WO2020013145A1 - Wall surface structure and method for assembling same - Google Patents

Wall surface structure and method for assembling same Download PDF

Info

Publication number
WO2020013145A1
WO2020013145A1 PCT/JP2019/027055 JP2019027055W WO2020013145A1 WO 2020013145 A1 WO2020013145 A1 WO 2020013145A1 JP 2019027055 W JP2019027055 W JP 2019027055W WO 2020013145 A1 WO2020013145 A1 WO 2020013145A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
gap
holding
heat insulating
refractory material
Prior art date
Application number
PCT/JP2019/027055
Other languages
French (fr)
Japanese (ja)
Inventor
義倫 山崎
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2020013145A1 publication Critical patent/WO2020013145A1/en
Priority to PH12020551769A priority Critical patent/PH12020551769A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Definitions

  • the present disclosure relates to a wall structure and an assembling method thereof.
  • a boiler for example, a circulating fluid that improves combustion efficiency by flowing fuel and fluidized material (for example, particles mainly composed of SiO2 such as river sand) in a furnace by air supplied from the furnace bottom.
  • Fluidized material for example, particles mainly composed of SiO2 such as river sand
  • CFB Circulating Fluidized Bed
  • BFB Bubbling Fluidized Bed
  • a device for example, a cyclone for collecting and separating fluidized material and fuel conveyed by combustion gas and scattered from the furnace may be provided at the outlet side of the furnace provided in such a boiler.
  • the fluid and the fuel collected and separated by the cyclone are returned to the furnace and circulated. With this circulation system, the combustion efficiency of the boiler is improved.
  • the above-mentioned cyclone, the duct connecting the furnace and the cyclone, and other ducts connected to the cyclone may be made of a general structural steel plate. These configurations are exposed to high-temperature combustion gas during the normal operation of the boiler, so that a heat insulating material may be installed on the inner surface of the steel sheet for the purpose of protecting the steel sheet.
  • Insulation material is excellent in flexibility and heat insulation, but on the other hand, it is weak against erosion and abrasion. Therefore, fire protection material may be further applied to the inner surface of the heat insulation material for the purpose of heat insulation protection.
  • the heat insulation and refractory materials mentioned above can prevent the steel plate from becoming hot, but the refractory material installed on the innermost surface is exposed to high-temperature combustion gas, so the temperature is higher than the steel plate, Accordingly, the thermal elongation increases. Therefore, when constructing the refractory material, the refractory material is divided into a plurality of block-shaped refractory materials, and a gap is provided with respect to other adjacent refractory materials so that the refractory material is installed on the inner surface of the heat insulating material. I do. This gap is designed in consideration that when the refractory material thermally expands during normal operation of the boiler, the gap becomes narrower so that adjacent refractory materials do not come into contact with each other and interfere with each other.
  • the gap absorbs the thermal expansion of the refractory material, so that the restriction due to the thermal expansion between the refractory materials can be avoided. If the gap becomes narrower than expected and the refractory materials are constrained by thermal expansion, stress is generated in the compression direction on the refractory material. If the stress in the compression direction exceeds the allowable stress of the refractory material, the refractory material may be cracked, chipped, or dropped, and the heat insulating material and the steel sheet may not be properly protected.
  • the temperature when starting the boiler, the temperature is gradually raised to an appropriate temperature while circulating the fluid material.
  • the temperature of the combustion gas flowing through the cyclone and the duct is sufficiently lower than the temperature during normal operation, and the refractory material applied to the cyclone and the duct hardly thermally expands. That is, the interval between the gaps is substantially equal to that at the time of normal temperature.
  • Patent Literature 1 discloses a configuration in which a gap for absorbing thermal elongation is formed obliquely downward to make it difficult for the fluid to accumulate in the gap.
  • Patent Document 2 is not an invention relating to a boiler for forming a fluidized bed by flowing a fluidized material.
  • a gap between thermal expansion and a concrete plate of a side wall and a floor plate at about 180 ° C. is formed.
  • the configuration for opening is disclosed.
  • a packing having elasticity even under high temperature and high acidity is used in the gap in order to easily treat the thermal expansion of the concrete plate.
  • Patent Document 3 discloses that, at a plurality of circumferential positions of a frame constituting an inner peripheral edge and an outer peripheral edge of a hearth, gaps serving as expansion allowances of the frame are provided, and the gaps are filled with a ceramic sheet or the like. It is described that a small-diameter pellet is prevented from entering a gap.
  • Patent Literature 1 although the gap for absorbing thermal elongation is formed obliquely downward to make it difficult for the fluid to accumulate in the gap, for example, it is arranged so that the opening of the gap is positioned upward in the vertical direction. In such a case, there is a possibility that prevention of accumulation cannot be expected because the fluidized material does not fall by its own weight in the first place.
  • Patent Document 2 it is not assumed that particles mainly composed of SiO2 such as river sand flow, so that the elastic packing may be worn by collision of the particles.
  • Patent Document 3 in order to prevent intrusion of pellets into the gap of the refractory brick formed on the hearth, since the gap is simply filled with a ceramic sheet or the like, the ceramic sheet may be held in the gap. If it is not assumed and the structure is adopted in a part other than the hearth (for example, the top surface or side surface), the ceramic sheet will fall off due to its own weight, the ejector effect due to the flowing combustion gas, and the heat at startup There is a concern that the ceramic sheet may fall off due to movement due to the difference in expansion.
  • the present disclosure has been made in view of such circumstances, and in a region where a gas including a fluidized material flows, the fluidized material is deposited in a gap between heat-resistant materials regardless of an installation state or an operation state. It is an object of the present invention to provide a wall structure and a method for assembling the wall structure, which can prevent the occurrence of cracks and prevent the thermal expansion between the refractory materials.
  • the wall structure according to one embodiment of the present disclosure includes a steel plate, a heat insulating material disposed on a surface on the steel plate, and a plurality of refractory materials disposed at intervals on the surface on the heat insulating material, A buffer material is provided in a gap between the plurality of refractory materials facing a region where a gas containing a fluid material flows in contact with the refractory material, and a holding structure for holding the buffer material in the gap is provided. I have.
  • the wall surface structure includes a heat insulating material disposed on a surface on a steel plate, a plurality of refractory materials, and a plurality of refractory surfaces facing a region in which a gas including a flowing material flows in contact with the refractory material.
  • a gap for example, joint
  • a flexible cushioning material is installed in the gap between the refractory materials by a holding structure.
  • the flow material can be prevented from accumulating in the gaps due to the presence of the buffer material and restraining the thermal elongation between adjacent refractory materials.
  • the cushioning material since the cushioning material is installed in a state held in the gap by the holding structure, its own weight acts on the cushioning material, an attractive force due to the ejector effect due to the flow of the combustion gas acts, and the temperature rise. Even if the refractory material moves due to the difference in thermal expansion at the time, the buffer material does not fall out of the gap.
  • the cushioning material is a material having flexibility. For this reason, as described above, not only can the thermal expansion of the refractory material be absorbed, but also it can be easily installed in the gap due to its flexibility. For example, when the gap or the holding structure has a complicated shape, if the cushioning material is pushed into the gap, the cushioning material is flexibly deformed inside the gap to a shape matching the shape of the gap or the holding structure. Examples of the cushioning material include fibrous (cotton-like) ceramics and porous ceramics.
  • the holding structure includes a barbed pin provided in the gap.
  • the cushioning material can be reliably held in the gap between the refractory materials by the barbed pins.
  • the pin is, for example, a barbed pin made of a deformable metal.
  • the pin is provided for the refractory material.
  • the refractory material needs to be processed so that the pin can be installed.
  • the process for fixing the pin can be easily performed.
  • the pin is provided for the heat insulating material.
  • the pins are provided for the heat insulating material, even if it is necessary to replace the refractory material, the refractory material can be easily replaced. Further, since it is not necessary to perform processing for fixing the pins to the refractory material, the present invention can be easily applied to existing equipment in which the refractory material is already installed.
  • the holding structure includes a widening portion in which the gap widens from the region through which the gas containing the fluid flows, toward the heat insulating material.
  • the cushioning material when the cushioning material is installed in the widened portion having the shape of the gap formed by the refractory material, the cushioning material can be held in the portion where the gap is not widened (narrow portion). This is because the cushioning material is flexibly deformed according to the shape of the widened portion by pushing the cushioning material into the gap where the widened portion is formed. Since the widened portion is widened from the area (surface side) where the fluid material of the refractory material flows to the heat insulating material side, in other words, the widened portion allows the gas containing the fluid material to flow from the heat insulating material side.
  • the cushioning material When the cushioning material is deformed in accordance with the shape of the widened portion, the cushioning material is restrained in the direction from the heat insulating material side to the surface side of the refractory material and does not fall off. Thereby, the cushioning material is held in the gap. Therefore, it is not necessary to separately prepare a member for holding the cushioning material, and the construction cost can be reduced. In addition, since no separate member is provided inside the gap, there is no interference with the cushioning material when the cushioning material is pushed in, and the installation of the cushioning material becomes easier.
