WO2020017304A1 - 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法 - Google Patents

反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法 Download PDF

Info

Publication number
WO2020017304A1
WO2020017304A1 PCT/JP2019/026115 JP2019026115W WO2020017304A1 WO 2020017304 A1 WO2020017304 A1 WO 2020017304A1 JP 2019026115 W JP2019026115 W JP 2019026115W WO 2020017304 A1 WO2020017304 A1 WO 2020017304A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub member
scale plate
optical encoder
reflective optical
adhesive
Prior art date
Application number
PCT/JP2019/026115
Other languages
English (en)
French (fr)
Inventor
嘉智 中村
誉 竹田
大輔 司城
大輔 金森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020217000532A priority Critical patent/KR102618145B1/ko
Priority to CN201980045434.4A priority patent/CN112368550B/zh
Priority to US17/258,269 priority patent/US11609106B2/en
Priority to JP2020531213A priority patent/JP6956880B2/ja
Publication of WO2020017304A1 publication Critical patent/WO2020017304A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • G01D5/34723Scale reading or illumination devices involving light-guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/28Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication
    • G01D5/30Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with deflection of beams of light, e.g. for direct optical indication the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders

Definitions

  • the present application relates to a reflective optical encoder and a motor, and a method for manufacturing a reflective optical encoder.
  • an encoder having a disk fixed to a hub, a light source for irradiating the disk with light, and a light receiving array for receiving light reflected by the disk. It is disclosed that they are bonded (see Patent Document 1).
  • a pattern mainly composed of a high reflection portion having a high light reflectance and a low reflection portion having a low light reflectance, and a light projecting portion and a light receiving portion on the surface side. Have. Light emitted from the light emitting part is reflected by a pattern consisting of a high reflective part with high light reflectance and a low reflective part with low light reflectance, and the light receiving part detects the difference in the amount of reflected light. By doing so, the position can be detected. Detecting the rotation angle and rotation speed of the motor by fixing a circular scale plate having a pattern composed of these high reflection parts and low reflection parts to the hub member and assembling them on the rotation shaft of the motor Can be.
  • the scale plate is fixed to the hub member by bonding a circular scale plate having a pattern composed of the high reflection portion and the low reflection portion to the hub member. Also, when the power of the encoder is turned off, a battery is required to detect and store the encoder position. On the other hand, by adding magnetism to the hub member and disposing the power generation element near the hub member, the power generation element generates power by receiving the magnetic force of the hub member, and the detection and storage of the encoder position can be performed. Therefore, the work of replacing the battery and the battery can be eliminated.
  • the present application discloses a technique for solving the above-described problem, and prevents the adhesive from adhering on the pattern on the scale plate, thereby increasing the detection accuracy of the rotation angle and the rotation speed of the motor. It is an object of the present invention to provide a reflective optical encoder and a motor that can perform the method, and a method of manufacturing the reflective optical encoder.
  • the reflection type optical encoder disclosed in the present application has a hub member attached to a rotating shaft, a high reflection portion having a high light reflectance on the surface, and a high reflection portion and a light reflectance fixed to the hub member with an adhesive.
  • a circular scale plate having a pattern composed of low low reflection portions, a light projecting portion that irradiates light to the surface of the scale plate, and reflected light reflected by the pattern provided on the scale plate.
  • a light receiving unit for receiving light is provided on an outer peripheral portion of the hub member, and an outer diameter of the scale plate is larger than an outer diameter of an outermost peripheral portion of a bonding surface of the hub member between the scale plate and the hub member.
  • the method of manufacturing a reflective optical encoder disclosed in the present application includes a hub member attached to a rotating shaft, a high-reflection portion having a high light reflectance on the surface while being fixed to the hub member with an adhesive.
  • a step is provided on an outer peripheral portion of the hub member, and an outer diameter of an end portion of the step, which is an outer diameter of the hub member, is larger than an outer diameter of the scale plate.
  • a method of manufacturing a reflective optical encoder larger than the outer diameter of the outermost peripheral portion of the bonding surface between the scale plate and the hub member in the member Forming the scale plate from a metal roll material, A step of adsorbing the scale plate formed from the roll material to the adsorption surface of the scale mounting device having an adsorption surface, Applying the adhesive to the adhesive surface of the hub member, A step of squeezing the adhesive by moving the scale plate to a position separated by a predetermined distance from the adhesive surface to which the adhesive has been applied by the scale mounting device, Curing the adhesive.
  • the adhesive surface of the hub member and the light reflectance are high.
  • the adhesive overflowing from between the circular scale plate having a pattern composed of the reflection portion and the low reflection portion having a low light reflectance is accumulated on the step of the hub member, and the adhesive and the hub member having the step and the circular scale have a step. It does not protrude from between the boards. Therefore, even when the scale plate is bonded to the hub member, the adhesive does not adhere to the pattern, and the rotation angle and the rotation speed of the motor can be detected stably.
  • FIG. 1 is a cross-sectional view illustrating an entire configuration of a reflective optical encoder according to a first embodiment.
  • FIG. 1 is a cross-sectional view illustrating an entire configuration of a reflective optical encoder according to a first embodiment.
  • FIG. 3 is a plan view showing a scale plate according to the first embodiment. It is a top view which shows a scale plate. It is a top view which shows a scale plate.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a method for manufacturing the reflection-type optical encoder according to the first embodiment.
  • FIG. 3 is a sectional view showing an encoder unit according to the first embodiment. It is the A section enlarged view in FIG. It is an expanded sectional view showing an end of a scale board and a hub member.
  • FIG. 10 is an enlarged cross-sectional view showing end portions of a scale plate and a hub member in a reflective optical encoder according to a second embodiment.
  • FIG. 3 is a sectional view showing an encoder unit according to the first embodiment. It is the A section enlarged view in FIG. It is an expanded sectional view showing an end of a scale board and a hub member.
  • FIG. 10 is an enlarged cross-
  • FIG. 13 is an enlarged sectional view showing end portions of a scale plate and a hub member in a reflective optical encoder according to a third embodiment.
  • FIG. 13 is an enlarged cross-sectional view showing end portions of a scale plate and a hub member in a reflective optical encoder according to a fourth embodiment.
  • FIG. 1 is a sectional view showing the entire configuration of the reflection type optical encoder according to the first embodiment.
