WO2020019403A1 - Procédé, appareil et dispositif de détection d'anomalie de consommation d'électricité, et support de stockage lisible - Google Patents

Procédé, appareil et dispositif de détection d'anomalie de consommation d'électricité, et support de stockage lisible Download PDF

Info

Publication number
WO2020019403A1
WO2020019403A1 PCT/CN2018/103220 CN2018103220W WO2020019403A1 WO 2020019403 A1 WO2020019403 A1 WO 2020019403A1 CN 2018103220 W CN2018103220 W CN 2018103220W WO 2020019403 A1 WO2020019403 A1 WO 2020019403A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal
sequence
distribution curve
data
characteristic
Prior art date
Application number
PCT/CN2018/103220
Other languages
English (en)
Chinese (zh)
Inventor
郑立颖
徐亮
肖京
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2020019403A1 publication Critical patent/WO2020019403A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of abnormality detection, and in particular, to a method for detecting abnormality in power consumption, an abnormality detecting device, an abnormality detecting device, and a computer-readable storage medium.
  • the disadvantages are: 1.
  • the point of consideration of the year-on-year difference is too one-sided, which is likely to cause misjudgment; 2.
  • the method based on moving average will be greatly affected by outliers, causing a sequence after the outliers to be judged as abnormal; the disadvantage of starting from the perspective of distance difference is that the time series of electricity consumption generally has a wide span and relatively large data.
  • the main purpose of the present application is to provide an abnormality detection method, abnormality detection device, abnormality detection device, and computer-readable storage medium, which aims to solve the problem that the traditional abnormality detection method of electrical consumption is not high in accuracy and is easily detected by abnormal values. Interference, and the calculation is complicated, and the detection efficiency is low.
  • an embodiment of the present application provides a method for detecting abnormality in power consumption.
  • the method for detecting abnormality in power consumption includes:
  • abnormal score is greater than the abnormal alert value, confirming the characteristic data sequence as a normal sequence
  • the characteristic data sequence is confirmed as an abnormality sequence.
  • the present application also provides an abnormality detection device.
  • the abnormality detection device includes:
  • a collection module configured to collect sequence characteristic values at each target time point from multiple power consumption time series at preset time intervals to generate a characteristic data sequence corresponding to each power consumption time series;
  • a first calculation module configured to calculate an abnormal score of all the characteristic data sequences according to an isolated forest algorithm
  • a first confirmation module configured to confirm the characteristic data sequence as a normal sequence if the abnormal score is greater than an abnormal alert value
  • a second confirmation module is configured to confirm the characteristic data sequence as an abnormal sequence if the abnormal score is less than or equal to an abnormal alert value.
  • the present application further provides an anomaly detection device.
  • the anomaly detection device includes: a memory, a processor, a communication bus, and computer-readable instructions stored on the memory.
  • the communication bus is used for Realize the communication connection between the processor and the memory;
  • the processor is configured to execute the computer-readable short instruction to implement the following steps:
  • abnormal score is greater than the abnormal alert value, confirming the characteristic data sequence as a normal sequence
  • the characteristic data sequence is confirmed as an abnormality sequence.
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores one or more computer-readable instructions, and the one or more computer-readable instructions may be replaced by one Or more than one processor to perform:
  • abnormal score is greater than the abnormal alert value, confirming the characteristic data sequence as a normal sequence
  • the characteristic data sequence is confirmed as an abnormality sequence.
  • the present application collects sequence feature values at each target time point from multiple power consumption time series at preset time intervals to generate a characteristic data sequence corresponding to each power consumption time series; calculates the The abnormal scores of all the characteristic data sequences are described; if the abnormal score is greater than the abnormal alert value, the characteristic data sequence is confirmed as a normal sequence; if the abnormal score is less than or equal to the abnormal alert value, the characteristic data sequence is identified Confirmed as an abnormal sequence.
  • This application uses the isolated forest algorithm to perform anomaly detection on large-scale data in time series. By calculating the abnormal scores in the characteristic data sequence and thresholding the abnormal scores, the normal sequence and the abnormal sequence are determined, and traditional detection is avoided. The method cannot be used for large-scale detection and defects with low accuracy, which improves the accuracy of power consumption abnormality detection, eliminates the interference of abnormal values, reduces the computational complexity, and improves the detection efficiency.
  • FIG. 1 is a schematic flowchart of a first embodiment of an abnormality detection method for power consumption in this application;
  • FIG. 2 is a detailed flowchart of step S20 in FIG. 1; FIG.
  • FIG. 3 is a schematic diagram of a device structure of a hardware operating environment involved in a method according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of functional modules of the abnormality detection device of the present application.
  • the present application provides a method for detecting abnormality in power consumption.
  • the method for detecting abnormality in power consumption includes:
  • Step S10 Collect sequence characteristic values at each target time point from multiple power consumption time series at preset time intervals to generate a characteristic data sequence corresponding to each power consumption time series;
  • the power consumption time series represents the distribution data of power consumption at different time periods in a day, and the different power consumption time series represents the power consumption distribution data on different dates.
  • the system can detect historical time series, as well as time series received in real time.
  • the power consumption time series is stored in the database.
  • the system retrieves multiple power consumption time series from the database. Because the data of each power consumption time series is distributed in time units, the system will collect each Some of the eigenvalues in the time series of electricity are used as samples to reduce the computational complexity of the data.
  • the characteristic value of the power consumption time series is distributed according to time units.