  • the cushioning material is a fibrous or porous ceramic.
  • a flexible cushioning material can be used.
  • the fibrous ceramic is made into a cotton-like shape, or if the material is made porous and elastic, the installation on the holding structure becomes easier.
  • the above-mentioned wall structure is a wall of a duct or a container connected to a furnace in which a gas containing the fluid material flows therein.
  • the method for assembling the wall structure includes a steel plate, a heat insulating material disposed on a surface on the steel plate, and a plurality of fireproof disposed at intervals on the surface on the heat insulating material.
  • Material a cushioning material facing a region in which a gas containing a flowing material flows in contact with the refractory material, and a cushioning material arranged in a gap between the plurality of refractory materials, and a holding structure for holding the cushioning material in the gap.
  • a method of assembling a wall structure comprising: installing the cushioning material on the holding structure.
  • the wall surface structure and the method of assembling the same in a region where a gas containing a fluidizing material flows, it is possible to prevent the fluidizing material from being deposited in gaps between heat-resistant materials regardless of an installation state or an operating state, It is possible to avoid restraint of thermal expansion between adjacent refractory materials.
  • FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the refractory material of the wall structure according to the first embodiment of the present disclosure when no thermal elongation occurs.
  • FIG. 2 is a cross-sectional view when a refractory material having a wall structure according to the first embodiment of the present disclosure has undergone thermal expansion.
  • 1 is a cross-sectional view illustrating a holding structure according to a first embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view illustrating a modification of the holding structure according to the first embodiment of the present disclosure. It is the figure which looked at another modification of the holding structure concerning a 1st embodiment of this indication from the field side where a fluid flows.
  • FIG. 1 is a schematic configuration diagram of a power generation system according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the refractory material of the wall structure according to the first
  • FIG. 10 is a cross-sectional view illustrating a holding structure according to a second embodiment of the present disclosure. It is a figure showing a modification of a holding pin with which a holding structure concerning a 2nd embodiment of this indication is provided.
  • FIG. 11 is a diagram illustrating another modified example of the holding pin included in the holding structure according to the second embodiment of the present disclosure. It is the figure which looked at the modification of the holding structure concerning a 2nd embodiment of this indication from the field side where a fluid flows.
  • FIG. 13 is a cross-sectional view illustrating a holding structure according to a third embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view illustrating a modification example of the holding structure according to the third embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view illustrating another modification of the holding structure according to the third embodiment of the present disclosure.
  • the power generation system 1 includes a circulating fluidized bed boiler (CFB: Circulating Fluidized Bed) 2 as a boiler that generates steam, and a steam turbine 3 that is rotationally driven by the steam generated by the circulating fluidized bed boiler 2. And a generator 4 for generating electric power by the driving force of the steam turbine 3.
  • CFB Circulating Fluidized Bed
  • the circulating fluidized bed boiler 2 has a fluidized bed furnace (hereinafter, referred to as a “furnace”) 5 in which fluidized sand (eg, particles mainly composed of SiO 2 such as river sand) is fluidized, and a fuel for supplying fuel to the furnace 5.
  • the fuel supply system includes a supply device 6, a flue 7 through which the combustion gas generated in the furnace 5 flows, and a plurality of heat exchangers 8 provided in the flue 7.
  • the circulating fluidized bed boiler 2 is capable of burning a wide range of fuels, and includes coal (bituminous coal, subbituminous coal, lignite, anthracite, etc.), petroleum coke, woody biomass, papermaking sludge, RPF (Refuse Paper & Plastic Fuel). , Waste tires, dewatered sludge, municipal waste, and the like.
  • the fuel supply device 6 shown in FIG. 1 is an example in which coal is used as fuel.
  • the fuel supply device 6 since the internal pressure of the furnace 5 is slightly higher than the atmospheric pressure, the fuel supply device 6 includes a rotary valve 10 and a seal air supply device (not shown) so that the combustion gas or the like does not flow back to the fuel supply system. Is provided.
  • the furnace 5 causes a fluidized material (fuel and fluidized sand) to flow by air (gas) supplied from an air nozzle 12 provided on the furnace bottom 11 to form a fluidized bed.
  • the circulating fluidized-bed boiler 2 promotes mixing of fuel, fluidized sand, and air in the furnace 5 (combustor) by forming a fluidized bed in this manner, thereby improving combustion efficiency.
  • air is supplied as a gas from the air nozzle 12, but when an inert gas (for example, nitrogen gas or the like) is introduced during purging in a furnace at the time of shutdown. There is also.
  • the circulating particles (fluid sand and unburned fuel) scattered together with the exhaust gas from the furnace 5 are conveyed by the combustion gas (gas), and the cyclone (container) 13 provided on the outlet side of the furnace 5 through the duct 30.
  • the fuel gas is separated into combustion gas and circulating particles.
  • the circulating particles separated and collected by the cyclone 13 are returned to the furnace 5 again through the seal pot 14 and the external heat exchanger 15.
  • the system for circulating the fluidized sand and the unburned fuel improves the combustion efficiency.
  • the temperature in the furnace 5 of the furnace 5 can be adjusted. Note that air for flowing the circulating particles is supplied from the air blower 17 to the external heat exchanger 15.
  • the combustion gas separated by the cyclone 13 flows through the flue 7, and flows through the heat exchanger 8 in the plurality of heat exchangers 8 provided in the flue 7 ( Heat exchange with, for example, water or steam).
  • heat exchanger 8 superheated steam is generated by heat exchange with the combustion gas.
  • the generated superheated steam is sent to the steam turbine 3 and drives the steam turbine 3 to rotate.
  • electric power is generated by a generator 4 coaxially connected to the steam turbine 3.
  • the combustion gas which has exchanged heat with the heat exchanger 8 passes through the air preheater 22 and the bag filter 23, and is then discharged to the atmosphere from a chimney (not shown).
  • the furnace 5 is provided with a plurality of air nozzles 12 for flowing the fluid therein and a combustion air supply unit 26 for supplying combustion air.
  • the furnace 5 used in the pulverized combustion system partially exceeds about 1500 ° C.
  • the furnace 5 used in the circulating fluidized bed boiler 2 has a uniform furnace temperature and, for example, 800 ° C. Controlled to ⁇ 900 ° C.
  • the amount of thermal NOx (NOx generated depending on the combustion temperature) can be suppressed, and the amount of NOx generated and the in-furnace desulfurization (CaCO 3 ⁇ CaO + CO 2 , CaO + SO 2 + 1 / 2O 2 ⁇ CaSO 4 ) can also be performed.
  • a plurality of combustion air supply units 26 are provided. Each of the combustion air supply units 26 injects a part of the air preheated by the air preheater 22 from an FDF (Forced @ Delivery @ Fan) 27 into the furnace as combustion air.
  • the jetted combustion air is distributed substantially uniformly to each combustion air supply unit 26 by the air chamber 28. Therefore, a uniform fluidized bed is formed in the furnace 5, and the temperature in the furnace becomes relatively uniform.
  • the air nozzles 12 are provided vertically through the furnace bottom 11 in the vertical direction, and a plurality (for example, several hundreds) of the air nozzles 12 are provided over the entire furnace bottom 11.
  • the upper part of the air nozzle 12 is located inside the furnace 5, and the lower part is located inside the wind box 29.
  • the air preheated and sent from the FDF 27 by the air preheater 22 is supplied to the inside of the furnace 5 by a plurality of air nozzles 12 via a wind box 29.
  • fluid material such as the cyclone 13 included in the power generation system 1 and the ducts 30 and 31 connected to the cyclone 13 is carried by a gas such as a combustion gas at 800 to 900 ° C.
  • a gas such as a combustion gas at 800 to 900 ° C.
  • the wall surface of the cyclone 13 will be described as an example, but this is not limited to the wall surface of the cyclone 13, and may be, for example, the wall surface of the duct 30 or the duct 31.
  • the wall structure 40 ⁇ / b> A has a layer structure including a steel plate 42, a heat insulating material 44, and a refractory material 46 in order from the outside to the inside of the cyclone 13. That is, the outer wall surface of the cyclone 13 is the steel plate 42, and the inner wall surface through which the combustion gas including the fluidized material such as the fluidized sand flows is the refractory material 46.
  • the steel plate 42 is, for example, a steel plate made of general structural carbon steel, and forms the outer shell of the container of the cyclone 13.
  • a heat insulator 44 is provided on the inner surface of the steel plate 42 for the purpose of protecting the steel plate 42.
  • the heat insulating material 44 is mainly composed of, for example, Al 2 O 3 (alumina), SiO 2 (silica), a mixture thereof, or the like, and a material having excellent heat insulating properties such as a low bulk density is employed. You.
