info

Publication number
WO2020019637A1
WO2020019637A1 PCT/CN2018/121240 CN2018121240W WO2020019637A1 WO 2020019637 A1 WO2020019637 A1 WO 2020019637A1 CN 2018121240 W CN2018121240 W CN 2018121240W WO 2020019637 A1 WO2020019637 A1 WO 2020019637A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
blocks
conductive
color filter
film layer
Prior art date
Application number
PCT/CN2018/121240
Other languages
English (en)
French (fr)
Inventor
何怀亮
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020019637A1 publication Critical patent/WO2020019637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present application relates to the technical field of display devices, and in particular, to a color filter plate and a display.
  • Pure cut products are designed and produced on a mother glass substrate with the same size and specifications. Under the optical alignment technology, the same process parameters, the two products receive the same amount of ultraviolet light, forming the same size inclination.
  • the process parameters related to the pretilt angle are: the characteristics of liquid crystal, the intensity of ultraviolet light, the irradiation time, the CF plate (CF-Color filter, that is, the color filter plate is the upper substrate in the liquid crystal display panel) and the array plate ( The voltage difference between the array panel (ie, the lower substrate in the liquid crystal display panel).
  • CF_ITO also known as transparent conductive film ITO on the color filter plate, ITO is the abbreviation of Indium Tin Oxion
  • Array_ITO provide the upper and lower electrodes of the liquid crystal, because the wiring of the array board as the lower substrate is more complicated, and It is very long, and has high requirements on the process, and is subject to the gate electrode; therefore, Array_ITO is generally given a fixed voltage, grounded, and the size of the pretilt angle formed is controlled by changing the voltage of CF_ITO.
  • mixed-cut products are referred to as MMG (Multi-Model on Glass), which is to design and produce products of different sizes or specifications on a mother glass substrate.
  • MMG Multi-Model on Glass
  • the advantages of mixed-cut products are: high glass utilization rate; products of different sizes can be designed to meet market demand; and reduced costs.
  • the difficulty in mixing products is that they cannot find a common process parameter to achieve the best performance of the two products at the same time, especially when the aperture ratios of the two products are very different. For example, for two products with different sizes, if two With the same resolution, the pixel aperture ratio of the larger product will be much smaller than that of the smaller product. Under the optical alignment technology, the same process parameters, because the two products receive different amounts of ultraviolet light. , The size of the pre-tilt angle formed is also different, and the pre-tilt angle directly affects the contrast and response time of the product.
  • the aperture ratio of two different size products is very different, if the pixel aperture ratio of a larger product is smaller than a smaller product, this will result in the same pressure difference and illumination time.
  • the pretilt angle of the larger product will be smaller than the pretilt angle of the smaller product, which directly affects the contrast and response time of the product.
  • An object of the present application is to provide a color filter plate, including but not limited to solving the problem that different voltages cannot be applied to conductive films of color blocks of different sizes.
  • the technical solution adopted in the embodiment of the present application is to provide a color filter plate, including:
  • a color film layer including a plurality of color blocks spaced apart from each other on the surface of the substrate for color display;
  • the conductive film layer includes a plurality of conductive blocks corresponding to the color blocks on a one-to-one basis and respectively covering the surface of each of the color blocks. Adjacent conductive blocks are arranged at intervals to form a pair of conductive blocks. Electrodes for applying voltage to the color blocks.
  • the conductive blocks corresponding to the color blocks that are adjacent and of the same size are integrally disposed.
  • a plurality of the color blocks are arranged in an array, the color blocks in the same row have the same size, and the conductive blocks corresponding to the color blocks in the same row are integrated.
  • a plurality of the color blocks are arranged in an array, the color blocks in the same column have the same size, and the conductive blocks corresponding to the color blocks in the same column are integrally disposed.
  • each of the color blocks is rectangular, and the peripheral edges of the corresponding conductive blocks are protruded from the peripheral edges of the corresponding color blocks.
  • each of the conductive blocks is rectangular, and four sides of the conductive block are parallel to the corresponding sides of the corresponding color block.
  • each of the color blocks includes a plurality of red, green, and blue primary color tiles arranged in an array.
  • a black matrix is provided at the junction of adjacent red, green and blue primary color tiles.
  • Another object of the present application is to provide a method for manufacturing a color filter, including:
  • the color film layer includes a plurality of color blocks spaced apart and set to perform color display
  • a conductive film layer covering a surface of the color block is provided; the conductive film layer includes a plurality of conductive blocks corresponding to the color blocks in a one-to-one manner, and adjacent conductive blocks are arranged at intervals to form An electrode for applying a voltage to each of the color blocks, respectively.