  • the reflection type optical encoder 1 is attached to a motor 12. Further, the reflection type optical encoder 1 irradiates a rotating shaft 11 connected to a motor rotating shaft 13 of a motor 12, a circular scale plate 5 fixed to a hub member 8 attached to the rotating shaft 11, and light 6.
  • the hub member 8 is provided with magnetism.
  • magnetism As a method of giving magnetism to the hub member 8, it is conceivable to fix the magnet 38 to the back surface of the hub member 8. Further, the magnet 38 may be arranged between the circular scale plate 5 and the hub member 8. In this case, since the step of fixing the hub member 8 and the magnet 38 can be omitted, the production efficiency can be improved. Further, since the magnet 38 has the function of the hub member 8 by forming the magnet 38 into the shape of the hub member 8, the number of constituent parts can be reduced and the production efficiency can be improved. Further, as the hub member 8, a cylindrical second hub member 8B made of a metal such as brass, stainless steel, or carbon steel, for example, as shown in FIG. 2, is formed integrally with the magnetic first hub member 8A.
  • the material of the hub member 8 is preferably formed by dispersing magnetic particles in a plastic material or the like and then forming the hub member 8 into various shapes easily by injection molding.
  • the hub member 8 is not limited to being formed by including magnetic particles in a plastic material or the like, and may be formed of ferrite, alnico (Al-Ni-Co), or a rare earth.
  • FIG. 3 is a plan view showing a scale plate according to the first embodiment.
  • the scale plate 5 has a circular shape, and a high-reflecting portion 141 that reflects the light 6 radiated from the light projecting portion 41 to the surface side with high reflectance, and a light radiated from the light projecting portion 41.
  • 6 has a circular pattern 14 composed of a low-reflection portion 142 that reflects light at a low reflectance.
  • the configuration of the high reflection section 141 and the low reflection section 142 may be arranged regularly or randomly. Further, another pattern in which a high reflection portion and a low reflection portion are formed in a different configuration from the pattern 14 may be provided on the inner diameter side or the outer diameter side of the circular pattern 14.
  • the light 6 emitted from the light projecting unit 41 when the rotating shaft 11 is rotated is composed of a high reflective unit 141 having a high light reflectance and a low reflective unit 142 having a low light reflectance.
  • the rotation angle and the rotation speed are detected by detecting the difference in the amount of the reflected light by the light receiving unit 42.
  • the power generation element 3 generates electric power based on a change in the direction of the magnetic force emitted from the hub member 8 to detect the number of rotations that is the number of rotations from the reference position.
  • the rotating shaft 11 rotates together with the motor rotating shaft 13 of the motor 12. Therefore, the reflection type optical encoder 1 can detect the rotation angle, the rotation speed, and the rotation speed of the motor rotation shaft 13 of the motor 12 by detecting the rotation angle, the rotation speed, and the rotation speed of the rotation shaft 11, It can be output as data.
  • FIG. 4A and 4B are plan views showing the scale plate.
  • FIG. 4A shows a case where the pattern is arranged at a position near the center
  • FIG. 4B shows a case where the pattern is arranged at a position far from the center.
  • the high reflection portion 141 having a high light reflectance and the light reflection The number of low low reflection portions 142 can be increased.
  • the resolution can be improved, so that the performance of the reflective optical encoder 1 can be improved.
  • the circular scale plate 5 having the pattern 14 composed of the high reflection portion 141 having a high light reflectance and the low reflection portion 142 having a low light reflectance is fixed to the hub member 8 by bonding.
  • a circular scale plate 5 is formed from a metal roll material 15 having a thickness of 0.05 to 0.2 mm.
  • the metal may be stainless steel SUS303 or SUS304.
  • the thickness is desirably 0.1 mm or less.
  • the surface of the circular scale plate 5 includes a low-reflection portion 142 that has been subjected to a process of reducing the reflectance by etching or the like, and a high-reflection portion 141 that has been subjected to a process of improving the reflectance of light by, for example, mirror finishing. Pattern 14 is formed.
  • the pattern 14 has a circular alignment pattern 143 on the inner diameter side or outer diameter side of the pattern 14 in order to adjust the positional relationship with the center position of the hub member 8. Since the scale plate 5 having a circular pattern is formed from a metal roll material 15, a warp having a radius of 0.5 mm or less is generated in the scale plate 5 having a circular shape.
  • the circular scale plate 5 having the pattern 14 composed of the high reflection portion 141 having a high light reflectance and the low reflection portion 142 having a low light reflectance is obtained by depositing a metal on a surface of a glass plate or a resin plate. It can also be configured.
  • the outer diameter (E2 in FIG. 3) of the outermost peripheral portion 14E of the pattern 14 is smaller than the outer diameter (see FIG.
  • FIGS. 6 to 9 are sectional views showing the bonding method.
  • an adhesive 19 is applied to an adhesive surface 17 of the hub member 8 by a dispenser 18.
  • the circular scale plate 5 is attracted to the scale mounting device 100 and placed above the hub member 8.
  • the circular scale plate 5 is sucked and brought into close contact with the suction surface 101 of the scale mounting device 100, so that the warpage generated at the time of forming the circular scale plate 5 can be reduced.
  • the center position of the alignment pattern 143 of the circular scale plate 5 is detected by the sensor 21, and the circular scale plate 5 is moved so as to match the center position of the hub member 8.
  • image processing by a camera is desirable.
  • a heat curing type, an ultraviolet curing type, a curing agent mixing type, an anaerobic curing type, a pressure sensitive type, a heat melting type, or an adhesive in which these curing methods are combined is used. I can do it. From the viewpoint that the time required for handling and curing of the adhesive is short and that the curing method is simple, it is desirable to use an ultraviolet-curable adhesive or a composite of another curable and ultraviolet-curable adhesive. Thus, the scale plate 5 can be quickly bonded to the hub member 8.
  • the circular scale plate 5, the rotating shaft 11, the light projecting part 41, the light receiving part 42, the substrate 2, on which the power generating element 3 is mounted, the housing 9, and the housing 10 are fixed to the hub member 8 by the above bonding method.
  • the reflective optical encoder 1 is assembled.
  • FIG. 10 is a cross-sectional view showing the encoder unit
  • FIG. 11 is an enlarged view of a portion A in FIG. 10, which is an enlarged view of the end portions of the scale plate and the hub member.
  • the hub member 8 has a step 23 on the outer peripheral portion.
  • the outer diameter of the end portion 24 of the step 23 is larger than the outer diameter E1 of the circular scale plate 5 having the pattern 14 (see FIG. 3).
  • the outer diameter of the outermost peripheral portion 17E of the bonding surface 17 is larger than the outer diameter E2 of the outermost peripheral portion 14E of the pattern 14 (see FIG. 3). 11, the outer diameter E1 of the scale plate 5 is larger than the outer diameter of the outermost peripheral portion 17E of the bonding surface 17.
  • FIG. 12 is an enlarged cross-sectional view showing the ends of the scale plate and the hub member when no step is provided.
