WO2020019425A1 - 一种可变长度超声波音频编码方法及解码方法 - Google Patents

一种可变长度超声波音频编码方法及解码方法 Download PDF

Info

Publication number
WO2020019425A1
WO2020019425A1 PCT/CN2018/105163 CN2018105163W WO2020019425A1 WO 2020019425 A1 WO2020019425 A1 WO 2020019425A1 CN 2018105163 W CN2018105163 W CN 2018105163W WO 2020019425 A1 WO2020019425 A1 WO 2020019425A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
length
ultrasonic
variable
byte
Prior art date
Application number
PCT/CN2018/105163
Other languages
English (en)
French (fr)
Inventor
唐咏杰
Original Assignee
上海英翼文化传播有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海英翼文化传播有限公司 filed Critical 上海英翼文化传播有限公司
Publication of WO2020019425A1 publication Critical patent/WO2020019425A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Definitions

  • the invention relates to an ultrasonic communication encoding method and a decoding method, in particular to a variable-length ultrasonic audio encoding method and a decoding method.
  • Ultrasound transmission is similar to the acoustic communication of traditional telephones on analog lines. Although we now have faster Internet connections, ultrasonic data transmission is still a good choice because the technology does not require any special hardware or device pairing, only Requires speakers and microphone, easy and fast to use. According to the field and spatial range of ultrasonic transmission and the optimization application of ultrasonic carrying information decoding, the smaller the space, the shorter the information length can be carried, and the shorter the information length, the faster the ultrasound can be analyzed. efficacy.
  • the existing ultrasonic audio coding uses fixed data length bytes. This method has the advantage of easy management.
  • the existing ultrasonic audio coding has the following problems: In order to avoid repeated misjudgment of vocoding analysis, the existing vocoding management must rely on the online central server control, and the application end still needs to use the Internet connection; for some simple applications In the scenario, the extra data length bytes seem meaningless.
  • An object of the present invention is to provide a variable-length ultrasonic audio encoding method and a decoding method, so as to solve the problems raised in the background art described above.
  • a variable-length ultrasonic audio encoding method includes the following steps:
  • the ultrasonic communication encoding and decoding format is: a plurality of bytes are arranged in sequence to form a series of encoding sequences; the encoding sequence includes a data file header, a data length byte and a variable length data byte; A header is located at the forefront of the encoding sequence; the data length byte is located behind the data file header, and the data length byte is used to declare the length n of the variable-length data byte; the variable The length data byte is located after the data length byte and is a content signal composed of n bytes.
  • the encoding sequence further includes an error check code, and the error check code is located at the end of the encoding sequence.
  • the error check code includes 2 bytes, and the variable length data byte is subjected to a CRC-16 check to generate the error check code; when sent, the error check code has a low 8 It comes first, and the high 8 comes after.
  • each byte in the encoding sequence represents a piece of ultrasonic signal; each byte in the encoding sequence represents a piece of ultrasonic signal; each bit in the byte represents a fixed-frequency ultrasonic wave, so The frequency of the ultrasonic wave is calculated by a preset frequency determining formula; the ultrasonic signal is a harmonic signal formed when the ultrasonic wave represented by each bit in the corresponding byte is transmitted together.