  • Another object of the present application is to provide a display, including:
  • a color filter wherein the filter includes:
  • a color film layer including a plurality of color blocks spaced apart from each other on the surface of the substrate for color display;
  • the conductive film layer includes a plurality of conductive blocks corresponding to the color blocks on a one-to-one basis and respectively covering the surface of each of the color blocks. Adjacent conductive blocks are arranged at intervals to form a pair of conductive blocks. Electrodes for applying voltage to the color blocks; and
  • An array plate is configured to be attached to the color filter plate.
  • the color filter plate provided in the embodiment of the present application can separate the entire transparent conductive film into conductive blocks corresponding to color blocks of different sizes, and can apply different voltages to different conductive blocks to adjust the
  • the voltage parameter can make the pretilt angle of different products reach the best, and solves the problem that mixed-cut products cannot apply voltage alone.
  • FIG. 1 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of different products corresponding to FIG. 1;
  • FIG. 2 is a schematic structural diagram of different products corresponding to FIG. 1;
  • FIG. 3 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of different products corresponding to FIG. 3;
  • FIG. 5 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of different products corresponding to FIG. 5;
  • FIG. 7 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of different products corresponding to FIG. 7;
  • FIG. 9 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of different products corresponding to FIG. 9;
  • FIG. 11 is a schematic structural diagram of a color filter plate according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of different products corresponding to FIG. 11.
  • the color filter includes:
  • the color film layer includes a plurality of color blocks spaced from the surface of the substrate 1 for color display;
  • the conductive film layer includes a plurality of conductive blocks 2 corresponding to the color blocks on a one-to-one basis and respectively covering the surface of each of the color blocks.
  • the color filter plate provided in the present application can separate the entire transparent conductive film into conductive blocks corresponding to color blocks of different sizes, and can apply different voltages to different conductive blocks 2 respectively, and each color block corresponds to Preparing a product of one size and adjusting the voltage parameters of each color block can make the pretilt angle of different products reach the best. Because the pretilt angle directly affects the contrast and response time of the product, this can make the same glass substrate.
  • the products produced have the same performance in the same optical alignment technology, which solves the problem that in mixed cutting products, different products cannot be adjusted separately under pressure, and the pretilt angle can not achieve the best effect.
  • the size of each product shown in FIG. 2 is different, that is, three, four, or five completely different size products 3 are designed and generated on the same substrate, so that the substrate can reach Maximum utilization, reduce waste, reduce costs, and meet different market size products.
  • FIG. 4 shows that two products are designed and produced on one substrate.
  • One substrate is designed to produce four rows and two columns of products.
  • the products of the same row have the same size and different products are arranged at different intervals.
  • Two products 3 are produced on the same glass substrate, and the same product is arranged in a row. Therefore, when designing, the color blocks of the same row are the same size and spaced, and each of the color blocks is covered with a corresponding conductive block.
  • the conductive blocks covered on the same color block have the same size, and the conductive blocks are not connected. Since the conductive blocks 2 are not connected to each other during the preparation of different products, the pretilt angle is optimized by applying different voltages, so that the performance of products of different sizes and different specifications prepared by the mixed cutting method can reach optimal.
  • two products 3 are produced on the same substrate, the same product is arranged in a row, the same product is adjacent, and the color blocks of the same row are the same size and spaced.
  • One of the color blocks is covered with a corresponding conductive block, and the conductive blocks covered with the same color block are of the same size, and the conductive blocks are not connected. Since the conductive blocks 2 are not connected to each other during the preparation of different products, the pretilt angle is optimized by applying different voltages, so that the performance of products of different sizes and different specifications prepared by the mixed cutting method can reach optimal.
  • the conductive blocks 2 are arranged at intervals, that is, the conductive blocks 2 are not connected to each other, so that the size of the conductive blocks can be flexibly set according to the size of the product.
  • the conductive blocks 2 corresponding to the color blocks of adjacent and same-sized products are integrally disposed.
  • the products of the same size are concentrated in one area. In this way, the conductive blocks of the products of the same size are set as a whole. The same voltage does not need to be applied to each product separately, so the production efficiency can be greatly improved.
  • a plurality of the color blocks are arranged in an array.
  • the color blocks in the same row have the same size, and the corresponding conductive regions of the color blocks in the same row.
  • the block 2 is provided integrally.
  • the products of the same size are arranged in a row. In this way, the conductive blocks of the products of the same size are set as a whole. Because they are the same product, the same voltage can be applied at the same time. Applying voltage to the product can greatly improve production efficiency.
  • a plurality of the color blocks are arranged in an array, and the color blocks in the same column have the same size, and the corresponding conductive regions of the color blocks in the same column.
  • the blocks are integrated.