  • the pattern 14X is rotated by rotating the circular scale plate 5. It is necessary to move and arrange in the direction (B) close to the center (14Y).
  • the pattern 14 composed of the high reflection portion 141 having a high light reflectance and the low reflection portion 142 having a low light reflectance is arranged at a position far from the rotation center. it can. As a result, the resolution at which the rotation angle and the rotation speed can be detected can be improved, so that the performance of the reflective optical encoder 1 can be improved.
  • the outer diameter of the hub member 8 is larger than the outer diameter of the scale plate 5, when adjusting the position of the scale plate 5 with respect to the hub member 8 and assembling, the outer circumference of the scale plate 5 and the hub member 8 is surrounded.
  • the gap between the housing 9 and the hub member 8 arranged as described above can be stably reduced (0.1 mm or less).
  • the adhesive does not protrude to the side surface of the hub member 8, the gap between the hub member 8 and the housing 9 can be stably reduced (0.1 mm or less). Accordingly, it is possible to prevent foreign matter generated from the rotating shaft 11 and the back surface of the hub member 8 from adhering to the pattern 14 on the upper surface of the circular scale plate 5, thereby improving the reliability of the reflective optical encoder 1. .
  • the magnetism given to the hub member 8 can be increased. Therefore, a stable magnetic force resistant to disturbance can be applied to the power generation element 3 and a sufficient power generation amount can be secured, so that the reliability of the reflective optical encoder 1 is improved.
  • the step 23 is provided on the hub member 8, so that the bonding surface of the hub member 8, the high reflection portion 141 having a high light reflectance, and the low reflection having a low light reflectance are provided.
  • the adhesive 19 overflowing from between the circular scale plates 5 having the pattern 14 constituted by the portions 142 accumulates on the steps 23 of the hub member 8, and the adhesive 19 and the hub member 8 having the steps 23 and the circular scale It does not protrude from between the plates 5. Therefore, even when the scale plate 5 is bonded to the hub member 8, the adhesive 19 does not adhere to the pattern 14, and the rotation angle and the rotation speed of the motor 12 can be detected stably.
  • the gap between the housing 9 and the hub member 8 can be stably reduced when the scale plate 5 is adjusted in position with respect to the hub member 8 and assembled. (0.1 mm or less), so that contamination of the pattern 14 by foreign matter can be prevented. Further, by increasing the outer diameter of the hub member 8, a magnetic force can be secured, and a sufficient power generation amount can be secured even when there is a distance between the hub member 8 and a disturbance. Therefore, a pattern plate can be manufactured at low cost.
  • FIG. FIG. 13 is an enlarged sectional view showing end portions of a scale plate and a hub member in the reflective optical encoder according to the second embodiment.
  • the basic configuration of the reflective optical encoder and the method of manufacturing the same are the same as those in the first embodiment.
  • the protrusion 30 is provided in the direction C having the bonding surface 17 at the end 24 of the step 23.
  • the ultraviolet-curable adhesive 19 it is difficult to irradiate the adhesive 19 with ultraviolet rays if the protrusion 30 is higher than the bonding surface 17 in the upward direction. That is, an uncured portion of the adhesive 19 is generated, and there is a concern that the adhesive strength is reduced. Therefore, in order to efficiently irradiate the adhesive 19 with ultraviolet rays, it is desired that the height of the protrusion 30 at the end 24 of the step 23 be lower than the bonding surface 17.
  • the hub member 8 When the circular scale plate 5 is bonded, if the hub member 8 is installed at an angle, the adhesive 19 protruding from the bonding surface 17 accumulates on the step 23, but the hub member 8 is tilted over time.
  • the adhesive 19 may flow in the direction. That is, the adhesive 19 may protrude from the hub member 8. Therefore, by providing the convex portion 30 at the end portion 24 of the step 23, the hub member 8 is installed on the apparatus in a tilted state, and the adhesive 19 that has protruded from between the circular scale plate 5 and the hub member 8 is passed over time. Even when the adhesive 19 flows, the flow of the adhesive 19 is stopped at the convex portion 30 of the step 23, so that the adhesive 19 can be prevented from protruding from the hub member 8. Therefore, the reflective optical encoder 1 can be stably produced.
  • FIG. 14 is an enlarged sectional view showing end portions of a scale plate and a hub member in a reflective optical encoder according to the third embodiment.
  • the basic configuration of the reflective optical encoder and the method of manufacturing the same are the same as in the first embodiment.
  • a labyrinth structure 36 is provided between the housing 9 and the hub member 8 arranged so as to surround the outer periphery of the hub member 8 and the scale plate 5.
  • the labyrinth structure 36 may have a structure in which a groove is formed in the housing 9 so that foreign matter can easily enter the groove.
  • the labyrinth structure may have any shape.
  • the labyrinth structure 36 By providing the labyrinth structure 36, it is possible to prevent foreign matter generated from the back surfaces of the rotating shaft 11 and the hub member 8 from adhering to the pattern 14 provided on the upper surface of the circular scale plate 5. Therefore, the reliability of the reflective optical encoder 1 is improved.
  • the magnetism given to the hub member 8 By further increasing the diameter of the hub member 8, the magnetism given to the hub member 8 can be further increased. Therefore, a stable magnetic force resistant to disturbance can be applied to the power generation element 3 and a sufficient power generation amount can be secured, so that the reliability of the reflective optical encoder 1 is improved.
  • the protrusion shown in the second embodiment may be provided and the labyrinth structure according to the present embodiment may be employed.
  • FIG. 15 is an enlarged sectional view showing the end portions of the scale plate and the hub member in the reflective optical encoder according to the fourth embodiment.
  • the basic configuration of the reflective optical encoder and the method of manufacturing the same are the same as in the first embodiment.
  • a curved surface portion 37 is provided on the outer peripheral side of the bonding surface 17 at the step 23 of the hub member 8.
  • the radius of curvature of the curved surface portion 37 can be, for example, 0.1 mm.
  • FIG. 15 illustrates an example in which the curved surface portion 37 is provided in the configuration of the first embodiment
  • the curved surface portion 37 may be provided in the configurations of the second and third embodiments.
  • the reflection type optical encoder has been described.
  • the transmission type encoder that is, the structure in which the light source and the light receiving array are provided with the disk interposed therebetween is shown in the first to fourth embodiments.
  • a configuration may be adopted.
  • 1 reflective optical encoder 3 power generating element, 5 scale plate, 6 light, 8 hub member, 9 housing, 11 rotating shaft, 14 pattern, 15 roll material, 17 adhesive surface, 19 adhesive, 21 sensor, 23 level difference, 24 ° end portion, 30 ° convex portion, 36 ° labyrinth structure, 37 ° curved surface portion, 41 ° light emitting portion, 42 ° light receiving portion, 100 ° scale mounting device, 101 ° suction surface, 141 ° high reflecting portion, 142 ° low reflecting portion, 143 ° alignment pattern.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