  • the data file header uses a different frequency determination method from other parts, and the rest of the data file header uses the same frequency determination method, so that the ultrasonic signal represented by the data file header Is different from the frequency domain in which the ultrasonic signal represented by the rest of the data file header is located.
  • the ultrasonic signal represented by each byte in the encoding sequence is sequentially transmitted in time sequence to form the waveform of the ultrasonic signal data;
  • the time length of the ultrasonic signal represented by each byte is t1, and t1 may preferably 100ms, the volume level is preferably -0.6dB.
  • variable-length ultrasonic audio decoding method including the following steps:
  • step (IV) receiving the ultrasonic signal data waveform and detecting whether a preset data file header is received; if yes, proceed to step (IV);
  • V reading the corresponding ultrasonic signal data waveform according to the data length byte; and performing fast Fourier transform on the read ultrasonic signal to obtain signal spectrum data;
  • variable-length ultrasonic audio decoding method of the present invention further includes the following steps:
  • the error check code is used to determine whether the encoding sequence is in error, and if an error occurs, an error is reported to the user.
  • variable-length ultrasonic audio encoding method and decoding method of the present invention can be used offline, without relying on the control of an online central server;
  • variable-length ultrasonic audio encoding method and decoding method of the present invention can adapt to various spatial ranges, and use ultrasonic waves with different data lengths for different spatial ranges, which can more effectively use the computing performance of the computer, and at the same time can improve the customer experience .
  • FIG. 1 is a flowchart of a variable-length ultrasonic audio encoding method according to the present invention
  • FIG. 2 is a schematic structural diagram of a coding sequence in the present invention.
  • FIG. 3 is a flowchart of a variable-length ultrasonic audio decoding method according to the present invention.
  • a variable-length ultrasonic audio encoding method includes the following steps:
  • the encoding and decoding format of the ultrasonic communication is: a sequence of encoding sequences composed of several bytes; the encoding sequence includes a data file header, a data length byte, and a variable length data word. Section and error check code.
  • the data file header 1 includes 1 byte, which is located at the forefront of the coding sequence, and is used to announce the data usage, attribution and retention information of this code sequence.
  • the content of the data file header is preset and carries an ultrasonic signal with a specific frequency. When the receiving device receives the signal, it starts to read the data immediately.
  • the data length byte includes 1 byte, which is located after the data file header and is used to declare the length of the variable length data byte.
  • Variable-length data bytes are used to carry information that needs to be transmitted, and are located after the data length bytes.
  • variable-length data bytes of different lengths can be used. The smaller the range is, the shorter the information length can be, and the shorter the information length, the faster the ultrasound can be. In this embodiment, the length of the variable-length data byte is 5 bytes.
  • the error check code is located at the end of the encoding sequence and is used to detect whether an error occurs in the data waveform of the ultrasonic signal during transmission.
  • the error check code includes 2 bytes, and the variable-length data bytes are subjected to a CRC-16 check to generate an error check code. When transmitting, the lower 8 bits of the error check code come first, and the higher 8 bits come last.