  • the products of the same size are arranged in a row. In this way, the conductive blocks of the products of the same size are set as a whole. Because they are the same product, the same voltage can be applied at the same time. Applying voltage to each product can greatly increase the efficiency of production.
  • each of the color blocks is rectangular, and each of the corresponding color blocks is rectangular.
  • the peripheral edges of the conductive blocks 2 protrude from the corresponding peripheral edges of the color blocks. Such a design can improve the conductivity.
  • each of the conductive blocks 2 is rectangular, and four sides of the conductive blocks are parallel to the corresponding sides of the corresponding color blocks. This design has a reasonable layout, saves material, and is easy to cut.
  • FIG. 1, FIG. 3, and FIG. 5 The centers of the colored blocks of the rectangular structure and the conductive blocks of the rectangular structure coincide with each other. The distances between the respective sides of the blocks are equal, so that the colored blocks are located in the middle of the conductive block 2 to ensure the best results of the products produced.
  • FIG. 7, FIG. 9, and FIG. 11 For the case where the same products are adjacent, the same color blocks are adjacent, and the conductive blocks on the adjacent and same color blocks are connected as one. At this time, the distances between the sides of the conductive block corresponding to the nearest sides are equal, so that the colored blocks in this area are located in the middle of the conductive block 2 to ensure the best effect of the produced product.
  • each of the color blocks includes a plurality of red, green, and blue primary color tiles arranged in an array.
  • RGB color model also known as RGB color model or red, green, and blue color model, is an additive color model that changes the color light of the three primary colors of red, green, and blue to different colors. The ratios are added to produce a wide variety of shades.
  • the main purpose of the RGB color model is to detect, represent, and display images in electronic systems, such as televisions and computers, but it is also used in traditional photography. Before the electronic age, based on human perception of color, the RGB color model had solid theoretical support. RGB is a device-dependent color space.
  • RGB is a device-dependent color space: different devices detect and reproduce specific RGB values differently, because color substances (fluorescers or dyes) and their individual response levels to red, green, and blue vary with manufacturing Different vendors, even the same equipment at different times.
  • a black matrix is provided at the junction of adjacent red, green and blue primary color tiles.
  • the black matrix is deposited as an opaque portion between the red, green, and blue primary color tiles, and is used to prevent background light leakage, improve display contrast, prevent color mixing, and increase color purity.
  • the black matrix is formed by sputtering a chromium layer on a glass substrate, and then photolithography to obtain a desired pattern, or a resin photoresist containing a black dye is prepared by photolithography.
  • Another object of the present application is to provide a color filter including:
  • a color film layer including a plurality of color blocks spaced apart from each other on the surface of the substrate for color display;
  • the conductive film layer includes a plurality of conductive blocks 2 corresponding to the color blocks 2 and covering the surfaces of each of the color blocks. Adjacent conductive blocks 2 are arranged at intervals for forming the conductive blocks 2. Electrodes for applying a voltage to each of the color blocks;
  • the conductive blocks 2 corresponding to the adjacent colored blocks of the same size are provided integrally;
  • a plurality of the color blocks are arranged in an array.
  • the size of the color blocks in the same row is the same, and the conductive blocks 2 corresponding to the color blocks in the same row are integrated.
  • the color filter of the present application can divide the entire transparent conductive film into conductive blocks corresponding to colored blocks of different sizes, and can apply different voltages to different conductive blocks 2 to adjust the voltage parameters of each product. It can make the pretilt angle of different products reach the best.
  • the intensity of the laser is adjusted after the conductive film layer is divided into blocks, and then the color filter plate can be directly cut into blocks corresponding to the array plate by the laser to prepare different products.
  • Another object of the present application is to provide a method for manufacturing a color filter, including:
  • the color film layer includes a plurality of color blocks spaced apart and set to perform color display
  • a conductive film layer covering a surface of the color block is provided; the conductive film layer includes a plurality of conductive blocks corresponding to the color blocks in a one-to-one manner, and adjacent conductive blocks are arranged at intervals to form An electrode for applying a voltage to each of the color blocks, respectively.
  • Another object of the present application is to provide a display, including:
  • a color filter wherein the filter includes:
  • a color film layer including a plurality of color blocks spaced apart from each other on the surface of the substrate for color display;
  • the conductive film layer includes a plurality of conductive blocks corresponding to the color blocks on a one-to-one basis and respectively covering the surface of each of the color blocks, and adjacent conductive blocks are arranged at intervals to form a pair of conductive blocks. Electrodes for applying voltage to the color blocks; and
  • An array plate is configured to be attached to the color filter plate.