  • the heat insulating material 44 is installed together with a refractory material 46 to be described later on the steel plate 42 by, for example, a Y-shaped anchor pin 50 fixed to the steel plate 42 at a predetermined pitch.
  • the Y-shaped anchor pins 50 having different lengths may be used to separately support the heat insulating material 44 and the refractory material 46 on the steel plate 42.
  • the heat insulating material 44 is excellent in heat insulating property, but is resistant to erosion and abrasion by particles such as fluidized sand and combustion ash contained in the cyclone 13 and the combustion gas flowing inside the ducts 30 and 31 connected to the cyclone 13. weak. Therefore, a refractory material 46 is provided on the inner surface of the heat insulating material 44 for the purpose of protecting the heat insulating material 44.
  • the thickness (the vertical direction shown in FIG. 2) of the heat insulating material 44 constructed on the steel plate 42 is about 200 mm to 400 mm.
  • the refractory material 46 is installed on the surface of the heat insulating material 44 opposite to the surface on which the steel plate 42 is located (the side on which the combustion gas flows).
  • the refractory material 46 has a block shape having a long side of about 1000 mm to 5000 mm and a thickness (up and down direction shown in FIG. 2) of about 50 mm to about 150 mm. , Left and right directions shown in FIG.
  • the refractory material 46 is installed on the heat insulating material 44 by the anchor pins 50 that fix the heat insulating material 44 to the steel plate 42.
  • the gap between the refractory materials 46 is, for example, a joint 52.
  • the width of the joint 52 is, for example, about 5 mm to about 20 mm.
  • the joint 52 is set so as to absorb the thermal elongation of the refractory material 46 in the surface direction from the start of the boiler 2 to the normal operation so as not to cause interference between adjacent refractory materials 46. This is the gap (see FIG. 3).
  • the joint 52 can be appropriately changed depending on the size, properties and shape of the refractory material 46.
  • the refractory material 46 may be formed, for example, by pouring into a mold temporarily provided on the heat insulating material 44. Alternatively, a separately manufactured block-shaped refractory material 46 may be attached.
  • the wall structure 40 ⁇ / b> A includes a cushioning material 48 installed on the joint 52.
  • the buffer material 48 is made of, for example, a fibrous ceramic mainly composed of Al2O3 (alumina), SiO2 (silica), MgO (magnesia), CaO (calcia), and a mixture thereof, with a bulk density of about 100 kg / m @ 3. It is formed in a flocculent or porous form of about 500 kg / m @ 3, and has flexibility.
  • the cushioning material 48 is not limited to these materials. If the refractory material 46 does not undergo thermal expansion, the bulk density is low enough to prevent liquid sand from entering the joint 52, or higher. And a flexible material that can shrink to the extent that it does not restrict the thermal expansion of the refractory material 46 when the refractory material 46 undergoes thermal expansion as shown in FIG. good.
  • the holding structure 54 ⁇ / b> A has a barbed pin having both ends inserted into a movable hole 58 formed on the side surface of the refractory material 46 that faces the joint 52 (the buffer material 48). (Pins) 56 are provided.
  • the holding pin 56 is a thin pin having a main body 56a in a rod shape, and a plurality of barbs 56b are formed around the pin in a radial direction.
  • the holding pin 56 preferably has oxidation resistance to high-temperature combustion gas, and is made of, for example, metal and stainless steel.
  • the holding pin 56 has a lower rigidity than the refractory material 46 so as not to restrain the thermal expansion of the refractory material 46, and when thermal deformation of the refractory material 46 occurs, It is preferable that the refractory material 46 be deformable without damaging it.
  • the plurality of holding pins 56 are provided at predetermined intervals in the direction perpendicular to the paper surface shown in FIG.
  • the movable hole 58 is provided on the side surface of the refractory material 46 facing the joint 52 (the buffer material 48), and is formed so that the depth direction thereof matches the longitudinal direction of the holding pin 56.
  • the distance from the bottom wall 58a of the movable hole 58 formed in the one refractory material 46 to the bottom wall 58a of the movable hole 58 formed in the other refractory material 46 opposite thereto is longer than the length of the holding pin 56 in the longitudinal direction.
  • the inside diameter of the movable hole 58 is set to be larger than the outside diameter of the holding pin 56.
  • the holding pin 56 can be moved in the longitudinal direction while being disposed inside the joint 52, so that even when the refractory material 46 undergoes thermal expansion, the retaining pin 56 restrains the thermal extension of the refractory material 46. Therefore, it is possible to prevent the refractory material 46 and the holding pin 56 from being damaged.
  • the cushioning member 48 Since the cushioning member 48 has excellent flexibility as described above, the cushioning member 48 can be pushed from the inside of the cyclone 13 into the joint 52 where the holding pin 56 is installed.
  • the cushioning material 48 pushed into the joint 52 flexibly deforms into a shape corresponding to the shape of the joint 52 and the holding pin 56 inside the joint 52. As a result, the cushioning material 48 is caught by the barbs 56 b of the holding pins 56 and is thus held by the joint 52.
  • the holding pins 56 are installed in the movable holes 58 as follows, for example.
  • a flexible and easily burnable protective material such as paper adapted to the shape of the movable hole 58 is wound around both ends of the holding pin 56.
  • the refractory material 46 is formed by pouring into a mold, pouring is performed in a state where the holding pins 56 around which paper or the like is wound are disposed at both ends. Thereby, the refractory material 46 to which the holding pins 56 are fixed via the paper or the like is formed.
  • the holding pin 56 may be provided in the movable hole 58 as follows, for example.
  • a mounting space 60 as shown in FIG.
  • the mounting space 60 is formed on the inner side of the cyclone 13 where the combustion gas flows, rather than the movable hole 58, and the movable hole 58 has a narrower width in the longitudinal direction than the length of the holding pin 56 in the longitudinal direction.
  • the space is connected to the hole 58.
  • the present embodiment has the following advantages.
  • the elasticity of the buffer material 48 absorbs the thermal expansion between the adjacent refractory materials 46 from the start of the boiler 2 to the normal operation.
  • the fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48.
  • the cushioning member 48 since the cushioning member 48 is installed while being held at the joint 52 by the holding pin 56 provided in the holding structure 54A, the buffer member 48 may be subjected to its own weight or may be caused by the ejector effect due to the flow of the combustion gas. Even if an attractive force is applied or the refractory material 46 moves due to thermal expansion, the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
  • the cushioning material 48 is a flexible material. Therefore, as described above, the refractory material 46 can not only absorb the thermal elongation but also can be easily installed on the joint 52 by its flexibility. For example, when the joint 52 and the holding pin 56 of the holding structure 54A have a complicated shape, if the cushioning material 48 is pushed into the gap, the cushioning material 48 matches the shape of the joint 52 and the holding pin 56 inside the joint 52. It is flexibly deformed into the shape of the cushioning material 48.
  • the holding pin 56 When the holding pin 56 is installed on the refractory material 46, only the refractory material 46 needs to be processed so that the holding pin 56 can be installed. For example, when the refractory material 46 is formed by casting, the holding pin 56 The movable hole 58 and the mounting space 60 for fixing the head can be easily formed.
  • the holding pins 56 are arranged so that the longitudinal direction thereof is along the longitudinal direction of the joint 52. May be.
  • one end of both ends of the holding pin 56 is bent at a substantially right angle toward one refractory material 46, and the other end of the holding pin 56 faces the one refractory material 46 with the joint 52 interposed therebetween.
  • the holding pin 56 is bent at a substantially right angle toward the refractory material 46, and each end of the holding pin 56 is installed in a movable hole 58 formed in each refractory material 46.
  • the holding pins 56 are installed on the refractory material 46.
  • FIGS. 7 to 10 a second embodiment of the present disclosure will be described with reference to FIGS. 7 to 10.
  • the wall structure 40B of the present embodiment differs from the first embodiment in the form of the holding pins 56, and is otherwise the same. Therefore, only the differences from the first embodiment will be described, and the other portions will be denoted by the same reference numerals and description thereof will be omitted.
  • the wall structure 40B includes, as the holding structure 54B, a holding pin 56 with barbs installed on the heat insulating material 44.
  • the holding pin 56 is a thin pin whose longitudinal direction coincides with the thickness direction of the refractory material 46, and a plurality of barbs 56b are formed around the pin in the radial direction.
  • the holding pin 56 preferably has oxidation resistance to high-temperature combustion gas, and is made of, for example, metal and stainless steel.
  • the heat insulating material 44 is provided with a hole through which the holding pin 56 can be inserted and fixed from the side where the refractory material 46 is installed. When the holding pin 56 is pushed into the hole, the holding pin 56 is fixed to the heat insulating material 44.
  • the holding pin 56 has a lower rigidity than the refractory material 46 so as not to restrain the thermal expansion of the refractory material 46, and the thermal deformation of the refractory material 46 occurs. Sometimes, it is preferable that the refractory material 46 be deformable without damaging it.