  • Each byte in the encoding sequence represents a piece of ultrasonic signal; each bit in the byte represents a fixed-frequency ultrasonic wave, and the frequency of the ultrasonic wave is calculated by a preset frequency determination formula; the ultrasonic signal is A corresponding harmonic signal formed when the ultrasonic waves represented by each bit in the corresponding byte are transmitted together.
  • the ultrasonic signal represented by each byte in the encoding sequence is sent in sequence in order to form the ultrasonic signal data waveform; the time length of the ultrasonic signal represented by each byte is 300ms and the volume level is -0.6dB.
  • the data header uses a different frequency determination method than the other parts.
  • the data length bytes, variable length data bytes, and error check codes use the same frequency determination method.
  • the formula for determining the frequency of the data file header 1 is shown in the following table:
  • bit [n] is the value of the n + 1th bit in the byte in 0 or 1.
  • bit [0] 0 means that when the value of the first bit in the byte is 0, and The corresponding ultrasonic frequency is b Hz.
  • bit [n] is the value of the n + 1th bit in the byte in 0 or 1.
  • bit [0] 0 means that the value of the first bit in the byte is 0, and
  • the corresponding ultrasonic frequency is (b + 400) Hz.
  • each byte is encoded in the ASCII format in this embodiment, and only 127 visible ASCII characters are specified, only the value of the first 4 bits in each byte need to be defined, and the rest need not be used.
  • Data file header 1 uses different frequency determination formulas, and the frequency range corresponding to the bits in each byte in the data file header is b ⁇ (b + 300) Hz and (b + 1200) ⁇ (b + 1500) Hz, The frequency range corresponding to the bits in the rest of the encoding sequence is (b + 400) ⁇ (b + 1100) Hz. There is no intersection between the two frequency ranges. It is more convenient for the receiving device to combine the data file header with the rest of the encoding sequence Make a distinction to reduce the probability that the receiving device reads the wrong ultrasonic signal data waveform.
  • the present invention also proposes a variable-length ultrasonic audio decoding method, as shown in FIG. 3, including the following steps:
  • the waveform of the ultrasonic signal data is recorded in a PCM format of 16bit 44.1KHz to 48KHz, and the signal of the PCM format has a wide dynamic range and is not easily distorted.
  • the signal of the PCM format has a wide dynamic range and is not easily distorted.
  • high-pass filtering only the signals above 16KHz are saved.
  • high-pass filtering the signals other than the ultrasonic signal data waveform are filtered.
  • step (IV) It is continuously detected whether the filtered ultrasonic signal is a preset data file header; if so, step (IV) is performed.
  • the error check code is used to determine whether the encoding sequence is in error, and if an error occurs, an error is reported to the user.
  • variable-length ultrasonic audio encoding method and decoding of the present invention allow vocode management to be used offline, without the need to connect to an online central server, and it is easier to establish a closed-loop solution.
  • the variable-length ultrasonic audio encoding method and decoding of the present invention can adapt to various spatial ranges, use ultrasonic waves with different data lengths for different spatial ranges, can more efficiently use the computing performance of a computer, and can also improve customer experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种可变长度超声波音频编码方法及解码方法,涉及超声波通讯编码方法及解码方法;将音频信号按照超声波通信编解码格式,生成超声波信号数据波形,完成编码;超声波通信编解码格式为:由若干个字节依序排列构成一串编码序列;编码序列包括资料档头、资料长度字节及可变长度资料字节;资料长度字节用于宣告可变长度资料字节的长度;依据资料长度字节接收对应长度的超声波信号数据波形,接收超声波信号数据波形,滤波后按照超声波通信编解码格式得到编码序列,完成解码;本发明可变长度超声波音频编码方法及解码方法可以离线使用,并能够不同的空间范围使用资料长度不同的超声波,更有效率地利用计算机的计算效能,增进客户体验。