  • the system will collect the characteristic value of each power consumption time series by collecting a characteristic data every preset number of hours. Specifically, the preset time interval can be determined according to actual business requirements.
  • the system can collect 24 feature values from a time series, and the 24 feature values will be used as the power consumption.
  • Characteristic data series of time series For example, if one feature value is collected every one hour, the system can collect 24 feature values from a time series, and the 24 feature values will be used as the power consumption. Characteristic data series of time series. The use of multiple characteristic time series of power consumption time series can effectively avoid the influence of outliers.
  • Step S20 Calculate the abnormal scores of all the characteristic data sequences according to the isolated forest algorithm
  • the characteristic data series can reflect the distribution of the corresponding power consumption time series.
  • the system will apply the isolated forest algorithm to calculate the abnormal scores of all the characteristic data sequences.
  • isolated isolated data in the characteristic data sequence can be captured, and the discrete degree of the isolated isolated data can be quantified to a specific value.
  • the system substitutes the feature data sequence into the isolated forest algorithm, and uses the spatial iterative cutting method in the isolated forest algorithm to determine the spatial dispersion of the feature data in the feature data sequence.
  • the feature data is spatially cut and The feature data in each space is re-cut until the feature data that is separately cut in the data space is obtained.
  • This process can be embodied in the form of a binary tree layering, that is, all feature data that is cut on the same side of the data space will continue to be iteratively cut, the binary tree will continue to be layered down, and features that are left alone in the data space Since the data will not continue to be cut, it stays at the height of the current binary tree.
  • the isolated forest algorithm will calculate the abnormal score of the feature data sequence according to the height of all discrete feature data.
  • Step S30 if the abnormal score is greater than the abnormal alert value, confirm the characteristic data sequence as a normal sequence
  • step S40 if the abnormal score is less than or equal to the abnormal alert value, the characteristic data sequence is confirmed as an abnormal sequence.
  • an abnormal alert value is set, and the abnormal alert value is a judgment threshold value of the abnormal score.
  • the abnormality of the characteristic data sequence needs to be judged by the abnormal alert value.
  • the abnormal score is greater than the abnormal alert value, it means that all the characteristic values in the characteristic data sequence corresponding to the abnormal score are relatively concentrated, the discrete offset is small and within a reasonable range, and the corresponding characteristic data sequence belongs to the normal sequence.
  • the system detects that the abnormal score is less than or equal to the abnormal warning value, it indicates that the abnormal score does not reach the standard warning line, and all the characteristic values in the corresponding characteristic data sequence have a large offset. A large number of discrete invalid data cannot reflect the normal power consumption distribution, and the corresponding characteristic data sequence is an abnormal sequence.
  • the present application collects sequence feature values at each target time point from multiple power consumption time series at preset time intervals to generate a characteristic data sequence corresponding to each power consumption time series; calculates the The abnormal scores of all the characteristic data sequences are described; if the abnormal score is greater than the abnormal alert value, the characteristic data sequence is confirmed as a normal sequence; if the abnormal score is less than or equal to the abnormal alert value, the characteristic data sequence is identified Confirmed as an abnormal sequence.
  • This application uses the isolated forest algorithm to perform anomaly detection on large-scale data in time series.
  • the normal sequence and the abnormal sequence are determined, and traditional detection is avoided.
  • the method cannot be used for large-scale detection and defects with low accuracy, which improves the accuracy of power consumption abnormality detection, eliminates the interference of abnormal values, reduces the computational complexity, and improves the detection efficiency.
  • a second embodiment of the power consumption abnormality detection method of the present application is proposed.
  • the difference from the foregoing embodiment is that the step S20
  • the steps include:
  • Step A Determine the positions of the corresponding data points in the isolated forest model space for the sequence feature values at all target time points in each feature data sequence to generate a data point set, and count the total data of the data point set Number of points
  • each feature data sequence has two types of data: the target time point and the sequence feature value, and these two types of data are mapped to each other. Therefore, each feature data sequence can be worthwhile according to the target time point and the sequence feature.
  • the model is configured with a model space for inductively placing all data points. That is, the model space is equivalent to a coordinate space. According to the coordinate values of each data point, the system can determine the coordinate positions of all data points in each characteristic data sequence, thereby generating a corresponding data point set in the model space.
  • the current sequence A includes a power consumption value of 5 at 0, a power consumption value of 8 at 6, a power consumption value of 12 at 10, and a power consumption value of 8 at 18.
  • Step B Iteratively space cut all data points in the data point set according to a preset algorithm rule of the isolated forest algorithm until all single data points that are individually cut into a single space are obtained;
  • the preset algorithm rule of the isolated forest algorithm is to perform iterative space cutting on all data point sets to obtain the cutting space, and calculate the number of data points in each cutting space.
  • the spatial cutting refers to cutting a data point set in an isolated forest model space using a random hyperplane. Assuming that each data point in the data point set is relatively concentrated, it is not easy to have separate data points cut into one space during the space cutting process. If some data points in the data point set are loose or scattered at the edge of the data point set, those scattered data points will be easily cut into a single space. The system cuts through iterative space to obtain all single data points that are individually cut into a single space.
  • Step C Obtain the number of iterations to which each single data point belongs, and obtain a target data point in a preset number of iterations among all the single data points;
  • Step D Count the number of data points of all the target data points, and calculate the ratio of the number of data points to the total number of data points;
  • the system obtains the number of iterations when each single data point is generated. For example, a single data point A is generated during the first spatial cutting, a single data point B, C is generated during the second spatial cutting, a single data point D, E, F, G is generated during the third spatial cutting, etc.