回転軸(11)に取り付けられたハブ部材(8)と、ハブ部材(8)に接着剤(19)により固定されるとともに、表面に光の反射率が高い高反射部(141)と光の反射率が低い低反射部(142)で構成されるパターン(14)を有する円形型のスケール板(5)を備え、ハブ部材(8)の外周部に段差(23)が設けられ、スケール板(5)の外径は、ハブ部材(8)におけるスケール板(5)とハブ部材(8)との接着面(17)の最外周部における外径よりも大きくする。

Description

反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法
 本願は、反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法に関するものである。
 従来においては、ハブに固定されるディスクと、ディスクに光を照射する光源と、ディスクで反射された光を受光する受光アレイとを有するエンコーダが開示されており、又ディスクとハブは接着剤により接着されていることが開示されている(特許文献1参照)。
特開2014-130104号公報
 一般的に反射型光学式エンコーダにおいては、主に光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンと、その表面側に投光部と受光部を有する。投光部から出た光を、光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンで反射し、反射された光の光量の差を受光部で検出することで位置を検出できる。これら高反射部と、低反射部で構成されるパターンを有する円形型のスケール板をハブ部材に固定し、これらをモータの回転軸に組み付けることで、モータの回転角度並びに回転速度を検出することができる。高反射部と低反射部で構成されるパターンを有する円形型のスケール板をハブ部材に接着することでスケール板はハブ部材に固定される。また、エンコーダの電源を切った際、エンコーダ位置の検知と保存をするためにバッテリーが必要となる。これに対してハブ部材に磁性を付加し、近くに発電素子を配置することで、ハブ部材の磁力を受けて発電素子が発電し、エンコーダ位置の検出と保存ができるようになる。よってバッテリー並びにバッテリーの交換作業を無くすことができる。
 かかる反射型光学式エンコーダにおいては、角度検出精度を確保し、更には小型化を図るために、パターンは円形型のスケール板の外周付近に配置する必要がある。また接着剤硬化時の硬化収縮によるスケール板の変形及びスケール板が固定されたハブ部材の回転時の振動が検出精度を悪化させるおそれがある。従ってスケール板においてパターンの存在する位置は接着固定されている必要がある。
 その結果、ハブ部材にスケール板を接着固定する際、はみ出した接着剤が這い上がり、スケール板の表面を汚染することがある。この場合、高反射部と低反射部で構成されるパターンから反射される光の光量の差が変化するため、モータの回転角度並びに回転速度の検出精度を悪化させるという問題点があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、スケール板上のパターンの上に接着剤が付着しないようにして、モータの回転角度及び回転速度の検出精度を高めることの出来る反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法を提供することを目的とする。
 本願に開示される反射型光学式エンコーダは、回転軸に取り付けられたハブ部材と、上記ハブ部材に接着剤により固定されるとともに、表面に光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンを有する円形型のスケール板と、上記スケール板の上記表面に光を照射する投光部と、上記スケール板に設けられた上記パターンにおいて反射した反射光を受光する受光部とを備えたものであって、
上記ハブ部材の外周部に段差が設けられ、上記スケール板の外径は、上記ハブ部材における上記スケール板と上記ハブ部材との接着面の最外周部における外径よりも大きいものである。
 又本願に開示される反射型光学式エンコーダの製造方法は、回転軸に取り付けられたハブ部材と、上記ハブ部材に接着剤により固定されるとともに、表面に光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンを有する円形型のスケール板とを備え、
上記ハブ部材の外周部に段差が設けられ、上記ハブ部材の外径である上記段差の端部の外径は、上記スケール板の外径よりも大きく、上記スケール板の外径は、上記ハブ部材における上記スケール板と上記ハブ部材との接着面の最外周部における外径よりも大きい反射型光学式エンコーダの製造方法であって、
上記スケール板を金属のロール材から成形する工程と、
吸着面を有するスケール搭載装置の上記吸着面に上記ロール材から成形された上記スケール板を吸着させる工程と、
上記ハブ部材の上記接着面に上記接着剤を塗布する工程と、
上記接着剤が塗布された上記接着面から予め定められた距離だけ離れた位置に上記スケール板を上記スケール搭載装置によって移動させて上記接着剤を押し潰す工程と、
上記接着剤を硬化させる工程と、を備えたものである。
 本願に開示される反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法によれば、ハブ部材に段差を設けたことにより、ハブ部材の接着面と、光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンを有する円形型のスケール板の間からあふれた接着剤がハブ部材の段差に溜まり、接着剤が段差を有するハブ部材と円形型のスケール板の間からはみ出ない。従ってハブ部材にスケール板を接着した場合でもパターンの上に接着剤が付着せず、安定してモータの回転角度、回転速度を検出することができる。
実施の形態1による反射型光学式エンコーダの全体構成を示す断面図である。 実施の形態1による反射型光学式エンコーダの全体構成を示す断面図である。 実施の形態1によるスケール板を示す平面図である。 スケール板を示す平面図である。 スケール板を示す平面図である。 実施の形態1による反射型光学式エンコーダの製造方法の一例を示す図である。 実施の形態1による反射型光学式エンコーダの製造方法の一例を示す図である。 実施の形態1による反射型光学式エンコーダの製造方法の一例を示す図である。 実施の形態1による反射型光学式エンコーダの製造方法の一例を示す図である。 実施の形態1による反射型光学式エンコーダの製造方法の一例を示す図である。 実施の形態1によるエンコーダ部を示す断面図である。 図10におけるA部拡大図である。 スケール板及びハブ部材の端部を示す拡大断面図である。 実施の形態2による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。 実施の形態3による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。 実施の形態4による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。
実施の形態1.
 以下実施の形態1を図に基づいて説明する。図1は実施の形態1による反射型光学式エンコーダの全体構成を示す断面図である。反射型光学式エンコーダ1は、モータ12に取り付けられている。更に反射型光学式エンコーダ1はモータ12のモータ回転軸13に接続された回転軸11と、回転軸11に取り付けられたハブ部材8に固定される円形型のスケール板5と、光6を照射する投光部41と反射光を受光する受光部42と、発電素子3が取り付けられた基板2と、基板2を取付けたハウジング9と、ハウジング9と回転軸11が取付けられたハウジング10を有している。