  • the display provided in the embodiment of the present application uses a color filter prepared by mixing and cutting. Since different voltages are applied respectively, the pretilt angle of each color filter can be optimized, so the contrast and response time of the display used for the preparation are both Can achieve the best results.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩色滤光板和显示器,属于显示设备技术领域,包括基板(1)和设置于基板(1)表面的彩色膜层和覆盖于彩色膜层表面的导电膜层,彩色膜层包括多个间隔设置于基板(1)表面的彩色区块,导电膜层包括多个与彩色区块一一对应的导电区块(2)。

Description

一种彩色滤光板和显示器
本申请要求于2018年07月24日提交中国专利局,申请号为201810820947.5,发明名称为“一种彩色滤光板和显示器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示设备技术领域,尤其涉及一种彩色滤光板和显示器。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
纯切产品是在一个母玻璃基板上设计并生产出相同尺寸规格的产品,在光配向技术条件下,同样的制程参数,两种产品接收到的紫外光的照光量相同,形成大小相同的预倾角。
其中,和预倾角相关的制程参数有:液晶的特性、紫外光的强度、照射时间、CF板(CF-Color Filter,也即彩色滤光板,是液晶显示面板中的上基板)和array板(阵列板也即液晶显示面板中的下基板)之间所加的电压差。
在液晶显示面板中,CF_ITO(也即彩色滤光板上的透明导电膜ITO,ITO是Indium Tin Oxido的缩写)和Array_ITO提供液晶的上下电极,由于作为下基板的阵列板的线路比较复杂,并且线路很长,对制程的要求很高,且受制于gate门电极;所以一般给Array_ITO一个固定的电压,接地,通过改变CF_ITO的电压来控制形成的预倾角的大小。
相对于纯切产品来说,混切产品简称MMG(Multi-Model on Glass),也就是在一个母玻璃基板上设计并生产出不同的尺寸或规格的产品。混切产品的优 势是:玻璃利用率很高;可以设计出满足市场需求的不同尺寸的产品;降低成本。
混切产品的困难是无法找到一个共用的制程参数,使两种产品的性能同时达到最佳,尤其是两种产品的开口率大小相差很多时,例如,对于尺寸不同的两种产品,如果两者的分辨率一样,尺寸较大的产品的像素开口率会远远小于尺寸较小的产品,在光配向技术条件下,同样的制程参数,由于两种产品接收到的紫外光的照光量不同,则形成的预倾角大小也不相同,而预倾角直接影响产品的对比度和响应时间。
因此,对于混切产品,由于两种不同尺寸的产品的开口率差异很大,如果尺寸较大的产品的像素开口率小于尺寸较小的产品,这会导致在相同的压差和照光时间下,尺寸较大的产品的预倾角会小于尺寸较小的产品的预倾角,从而直接影响产品的对比度和响应时间。
分别给不同尺寸的两种产品施加不同的电压差,可以使两种产品形成相同的预倾角;但目前的PSVA产品(PSVA-Polmer Stabilized Vertivally Aligned,液晶),彩色滤光板上的透明导电膜是整面的,无法对两种不同尺寸产品的CF_ITO施加不同的电压。
申请内容
本申请的一个目的在于提供一种彩色滤光板,包括但不限于解决不能对不同尺寸的彩色区块的导电膜施加不同电压的问题。
本申请实施例采用的技术方案是:提供一种彩色滤光板,包括:
基板;
彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块,相邻的所述导电区块间隔设置,用于形成分别对每个所述彩色区块施加电压的电极。
在一个实施例中,相邻且相同尺寸的所述彩色区块对应的所述导电区块一体设置。
在一个实施例中,多个所述彩色区块呈阵列排布,同一行所述彩色区块的尺寸相同,同一行所述彩色区块对应的所述导电区块一体设置。
在一个实施例中,多个所述彩色区块呈阵列排布,同一列所述彩色区块的尺寸相同,同一列所述彩色区块对应的所述导电区块一体设置。
在一个实施例中,每一个所述彩色区块均为长方形,对应的每一个所述导电区块的四周边缘均凸出于相应的所述彩色区块的四周边缘。
在一个实施例中,每一个所述导电区块均为长方形,且所述导电区块的四边分别与相应的所述彩色区块对应的边平行。
在一个实施例中,每一个所述彩色区块分别包括多个呈阵列排列的红绿蓝三原色图块。