Description

一种可变长度超声波音频编码方法及解码方法 技术领域
本发明涉及超声波通讯编码方法及解码方法,具体为一种可变长度超声波音频编码方法及解码方法。
背景技术
超声波传输类似于在模拟线路上传统电话的声通信,虽然现在我们有更快的互联网连接,然而超声波数据传输仍然是一个很好的选择,因为该技术不需要任何特殊的硬件或设备配对,仅需扬声器和麦克风,使用简单快捷。依据超声波传递的场域空间范围,以及超声波携带资讯解码的最佳化应用,空间愈小的范围可以允许携带资讯长度更短的超声波,而携带资讯长度愈短的超声波可以有更快的解析的效能。
基于声码管理上的设计,现有的超声波音频编码采用固定资料长度字节,这种方式的优点是管理容易。但是现有的超声波音频编码存在以下问题:为了避免声码解析重复误判,现有的声码管理必须依赖线***伺服器控管,应用端仍需使用互联网连接;对于某些简易的应用场景,多出来的资料长度字节显得没有意义。
发明内容
本发明的目的在于提供一种可变长度超声波音频编码方法及解码方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种可变长度超声波音频编码方法,包括以下步骤:
(Ⅰ)获取待传输的数据信号;
(Ⅱ)根据预设的超声波通信编解码格式,将所述数据信号进行编码调制,以生成向外发送的超声波信号数据波形;
其中,所述超声波通信编解码格式为:由若干个字节依序排列构成一串 编码序列;所述编码序列包括资料档头、资料长度字节及可变长度资料字节;所述资料档头位于所述编码序列的最前端;所述资料长度字节位于所述资料档头的后面,所述资料长度字节用于宣告所述可变长度资料字节的长度n;所述可变长度资料字节位于所述资料长度字节的后面,是由n个字节组成的内容信号。
进一步的,所述编码序列还包括错误校验码,所述错误校验码位于所述编码序列的最后。
进一步的,所述错误校验码包括2个字节,所述可变长度资料字节经过CRC-16校验后生成所述错误校验码;发送时,所述错误校验码的低8位在前,高8位在后。
进一步的,所述编码序列中每个字节均代表一段超声波信号;所述编码序列中每个字节均代表一段超声波信号;所述字节中的每个比特均代表固定频率的超声波,所述超声波的频率由预设的频率决定公式计算得出;所述超声波信号为对应的所述字节中每个比特代表的超声波共同发出时形成的谐波信号。
进一步的,所述编码序列中,所述资料档头采用与其他部分不同的频率决定方式,除所述资料档头的其余部分采用相同的频率决定方式,使得所述资料档头代表的超声波信号,与除所述资料档头的其余部分代表的超声波信号所在的频域不同。
进一步的,所述编码序列中每一字节代表的超声波信号按照时间顺序依次发出,形成所述超声波信号数据波形;每一所述字节代表的超声波信号的时间长度为t1,t1可优选为100ms,音量电平优选为-0.6dB。
本发明还提供了如下技术方案:一种可变长度超声波音频解码方法,包括以下步骤:
(Ⅲ)用录音设备录制后进行高通滤波;
(Ⅳ)接收超声波信号数据波形,并检测是否接收到预设的资料档头;若是,则进行步骤(Ⅳ);
(Ⅴ)根据所述资料长度字节,读取相应长度的超声波信号数据波形;并将读取的超声波信号进行快速傅里叶变换,得到信号频谱资料;
(Ⅵ)根据预设的超声波通信编解码格式,通过所述信号频谱资料得到编码序列,即得到传输的数据信号。
进一步的,所述编码序列还包括错误校验码;本发明可变长度超声波音频解码方法还包括如下步骤:
(Ⅶ)通过所述错误校验码判断所述编码序列是否出错,若出错,则将错误报告给用户。
与现有技术相比,本发明的有益效果是:
1.本发明可变长度超声波音频编码方法及解码方法可以离线使用,不需要依赖线***伺服器的控管;
2.本发明可变长度超声波音频编码方法及解码方法能够适应各种空间范围,针对不同的空间范围使用资料长度不同的超声波,可以更有效率地利用计算机的计算效能,同时也可以增进客户体验。
附图说明
图1是本发明可变长度超声波音频编码方法的流程图;
图2是本发明中编码序列的结构示意图;
图3是本发明可变长度超声波音频解码方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种可变长度超声波音频编码方法,如图1,包括以下步骤:
(Ⅰ)获取待传输的数据信号。
(Ⅱ)根据预设的超声波通信编解码格式,将所述数据信号进行编码调制,以生成向外发送的超声波信号数据波形。