 ハブ部材8には磁性が付与されている。ハブ部材8への磁性の付与方法として、ハブ部材8の裏面に磁石38を固定することが考えられる。また、磁石38を円形型のスケール板5とハブ部材8の間に配置しても良い。この場合ハブ部材8と磁石38を固定する工程を省略することができるため、生産効率の向上を図ることが出来る。更に磁石38をハブ部材8の形に成形することで、磁石38がハブ部材8の機能を有するため、構成する部品点数を削減することができ、生産効率を向上させることが出来る。又、ハブ部材8として、黄銅、またはステンレス、または炭素鋼などの金属の例えば図2に示すような円筒型形状の第二のハブ部材8Bを磁性の第一のハブ部材8Aと一体に形成して、第二のハブ部材8Bを介して回転軸11と第一のハブ部材8Aとを固定することも考えられ、これによりハブ部材8の剛性を高めることができる。
 ハブ部材8の材料としては、プラスチック材料などに磁性粒子を含有後、分散させて形成されることが望ましく、射出成形によりハブ部材8を容易に様々な形状にすることができる。但しハブ部材8は、プラスチック材料などに磁性粒子を含有させて形成することに限らず、フェライト、アルニコ(Al-Ni-Co)、または希土類で形成しても良い。
 図3は実施の形態1によるスケール板を示す平面図である。図3に示すように、スケール板5は円形であり、表面側に投光部41から照射された光6を高い反射率で反射する高反射部141と、投光部41から照射された光6を低い反射率で反射する低反射部142で構成される円形型のパターン14を有している。このパターン14において、高反射部141と低反射部142の構成は規則正しく並べるようにしても、あるいはランダムに並べるようにしても良い。
さらに、円形型のパターン14の内径側又は外径側に、パターン14とは異なる構成で高反射部と低反射部が形成された別のパターンを設けるようにしても良い。
 反射型光学式エンコーダ1では、回転軸11の回転時に、投光部41から出た光6を、光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14で反射し、反射された光の光量の差を受光部42で検出することにより、回転角度及び回転速度を検出する。さらにハブ部材8から放出される磁力の向きの変化によって発電素子3が発電することにより基準位置からの回転した数である回転数を検出する。回転軸11はモータ12のモータ回転軸13と共に回転する。そのため反射型光学式エンコーダ1は、回転軸11の回転角度、回転数、回転速度を検出することにより、モータ12のモータ回転軸13の回転角度、回転数、回転速度を検出することが出来、データとして出力することができる。
 図4A、図4Bはスケール板を示す平面図であり、図4Aはパターンを中心から近い位置に配置した場合、図4Bはパターンを中心から遠い位置に配置した場合を示している。図4Bに示すように、図4Aの場合に比べてパターン14を回転軸11の回転中心Pから遠ざける方向Dに配置することで、光の反射率が高い高反射部141と光の反射率が低い低反射部142の数を増やすことができる。これにより分解能を向上させることができるため、反射型光学式エンコーダ1の性能を向上させることができる。
 光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を有する円形型のスケール板5はハブ部材8に接着することで固定される。
 次に光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を有する円形型のスケール板5とハブ部材8の接着方法について以下説明する。
 図5~図9は本実施形態に係る反射型光学式エンコーダ1の製造方法の一例を示す図である。図5において、円形型のスケール板5は厚み0.05~0.2mmの金属のロール材15から成形される。金属としては、ステンレスであるSUS303でもSUS304でも良い。また使用する材料を削減することにより安価にパターン14を有する円形型のスケール板5を製造することができるため、厚みは0.1mm以下が望ましい。円形型のスケール板5の表面には、エッチング加工などにより反射率を低下させる処理をした低反射部142と、鏡面加工などにより光の反射率を向上させる処理をした高反射部141で構成されるパターン14が成形される。
 パターン14にはハブ部材8の中心位置との位置関係を調整するため、パターン14の内径側、または外径側に円形型のアライメントパターン143を有する。パターン円形型のスケール板5は金属のロール材15から成形しているため、円形型のスケール板5には半径0.5mm以下の反りが発生している。光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を有する円形型のスケール板5は、ガラス板、または樹脂板の表面に金属を蒸着して構成することもできる。尚パターン14の最外周部14Eの外径(図3のE2)はハブ部材8の接着面17の最外周部17Eにおける外径(図11参照)よりも小さくなっている。円形型のパターン14を有する円形型のスケール板5をハブ部材8に接着した際、円形型のパターン14の配置されている円形型のスケール板5の裏面がハブ部材8の接着面17に接着剤19で固定される。
 図6~図9は接着方法を示す断面図である。図6において、ハブ部材8の接着面17にディスペンサ18で接着剤19を塗布する。次に図7に示すように、円形型のスケール板5をスケール搭載装置100に吸着させ、ハブ部材8の上方に配置する。このとき円形型のスケール板5を吸着し、スケール搭載装置100の吸着面101に密着させることで、円形型のスケール板5の成形時に発生した反りを低減させることができる。その後図8に示すように、円形型のスケール板5のアライメントパターン143の中心位置をセンサ21で検出し、ハブ部材8の中心位置に合わせるように円形型のスケール板5を移動させる。センサ21による中心位置の検出としては、カメラによる画像処理が望ましい。
 更に円形型のスケール板5の裏面からハブ部材8の接着面17までの距離が予め定められた距離である0.03mm~0.25mmとなる位置に移動させる。このとき円形型のスケール板5は、接着剤19を押し潰しながら移動する。この後、図9に示すように、接着剤19を硬化させることで、光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を有する円形型のスケール板5をハブ部材8に固定する。ここで使用される接着剤の硬化方式としては、加熱硬化型、紫外線硬化型、硬化剤混合型、嫌気硬化型、感圧型、熱溶融型、またはこれらの硬化方式が複合した接着剤を使用することが出来る。接着剤の取り扱い並びに硬化に要する時間が短いこと、更には硬化方法の簡便さの観点から、紫外線硬化型、または他の硬化型と紫外線硬化型の複合した接着剤の使用が望ましい。これによりスケール板5をハブ部材8に迅速に接着させることが出来る。
 以上の接着方法によってハブ部材8に固定された円形型のスケール板5、回転軸11、投光部41、受光部42、発電素子3が取付けられた基板2、ハウジング9、ハウジング10とを組み合わせることにより、反射型光学式エンコーダ1が組み立てられる。
 図10はエンコーダ部を示す断面図、図11は図10におけるA部拡大図であり、スケール板及びハブ部材の端部拡大図である。図11に示すように、ハブ部材8は外周部に段差23を有している。円形型のスケール板5とハブ部材8との接着において、この段差23の端部24の外径はパターン14を有する円形型のスケール板5の外径E1(図3参照)よりも大きくなるよう構成する。これにより図11に示すように、接着剤19を円形型のスケール板5で押し潰した際に、接着面17から溢れた接着剤19が段差23に溜まるため、円形型のスケール板5からの接着剤19のはみ出しを防止することができる。又接着面17の最外周部17Eにおける外径はパターン14の最外周部14Eの外径E2(図3参照)よりも大きい。更に図11より明らかなように、スケール板5の外径E1は接着面17の最外周部17Eにおける外径よりも大きい。