  • the system will count the number of iterations for each single data point. Assuming the preset number of times is 2, the system will obtain the target data points A, B, and C generated in the previous 2 spatial iterations.
  • step E the percentage value is set as an abnormal score.
  • the system will set the percentage value to the abnormal score as a reference value for subsequent numerical comparisons.
  • a third embodiment of the power consumption abnormality detection method of the present application is proposed.
  • the difference from the foregoing embodiment is that the method further includes:
  • Step S50 Generate corresponding normal distribution curves and abnormal distribution curves from the respective normal sequences and the respective abnormal sequences;
  • the system in order to facilitate the user to intuitively view and analyze the difference in sequence feature values between the normal sequence and the abnormal sequence, the system will convert the normal sequence and the abnormal sequence into corresponding normal distribution curves after determining the normal sequence and the abnormal sequence, respectively. And anomalous distribution curves. Because the sequence feature values in the normal sequence and the abnormal sequence are sorted in chronological order, the chronological system can be based on the target time point and their corresponding The series eigenvalues generate normal distribution curves and abnormal distribution curves.
  • step S60 the normal distribution curve and the abnormal distribution curve are respectively displayed and marked in a preset coordinate system for user identification.
  • the system After obtaining all the normal and abnormal distribution curves, in order to more intuitively reflect the difference between the normal and abnormal distribution curves, the system will display the normal and abnormal distribution curves in a preset coordinate system.
  • the preset coordinate system in order to improve the recognition degree, the normal distribution curve and the abnormal distribution curve will be displayed through different marking forms, for example, the normal distribution curve is marked as a green curve, and the abnormal distribution curve is marked as a red curve.
  • the normal and abnormal sequences respectively corresponding to the normal distribution curve and the abnormal distribution curve are shown to facilitate user identification and analysis.
  • a fourth embodiment of the power consumption abnormality detection method of the present application is proposed.
  • the difference from the foregoing embodiment is that the isolated forest algorithm stores the The abnormal eigenvalues in all characteristic data sequences, after step S60, further include:
  • Step S70 Obtain a target data point corresponding to the abnormal sequence in the isolated forest model space, and obtain an abnormal time point and an abnormal feature value of the target data point;
  • the anomaly sequence includes free anomalous eigenvalues in the model space, but also includes normal eigenvalues.
  • the system because the target data point is cut out a preset number of times before, the system has located a target data point with a large offset. Therefore, the abnormal time points and abnormal eigenvalues of the target data points of the abnormal sequence in the isolated forest model space can be obtained.
  • the abnormal eigenvalues at these abnormal time points will be displayed in the abnormal distribution curve, but they are not clearly marked to increase the degree of recognition. When the number of anomalous distribution curves is large, it will disturb the user's analysis and judgment.
  • this embodiment obtains the target data points of the abnormal sequence in the model space of the isolated forest algorithm.
  • the system can Obtain the target data points' abnormal time points and abnormal eigenvalues from the previous calculation process of the isolated forest algorithm.
  • the offset of the abnormal feature value in the isolated forest algorithm is much larger than other feature values.
  • Step S80 Obtain an abnormal distribution curve corresponding to the abnormal sequence, locate the target data point on the abnormal distribution curve, and display the abnormal time point and abnormal characteristic value of the target data point correspondingly.
  • the system obtains the corresponding abnormal distribution curve according to the abnormal sequence, and locates the target data point from the abnormal distribution curve. For example, if the target data point is point C, then the point C in the abnormal distribution curve is obtained, and according to the abnormal time of the data point Points and outlier eigenvalues in outliers It is marked in the distribution curve, and the data point is displayed as the target data point, and its abnormal time point and abnormal characteristic value are displayed, thereby improving the degree of data identification.
  • a fifth embodiment of the power consumption abnormality detection method of the present application is proposed.
  • the difference from the foregoing embodiment lies in each target in the normal sequence. There are corresponding normal eigenvalues at time points.
  • the method further includes:
  • Step S90 Collect the corresponding normal feature values in each normal sequence, and perform an average calculation on all the normal feature values at the same target time point in all the normal sequences to obtain the feature average value of each target time point;
  • All normal sequences represent the distribution of the power consumption time series under normal conditions.
  • This embodiment will provide an ideal distribution curve in a preset coordinate system based on the data of all normal sequences. Specifically, the system collects the feature values of all normal sequences at different time points. Assuming that there are n feature data sequences currently determined to be normal sequences, the system extracts feature values at the same time point from the n normal sequences. There are n in total. The system will calculate the mean of all the feature values at the same time point to get the feature mean value at that time point. The feature mean value can represent the ideal level of normal feature values at that time point.
  • the mean value of 4 can represent the average distribution of the target time points in the five normal sequences.
  • step S100 the mean values of all the features are converted into an average distribution curve in the order of the target time points, and the average distribution curve is displayed and marked in the preset coordinate system.
  • the system can sort the feature mean according to the time point order and convert it into an average distribution curve. Since different feature mean values represent the average distribution at the corresponding time points, all feature mean values are sorted in order of time points to obtain an average distribution curve representing the average distribution situation at different time points as a whole.
  • the system will display the average distribution curve in a preset coordinate system, and mark the average distribution curve to facilitate user identification and analysis.