  • the plurality of holding pins 56 are provided at predetermined intervals in the direction perpendicular to the paper surface shown in FIG.
  • the holding pin 56 is not limited to a pin with a barb as shown in FIG. 7, but may be a pin with a barb as shown in FIG. 8 or a spring-shaped tip as shown in FIG. It may be a pin processed into a shape. In addition, any pin may be used as long as it is processed so that the cushioning member 48 provided at the joint 52 is held in the cyclone 13 without falling off.
  • the present embodiment has the following advantages.
  • the thermal expansion between the refractory materials 46 is absorbed by the flexibility of the buffer material 48 from the start of the boiler 2 to the normal operation.
  • the fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48.
  • the cushioning member 48 since the cushioning member 48 is installed in a state of being held at the joint 52 by the holding pin 56 provided in the holding structure 54B, the buffer member 48 may be subjected to its own weight or may be caused by the ejector effect due to the flow of the combustion gas.
  • the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
  • the cushioning material 48 is a flexible material. Therefore, as described above, the refractory material 46 can not only absorb the thermal elongation but also can be easily installed on the joint 52 by its flexibility. For example, when the joint 52 and the holding pin 56 of the holding structure 54B have a complicated shape, if the cushioning material 48 is pushed into the gap, the cushioning material 48 matches the shape of the joint 52 and the holding pin 56 inside the joint 52. It is flexibly deformed into the shape of the cushioning material 48.
  • the holding pins 56 are installed with respect to the heat insulating material 44, even if the refractory material 46 needs to be replaced, the refractory material 46 can be easily replaced. Further, it is not necessary to perform a process for fixing the pins on the side surfaces of the refractory material 46, and it is only necessary to provide a hole that allows the holding pins 56 to be pressed into the heat insulating material 44 and fixed, so the refractory material 46 is already installed. It can be easily applied to existing equipment.
  • the holding pins 56 may be arranged so that the longitudinal direction thereof is along the joint 52.
  • the fixing pin 62 is pressed into a hole provided in the heat insulating material 44 and fixed.
  • the holding pins 56 are installed on the heat insulating material 44.
  • the fixing pin 62 is, for example, a pin-shaped member that is fixed to the heat insulating material 44 and extends in the thickness direction of the refractory material 46 (the direction perpendicular to the paper surface of FIG. 10), and has oxidation resistance to high-temperature combustion gas. It is preferable to use, for example, a stainless steel material made of metal.
  • the joint 52 widens in the thickness direction of the refractory material 46 from the inner side of the cyclone 13 where the combustion gas flows as the holding structure 54C toward the heat insulating material 44.
  • An enlarged portion 64 is provided.
  • the widened portion 64 forms a part of the joint 52, and a section where the width of the joint 52 is constant from the surface of the refractory material 46 inside the cyclone 13 toward the heat insulating material 44 (reducing portion 65. )It is connected to the.
  • the widened portion 64 expands from the reduced portion 65 to the heat insulating material 44 side such that the interval between the side surfaces of the two refractory materials 46 opposed to each other with the joint 52 (the buffer material 48) interposed therebetween, that is, the width of the joint 52 widens. It is formed as follows.
  • the width of the joint 52 is reduced from the heat insulating material 44 side to the reduced portion 65 located on the surface side where the combustion gas of the refractory material 46 flows.
  • the width of the joint 52 in the reduced portion 65 is set, for example, from about 5 mm to about 20 mm, and is set so as to absorb the thermal expansion of the refractory material 46 from the start of the boiler 2 to the normal operation. It is a gap.
  • the widened portion 64 may be formed, for example, simultaneously with pouring the refractory material 46 into the mold.
  • the cushioning member 48 Since the cushioning member 48 has excellent flexibility as described above, it can be pushed into the joint 52 provided with the widened portion 64 from the inside of the cyclone 13.
  • the pushed-in cushioning material 48 flexibly deforms into a shape matching the shape of the joint 52 and the widened portion 64 inside the joint 52 and the widened portion 64. Since the joint 52 of the widened portion 64 is narrowed from the heat insulating material 44 toward the reduced portion 65, the cushioning material 48 is restrained in the direction from the heat insulating material 44 toward the reduced portion 65 and does not fall off.
  • the present embodiment has the following advantages.
  • the elasticity of the buffer material 48 absorbs the thermal expansion between the adjacent refractory materials 46 from the start of the boiler 2 to the normal operation.
  • the fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48.
  • the cushioning member 48 since the cushioning member 48 is installed in a state where it is held at the joint 52 by the widened portion 64 provided in the holding structure 54C, its own weight acts on the cushioning member 48, and the cushioning member 48 is caused by the ejector effect due to the flow of the combustion gas.
  • the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
  • the widened portion 64 does not need to be widened over the entire section on the heat insulating material 44 side from the reduced portion 65 as shown in FIG. 11, and as shown in FIGS.
  • a reduced portion 65 narrower than the widened portion 64 provided on the heat insulating material 44 side of the refractory material 46 may be provided in at least a part of the section.
  • the present disclosure is not limited to the invention according to each of the above-described embodiments, and can be appropriately modified without departing from the gist thereof.
  • a fluidized bed boiler BFB: Bubbling Fluidized Bed.
  • the horizontal direction (plane direction) in FIGS. 2 to 5, 7 and 11 to 13 does not always coincide with the actual horizontal direction, and varies depending on the installation state of the wall structure 40.
  • the wall surface structure 40 may be a curved surface which is not a flat surface but a cylindrical inner surface.

Abstract

Provided are: a wall surface structure in which it is possible, in a region through which there flows a gas containing a flowing material, to prevent deposition of the flowing material in a gap between heat-resistant materials irrespective of an installation state or an operation state, and to avoid restriction of thermal elongation of refractory materials; and a method for assembling the wall surface structure. The present invention comprises: a steel sheet; a heat-insulating material disposed on the surface of the steel sheet; a plurality of refractory materials (46) disposed at intervals on the surface of the heat-insulating material; a cushioning material (48) disposed in gaps between the plurality of refractory materials (46), the cushioning material (48) being in contact with the refractory materials (46) and facing a region through which there flows a gas containing a flowing material; and a retaining structure (54) for retaining the cushioning material (48) in the gaps.

Description

壁面構造およびその組み付け方法Wall structure and assembling method
 本開示は、壁面構造およびその組み付け方法に関する。 The present disclosure relates to a wall structure and an assembling method thereof.
 炉底から供給される空気により、火炉内で燃料および流動材(例えば、河砂などSiO2が主体の粒子)を流動させて流動層を形成することで、燃焼効率を向上させるボイラ(例えば循環流動層ボイラ(CFB:Circulating Fluidized Bed)や気泡流動層ボイラ(BFB:Bubbling Fluidized Bed)など)が知られている。 A boiler (for example, a circulating fluid) that improves combustion efficiency by flowing fuel and fluidized material (for example, particles mainly composed of SiO2 such as river sand) in a furnace by air supplied from the furnace bottom. Bed boilers (CFB: Circulating Fluidized Bed) and bubble fluidized bed boilers (BFB: Bubbling Fluidized Bed) are known.
 このようなボイラに設けられる火炉の出口側には、燃焼ガスによって搬送されて火炉から飛散した流動材および燃料を捕集・分離する装置(例えば、サイクロン)が設けられていることがある。サイクロンにて捕集・分離された流動材および燃料は、それぞれ火炉へ戻されて、循環するように構成されている。この循環システムによって、ボイラの燃焼効率向上を図っている。 装置 A device (for example, a cyclone) for collecting and separating fluidized material and fuel conveyed by combustion gas and scattered from the furnace may be provided at the outlet side of the furnace provided in such a boiler. The fluid and the fuel collected and separated by the cyclone are returned to the furnace and circulated. With this circulation system, the combustion efficiency of the boiler is improved.
 前述のサイクロン、火炉とサイクロンとを接続するダクト、およびサイクロンに接続された他のダクトなどは、一般的な構造用鋼板によって構成されることがある。これらの構成は、ボイラの常用運転時に高温の燃焼ガスに晒されるため、鋼板保護を目的として、鋼板の内表面に断熱材を施工することがある。 The above-mentioned cyclone, the duct connecting the furnace and the cyclone, and other ducts connected to the cyclone may be made of a general structural steel plate. These configurations are exposed to high-temperature combustion gas during the normal operation of the boiler, so that a heat insulating material may be installed on the inner surface of the steel sheet for the purpose of protecting the steel sheet.
 断熱材は柔軟性や断熱性に優れるが、その一方で、浸食や摩耗等に弱いことから、断熱材保護を目的として、更に、断熱材の内表面に耐火材を施工することがある。 Insulation material is excellent in flexibility and heat insulation, but on the other hand, it is weak against erosion and abrasion. Therefore, fire protection material may be further applied to the inner surface of the heat insulation material for the purpose of heat insulation protection.