 図12は段差を設けない場合のスケール板及びハブ部材の端部を示す拡大断面図である。図12においては、パターン14を有する円形型のスケール板5とハブ部材8の間から接着剤19がはみ出し、パターン14に付着することを回避するため、パターン14Xを円形型のスケール板5の回転中心に近い方向(B)に移動させて配置する必要が生じる(14Y)。これに対して図11に示すような構造においては、光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を、回転中心から遠い位置に配置できる。これにより回転角度、回転速度を検出できる分解能を向上させることができるため、反射型光学式エンコーダ1の性能を向上させることができる。
 又ハブ部材8の外径をスケール板5の外径より大きくすることにより、ハブ部材8に対してスケール板5の位置を調整して組立てる場合に、スケール板5及びハブ部材8の外周を取り囲むように配置されているハウジング9とハブ部材8の隙間を安定して小さく(0.1mm以下)することが可能となる。またハブ部材8の側面に接着剤がはみ出さないため、安定してハブ部材8とハウジング9との隙間を小さく(0.1mm以下)することができる。従って回転軸11及びハブ部材8の裏面から発生した異物が円形型のスケール板5の上面のパターン14へ付着することを防止することができるため、反射型光学式エンコーダ1の信頼性が向上する。さらにハブ部材8を大きくすることにより、ハブ部材8に付与する磁性を高めることができる。よって外乱に強い安定した磁力を発電素子3に印加することができ、十分な発電量が確保できるため、反射型光学式エンコーダ1の信頼性が向上する。
 以上のように本実施形態によれば、ハブ部材8に段差23を設けたことにより、ハブ部材8の接着面と、光の反射率が高い高反射部141と光の反射率が低い低反射部142で構成されるパターン14を有する円形型のスケール板5の間からあふれた接着剤19がハブ部材8の段差23に溜まり、接着剤19が段差23を有するハブ部材8と円形型のスケール板5の間からはみ出ない。従ってハブ部材8にスケール板5を接着した場合でもパターン14の上に接着剤19が付着せず、安定してモータ12の回転角度、回転速度を検出することができる。
 またハブ部材8の外径をスケール板5の外径より大きくすることにより、ハブ部材8に対してスケール板5を位置調整して組立てる場合に安定してハウジング9とハブ部材8の隙間を小さく(0.1mm以下)することが可能となり、異物によるパターン14の汚染を防止できる。
 さらにハブ部材8の外径を大きくすることにより、磁力が確保でき、発電素子3との間に距離がある場合、更には外乱がある場合でも十分な発電量が確保できる。従って安価にパターン板を製作することができるようになる。
実施の形態2.
 図13は実施の形態2による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。尚反射型光学式エンコーダの基本構成、及びその製造方法は実施の形態1と同様である。
 本実施形態においては、図13に示すように、段差23の端部24における接着面17を有する方向Cに凸部30を設けたものである。紫外線硬化型の接着剤19を使用する場合、凸部30が接着面17よりも上方向に高いと、接着剤19に紫外線を照射することが困難となる。即ち、接着剤19の未硬化部が発生し、接着強度の低下が懸念される。そのため接着剤19に効率良く紫外線を照射するために、段差23の端部24における凸部30の高さは接着面17よりも低いことが望まれる。
 円形型のスケール板5の接着時において、ハブ部材8が傾いて設置されていた場合、接着面17からはみ出た接着剤19が段差23に溜まるが、時間の経過とともにハブ部材8の傾いている方向へ接着剤19が流動する可能性がある。即ち接着剤19がハブ部材8からはみ出る可能性がある。そこで段差23の端部24に凸部30を設けることにより、ハブ部材8が傾いて装置上に設置され、円形型のスケール板5とハブ部材8の間からのはみ出した接着剤19が時間経過とともに流動しても、段差23における凸部30で接着剤19の流れが止まるため、ハブ部材8から接着剤19がはみ出ることを防止することができる。したがって反射型光学式エンコーダ1を安定的に生産することができる。
実施の形態3.
 図14は実施の形態3による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。尚反射型光学式エンコーダの基本構成及びその製造方法は実施の形態1と同様である。
 本実施形態においては、図14に示すように、ハブ部材8及びスケール板5の外周を取り囲むように配置されたハウジング9とハブ部材8の間にラビリンス構造36を設けものである。ラビリンス構造36はハウジング9に溝を設け、異物が溝に入りやすい構造にしてもよい。その他ラビリンス構造としてはどのような形状であっても良い。
 ラビリンス構造36を設けることにより、回転軸11及びハブ部材8の裏面から発生した異物が円形型のスケール板5の上面に設けられたパターン14へ付着することを防止することができる。従って反射型光学式エンコーダ1の信頼性が向上する。さらにハブ部材8の径を大きくすることにより、ハブ部材8に付与する磁性を更に高めることができる。よって外乱に強い安定した磁力を発電素子3に印加することができ、十分な発電量が確保できるため、反射型光学式エンコーダ1の信頼性が向上する。
 尚実施の形態2に示した突部を設けると共に本実施形態によるラビリンス構造を採用しても良い。
実施の形態4.
 図15は実施の形態4による反射型光学式エンコーダにおけるスケール板及びハブ部材の端部を示す拡大断面図である。尚反射型光学式エンコーダの基本構成及びその製造方法は実施の形態1と同様である。本実施形態においては、図15に示すように、ハブ部材8の段差23において、接着面17の外周側に曲面部37を設けたものである。曲面部37の曲率半径はたとえば0.1mmで構成することが出来る。
 円形型のスケール板5で接着剤19を押し潰した際に、接着剤19の流動は表面張力により角部で止まり易い。つまり円形型のスケール板5の角部又はハブ部材8の接着面17の角部で接着剤19の流動が止まり易いため、安定して段差23へ接着剤19を誘導することができない可能性がある。そこでハブ部材8の接着面17の角部を円弧状になるよう除去することにより、安定して接着剤19をハブ部材8の段差23へ誘導することができる。したがって円形型のスケール板5の上面に設けられたパターン14への接着剤19の這い上がりを抑制することができるので、反射型光学式エンコーダ1を安定的に生産することができる。
 尚図15においては、実施の形態1の構成に曲面部37を設けた例について説明したが、実施の形態2、3の構成に曲面部37を設けるようにしても良い。
 更に上記実施の形態1~4においては、反射型光学式エンコーダについて説明したが、透過型のエンコーダ、即ちディスクを挟んで光源と受光アレイを設けた構造に上記実施の形態1~4に示した構成を採用させても良い。
 又本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 反射型光学式エンコーダ、3 発電素子、5 スケール板、6 光、8 ハブ部材、9 ハウジング、11 回転軸、14 パターン、15 ロール材、17 接着面、19 接着剤、21 センサ、23 段差、24 端部、30 凸部、36 ラビリンス構造、37 曲面部、41 投光部、42 受光部、100 スケール搭載装置、101 吸着面、141 高反射部、142 低反射部、143 アライメントパターン。