  • step S80 the method further includes:
  • Step S110 performing a difference calculation on the abnormal characteristic values at each abnormal time point on the abnormal distribution curve and the average characteristic value corresponding to each abnormal time point in the average distribution curve to obtain the abnormal distribution curve and the The characteristic offset value corresponding to the average distribution curve at an abnormal time point;
  • step S120 if a trigger operation based on the abnormal distribution curve is detected, the characteristic offset values at the target time points of the abnormal distribution curve are displayed in the preset coordinate system for user analysis.
  • the system When the user triggers the abnormal distribution curve (such as clicking to check the data in the abnormal distribution curve), the system will directly display the characteristic offset value of each target time point of the abnormal distribution curve in the preset coordinate system. In this way, according to the characteristic offset value, the user can know the change trend of power consumption at different target time points, and can analyze the cause of the abnormality through the change trend analysis, such as a short circuit of the circuit, a failure of the meter, and the like.
  • a seventh embodiment of the power consumption abnormality detection method of the present application is proposed.
  • the difference from the foregoing embodiment is that the method further includes:
  • Step a When an abnormal control ratio is received, obtain a target alert value mapped to the abnormal control ratio from a preset mapping table;
  • the abnormality judgment criteria for anomaly detection may change. For example, if the power supply is limited or cut off for a certain period of time, the power consumption will change drastically, and the system will judge that it is abnormal. In fact, this change is not caused by abnormalities, but caused by known and controllable reasons. Therefore, this abnormal situation needs to be eliminated. In other words, this application can adjust the abnormality judgment standard according to actual business requirements. For example, if there is a need to limit power within the current month, the number of corresponding abnormal sequences will increase. In order to exclude such abnormal sequences, the system can change the judgment criteria, and the determination of the judgment criteria is related to the preset value. It can be understood that the proportion of abnormal control refers to filtering all abnormal sequences in proportion.
  • the system stores a preset mapping table.
  • the system receives the abnormal control ratio input from the outside, and finds the target preset value mapped to the ratio in the preset mapping table. For example, in the case of power limitation or power failure, it is known that 5% of the normal sequences in all characteristic data sequences are determined to be abnormal sequences. Then, by adjusting the exception control ratio, this part of the original sequence is abnormal. Sequence exclusion.
  • the preset mapping table in this embodiment there is a one-to-one correspondence between the abnormal control ratio and the alert value. It can be understood that the setting of the actual distribution can be determined by the abnormal alert value, that is, the abnormal alert value can be customized to adjust the judgment standard of the abnormal sequence.
  • step b the current default abnormality alert value is adjusted to the target alert value, so as to adjust the judgment criteria of the normal sequence and the abnormal sequence.
  • the system will directly adjust the current default abnormal alert value to the target alert value, thereby adjusting the normal sequence and abnormality. The criterion of the sequence.
  • FIG. 3 is a schematic diagram of a device structure of a hardware operating environment involved in the method according to the embodiment of the present application.
  • the device in this embodiment of the present application may be a PC, or a smart phone, a tablet computer, an e-book reader, or MP3 (Moving Picture). Experts Group Audio Layer III, standard video layer 3) player, MP4 (Moving Picture Experts Group Audio Layer IV, motion picture expert compression standard audio layer 4) Terminal equipment such as players, portable computers.
  • MP3 Moving Picture
  • MP4 Moving Picture Experts Group Audio Layer IV, motion picture expert compression standard audio layer 4
  • Terminal equipment such as players, portable computers.
  • the abnormality detection device may include: a processor 1001, such as a CPU, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection and communication between the processor 1001 and the memory 1005.
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001.
  • the abnormality detection device may further include a user interface, a network interface, a camera, and an RF (Radio Frequency) circuits, sensors, audio circuits, WiFi modules, and more.
  • the user interface may include a display, an input unit such as a keyboard, and the optional user interface may further include a standard wired interface and a wireless interface.
  • the network interface can optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the structure of the abnormality detection device shown in FIG. 3 does not constitute a limitation on the abnormality detection device, and may include more or fewer components than shown in the figure, or combine some components or different components Layout.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, and computer-readable instructions.
  • the operating system is a program that manages and controls the hardware and software resources of the anomaly detection device, and supports the execution of computer-readable instructions and other software and / or programs.
  • the network communication module is used to implement communication between components in the memory 1005 and to communicate with other hardware and software in the abnormality detection device.
  • the processor 1001 is configured to execute computer-readable instructions stored in the memory 1005 to implement the following steps:
  • abnormal score is greater than the abnormal alert value, confirming the characteristic data sequence as a normal sequence
  • the characteristic data sequence is confirmed as an abnormality sequence.
  • the specific implementation manners of the abnormality detection device of the present application are basically the same as the embodiments of the foregoing abnormality detection method for power consumption, and are not repeated here.
  • the abnormality detection device includes:
  • a collection module configured to collect sequence characteristic values at each target time point from multiple power consumption time series at preset time intervals to generate a characteristic data sequence corresponding to each power consumption time series;
  • a first calculation module configured to calculate an abnormal score of all the characteristic data sequences according to an isolated forest algorithm
  • a first confirmation module configured to confirm the characteristic data sequence as a normal sequence if the abnormal score is greater than an abnormal alert value
  • a second confirmation module is configured to confirm the characteristic data sequence as an abnormal sequence if the abnormal score is less than or equal to an abnormal alert value.