 前述の断熱材や耐火材によって、鋼板が高温になることは防止できるが、最も内側の面に施工された耐火材は、高温の燃焼ガスに晒されるため、鋼板に比べて温度が高くなり、それに伴って熱伸び量が多くなる。したがって、耐火材の施工時には、耐火材を複数に分割されたブロック状の耐火材とし、隣接する他の耐火材に対して隙間を設けるようにして断熱材の内表面上に設置するように施工する。この隙間は、ボイラの通常運転中、耐火材が熱伸びした際に、隙間が狭くなることで隣接する耐火材同士で接触して干渉しないように考慮されて設計されている。すなわち、この隙間が耐火材の熱伸びを吸収することによって、耐火材同士の熱伸びによる拘束を避けることができる。仮に、この隙間が想定時より狭くなり、耐火材同士が熱伸びによって拘束された場合には、耐火材に対して圧縮方向に応力が発生する。圧縮方向の応力が耐火材の許容応力を超えると、耐火材に割れや欠けや脱落が発生して適切に断熱材および鋼板を保護できない可能性がある。 The heat insulation and refractory materials mentioned above can prevent the steel plate from becoming hot, but the refractory material installed on the innermost surface is exposed to high-temperature combustion gas, so the temperature is higher than the steel plate, Accordingly, the thermal elongation increases. Therefore, when constructing the refractory material, the refractory material is divided into a plurality of block-shaped refractory materials, and a gap is provided with respect to other adjacent refractory materials so that the refractory material is installed on the inner surface of the heat insulating material. I do. This gap is designed in consideration that when the refractory material thermally expands during normal operation of the boiler, the gap becomes narrower so that adjacent refractory materials do not come into contact with each other and interfere with each other. That is, the gap absorbs the thermal expansion of the refractory material, so that the restriction due to the thermal expansion between the refractory materials can be avoided. If the gap becomes narrower than expected and the refractory materials are constrained by thermal expansion, stress is generated in the compression direction on the refractory material. If the stress in the compression direction exceeds the allowable stress of the refractory material, the refractory material may be cracked, chipped, or dropped, and the heat insulating material and the steel sheet may not be properly protected.
 ところで、ボイラの起動時においては、流動材を循環させながら徐々にその温度を適正な温度まで昇温させていく。起動時において、サイクロンおよびダクトを流通する燃焼ガスの温度は、通常運転時の温度に比べて十分に低い状態となっており、サイクロンおよびダクトに施工された耐火材も殆ど熱伸びしない。つまり、隙間の間隔は、常温時と同程度とされる。 By the way, when starting the boiler, the temperature is gradually raised to an appropriate temperature while circulating the fluid material. At the time of start-up, the temperature of the combustion gas flowing through the cyclone and the duct is sufficiently lower than the temperature during normal operation, and the refractory material applied to the cyclone and the duct hardly thermally expands. That is, the interval between the gaps is substantially equal to that at the time of normal temperature.
 ところが、前述したように、ボイラの起動時においても流動体を循環させているため、飛散している流動材が隙間に侵入して一定量堆積してしまう可能性がある。仮に、隙間に流動材が堆積している状態でボイラが通常運転に移行し、高温の燃焼ガスがサイクロンおよびダクトに流通するような状態になった場合、耐火材は熱伸びするが、隙間に堆積した流動材によって隙間が想定時より狭くなり、隣接する耐火材が熱伸びによって相互に拘束されるおそれがあることが判明した。つまり、本来の隙間の機能を十分に発揮できないおそれがある。そうすると、耐火材に割れや欠けや脱落が生じてしまい、適切に断熱材および鋼板を保護できない可能性がある。 However, as described above, since the fluid is circulated even when the boiler is started, there is a possibility that the scattered fluid material enters the gap and deposits a certain amount. If the boiler shifts to normal operation with fluid material accumulated in the gap, and the high-temperature combustion gas flows through the cyclone and the duct, the refractory material thermally expands, but It has been found that the gap becomes narrower than expected due to the accumulated flow material, and that adjacent refractory materials may be mutually restrained by thermal expansion. That is, the function of the original gap may not be sufficiently exhibited. Then, cracking, chipping, or falling off of the refractory material may occur, and the heat insulating material and the steel sheet may not be properly protected.
 流動材の堆積を避けるために、例えば、特許文献1には、熱伸び吸収用の隙間を斜め下向きに施工することで、流動体を隙間に堆積しにくくする構成が開示されている。 避 け る In order to avoid the accumulation of the fluid material, for example, Patent Literature 1 discloses a configuration in which a gap for absorbing thermal elongation is formed obliquely downward to make it difficult for the fluid to accumulate in the gap.
 また、特許文献2には、流動材を流動させて流動層を形成させるボイラに係る発明ではないが、集塵機において、約180℃となる集塵機内の側壁および床板のコンクリート板に熱伸び分の隙間を空ける構成開示されている。さらに、その隙間には、コンクリート板の熱伸びを無理なく処理するために、高温高酸性下においても弾性を有するパッキンが使用される。 Further, Patent Document 2 is not an invention relating to a boiler for forming a fluidized bed by flowing a fluidized material. However, in a dust collector, a gap between thermal expansion and a concrete plate of a side wall and a floor plate at about 180 ° C. is formed. The configuration for opening is disclosed. Further, a packing having elasticity even under high temperature and high acidity is used in the gap in order to easily treat the thermal expansion of the concrete plate.
 また、特許文献3には、炉床の内周縁と外周縁を構成する枠体の周方向の複数個所に該枠体の膨張代となる隙間を設け、その隙間にセラミックシートなどを充填することで、小径のペレットが隙間に侵入することを防止することが記載されている。 Further, Patent Document 3 discloses that, at a plurality of circumferential positions of a frame constituting an inner peripheral edge and an outer peripheral edge of a hearth, gaps serving as expansion allowances of the frame are provided, and the gaps are filled with a ceramic sheet or the like. It is described that a small-diameter pellet is prevented from entering a gap.
特許第3897664号公報Japanese Patent No. 3897664 特開昭63-156555号公報JP-A-63-155555 特許第4337271号公報Japanese Patent No. 4337271
 特許文献1においては、熱伸び吸収用の隙間を斜め下向きに施工することで、流動体を隙間に堆積しにくくしているが、例えば、隙間の開口が鉛直方向の上向きに位置するように配置された場合、そもそも流動材が自重によって落下しないため、堆積防止が期待できない可能性がある。 In Patent Literature 1, although the gap for absorbing thermal elongation is formed obliquely downward to make it difficult for the fluid to accumulate in the gap, for example, it is arranged so that the opening of the gap is positioned upward in the vertical direction. In such a case, there is a possibility that prevention of accumulation cannot be expected because the fluidized material does not fall by its own weight in the first place.
 また、特許文献2においては、例えば、河砂などSiO2が主体の粒子を流動させることが想定されていないため、弾性を有するパッキンが粒子の衝突によって摩耗してしまう可能性がある。 Further, in Patent Document 2, for example, it is not assumed that particles mainly composed of SiO2 such as river sand flow, so that the elastic packing may be worn by collision of the particles.
 また、特許文献3においては、炉床に形成した耐火レンガの間隙へのペレットの侵入防止のために、単にセラミックシートなどが充填された隙間であるため、セラミックシートを該隙間に保持することが想定されておらず、炉床以外の部分(例えば、天面や側面など)にその構成を採用した場合、自重によるセラミックシートの脱落や、流通する燃焼ガスに起因したエジェクタ効果や起動時の熱膨張差での移動によるセラミックシートの脱落が懸念される。 Further, in Patent Document 3, in order to prevent intrusion of pellets into the gap of the refractory brick formed on the hearth, since the gap is simply filled with a ceramic sheet or the like, the ceramic sheet may be held in the gap. If it is not assumed and the structure is adopted in a part other than the hearth (for example, the top surface or side surface), the ceramic sheet will fall off due to its own weight, the ejector effect due to the flowing combustion gas, and the heat at startup There is a concern that the ceramic sheet may fall off due to movement due to the difference in expansion.
 本開示は、このような事情に鑑みてなされたものであって、流動材を含むガスが流通する領域において、設置状態や運転状態に依らずに耐熱材間の隙間に流動材が堆積することを防止でき、耐火材同士の熱伸びの拘束を避けることができる壁面構造およびその組み付け方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and in a region where a gas including a fluidized material flows, the fluidized material is deposited in a gap between heat-resistant materials regardless of an installation state or an operation state. It is an object of the present invention to provide a wall structure and a method for assembling the wall structure, which can prevent the occurrence of cracks and prevent the thermal expansion between the refractory materials.