其中,如图2所示,所述超声波通信编解码格式为:由若干个字节依序排列构成一串编码序列;所述编码序列包括资料档头、资料长度字节、可变长度资料字节及错误校验码。
资料档头1包括1个字节,位于编码序列的最前端,用于宣告此段编码序列的资料用途、归属及保留讯息。资料档头的内容为预设的,携带特定特定频率的超声波信号,当接受装置接收到该信号时,立刻开始读取资料的工作。
资料长度字节包括1个字节,位于资料档头的后面,用于宣告可变长度资料字节的长度。
可变长度资料字节用于携带需要传输的信息,位于资料长度字节的后面。针对不同的空间范围可以使用不同长度的可变长度资料字节,空间愈小的范围可以允许携带资讯长度更短的超声波,而携带资讯长度愈短的超声波可以有更快的解析的效能。在本实施例中,可变长度资料字节的长度为5个字节。
错误校验码位于编码序列的最后,用于检测超声波信号数据波形在传输过程中是否发生错误。错误校验码包括2个字节,可变长度资料字节经过CRC-16校验后生成错误校验码。发送时,错误校验码的低8位在前,高8位在后。
编码序列中每个字节均代表一段超声波信号;所述字节中的每个比特均代表固定频率的超声波,所述超声波的频率由预设的频率决定公式计算得出;所述超声波信号为对应的所述字节中每个比特代表的超声波共同发出时形成的谐波信号。编码序列中每一字节代表的超声波信号按照时间顺序依次发出, 形成超声波信号数据波形;每一字节代表的超声波信号的时间长度为300ms,音量电平为-0.6dB。
编码序列中,资料档头采用与其他部分不同的频率决定方式,资料长度字节、可变长度资料字节及错误校验码采用相同的频率决定方式。
选定规范基础超声波音频为b HZ,优选地,b=16500。本实施例中,资料档头1使用的频率决定公式如下表所示:
比特所在位置及取值 对应的超声波频率
bit[0]=0 b Hz
bit[0]=1 (b+1200)Hz
bit[1]=0 (b+100)Hz
bit[1]=1 (b+1300)Hz
bit[2]=0 (b+200)Hz
bit[2]=1 (b+1400)Hz
bit[3]=0 (b+300)Hz
bit[3]=1 (b+1500)Hz
表中,bit[n]为该字节中第n+1个比特在0或1中的取值,如bit[0]=0代表该字节中第1个比特取值为0时,且此时对应的超声波频率为b Hz。
本实施例中,资料长度字节2、可变长度资料字节3及错误校验码4使用的频率决定公式如下表所示:
比特所在位置及取值 对应的超声波频率
bit[0]=0 (b+400)Hz
bit[0]=1 (b+500)Hz
bit[1]=0 (b+600)Hz
bit[1]=1 (b+700)Hz
bit[2]=0 (b+800)Hz
bit[2]=1 (b+900)Hz
bit[3]=0 (b+1000)Hz
bit[3]=1 (b+1100)Hz
表中,bit[n]为该字节中第n+1个比特在0或1中的取值,如bit[0]=0表示该字节中第1个比特取值为0时,且此时对应的超声波频率为(b+400)Hz。
由于本实施例中每个字节均按照ASCII的格式编码,而ASCII可见字元只规范了127个,因此只需要定义每个字节中前4个比特的值,其余部分不需要使用。
资料档头1采用不同的频率决定公式,且资料档头中每个字节中的比特对应的频率范围是b~(b+300)Hz及(b+1200)~(b+1500)Hz,与编码序列中其余部分中的比特对应的频率范围是(b+400)~(b+1100)Hz,两个频率范围没有没有交叉,更方便接收装置将资料档头与编码序列中的其余部分进行区分,减少接收装置读取错误的超声波信号数据波形的概率。
本发明还提出了一种可变长度超声波音频解码方法,如图3所示,包括如下步骤:
(Ⅲ)用录音设备录制后进行高通滤波。
优选地,将超声波信号数据波形以16bit 44.1KHz~48KHz的PCM格式进行录制,PCM格式的信号动态范围宽,不易失真。高通滤波后,仅保存16KHz以上的信号.通过高通滤波,滤除了超声波信号数据波形以外的信号。
(Ⅳ)不断检测滤波后的得到的超声波信号是否为预设的资料档头;若是,则进行步骤(Ⅳ)。
(Ⅳ)根据所述资料长度字节,读取相应长度的超声波信号数据波形。当资料长度字节携带的信息为n时,则读取的超声波信号数据波形的长度为n+4个字节。本实施例中,由于资料长度字节2携带的信息为5,则读取长度为9个字节的超声波信号数据波形。然后将读取的超声波信号进行快速傅里叶变换,得到信号频谱资料。