  • the first calculation module includes:
  • a generating unit configured to determine the positions of the corresponding data points in the isolated forest model space of the sequence feature values at all target time points in each of the feature data sequences to generate a data point set, and count the Total number of data points;
  • a cutting unit configured to perform iterative space cutting on all data points in the data point set according to a preset algorithm rule of an isolated forest algorithm until all single data points that are individually cut into a single space are obtained;
  • An obtaining unit configured to obtain the number of iterations to which each single data point belongs, and to obtain a target data point of a preset number of iterations among all the single data points;
  • a calculation unit configured to count the number of data points of all the target data points, and calculate a ratio of the number of data points to the total number of data points;
  • a setting unit configured to set the ratio value as an abnormal score.
  • the abnormality detection device further includes:
  • a generating module configured to generate corresponding normal distribution curves and abnormal distribution curves from the respective normal sequences and the respective abnormal sequences
  • a first display module is configured to display and mark the normal distribution curve and the abnormal distribution curve respectively in a preset coordinate system for user identification.
  • the isolated forest algorithm stores abnormal characteristic values in all characteristic data sequences
  • the abnormality detection device further includes:
  • a first obtaining module configured to obtain a target data point corresponding to the abnormal sequence in an isolated forest model space, and obtain an abnormal time point and an abnormal characteristic value of the target data point;
  • a second display module is configured to obtain an abnormal distribution curve corresponding to the abnormal sequence, locate the target data point on the abnormal distribution curve, and display the abnormal time point and abnormal characteristic value of the target data point correspondingly.
  • each target time point in the normal sequence has a corresponding normal feature value
  • the abnormality detection device further includes:
  • a second calculation module is configured to collect the corresponding normal feature values in each normal sequence, and perform an average calculation on all the normal feature values at the same target time point in all the normal sequences to obtain the target time points.
  • a conversion module configured to convert the mean values of all features into an average distribution curve in the order of target time points, and display and mark the average distribution curve in the preset coordinate system.
  • the abnormality detection device further includes:
  • a third calculation module configured to perform difference calculation on the abnormal characteristic values at each abnormal time point on the abnormal distribution curve and the average characteristic value corresponding to each abnormal time point in the average distribution curve to obtain the abnormal distribution A characteristic offset value at an abnormal time point corresponding to the curve and the average distribution curve;
  • a third display module configured to display, if a trigger operation based on the abnormal distribution curve is detected, the characteristic offset value at each target time point of the abnormal distribution curve in the preset coordinate system, For user analysis.
  • the abnormality detection device further includes:
  • a second obtaining module configured to obtain a target alert value mapped to the abnormal control ratio from a preset mapping table when the abnormal control ratio is received;
  • An adjustment module is configured to adjust a current default abnormal alert value to the target alert value, so as to adjust the judgment criteria of the normal sequence and the abnormal sequence.
  • the computer-readable instructions may be stored in In a computer-readable storage medium, the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.
  • This application also provides a computer-readable storage medium, where the computer-readable storage medium stores one or more computer-readable instructions, and the one or more computer-readable instructions can also be processed by one or more The device executes steps for implementing the method for detecting an abnormality in power consumption according to any one of the foregoing.
  • the computer-readable storage medium may be a non-volatile readable storage medium, such as a RAM, a magnetic disk, an optical disk, or the like.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on such an understanding, the technical solution of this application that is essentially or contributes to the existing technology can be embodied in the form of a software product, which is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present application.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L'invention concerne un procédé de détection d'anomalie de consommation d'électricité, un appareil de détection d'anomalie de consommation d'électricité, un dispositif de détection d'anomalie de consommation d'électricité et un support de stockage lisible par ordinateur. Le procédé de détection d'anomalie de consommation d'électricité comprend les étapes consistant à : collecter, selon un intervalle de temps prédéfini, une valeur de caractéristique de séquence à chaque instant cible à partir de multiples séquences de temps de consommation d'électricité, de façon à générer une séquence de données de caractéristique correspondant à chacune des séquences de temps de consommation d'électricité (S10) ; calculer des scores d'anomalie de toutes les séquences de données de caractéristique selon un algorithme de forêt d'isolation (S20) ; si les scores d'anomalie sont supérieurs à une valeur d'avertissement d'anomalie, confirmer les séquences de données de caractéristique en tant que séquences normales (S30) ; et si les scores d'anomalie sont inférieurs ou égaux à la valeur d'avertissement d'anomalie, confirmer les séquences de données de caractéristique en tant que séquences anormales (S40). La précision de la détection d'anomalie de consommation d'électricité est améliorée, l'interférence d'une valeur anormale est éliminée, la complexité de calcul est réduite, et l'efficacité de détection est améliorée.