在一个实施例中,相邻的所述红绿蓝三原色图块的交界处设有黑矩阵。
本申请的另一目的在于提供一种彩色滤光板的制作方法,包括:
设置基板;
在所述基板表面设置彩色膜层;其中,所述彩色膜层包括多个间隔设置的彩色区块,设置为进行色彩显示;
设置覆盖于所述彩色区块表面的导电膜层;所述导电膜层包括多个与所述彩色区块一一对应的导电区块,相邻的所述导电区块间隔设置,设置为形成分别对每个所述彩色区块施加电压的电极。
本申请的再一目的在于提供一种显示器,包括:
彩色滤光板,其中所述滤光板包括:
基板;
彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块,相邻的所述导电区块间隔设置,用于形成分别对每个所述彩色区块施加电压的电极;以及
阵列板,用于与所述彩色滤光板贴合。
本申请实施例所提供的彩色滤光板通过将整面透明导电膜分隔成与不同尺寸的彩色区块对应的导电区块,可以分别给不同的导电区块施加不同的电压,调整每个产品的电压参数,就能够使不同产品的预倾角均达到最佳,解决了混切产品不能单独施加电压的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的彩色滤光板的结构示意图;
图2为与图1对应的不同产品的结构示意图;
图3为本申请实施例提供的彩色滤光板的结构示意图;
图4为与图3对应的不同产品的结构示意图;
图5为本申请实施例提供的彩色滤光板的结构示意图;
图6为与图5对应的不同产品的结构示意图;
图7为本申请实施例提供的彩色滤光板的结构示意图;
图8为与图7对应的不同产品的结构示意图;
图9为本申请实施例提供的彩色滤光板的结构示意图;
图10为与图9对应的不同产品的结构示意图;
图11为本申请实施例提供的彩色滤光板的结构示意图;
图12为与图11对应的不同产品的结构示意图。
其中,图中各附图标记:
1-基板;2-导电区块;3-产品。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
请一并参阅图1及图2、图3及图4,现对本申请提供的彩色滤光板进行说明。所述彩色滤光板,包括:
基板1;
彩色膜层,包括多个间隔设置于所述基板1表面的彩色区块,用于进行色彩显示;
导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块2,相邻的所述导电区块2间隔设置,用于形成分别对每个所述彩色区块施加电压的电极。
本申请提供的彩色滤光板,通过将整面透明导电膜分隔成与不同尺寸的彩色区块对应的导电区块,可以分别给不同的导电区块2施加不同的电压,每一个彩色区块对应制备一种尺寸的产品,调整每个彩色区块的电压参数,就能够使得不同产品的预倾角均达到最佳,由于预倾角直接影响产品的对比度和响应时间,这样可使得同一块玻璃基板上生产的产品,在相同的光配向技术,性能同时达到最佳,解决了在混切产品中,不同的产品不能单独加压调整,而导致的预倾角不能达到最佳的效果的问题。
在一个实施例中,图2示出的各产品的尺寸均不相同,也即在同一块基板上设计并生成出三种、四种或五种等完全不同尺寸的产品3,可使基板达到最大利用率,减少浪费,降低成本,同时满足市场需求的不同尺寸的产品。
在一个实施例中,参阅图3及图4,图4是一块基板上设计并生产出两种产品,一块基板设计生产四行两列产品,同一行的产品尺寸相同,不同产品间隔设置。同一块玻璃基板上生产两种产品3,同一种产品成行排列,因此设计 时,同一行的彩色区块的尺寸相同且间隔设置,每一个所述彩色区块上分别覆盖相应的导电区块,相同的彩色区块上覆盖的导电区块的尺寸相同,各导电区块均不相连。由于不同产品在制备过程中,导电区块2互不相连,因此,通过施加的不同电压,预倾角均达到了最佳,使得采用混切的方式制备的不同尺寸不同规格的产品的性能均达到最佳。
在一个实施例中,请参阅图5及图6,同一块基板上生产两种产品3,同一种产品成行排列,相同的产品相邻,同一行的彩色区块的尺寸相同且间隔设置,每一个所述彩色区块上分别覆盖相应的导电区块,相同的彩色区块上覆盖的导电区块的尺寸相同,各导电区块均不相连。由于不同产品在制备过程中,导电区块2互不相连,因此,通过施加的不同电压,预倾角均达到了最佳,使得采用混切的方式制备的不同尺寸不同规格的产品的性能均达到最佳。各个导电区块2间隔设置,也即,各个导电区块2均互不相连,这样可以根据产品的尺寸,灵活的设置导电区块的大小。
在一个实施例中,参阅图7及图8,相邻且相同尺寸产品的所述彩色区块对应的所述导电区块2一体设置。为使基板得到最佳的利用率,对于同一块基板,生产的相同尺寸的产品集中在一个区域,这样,相同尺寸的产品的导电区块设置为一体,因为是相同的产品,则可以同时施加相同的电压,无需单独的再针对每一个产品施加电压,这样,可大大提高生产的效率。
在一个实施例中,参阅图9及图10,多个所述彩色区块呈阵列排布,同一行所述彩色区块的尺寸相同,同一行所述彩色区块的对应的所述导电区块2一体设置。对于同一块基板,生产的相同尺寸的产品排列成一行,这样,相同尺寸的产品的导电区块设置为一体,因为是相同的产品,则可以同时施加相同的电压,无需单独的再针对每一个产品施加电压,这样,可大大提高生产的效 率。