(Ⅵ)根据预设的超声波通信编解码格式,通过所述信号频谱资料得到编码序列,即得到传输的数据信号。
(Ⅶ)通过所述错误校验码判断所述编码序列是否出错,若出错,则将错误报告给用户。
本发明可变长度超声波音频编码方法及解码让声码管理可以离线使用,不需要连接线***伺服器,更容易建立闭环方案。本发明可变长度超声波音频编码方法及解码能够适应各种空间范围,针对不同的空间范围使用资料长度不同的超声波,可以更有效率地利用计算机的计算效能,同时也可以增进客户体验。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种可变长度超声波音频编码方法,其特征在于,包括以下步骤:
    (Ⅰ)获取待传输的数据信号;
    (Ⅱ)根据预设的超声波通信编解码格式,将所述数据信号进行编码调制,以生成向外发送的超声波信号数据波形;
    其中,所述超声波通信编解码格式为:由若干个字节依序排列构成一串编码序列;所述编码序列包括资料档头、资料长度字节及可变长度资料字节;所述资料档头位于所述编码序列的最前端;所述资料长度字节位于所述资料档头的后面,所述资料长度字节用于宣告所述可变长度资料字节的长度n;所述可变长度资料字节位于所述资料长度字节的后面,是由n个字节组成的内容信号。
  2. 根据权利要求1所述的一种可变长度超声波音频编码方法,其特征在于:所述编码序列还包括错误校验码,所述错误校验码位于所述编码序列的最后。
  3. 根据权利要求2所述的一种可变长度超声波音频编码方法,其特征在于:所述错误校验码包括2个字节,所述可变长度资料字节经过CRC-16校验后生成所述错误校验码;发送时,所述错误校验码的低8位在前,高8位在后。
  4. 根据权利要求1所述的一种可变长度超声波音频编码方法,其特征在于:所述编码序列中每个字节均代表一段超声波信号;所述字节中的每个比特均代表固定频率的超声波,所述超声波的频率由预设的频率决定公式计算得出;所述超声波信号为对应的所述字节中每个比特代表的超声波共同发出时形成的谐波信号。
  5. 根据权利要求4所述的一种可变长度超声波音频编码方法,其特征在于:所述编码序列中,所述资料档头采用与其他部分不同的频率决定方式,除所述资料档头的其余部分采用相同的频率决定方式,使得所述资料档头代 表的超声波信号,与除所述资料档头的其余部分代表的超声波信号所在的频域不同。
  6. 根据权利要求4所述的一种可变长度超声波音频编码方法,其特征在于:所述编码序列中每一字节代表的超声波信号按照时间顺序依次发出,形成所述超声波信号数据波形;每一所述字节代表的超声波信号的时间长度为t1,t1可优选为100ms,音量电平优选为-0.6dB。
  7. 一种可变长度超声波音频解码方法,其特征在于,包括以下步骤:
    (Ⅲ)用录音设备录制后进行高通滤波;
    (Ⅳ)接收超声波信号数据波形,并检测是否接收到预设的资料档头;若是,则进行步骤(Ⅳ);
    (Ⅴ)根据所述资料长度字节,读取相应长度的超声波信号数据波形;并将读取的超声波信号进行快速傅里叶变换,得到信号频谱资料;
    (Ⅵ)根据预设的超声波通信编解码格式,通过所述信号频谱资料得到编码序列,即得到传输的数据信号。
  8. 根据权利要求7所述的一种可变长度超声波音频解码方法,其特征在于:述编码序列还包括错误校验码;本发明可变长度超声波音频解码方法还包括如下步骤:
    (Ⅶ)通过所述错误校验码判断所述编码序列是否出错,若出错,则将错误报告给用户。
PCT/CN2018/105163 2018-07-27 2018-09-12 一种可变长度超声波音频编码方法及解码方法 WO2020019425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810842084.1A CN110176963A (zh) 2018-07-27 2018-07-27 一种可变长度超声波音频编码方法及解码方法
CN201810842084.1 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020019425A1 true WO2020019425A1 (zh) 2020-01-30