PCT/CN2018/103220 2018-07-26 2018-08-30 Procédé, appareil et dispositif de détection d'anomalie de consommation d'électricité, et support de stockage lisible WO2020019403A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810841413.0A CN109726731B (zh) 2018-07-26 2018-07-26 用电量异常检测方法、装置、设备及可读存储介质
CN201810841413.0 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020019403A1 true WO2020019403A1 (fr) 2020-01-30

Family

ID=66294601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103220 WO2020019403A1 (fr) 2018-07-26 2018-08-30 Procédé, appareil et dispositif de détection d'anomalie de consommation d'électricité, et support de stockage lisible

Country Status (2)

Country Link
CN (1) CN109726731B (fr)
WO (1) WO2020019403A1 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401431A (zh) * 2020-03-12 2020-07-10 成都小步创想慧联科技有限公司 群租房识别方法及***及存储介质
CN112966017A (zh) * 2021-03-01 2021-06-15 北京青萌数海科技有限公司 一种时间序列中不定长的异常子序列检测方法
CN113377568A (zh) * 2021-06-29 2021-09-10 北京同创永益科技发展有限公司 一种异常检测方法、装置、电子设备及存储介质
CN113822343A (zh) * 2021-09-03 2021-12-21 国网江苏省电力有限公司营销服务中心 一种基于细粒度用能数据的群租房识别方法
WO2022105502A1 (fr) * 2020-11-23 2022-05-27 歌尔股份有限公司 Procédé et appareil de traitement de données de nuages de points
CN114648227A (zh) * 2022-03-23 2022-06-21 成都飞机工业(集团)有限责任公司 航空液压泵站时序异常检测方法、装置、设备及存储介质
CN114872290A (zh) * 2022-05-20 2022-08-09 深圳市信润富联数字科技有限公司 一种注塑件的自适应生产异常监测方法
CN115081840A (zh) * 2022-06-09 2022-09-20 国网湖南省电力有限公司 一种基于一阶差分和arima法的日电量异常值检测与校正***
CN115473331A (zh) * 2022-07-22 2022-12-13 国网河南省电力公司新乡供电公司 一种基于动态建模的数字孪生电网用电量监管***
CN115665209A (zh) * 2022-12-09 2023-01-31 施维智能计量***服务(长沙)有限公司 电表数据采集方法、装置、电子设备及可读存储介质
CN115792479A (zh) * 2023-02-08 2023-03-14 东营市建筑设计研究院 一种智能插座的用电智能监测方法及***
CN116155298A (zh) * 2023-04-20 2023-05-23 山东水运发展集团有限公司济宁分公司 一种基于互联网数据的船闸远程管理***
CN116414097A (zh) * 2023-05-15 2023-07-11 广东思创智联科技股份有限公司 基于工业设备数据的告警管理方法及***
CN116611017A (zh) * 2023-07-17 2023-08-18 山东一然环保科技有限公司 一种低氮燃烧加热炉的氮氧化物排放检测方法
CN116864020A (zh) * 2023-09-05 2023-10-10 山东鲁扬新材料科技有限公司 应用于egda生成过程的数据管理***
CN116911806A (zh) * 2023-09-11 2023-10-20 湖北华中电力科技开发有限责任公司 基于互联网+的电力企业能源信息管理***
CN117195137A (zh) * 2023-11-07 2023-12-08 江苏赛冲智能装备有限公司 基于数据分析的转子压铸误差检测***
CN117312997A (zh) * 2023-11-21 2023-12-29 乾程电力有限公司 一种电力管理***智能诊断方法及***
CN117408734A (zh) * 2023-12-15 2024-01-16 广东云百科技有限公司 基于物联网设备的客户信息智能管理***
CN117436006A (zh) * 2023-12-22 2024-01-23 圣道天德电气(山东)有限公司 一种智慧环网柜故障实时监测方法及***
CN117478442A (zh) * 2023-12-28 2024-01-30 深圳市金瑞铭科技有限公司 边缘智能终端及其智能远程控制方法
CN117572331A (zh) * 2024-01-16 2024-02-20 山东宜美科节能服务有限责任公司 一种对智能电表数据实时采集的方法及***
CN117609928A (zh) * 2024-01-23 2024-02-27 华北电力科学研究院有限责任公司 基于电力数据的污染物排放量异常识别方法与装置
CN118033300A (zh) * 2024-04-10 2024-05-14 贵州国昱源丰节能科技有限公司 一种动态电压调节器的负载失电异常智能识别方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472894A (zh) * 2019-09-07 2019-11-19 陈赞 一种基于智能配电网的电力用户用电评价方法
CN111159251A (zh) * 2019-12-19 2020-05-15 青岛聚好联科技有限公司 一种异常数据的确定方法及装置
CN113123955B (zh) * 2019-12-30 2022-07-26 北京国双科技有限公司 柱塞泵异常检测方法、装置、存储介质及电子设备
CN111719210B (zh) * 2020-06-11 2021-06-18 苏州汇川技术有限公司 细纱机中异常锭子的检测方法、设备及可读存储介质
CN111709790B (zh) * 2020-06-19 2022-01-07 广东电网有限责任公司 一种日前市场异常电价辨识方法、装置、设备和存储介质
CN111897695B (zh) * 2020-07-31 2022-06-17 平安科技(深圳)有限公司 获取kpi异常数据样本的方法、装置和计算机设备
CN112541016A (zh) * 2020-11-26 2021-03-23 南方电网数字电网研究院有限公司 用电异常检测方法、装置、计算机设备和存储介质
CN113688166B (zh) * 2021-08-16 2023-09-12 远景智能国际私人投资有限公司 电量获取***和方法
CN113688125B (zh) * 2021-08-24 2023-12-05 平安国际智慧城市科技股份有限公司 基于人工智能的异常值检测方法、装置、电子设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106095655A (zh) * 2016-05-31 2016-11-09 北京蓝海讯通科技股份有限公司 一种异常检测方法、应用和监控设备
CN106371939A (zh) * 2016-09-12 2017-02-01 山东大学 一种时序数据异常检测方法及其***
CN106649438A (zh) * 2016-09-09 2017-05-10 西安交通大学 一种时序数据非预期故障检测方法
CN106707099A (zh) * 2016-11-30 2017-05-24 国网上海市电力公司 基于异常用电检测模型的监测定位方法