 上記課題を解決するために、本開示の壁面構造およびその組み付け方法は以下の手段を採用する。
 即ち、本開示の一態様に係る壁面構造は、鋼板と、該鋼板上の面に配置された断熱材と、該断熱材上の面に互いに間隔を空けて配置された複数の耐火材と、該耐火材に接して流動材を含むガスが流通する領域に面するとともに複数の前記耐火材間の隙間に配置された緩衝材と、前記隙間に前記緩衝材を保持する保持構造とを備えている。
In order to solve the above-described problems, a wall structure and a method of assembling the same according to the present disclosure employ the following solutions.
That is, the wall structure according to one embodiment of the present disclosure includes a steel plate, a heat insulating material disposed on a surface on the steel plate, and a plurality of refractory materials disposed at intervals on the surface on the heat insulating material, A buffer material is provided in a gap between the plurality of refractory materials facing a region where a gas containing a fluid material flows in contact with the refractory material, and a holding structure for holding the buffer material in the gap is provided. I have.
 本開示の一態様に係る壁面構造は、鋼板上の面に配置された断熱材と、複数の耐火材と、耐火材に接して流動材を含むガスが流通する領域に面するとともに複数の耐火材間のに形成された隙間(例えば目地)を備え、柔軟性を有する緩衝材が保持構造によって耐火材間の隙間に設置されている。このため、耐火材に接して流動砂などの流動材を含む燃焼ガスなどのガスが流通している領域において、ボイラの起動時から通常運転時にかけての流動材を含むガスの温度上昇時に対して、緩衝材の柔軟性によって耐火材の熱伸びを吸収しつつ、緩衝材の存在によって隙間に流動材が堆積して、隣接する耐火材同士の熱伸びの拘束することを防止できる。このとき、緩衝材は、保持構造によって隙間に保持された状態で設置されているので、緩衝材に自重が作用したり、燃焼ガスの流通によるエジェクタ効果に起因する引力が作用したり、温度上昇時の熱膨張差で耐火材が移動しても、緩衝材が隙間から脱落することがない。つまり、設置状態や運転状態に依らずに隙間に流動材が堆積することを防止でき、隣接する耐火材同士の熱伸びの拘束を避けることができる。
 また、緩衝材は柔軟性を有する素材とされている。このため、前述したように耐火材の熱伸びを吸収できるだけでなく、その柔軟性によって隙間に容易に設置することができる。例えば、隙間や保持構造が複雑な形状とされた場合、緩衝材を隙間に押し込めば、緩衝材が隙間の内側で隙間や保持構造の形状に合わせた形状へと柔軟に変形する。緩衝材としては、例えば、繊維状(綿状)のセラミックスや多孔質状のセラミックスなどがある。
The wall surface structure according to an aspect of the present disclosure includes a heat insulating material disposed on a surface on a steel plate, a plurality of refractory materials, and a plurality of refractory surfaces facing a region in which a gas including a flowing material flows in contact with the refractory material. There is a gap (for example, joint) formed between the materials, and a flexible cushioning material is installed in the gap between the refractory materials by a holding structure. For this reason, in a region where a gas such as a combustion gas containing a fluidized material such as fluidized sand flows in contact with the refractory material, the temperature of the gas containing the fluidized material increases from the start of the boiler to the normal operation. Also, while absorbing the thermal elongation of the refractory material due to the flexibility of the buffer material, the flow material can be prevented from accumulating in the gaps due to the presence of the buffer material and restraining the thermal elongation between adjacent refractory materials. At this time, since the cushioning material is installed in a state held in the gap by the holding structure, its own weight acts on the cushioning material, an attractive force due to the ejector effect due to the flow of the combustion gas acts, and the temperature rise. Even if the refractory material moves due to the difference in thermal expansion at the time, the buffer material does not fall out of the gap. That is, it is possible to prevent the flow material from accumulating in the gap regardless of the installation state or the operation state, and to avoid the restriction of the thermal expansion between adjacent refractory materials.
The cushioning material is a material having flexibility. For this reason, as described above, not only can the thermal expansion of the refractory material be absorbed, but also it can be easily installed in the gap due to its flexibility. For example, when the gap or the holding structure has a complicated shape, if the cushioning material is pushed into the gap, the cushioning material is flexibly deformed inside the gap to a shape matching the shape of the gap or the holding structure. Examples of the cushioning material include fibrous (cotton-like) ceramics and porous ceramics.
 また、本開示の一態様に係る壁面構造において、前記保持構造は、前記隙間に設置された棘付きのピンを備えている。 In addition, in the wall structure according to an aspect of the present disclosure, the holding structure includes a barbed pin provided in the gap.
 この構成によれば、棘付きのピンによって確実に緩衝材を耐火材間の隙間に保持できる。ピンは、例えば、変形可能な金属製とされた棘付きのピンなどがある。 According to this configuration, the cushioning material can be reliably held in the gap between the refractory materials by the barbed pins. The pin is, for example, a barbed pin made of a deformable metal.
 また、本開示の一態様に係る壁面構造において、前記ピンは、前記耐火材に対して設置されている。 Further, in the wall structure according to an aspect of the present disclosure, the pin is provided for the refractory material.
 この構成によれば、ピンを設置できるように耐火材にのみ加工を施せば良く、例えば、耐火材を流し込みによって成形する場合、ピンを固定するための加工が容易にできる。 According to this configuration, only the refractory material needs to be processed so that the pin can be installed. For example, when the refractory material is formed by casting, the process for fixing the pin can be easily performed.
 また、本開示の一態様に係る壁面構造において、前記ピンは、前記断熱材に対して設置されている。 In addition, in the wall structure according to an aspect of the present disclosure, the pin is provided for the heat insulating material.
 この構成によれば、断熱材に対してピンを設置しているので、仮に、耐火材の交換が必要になった場合でも、容易に耐火材を交換できる。また、耐火材にピンを固定するための加工を施す必要がないので、既に耐火材が設置されている既存設備に対しても容易に適用できる。 According to this configuration, since the pins are provided for the heat insulating material, even if it is necessary to replace the refractory material, the refractory material can be easily replaced. Further, since it is not necessary to perform processing for fixing the pins to the refractory material, the present invention can be easily applied to existing equipment in which the refractory material is already installed.
 また、本開示の一態様に係る壁面構造において、前記保持構造は、前記流動材を含むガスが流通する前記領域側から前記断熱材側に向かって前記隙間が拡幅する拡幅部を備えている。 In addition, in the wall structure according to an aspect of the present disclosure, the holding structure includes a widening portion in which the gap widens from the region through which the gas containing the fluid flows, toward the heat insulating material.
 この構成によれば、耐火材によって形成された隙間の形状である拡幅部に緩衝材を設置した場合、隙間が拡幅していない部分(狭い部分)で緩衝材を保持できる。これは、拡幅部が形成された隙間に緩衝材を押し込むことで、緩衝材が拡幅部の形状に合わせて柔軟に変形することによる。拡幅部は、耐火材の流動材が流通する領域側(表面側)から断熱材側に向かって拡幅しているので、換言すれば、拡幅部は、断熱材側から流動材を含むガスが流通する領域側に向かって隙間が狭くなっているので、緩衝材が拡幅部の形状に合わせて変形すると、緩衝材は、断熱材側から耐火材の表面側に向かう方向に拘束されて脱落しない。これにより、緩衝材が隙間に保持される。したがって、別途に緩衝材を保持するための部材を用意する必要がなく施工コストを低減できる。また、隙間の内部に別途の部材を設けないので、緩衝材を押し込む際に緩衝材に干渉するものが無く、緩衝材の設置がより容易になる。 According to this configuration, when the cushioning material is installed in the widened portion having the shape of the gap formed by the refractory material, the cushioning material can be held in the portion where the gap is not widened (narrow portion). This is because the cushioning material is flexibly deformed according to the shape of the widened portion by pushing the cushioning material into the gap where the widened portion is formed. Since the widened portion is widened from the area (surface side) where the fluid material of the refractory material flows to the heat insulating material side, in other words, the widened portion allows the gas containing the fluid material to flow from the heat insulating material side. When the cushioning material is deformed in accordance with the shape of the widened portion, the cushioning material is restrained in the direction from the heat insulating material side to the surface side of the refractory material and does not fall off. Thereby, the cushioning material is held in the gap. Therefore, it is not necessary to separately prepare a member for holding the cushioning material, and the construction cost can be reduced. In addition, since no separate member is provided inside the gap, there is no interference with the cushioning material when the cushioning material is pushed in, and the installation of the cushioning material becomes easier.
 また、本開示の一態様に係る壁面構造において、記緩衝材は、繊維状または多孔質状のセラミックスとされる。 In the wall structure according to an aspect of the present disclosure, the cushioning material is a fibrous or porous ceramic.