Claims (14)

  1. 回転軸に取り付けられたハブ部材と、
    上記ハブ部材に接着剤により固定されるとともに、表面に光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンを有する円形型のスケール板と、
    上記スケール板の上記表面に光を照射する投光部と、
    上記スケール板に設けられた上記パターンにおいて反射した反射光を受光する受光部とを備えた反射型光学式エンコーダにおいて、
    上記ハブ部材の外周部に段差が設けられ、
    上記スケール板の外径は、上記ハブ部材における上記スケール板と上記ハブ部材との接着面の最外周部における外径よりも大きい反射型光学式エンコーダ。
  2. 上記ハブ部材の外径である上記段差の端部の外径は、上記スケール板の外径よりも大きい請求項1に記載の反射型光学式エンコーダ。
  3. 上記接着面の最外周部における外径が上記パターンの最外周部における外径よりも大きい請求項1または請求項2に記載の反射型光学式エンコーダ。
  4. 上記ハブ部材は磁性を有し、
    上記ハブ部材から放出される磁力の変化により発電する発電素子をさらに備えた請求項1から請求項3のいずれか1項に記載の反射型光学式エンコーダ。
  5. 上記スケール板の材質は、ステンレスである請求項1から請求項4のいずれか1項に記載の反射型光学式エンコーダ。
  6. 上記接着剤は紫外線硬化型の接着剤である請求項1から請求項5のいずれか1項に記載の反射型光学式エンコーダ。
  7. 上記ハブ部材は磁性粒子がプラスチック材料に分散されているものである請求項1から請求項6のいずれか1項に記載の反射型光学式エンコーダ。
  8. 上記段差の端部に凸部を設けた請求項1から請求項7のいずれか1項に記載の反射型光学式エンコーダ。
  9. 上記凸部の高さは上記接着面よりも低い請求項8記載の反射型光学式エンコーダ。
  10. 上記ハブ部材の外周を取り囲むように配置されたハウジングと上記ハブ部材との間にラビリンス構造を設けた請求項1から請求項9のいずれか1項に記載の反射型光学式エンコーダ。
  11. 上記接着面の外周側に曲面部を設けた請求項1から請求項10のいずれか1項に記載の反射型光学式エンコーダ。
  12. 請求項1から請求項11のいずれか1項に記載の上記反射型光学式エンコーダを備えたモータ。
  13. 回転軸に取り付けられたハブ部材と、
    上記ハブ部材に接着剤により固定されるとともに、表面に光の反射率が高い高反射部と光の反射率が低い低反射部で構成されるパターンを有する円形型のスケール板と、を備え、
    上記ハブ部材の外周部に段差が設けられ、上記ハブ部材の外径である上記段差の端部の外径は、上記スケール板の外径よりも大きく、上記スケール板の外径は、上記ハブ部材における上記スケール板と上記ハブ部材との接着面の最外周部における外径よりも大きい反射型光学式エンコーダの製造方法であって、
    上記スケール板を金属のロール材から成形する工程と、
    吸着面を有するスケール搭載装置の上記吸着面に上記ロール材から成形された上記スケール板を吸着させる工程と、
    上記ハブ部材の上記接着面に上記接着剤を塗布する工程と、
    上記接着剤が塗布された上記接着面から予め定められた距離だけ離れた位置に上記スケール板を上記スケール搭載装置によって移動させて上記接着剤を押し潰す工程と、
    上記接着剤を硬化させる工程と、を備えた反射型光学式エンコーダの製造方法。
  14. 上記スケール板は、上記パターンの内径側または外径側に円形型のアライメントパターンをさらに有し、
    上記接着剤を押し潰す工程において、
    上記アライメントパターンの中心位置をセンサで検出し、上記ハブ部材の中心位置に合わせるように上記スケール板を上記スケール搭載装置によって移動させる請求項13に記載の反射型光学式エンコーダの製造方法。
PCT/JP2019/026115 2018-07-17 2019-07-01 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法 WO2020017304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217000532A KR102618145B1 (ko) 2018-07-17 2019-07-01 반사형 광학식 인코더 및 모터, 및 반사형 광학식 인코더의 제조 방법
CN201980045434.4A CN112368550B (zh) 2018-07-17 2019-07-01 反射型光学式编码器及马达以及反射型光学式编码器的制造方法
US17/258,269 US11609106B2 (en) 2018-07-17 2019-07-01 Reflective optical encoder comprising a hub with an adhesive surface with a step structure
JP2020531213A JP6956880B2 (ja) 2018-07-17 2019-07-01 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133917 2018-07-17
JP2018133917 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017304A1 true WO2020017304A1 (ja) 2020-01-23

Family

ID=69163543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026115 WO2020017304A1 (ja) 2018-07-17 2019-07-01 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法

Country Status (5)