CN106778841A (zh) * 2016-11-30 2017-05-31 国网上海市电力公司 异常用电检测模型的建立方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319981A (zh) * 2018-02-05 2018-07-24 清华大学 一种基于密度的时序数据异常检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106095655A (zh) * 2016-05-31 2016-11-09 北京蓝海讯通科技股份有限公司 一种异常检测方法、应用和监控设备
CN106649438A (zh) * 2016-09-09 2017-05-10 西安交通大学 一种时序数据非预期故障检测方法
CN106371939A (zh) * 2016-09-12 2017-02-01 山东大学 一种时序数据异常检测方法及其***
CN106707099A (zh) * 2016-11-30 2017-05-24 国网上海市电力公司 基于异常用电检测模型的监测定位方法
CN106778841A (zh) * 2016-11-30 2017-05-31 国网上海市电力公司 异常用电检测模型的建立方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111401431A (zh) * 2020-03-12 2020-07-10 成都小步创想慧联科技有限公司 群租房识别方法及***及存储介质
CN111401431B (zh) * 2020-03-12 2023-07-25 成都小步创想慧联科技有限公司 群租房识别方法及***及存储介质
WO2022105502A1 (fr) * 2020-11-23 2022-05-27 歌尔股份有限公司 Procédé et appareil de traitement de données de nuages de points
CN112966017A (zh) * 2021-03-01 2021-06-15 北京青萌数海科技有限公司 一种时间序列中不定长的异常子序列检测方法
CN112966017B (zh) * 2021-03-01 2023-11-14 北京青萌数海科技有限公司 一种时间序列中不定长的异常子序列检测方法
CN113377568A (zh) * 2021-06-29 2021-09-10 北京同创永益科技发展有限公司 一种异常检测方法、装置、电子设备及存储介质
CN113377568B (zh) * 2021-06-29 2023-10-20 北京同创永益科技发展有限公司 一种异常检测方法、装置、电子设备及存储介质
CN113822343A (zh) * 2021-09-03 2021-12-21 国网江苏省电力有限公司营销服务中心 一种基于细粒度用能数据的群租房识别方法
CN113822343B (zh) * 2021-09-03 2023-08-25 国网江苏省电力有限公司营销服务中心 一种基于细粒度用能数据的群租房识别方法
CN114648227A (zh) * 2022-03-23 2022-06-21 成都飞机工业(集团)有限责任公司 航空液压泵站时序异常检测方法、装置、设备及存储介质
CN114648227B (zh) * 2022-03-23 2024-03-15 成都飞机工业(集团)有限责任公司 航空液压泵站时序异常检测方法、装置、设备及存储介质
CN114872290B (zh) * 2022-05-20 2024-02-06 深圳市信润富联数字科技有限公司 一种注塑件的自适应生产异常监测方法
CN114872290A (zh) * 2022-05-20 2022-08-09 深圳市信润富联数字科技有限公司 一种注塑件的自适应生产异常监测方法
CN115081840A (zh) * 2022-06-09 2022-09-20 国网湖南省电力有限公司 一种基于一阶差分和arima法的日电量异常值检测与校正***
CN115473331B (zh) * 2022-07-22 2024-04-12 国网河南省电力公司新乡供电公司 一种基于动态建模的数字孪生电网用电量监管***
CN115473331A (zh) * 2022-07-22 2022-12-13 国网河南省电力公司新乡供电公司 一种基于动态建模的数字孪生电网用电量监管***
CN115665209B (zh) * 2022-12-09 2023-05-05 云南电网有限责任公司 电表数据采集方法、装置、电子设备及可读存储介质
CN115665209A (zh) * 2022-12-09 2023-01-31 施维智能计量***服务(长沙)有限公司 电表数据采集方法、装置、电子设备及可读存储介质
CN115792479A (zh) * 2023-02-08 2023-03-14 东营市建筑设计研究院 一种智能插座的用电智能监测方法及***
CN115792479B (zh) * 2023-02-08 2023-05-09 东营市建筑设计研究院 一种智能插座的用电智能监测方法及***
CN116155298A (zh) * 2023-04-20 2023-05-23 山东水运发展集团有限公司济宁分公司 一种基于互联网数据的船闸远程管理***
CN116414097B (zh) * 2023-05-15 2023-09-29 广东思创智联科技股份有限公司 基于工业设备数据的告警管理方法及***
CN116414097A (zh) * 2023-05-15 2023-07-11 广东思创智联科技股份有限公司 基于工业设备数据的告警管理方法及***
CN116611017B (zh) * 2023-07-17 2023-09-19 山东一然环保科技有限公司 一种低氮燃烧加热炉的氮氧化物排放检测方法
CN116611017A (zh) * 2023-07-17 2023-08-18 山东一然环保科技有限公司 一种低氮燃烧加热炉的氮氧化物排放检测方法
CN116864020B (zh) * 2023-09-05 2023-11-03 山东鲁扬新材料科技有限公司 应用于egda生成过程的数据管理***
CN116864020A (zh) * 2023-09-05 2023-10-10 山东鲁扬新材料科技有限公司 应用于egda生成过程的数据管理***
CN116911806B (zh) * 2023-09-11 2023-11-28 湖北华中电力科技开发有限责任公司 基于互联网+的电力企业能源信息管理***
CN116911806A (zh) * 2023-09-11 2023-10-20 湖北华中电力科技开发有限责任公司 基于互联网+的电力企业能源信息管理***
CN117195137A (zh) * 2023-11-07 2023-12-08 江苏赛冲智能装备有限公司 基于数据分析的转子压铸误差检测***
CN117195137B (zh) * 2023-11-07 2024-02-20 江苏赛冲智能装备有限公司 基于数据分析的转子压铸误差检测***
CN117312997B (zh) * 2023-11-21 2024-03-08 乾程电力有限公司 一种电力管理***智能诊断方法及***
CN117312997A (zh) * 2023-11-21 2023-12-29 乾程电力有限公司 一种电力管理***智能诊断方法及***
CN117408734A (zh) * 2023-12-15 2024-01-16 广东云百科技有限公司 基于物联网设备的客户信息智能管理***
CN117408734B (zh) * 2023-12-15 2024-03-19 广东云百科技有限公司 基于物联网设备的客户信息智能管理***
CN117436006A (zh) * 2023-12-22 2024-01-23 圣道天德电气(山东)有限公司 一种智慧环网柜故障实时监测方法及***
CN117436006B (zh) * 2023-12-22 2024-03-15 圣道天德电气(山东)有限公司 一种智慧环网柜故障实时监测方法及***
CN117478442A (zh) * 2023-12-28 2024-01-30 深圳市金瑞铭科技有限公司 边缘智能终端及其智能远程控制方法
CN117478442B (zh) * 2023-12-28 2024-03-29 深圳市金瑞铭科技有限公司 边缘智能终端及其智能远程控制方法
CN117572331A (zh) * 2024-01-16 2024-02-20 山东宜美科节能服务有限责任公司 一种对智能电表数据实时采集的方法及***
CN117572331B (zh) * 2024-01-16 2024-03-26 山东宜美科节能服务有限责任公司 一种对智能电表数据实时采集的方法及***