 この構成によれば、柔軟性に富んだ緩衝材を使用できる。特に、繊維状のセラミックスを綿状にしたもの、または多孔質状で弾力性をもたせたものであれば、保持構造への設置がより容易になる。 れ ば According to this configuration, a flexible cushioning material can be used. In particular, if the fibrous ceramic is made into a cotton-like shape, or if the material is made porous and elastic, the installation on the holding structure becomes easier.
 また、前述の壁面構造は、内部に前記流動材を含むガスを流動する火炉に接続されたダクトまたは容器の壁部とされる。 The above-mentioned wall structure is a wall of a duct or a container connected to a furnace in which a gas containing the fluid material flows therein.
 また、本開示の一態様に係る壁面構造の組み付け方法は、鋼板と、該鋼板上の面に配置された断熱材と、該断熱材上の面に互いに間隔を空けて配置された複数の耐火材と、該耐火材に接して流動材を含むガスが流通する領域に面するとともに複数の前記耐火材間の隙間に配置された緩衝材と、前記隙間に前記緩衝材を保持する保持構造とを備えている壁面構造の組み付け方法であって、前記保持構造に前記緩衝材を設置する工程を含む。 Also, the method for assembling the wall structure according to one embodiment of the present disclosure includes a steel plate, a heat insulating material disposed on a surface on the steel plate, and a plurality of fireproof disposed at intervals on the surface on the heat insulating material. Material, a cushioning material facing a region in which a gas containing a flowing material flows in contact with the refractory material, and a cushioning material arranged in a gap between the plurality of refractory materials, and a holding structure for holding the cushioning material in the gap. A method of assembling a wall structure, comprising: installing the cushioning material on the holding structure.
 本開示に係る壁面構造およびその組み付け方法によれば、流動材を含むガスが流通する領域において、設置状態や運転状態に依らずに耐熱材間の隙間に流動材が堆積することを防止でき、隣接する耐火材同士の熱伸びの拘束を避けることができる。 According to the wall surface structure and the method of assembling the same according to the present disclosure, in a region where a gas containing a fluidizing material flows, it is possible to prevent the fluidizing material from being deposited in gaps between heat-resistant materials regardless of an installation state or an operating state, It is possible to avoid restraint of thermal expansion between adjacent refractory materials.
本開示の実施形態に係る発電システムの概略構成図である。1 is a schematic configuration diagram of a power generation system according to an embodiment of the present disclosure. 本開示の第1実施形態に係る壁面構造の耐火材に熱伸びが生じていないときの断面図である。FIG. 2 is a cross-sectional view of the refractory material of the wall structure according to the first embodiment of the present disclosure when no thermal elongation occurs. 本開示の第1実施形態に係る壁面構造の耐火材に熱伸びが生じているときの断面図である。FIG. 2 is a cross-sectional view when a refractory material having a wall structure according to the first embodiment of the present disclosure has undergone thermal expansion. 本開示の第1実施形態に係る保持構造を示した断面図である。1 is a cross-sectional view illustrating a holding structure according to a first embodiment of the present disclosure. 本開示の第1実施形態に係る保持構造の変形例を示した断面図である。FIG. 5 is a cross-sectional view illustrating a modification of the holding structure according to the first embodiment of the present disclosure. 本開示の第1実施形態に係る保持構造の他の変形例を流動材が流通する領域側から平面視した図である。It is the figure which looked at another modification of the holding structure concerning a 1st embodiment of this indication from the field side where a fluid flows. 本開示の第2実施形態に係る保持構造を示した断面図である。FIG. 10 is a cross-sectional view illustrating a holding structure according to a second embodiment of the present disclosure. 本開示の第2実施形態に係る保持構造が備える保持ピンの変形例を示した図である。It is a figure showing a modification of a holding pin with which a holding structure concerning a 2nd embodiment of this indication is provided. 本開示の第2実施形態に係る保持構造が備える保持ピンの他の変形例を示した図である。FIG. 11 is a diagram illustrating another modified example of the holding pin included in the holding structure according to the second embodiment of the present disclosure. 本開示の第2実施形態に係る保持構造の変形例を流動材が流通する領域側から平面視した図である。It is the figure which looked at the modification of the holding structure concerning a 2nd embodiment of this indication from the field side where a fluid flows. 本開示の第3実施形態に係る保持構造を示した断面図である。FIG. 13 is a cross-sectional view illustrating a holding structure according to a third embodiment of the present disclosure. 本開示の第3実施形態に係る保持構造の変形例を示した断面図である。FIG. 13 is a cross-sectional view illustrating a modification example of the holding structure according to the third embodiment of the present disclosure. 本開示の第3実施形態に係る保持構造の他の変形例を示した断面図である。FIG. 13 is a cross-sectional view illustrating another modification of the holding structure according to the third embodiment of the present disclosure.
 以下に、本開示に係る壁面構造およびその組み付け方法について、図面を参照して説明する。 Hereinafter, a wall structure according to the present disclosure and a method of assembling the same will be described with reference to the drawings.
〔第1実施形態〕
 以下、本開示の第1実施形態について、図1から図6を用いて説明する。
 まず、発電システム1について説明する。発電システム1は、図1に示すように、蒸気を生成するボイラとして循環流動層ボイラ(CFB:Circulating Fluidized Bed)2と、循環流動層ボイラ2で生成された蒸気によって回転駆動する蒸気タービン3と、蒸気タービン3の駆動力によって発電する発電機4とを備える。
[First Embodiment]
Hereinafter, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 6.
First, the power generation system 1 will be described. As shown in FIG. 1, the power generation system 1 includes a circulating fluidized bed boiler (CFB: Circulating Fluidized Bed) 2 as a boiler that generates steam, and a steam turbine 3 that is rotationally driven by the steam generated by the circulating fluidized bed boiler 2. And a generator 4 for generating electric power by the driving force of the steam turbine 3.
 循環流動層ボイラ2は、内部で流動砂(例えば河砂などSiO2が主体の粒子)を流動させている流動層火炉(以下、「火炉」という。)5と、火炉5に燃料を供給する燃料供給装置6と、火炉5で生成された燃焼ガスが流通する煙道7と、煙道7に設けられた複数の熱交換器8等を備えている。なお、循環流動層ボイラ2では、広範な燃料を燃焼可能であり、燃料として石炭(瀝青炭、亜瀝青炭、褐炭、無煙炭など)、石油コークス、木質バイオマス、製紙スラッジ、RPF(Refuse Paper & Plastic Fuel)、廃タイヤ、脱水汚泥、都市ごみ等、を採用することができる。 The circulating fluidized bed boiler 2 has a fluidized bed furnace (hereinafter, referred to as a “furnace”) 5 in which fluidized sand (eg, particles mainly composed of SiO 2 such as river sand) is fluidized, and a fuel for supplying fuel to the furnace 5. The fuel supply system includes a supply device 6, a flue 7 through which the combustion gas generated in the furnace 5 flows, and a plurality of heat exchangers 8 provided in the flue 7. The circulating fluidized bed boiler 2 is capable of burning a wide range of fuels, and includes coal (bituminous coal, subbituminous coal, lignite, anthracite, etc.), petroleum coke, woody biomass, papermaking sludge, RPF (Refuse Paper & Plastic Fuel). , Waste tires, dewatered sludge, municipal waste, and the like.
 ここで、図1に示す燃料供給装置6は燃料として石炭を採用した場合の一例である。本実施形態では、火炉5の内圧力が大気圧より少し高いので、燃料供給系統へ燃焼ガスなどが逆流しないよう、燃料供給装置6には、ロータリバルブ10およびシール空気供給装置(図示せず)が設けられている。 Here, the fuel supply device 6 shown in FIG. 1 is an example in which coal is used as fuel. In this embodiment, since the internal pressure of the furnace 5 is slightly higher than the atmospheric pressure, the fuel supply device 6 includes a rotary valve 10 and a seal air supply device (not shown) so that the combustion gas or the like does not flow back to the fuel supply system. Is provided.
 火炉5は、炉底11に設けられた空気ノズル12から供給される空気(気体)により、流動材(燃料および流動砂)を流動させて流動層を形成する。循環流動層ボイラ2は、このように流動層を形成することで、火炉5(コンバスタ)内の燃料、流動砂、および空気の混合を促進し、燃焼効率の向上をはかっている。なお、循環流動層ボイラ2の通常運転時においては、空気ノズル12からは気体として空気が供給されるが、停止時の炉内パージなどでは、不活性ガス(例えば窒素ガスなど)を導入する場合もある。 The furnace 5 causes a fluidized material (fuel and fluidized sand) to flow by air (gas) supplied from an air nozzle 12 provided on the furnace bottom 11 to form a fluidized bed. The circulating fluidized-bed boiler 2 promotes mixing of fuel, fluidized sand, and air in the furnace 5 (combustor) by forming a fluidized bed in this manner, thereby improving combustion efficiency. During normal operation of the circulating fluidized-bed boiler 2, air is supplied as a gas from the air nozzle 12, but when an inert gas (for example, nitrogen gas or the like) is introduced during purging in a furnace at the time of shutdown. There is also.