Family

ID=67688946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105163 WO2020019425A1 (zh) 2018-07-27 2018-09-12 一种可变长度超声波音频编码方法及解码方法

Country Status (2)

Country Link
CN (1) CN110176963A (zh)
WO (1) WO2020019425A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157395B (zh) * 2021-11-05 2023-08-08 在线途游(北京)科技有限公司 一种基于变长整数编码的数据通信方法、装置及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595315A (zh) * 2012-02-16 2012-07-18 毅昇科技有限公司 一种定位方法、***、固定装置及移动装置
CN103209224A (zh) * 2013-04-28 2013-07-17 上海海事大学 基于p2p的水声传感器网络***及其数据传输方法
CN103248434A (zh) * 2012-02-14 2013-08-14 上海爱加科技有限公司 一种电子电器设备的通信方法
US20140050321A1 (en) * 2012-08-16 2014-02-20 David E. Albert Ultrasonic transmission of signals
CN106788782A (zh) * 2016-12-06 2017-05-31 哈尔滨工程大学 水声通信网络ofdm链路物理层与mac层跨层通信方法
CN106850079A (zh) * 2016-12-06 2017-06-13 微位(深圳)网络科技有限公司 一种利用超声波广播传输数据的推送方法及***
CN107645343A (zh) * 2016-07-20 2018-01-30 阿里巴巴集团控股有限公司 基于声波的数据发送/接收方法及数据传输***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223262A (ja) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd 通信制御装置及び通信端末装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248434A (zh) * 2012-02-14 2013-08-14 上海爱加科技有限公司 一种电子电器设备的通信方法
CN102595315A (zh) * 2012-02-16 2012-07-18 毅昇科技有限公司 一种定位方法、***、固定装置及移动装置
US20140050321A1 (en) * 2012-08-16 2014-02-20 David E. Albert Ultrasonic transmission of signals
CN103209224A (zh) * 2013-04-28 2013-07-17 上海海事大学 基于p2p的水声传感器网络***及其数据传输方法
CN107645343A (zh) * 2016-07-20 2018-01-30 阿里巴巴集团控股有限公司 基于声波的数据发送/接收方法及数据传输***
CN106788782A (zh) * 2016-12-06 2017-05-31 哈尔滨工程大学 水声通信网络ofdm链路物理层与mac层跨层通信方法
CN106850079A (zh) * 2016-12-06 2017-06-13 微位(深圳)网络科技有限公司 一种利用超声波广播传输数据的推送方法及***

Also Published As

Publication number Publication date
CN110176963A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN107645343B (zh) 基于声波的数据发送/接收方法及数据传输***
EP3324409B1 (en) Audio signal classification method and apparatus
US8874448B1 (en) Attention-based dynamic audio level adjustment
WO2019227580A1 (zh) 语音识别方法、装置、计算机设备及存储介质
CN103903612B (zh) 一种实时语音识别数字的方法
CN102576562B (zh) 自动生成用于音频占优性效果的元数据
CN102394724A (zh) 一种基于双音多频声波的高可靠性数据传输方法及装置
CN101023469A (zh) 数字滤波方法和装置
CN113724725A (zh) 一种蓝牙音频啸叫检测抑制方法、装置、介质及蓝牙设备
CN110619881B (zh) 一种语音编码方法、装置及设备
TWI690895B (zh) 社交應用中擴展內容來源的方法及系統、用戶端和伺服器
WO2020237886A1 (zh) 语音和文字转换传输方法、***、计算机设备和存储介质
US20230154483A1 (en) Stereo Audio Signal Delay Estiamtion Method and Apparatus
WO2020019425A1 (zh) 一种可变长度超声波音频编码方法及解码方法
KR100636144B1 (ko) 오디오 신호 부호화/복호화 장치 및 방법
CN105632523B (zh) 调节音频数据的音量输出值的方法和装置及终端
CN108847218A (zh) 一种自适应门限整定语音端点检测方法,设备及可读存储介质
WO2023193573A1 (zh) 一种音频处理方法、装置、存储介质及电子设备
US20170063471A1 (en) Audio signal transmission system with enhanced audio signal recognition and data processing method for the same
CN107197403A (zh) 一种终端音频参数管理方法、装置及***
CN114429766A (zh) 调整播放音量的方法、装置、设备以及存储介质
WO2021103262A1 (zh) 耳机的控制方法、耳机及可读存储介质
JP2023517973A (ja) 音声符号化方法、装置、コンピュータ機器及びコンピュータプログラム
WO2020019879A1 (zh) 一种声波信号编码、解码方法及装置
CN112992189A (zh) 语音音频的检测方法及装置、存储介质及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927244

Country of ref document: EP

Kind code of ref document: A1