CN117609928A (zh) * 2024-01-23 2024-02-27 华北电力科学研究院有限责任公司 基于电力数据的污染物排放量异常识别方法与装置
CN117609928B (zh) * 2024-01-23 2024-04-05 华北电力科学研究院有限责任公司 基于电力数据的污染物排放量异常识别方法与装置
CN118033300A (zh) * 2024-04-10 2024-05-14 贵州国昱源丰节能科技有限公司 一种动态电压调节器的负载失电异常智能识别方法

Also Published As

Publication number Publication date
CN109726731B (zh) 2023-04-18
CN109726731A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020019403A1 (fr) Procédé, appareil et dispositif de détection d'anomalie de consommation d'électricité, et support de stockage lisible
WO2020010677A1 (fr) Procédé d'acquisition de valeurs manquantes consécutives, dispositif d'analyse de données, terminal et support d'informations
WO2020015060A1 (fr) Procédé et appareil d'estimation d'anomalie de consommation d'énergie, et support d'enregistrement informatique
WO2019037196A1 (fr) Procédé et dispositif d'attribution de tâche, et support d'informations lisible par ordinateur
WO2020253034A1 (fr) Procédé, appareil et dispositif de test de point enfoui client, et support d'enregistrement
WO2018205373A1 (fr) Procédé et appareil d'estimation de dépenses de dommages corporels et de dépenses de règlement de sinistre, serveur et support
WO2018076756A1 (fr) Procédé et appareil de détection d'état de port pour dispositif vestimentaire intelligent, et climatiseur
WO2020024534A1 (fr) Procédé, appareil et dispositif de régulation de consommation électrique basée sur la prédiction de quantité électrique, et support de stockage
WO2020258657A1 (fr) Procédé et appareil de détection d'anomalie, dispositif informatique et support d'informations
WO2020119369A1 (fr) Procédé, appareil et dispositif de positionnement de défaut de fonctionnement et de maintenance informatique intelligent, et support de stockage lisible
WO2020015064A1 (fr) Procédé de traitement de défaillance de système, appareil, dispositif et support d'informations
WO2020119383A1 (fr) Procédé de supervision d'assurance médicale, dispositif, appareil et support de stockage lisible par ordinateur
WO2018120681A1 (fr) Procédé, dispositif et système de synchronisation de données, serveur de traitement de données et support de stockage
WO2014193041A1 (fr) Système et procédé d'analyse de rendement en utilisant des données de capteur d'un équipement de fabrication
WO2014204179A1 (fr) Procédé de vérification de mauvais motif dans des données de détection série dans le temps et son appareil
WO2019114559A1 (fr) Procédé et appareil de commande de climatiseur et support de stockage lisible par ordinateur
WO2020052152A1 (fr) Procédé, appareil et dispositif de détermination de résidence d'utilisateur et support d'informations lisible par ordinateur
WO2017067291A1 (fr) Procédé et dispositif de reconnaissance d'empreinte digitale, et terminal
WO2020155773A1 (fr) Procédé de surveillance d'entrée de texte suspecte, dispositif, appareil informatique et support de sockage
WO2021000507A1 (fr) Procédé de commande de réglage de température anormale d'un climatiseur, et climatiseur et support de stockage
WO2020186774A1 (fr) Procédé et appareil de positionnement basé sur la détection d'image, et dispositif et support de stockage
WO2017028549A1 (fr) Système intelligent capable d'identifier automatiquement une position et son procédé de mise en œuvre
WO2021027143A1 (fr) Procédé, appareil et dispositif de poussée d'informations et support d'informations lisible par ordinateur
WO2021012481A1 (fr) Procédé et appareil de surveillance de performances de système, dispositif et support d'informations
WO2020258574A1 (fr) Procédé et dispositif de commande de climatiseur, climatiseur et support de stockage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928008

Country of ref document: EP

Kind code of ref document: A1