Country Link
US (1) US11609106B2 (ja)
JP (2) JP6956880B2 (ja)
KR (1) KR102618145B1 (ja)
CN (1) CN112368550B (ja)
WO (1) WO2020017304A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956880B2 (ja) * 2018-07-17 2021-11-02 三菱電機株式会社 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243309A (ja) * 1985-04-19 1986-10-29 Nippon Kogaku Kk <Nikon> 変位測定装置
US20040045182A1 (en) * 2000-11-17 2004-03-11 Hans-Joachim Freitag Position measuring system and method for the assembly thereof
JP2007121142A (ja) * 2005-10-28 2007-05-17 Sendai Nikon:Kk エンコーダディスクおよびエンコーダ
JP2012073219A (ja) * 2010-08-30 2012-04-12 Canon Inc ロータリエンコーダおよびロータリエンコーダの組立方法
WO2013114567A1 (ja) * 2012-01-31 2013-08-08 株式会社安川電機 エンコーダ、エンコーダ製造方法、駆動装置
JP2017003506A (ja) * 2015-06-15 2017-01-05 三菱電機株式会社 光学式エンコーダ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449676B2 (en) * 2004-05-24 2008-11-11 Pwb-Ruhlatec Industrieprodukte Gmbh Method for assembling an optical transducer element, and optical transducer element assembled by the method
JP2007309692A (ja) * 2006-05-16 2007-11-29 Ntn Corp 光学式エンコーダ及び回転センサ付き軸受ユニット
DE112008001568T5 (de) * 2007-06-19 2010-08-12 Ntn Corp. Mit einer Radgeschwindigkeitsfeststellvorrichtung verbundene Radlagervorrichtung
JP2009121958A (ja) * 2007-11-15 2009-06-04 Mitsuba Corp ロータリエンコーダ、およびブラシレスモータ
WO2010119513A1 (ja) * 2009-04-14 2010-10-21 三菱電機株式会社 ロータリーエンコーダ及びその製造方法
US20150160041A1 (en) * 2011-12-28 2015-06-11 Nikon Corporation Encoder, manufacturing method of encore scale manufacturing method of encoder, and driving apparatus
WO2014049744A1 (ja) * 2012-09-26 2014-04-03 株式会社安川電機 エンコーダ及びモータ
CN104620081A (zh) * 2012-09-26 2015-05-13 株式会社安川电机 编码器、编码器的制造方法、伺服***
JP2014130104A (ja) * 2012-12-28 2014-07-10 Yaskawa Electric Corp エンコーダ及びエンコーダ付きモータ
JP5943240B2 (ja) * 2013-11-05 2016-07-05 株式会社安川電機 エンコーダ
JP6323558B2 (ja) * 2014-07-18 2018-05-16 株式会社ニコン エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP6301765B2 (ja) 2014-07-25 2018-03-28 アスモ株式会社 ランデル型ロータ及びランデル型モータ
CN108496061A (zh) * 2016-01-18 2018-09-04 株式会社尼康 编码器装置、驱动装置、载置台装置以及机器人装置
FR3069319B1 (fr) * 2017-07-18 2020-10-23 Ntn Snr Roulements Systeme de determination de la position d'un organe
JP6956880B2 (ja) * 2018-07-17 2021-11-02 三菱電機株式会社 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243309A (ja) * 1985-04-19 1986-10-29 Nippon Kogaku Kk <Nikon> 変位測定装置
US20040045182A1 (en) * 2000-11-17 2004-03-11 Hans-Joachim Freitag Position measuring system and method for the assembly thereof
JP2007121142A (ja) * 2005-10-28 2007-05-17 Sendai Nikon:Kk エンコーダディスクおよびエンコーダ
JP2012073219A (ja) * 2010-08-30 2012-04-12 Canon Inc ロータリエンコーダおよびロータリエンコーダの組立方法
WO2013114567A1 (ja) * 2012-01-31 2013-08-08 株式会社安川電機 エンコーダ、エンコーダ製造方法、駆動装置
JP2017003506A (ja) * 2015-06-15 2017-01-05 三菱電機株式会社 光学式エンコーダ

Also Published As

Publication number Publication date
JP7109641B2 (ja) 2022-07-29
US20210270641A1 (en) 2021-09-02
KR102618145B1 (ko) 2023-12-27
CN112368550A (zh) 2021-02-12
CN112368550B (zh) 2023-03-28
US11609106B2 (en) 2023-03-21
KR20210016625A (ko) 2021-02-16
JP6956880B2 (ja) 2021-11-02
JPWO2020017304A1 (ja) 2020-12-17
JP2022000658A (ja) 2022-01-04

Similar Documents

Publication Publication Date Title
JP6404970B2 (ja) ロータリエンコーダ
TWI472143B (zh) 馬達及透鏡單元
US9705427B2 (en) Ultrasonic motor and lens apparatus including the same
JP7109641B2 (ja) 反射型光学式エンコーダ及びモータ、並びに反射型光学式エンコーダの製造方法
JP2006211839A (ja) 超音波駆動装置
US20190322022A1 (en) Polygonal mirror, deflector, optical scanning apparatus, image forming apparatus, and manufacturing method of the polygonal mirror
JP2007178235A (ja) モータ用ロータリエンコーダ及びその製造方法
US8433188B2 (en) Actuator and camera module having same
WO2019087312A1 (ja) 回転角検出装置
TWI801397B (zh) 碳纖維強化塑膠構造體、碳纖維強化塑膠構造體的製造方法及加工裝置
JP4223522B2 (ja) 組み合わせレンズ、及びその製造方法
JP2019082599A (ja) 光偏向器、光走査装置及び画像形成装置
JPH03177810A (ja) 光偏向装置
KR20080096403A (ko) 광학 장치의 제조 방법
KR100611975B1 (ko) 폴리곤미러장치
CN110320627B (zh) 透镜单元和该透镜单元的制造方法
JP5163678B2 (ja) ガルバノスキャナ
JP2018169559A (ja) ガルバノスキャナ
WO2020012650A1 (ja) エンコーダ、モータ及びエンコーダの製造方法
JP5066826B2 (ja) 駆動装置、電子機器、駆動装置の製造方法
GB2599489A (en) Vibration type actuator, rotationally driving apparatus, and image pickup apparatus
JP2007225719A (ja) カメラ用光量調整装置
JP2006331525A (ja) ディスク装置
JP2016045336A (ja) 可動構造体及びそれを用いた光走査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531213

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837555

Country of ref document: EP

Kind code of ref document: A1