在一个实施例中,参阅图11及图12,多个所述彩色区块呈阵列排布,同一列所述彩色区块的尺寸相同,同一列所述彩色区块的对应的所述导电区块一体设置。对于同一块玻璃基板上,生产的相同尺寸的产品排列成一列,这样,相同尺寸的产品的导电区块设置为一体,因为是相同的产品,则可以同时施加相同的电压,无需单独的再针对每一个产品施加电压,这样,可大大提高生产的效率。
在一个实施例中,请参阅图1、图3、图5及图7,作为本申请提供的彩色滤光板的一种具体实施方式,每一个所述彩色区块均为长方形,对应的每一个所述导电区块2的四周边缘均凸出于相应的所述彩色区块的四周边缘。如此的设计能够提高导电性能。
在一个实施例中,请参阅图1、图2,每一个所述导电区块2均为长方形,且所述导电区块的四边分别与相应的所述彩色区块对应的边平行。这样的设计,布局合理,节省材料,也便于切割。
在一个实施例中,请参阅图1、图3及图5,长方形结构的彩色区块和长方形结构的导电区块的中心重合,各对应的边平行,且导电区块的四边与对应的彩色区块的对应的各边的距离均相等,以使得彩色区块位于导电区块2的中间,保证生产的产品的最佳效果。
在一个实施例中,请参阅图7、图9及图11,对于相同的产品相邻的情况,相同的彩色区块相邻,相邻且相同的彩色区块上的导电区块连为一体,此时,导电区块的各边距对应的最近的各边的距离均相等,以使得这一区域的彩色区块位于导电区块2的中间,保证生产的产品的最佳效果。
在一个实施例中,每一个所述彩色区块分别包括多个呈阵列排列的红绿蓝 三原色图块。三原色光(英语:RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以产生多种多样的色光。RGB颜色模型的主要目的是在电子***中检测,表示和显示图像,比如电视和电脑,但是在传统摄影中也有应用。在电子时代之前,基于人类对颜色的感知,RGB颜色模型已经有了坚实的理论支撑。RGB是一种依赖于设备的颜色空间,不同设备对特定RGB值的检测和重现都不一样,因为颜色物质(荧光剂或者染料)和它们对红、绿和蓝的单独响应水平随着制造商的不同而不同,甚至是同样的设备不同的时间也不同。RGB是一种依赖于设备的颜色空间:不同设备对特定RGB值的检测和重现都不一样,因为颜色物质(荧光剂或者染料)和它们对红、绿和蓝的单独响应水平随着制造商的不同而不同,甚至是同样的设备不同的时间也不同。
在一个实施例中,相邻的所述红绿蓝三原色图块的交界处设有黑矩阵。黑矩阵沉积为在红绿蓝三原色图块之间的不透光部分,用于防止背景光泄露,提高显示对比度,防止混色和增加颜色的纯度。本实施例中,黑矩阵的形成是在玻璃基板上溅射铬层,然后光刻出所需要的图案,或者采用含有黑色染料的树脂光刻胶,用光刻法制备而成。
本申请的另一目的在于提供一种彩色滤光板,包括:
基板1;
彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
导电膜层,包括多个与所述彩色区块2一一对应且分别覆盖于每个所述彩色区块表面的导电区块2,相邻的所述导电区块2间隔设置,用于形成分别对每个所述彩色区块施加电压的电极;
相邻且相同尺寸的所述彩色区块对应的所述导电区块2一体设置;
多个所述彩色区块呈阵列排布,同一行所述彩色区块的尺寸相同,同一行所述彩色区块对应的所述导电区块2一体设置。
申请本申请彩色滤光板通过将整面透明导电膜分隔成与不同尺寸的彩色区块对应的导电区块,可以分别给不同的导电区块2施加不同的电压,调整每个产品的电压参数,就能够使不同产品的预倾角均达到最佳。
本申请提供的彩色滤光板,在导电膜层分区分块完成后,调整激光的强度,即可直接用激光把彩色滤光板切割成与阵列板对应的区块,制备为不同的产品。
本申请的另一目的在于提供一种彩色滤光板的制作方法,包括:
设置基板;
在所述基板表面设置彩色膜层;其中,所述彩色膜层包括多个间隔设置的彩色区块,设置为进行色彩显示;
设置覆盖于所述彩色区块表面的导电膜层;所述导电膜层包括多个与所述彩色区块一一对应的导电区块,相邻的所述导电区块间隔设置,设置为形成分别对每个所述彩色区块施加电压的电极。
本申请的另一目的在于提供一种显示器,包括:
彩色滤光板,其中所述滤光板包括:
基板;
彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块,相邻的所述导电区块间隔设置,用于形成分别对每个所 述彩色区块施加电压的电极;以及
阵列板,用于与所述彩色滤光板贴合。
申请本申请实施例提供的显示器采用混切制备的彩色滤光板,由于分别施加了不同的电压,各彩色滤光板的预倾角均能够达到最佳,因此用于制备的显示器的对比度和响应时间均能够达到最佳的效果。
以上所述仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。.
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 一种彩色滤光板,包括:
    基板;
    彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
    导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块,相邻的所述导电区块间隔设置,用于形成分别对每个所述彩色区块施加电压的电极。
  2. 如权利要求1所述的彩色滤光板,其中,相邻且相同尺寸的所述彩色区块对应的所述导电区块一体设置。
  3. 如权利要求1所述的彩色滤光板,其中,多个所述彩色区块呈阵列排布,同一行所述彩色区块的尺寸相同,同一行所述彩色区块对应的所述导电区块一体设置。
  4. 如权利要求1所述的彩色滤光板,其中,多个所述彩色区块呈阵列排布,同一列所述彩色区块的尺寸相同,同一列所述彩色区块对应的所述导电区块一体设置。
  5. 如权利要求1所述的彩色滤光板,其中,每一个所述彩色区块均为长方形,对应的每一个所述导电区块的四周边缘均凸出于相应的所述彩色区块的四周边缘。
  6. 如权利要求5所述的彩色滤光板,其中,每一个所述导电区块均为长方形,且所述导电区块的四边分别与相应的所述彩色区块对应的边平行。
  7. 如权利要求1所述的彩色滤光板,其中,每一个所述彩色区块分别包 括多个呈阵列排列的红绿蓝三原色图块。
  8. 如权利要求7所述的彩色滤光板,其中,相邻的所述红绿蓝三原色图块的交界处设有黑矩阵。
  9. 一种彩色滤光板的制作方法,包括:
    设置基板;
    在所述基板表面设置彩色膜层;其中,所述彩色膜层包括多个间隔设置的彩色区块,设置为进行色彩显示;
    设置覆盖于所述彩色区块表面的导电膜层;所述导电膜层包括多个与所述彩色区块一一对应的导电区块,相邻的所述导电区块间隔设置,设置为形成分别对每个所述彩色区块施加电压的电极。
  10. 如权利要求9所述的彩色滤光板,其特征在于,相邻且相同尺寸的所述彩色区块对应的所述导电区块一体设置。
  11. 如权利要求9所述的彩色滤光板,其中,多个所述彩色区块呈阵列排布,同一行所述彩色区块的尺寸相同,同一行所述彩色区块对应的所述导电区块一体设置。
  12. 如权利要求9所述的彩色滤光板,其中,多个所述彩色区块呈阵列排布,同一列所述彩色区块的尺寸相同,同一列所述彩色区块对应的所述导电区块一体设置。
  13. 如权利要求9所述的彩色滤光板,其中,每一个所述彩色区块均为长方形,对应的每一个所述导电区块的四周边缘均凸出于相应的所述彩色区块的四周边缘。
  14. 如权利要求13所述的彩色滤光板,其中,每一个所述导电区块均为长方形,且所述导电区块的四边分别与相应的所述彩色区块对应的边平行。
  15. 如权利要求9所述的彩色滤光板,其中,每一个所述彩色区块分别包括多个呈阵列排列的红绿蓝三原色图块。
  16. 如权利要求15所述的彩色滤光板,其中,相邻的所述红绿蓝三原色图块的交界处设有黑矩阵。
  17. 一种显示器,包括:
    彩色滤光板,其中所述滤光板包括:
    基板;
    彩色膜层,包括多个间隔设置于所述基板表面的彩色区块,用于进行色彩显示;
    导电膜层,包括多个与所述彩色区块一一对应且分别覆盖于每个所述彩色区块表面的导电区块,相邻的所述导电区块间隔设置,用于形成分别对每个所述彩色区块施加电压的电极;以及
    阵列板,用于与所述彩色滤光板贴合。
PCT/CN2018/121240 2018-07-24 2018-12-14 一种彩色滤光板和显示器 WO2020019637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810820947.5 2018-07-24
CN201810820947.5A CN108873462A (zh) 2018-07-24 2018-07-24 一种彩色滤光板和显示器

Publications (1)

Publication Number Publication Date
WO2020019637A1 true WO2020019637A1 (zh) 2020-01-30

Family

ID=64304774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121240 WO2020019637A1 (zh) 2018-07-24 2018-12-14 一种彩色滤光板和显示器

Country Status (2)

Country Link
CN (1) CN108873462A (zh)
WO (1) WO2020019637A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873462A (zh) * 2018-07-24 2018-11-23 惠科股份有限公司 一种彩色滤光板和显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293757A1 (en) * 2007-07-31 2012-11-22 Au Optronics Corporation Liquid crystal display panel and color filter
CN104865734A (zh) * 2015-06-08 2015-08-26 深圳市华星光电技术有限公司 彩膜基板及液晶面板
JP2017097238A (ja) * 2015-11-26 2017-06-01 シャープ株式会社 カラーフィルタ基板および表示装置
CN107544181A (zh) * 2017-09-25 2018-01-05 惠科股份有限公司 显示面板的制造方法及其制造装置
CN107748459A (zh) * 2017-09-25 2018-03-02 惠科股份有限公司 一种显示面板的制造方法和制造装置
CN108873462A (zh) * 2018-07-24 2018-11-23 惠科股份有限公司 一种彩色滤光板和显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841467B (zh) * 2011-06-24 2015-09-23 群康科技(深圳)有限公司 彩色滤光基板及应用其的显示面板
CN106094353A (zh) * 2016-08-26 2016-11-09 深圳市华星光电技术有限公司 一种采用套切技术生产液晶面板的基板及其配向方法
CN106200132A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种改善套切面板光配向性的装置
CN106405943A (zh) * 2016-12-06 2017-02-15 深圳市华星光电技术有限公司 液晶显示面板的光配向方法
CN106405942A (zh) * 2016-12-06 2017-02-15 深圳市华星光电技术有限公司 液晶显示面板的光配向方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293757A1 (en) * 2007-07-31 2012-11-22 Au Optronics Corporation Liquid crystal display panel and color filter
CN104865734A (zh) * 2015-06-08 2015-08-26 深圳市华星光电技术有限公司 彩膜基板及液晶面板
JP2017097238A (ja) * 2015-11-26 2017-06-01 シャープ株式会社 カラーフィルタ基板および表示装置
CN107544181A (zh) * 2017-09-25 2018-01-05 惠科股份有限公司 显示面板的制造方法及其制造装置
CN107748459A (zh) * 2017-09-25 2018-03-02 惠科股份有限公司 一种显示面板的制造方法和制造装置
CN108873462A (zh) * 2018-07-24 2018-11-23 惠科股份有限公司 一种彩色滤光板和显示器

Also Published As

Publication number Publication date
CN108873462A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US9256012B2 (en) Color filter substrate, manufacturing method thereof and display device
US9535196B2 (en) Color filter substrate, method for fabricating the same, display panel and display device
US9188718B2 (en) Color filter substrate comprising a first filter block having an area less than an area of a colorful filter block and liquid crystal display
US8558976B2 (en) Color filter substrate and liquid crystal display device
WO2020259561A1 (zh) 彩膜基板及其制作方法和显示装置
WO2013159527A1 (zh) 显示装置、彩色滤光片及其制作方法
WO2020187108A1 (zh) 显示面板及其制造方法、显示装置
US11175442B2 (en) Color filter substrate and display panel
US10197845B2 (en) Manufacturing method of color filter substrate and manufacturing method of liquid crystal panel
TW201541165A (zh) 顯示面板
WO2017186095A1 (zh) 显示面板及其制备方法、显示装置
US9513413B2 (en) Display device, color filter substrate and manufacturing method thereof
WO2019153910A1 (zh) 彩膜基板及其制作方法、显示面板及显示装置
WO2021134867A1 (zh) 显示面板及其制作方法
CN105974643B (zh) 彩膜基板及其制造方法
JP5738748B2 (ja) 液晶表示素子
WO2013010457A1 (zh) 彩色滤光片基板、液晶面板及液晶显示器
WO2020019637A1 (zh) 一种彩色滤光板和显示器
CN107272289B (zh) 一种液晶显示面板和液晶显示装置
CN103246107A (zh) 一种显示装置、彩膜基板及其制作方法
CN103076696B (zh) 一种显示装置、彩色滤光片及其制作方法
WO2018176580A1 (zh) 一种彩色滤光基板
CN100407014C (zh) 液晶显示装置
US11281043B2 (en) Display panel and display apparatus
WO2017124790A1 (zh) 像素结构、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927820

Country of ref document: EP

Kind code of ref document: A1