 また、火炉5から排ガスとともに飛散する循環粒子(流動砂と未燃燃料)は、燃焼ガス(ガス)によって搬送されて、ダクト30を介して火炉5の出口側に設けられたサイクロン(容器)13によって、燃焼ガスと循環粒子とに分離される。サイクロン13で分離・捕集した循環粒子は、シールポット14および外部熱交換器15を介して、再び火炉5へ戻される。このように、本実施形態に係る循環流動層ボイラ2では、流動砂や未燃燃料を循環させるシステムとすることにより燃焼効率の向上をはかっている。また、外部熱交換器15へ送られる循環粒子の分岐率を灰取出弁16で調整することで、火炉5の炉内温度を調整することができる。なお、外部熱交換器15へは、循環粒子を流動させるための空気が空気ブロワ17から供給されている。 Further, the circulating particles (fluid sand and unburned fuel) scattered together with the exhaust gas from the furnace 5 are conveyed by the combustion gas (gas), and the cyclone (container) 13 provided on the outlet side of the furnace 5 through the duct 30. Thus, the fuel gas is separated into combustion gas and circulating particles. The circulating particles separated and collected by the cyclone 13 are returned to the furnace 5 again through the seal pot 14 and the external heat exchanger 15. Thus, in the circulating fluidized-bed boiler 2 according to the present embodiment, the system for circulating the fluidized sand and the unburned fuel improves the combustion efficiency. Further, by adjusting the branching rate of the circulating particles sent to the external heat exchanger 15 by the ash extraction valve 16, the temperature in the furnace 5 of the furnace 5 can be adjusted. Note that air for flowing the circulating particles is supplied from the air blower 17 to the external heat exchanger 15.
 サイクロン13で分離された燃焼ガスは、ダクト31を流通した後、煙道7内を流通し、煙道7内に設けられた複数の熱交換器8にて熱交換器8内を流れる流体(例えば水や蒸気など)と熱交換する。熱交換器8では、燃焼ガスとの熱交換によって過熱蒸気が生成される。生成された過熱蒸気は、蒸気タービン3に送られ、蒸気タービン3を回転駆動する。蒸気タービン3が回転駆動すると、蒸気タービン3と同軸に接続された発電機4によって発電される。一方、熱交換器8と熱交換した燃焼ガスは、空気予熱器22およびバグフィルタ23を通過した後に、煙突(図示せず)から大気に放出される。 After flowing through the duct 31, the combustion gas separated by the cyclone 13 flows through the flue 7, and flows through the heat exchanger 8 in the plurality of heat exchangers 8 provided in the flue 7 ( Heat exchange with, for example, water or steam). In the heat exchanger 8, superheated steam is generated by heat exchange with the combustion gas. The generated superheated steam is sent to the steam turbine 3 and drives the steam turbine 3 to rotate. When the steam turbine 3 rotates, electric power is generated by a generator 4 coaxially connected to the steam turbine 3. On the other hand, the combustion gas which has exchanged heat with the heat exchanger 8 passes through the air preheater 22 and the bag filter 23, and is then discharged to the atmosphere from a chimney (not shown).
 火炉5には、その内部において流動材を流動させる複数の空気ノズル12と、燃焼用空気を供給する燃焼空気供給部26とが設けられている。なお、一般的には微粉燃焼方式で用いられる火炉5が部分的に1500℃程度を超過することに対し、循環流動層ボイラ2で用いられる火炉5では炉内温度が均一であるとともに、例えば800~900℃に制御される。このため、循環流動層ボイラ2では、サーマルNOx(燃焼温度依存の発生NOx)の生成量を抑制でき、さらにNOx発生量や、火炉5内に石灰石を供給することで炉内脱硫(CaCO3→CaO+CO2、CaO+SO2+1/2O2 →CaSO4)を行うことも可能となる。 The furnace 5 is provided with a plurality of air nozzles 12 for flowing the fluid therein and a combustion air supply unit 26 for supplying combustion air. In general, the furnace 5 used in the pulverized combustion system partially exceeds about 1500 ° C., whereas the furnace 5 used in the circulating fluidized bed boiler 2 has a uniform furnace temperature and, for example, 800 ° C. Controlled to ~ 900 ° C. For this reason, in the circulating fluidized-bed boiler 2, the amount of thermal NOx (NOx generated depending on the combustion temperature) can be suppressed, and the amount of NOx generated and the in-furnace desulfurization (CaCO 3 → CaO + CO 2 , CaO + SO 2 + 1 / 2O 2 → CaSO 4 ) can also be performed.
 燃焼空気供給部26は複数設けられている。燃焼空気供給部26は、各々、FDF(Forced Delivery Fan)27から空気予熱器22で予熱された空気の一部を燃焼用空気として炉内に噴出する。噴出される燃焼用空気は、風室28によって、各燃焼空気供給部26に略均一に分配されている。このため、火炉5内では一様な流動層を形成され、炉内温度が比較的均一になる。 複数 A plurality of combustion air supply units 26 are provided. Each of the combustion air supply units 26 injects a part of the air preheated by the air preheater 22 from an FDF (Forced @ Delivery @ Fan) 27 into the furnace as combustion air. The jetted combustion air is distributed substantially uniformly to each combustion air supply unit 26 by the air chamber 28. Therefore, a uniform fluidized bed is formed in the furnace 5, and the temperature in the furnace becomes relatively uniform.
 空気ノズル12は、炉底11を鉛直上下方向に貫通して設けられ、炉底11全体に亘って複数(例えば数百本)設置されている。空気ノズル12の上部は火炉5の内部に位置し、下部は風箱29の内部に位置している。FDF27から空気予熱器22で予熱されて送られてきた空気を、風箱29を介して複数の空気ノズル12によって火炉5の内部に供給している。 The air nozzles 12 are provided vertically through the furnace bottom 11 in the vertical direction, and a plurality (for example, several hundreds) of the air nozzles 12 are provided over the entire furnace bottom 11. The upper part of the air nozzle 12 is located inside the furnace 5, and the lower part is located inside the wind box 29. The air preheated and sent from the FDF 27 by the air preheater 22 is supplied to the inside of the furnace 5 by a plurality of air nozzles 12 via a wind box 29.
 次に、本実施形態に係る壁面構造40Aについて説明する。
 壁面構造40Aは、発電システム1が備えるサイクロン13や、サイクロン13に接続されているダクト30、ダクト31など、流動材(特に、流動砂)が800~900℃の燃焼ガスなどのガスによって搬送されるに際して、その内部を流通する構造の壁面に採用されて好適である。以下においては、サイクロン13の壁面を例にして説明を行うが、これはサイクロン13の壁面に限定するものではなく、例えば、ダクト30やダクト31の壁面であっても良い。
Next, the wall structure 40A according to the present embodiment will be described.
In the wall structure 40A, fluid material (particularly fluid sand) such as the cyclone 13 included in the power generation system 1 and the ducts 30 and 31 connected to the cyclone 13 is carried by a gas such as a combustion gas at 800 to 900 ° C. In this case, it is suitable to be adopted for a wall having a structure flowing through the inside. In the following, the wall surface of the cyclone 13 will be described as an example, but this is not limited to the wall surface of the cyclone 13, and may be, for example, the wall surface of the duct 30 or the duct 31.
 図2に示すように、壁面構造40Aは、サイクロン13の外部から内部に向かって順に、鋼板42、断熱材44、耐火材46を備えた層構造になっている。つまり、サイクロン13の外部側の壁面が鋼板42とされ、流動砂などの流動材を含む燃焼ガスが流通する内部側の壁面が耐火材46とされている。 As shown in FIG. 2, the wall structure 40 </ b> A has a layer structure including a steel plate 42, a heat insulating material 44, and a refractory material 46 in order from the outside to the inside of the cyclone 13. That is, the outer wall surface of the cyclone 13 is the steel plate 42, and the inner wall surface through which the combustion gas including the fluidized material such as the fluidized sand flows is the refractory material 46.
 鋼板42は、例えば、一般的な構造用炭素鋼による鋼板とされており、サイクロン13の容器の外殻を形成している。ボイラ2の通常運転時、サイクロン13の内部は、燃焼ガスの流通によって800℃~900℃の高温に晒される。そのため、鋼板42の内面上には、鋼板42の保護を目的として断熱材44が施工されている。 The steel plate 42 is, for example, a steel plate made of general structural carbon steel, and forms the outer shell of the container of the cyclone 13. During normal operation of the boiler 2, the inside of the cyclone 13 is exposed to a high temperature of 800 ° C. to 900 ° C. due to the flow of the combustion gas. Therefore, a heat insulator 44 is provided on the inner surface of the steel plate 42 for the purpose of protecting the steel plate 42.
 断熱材44は、例えば、Al2O3(アルミナ)やSiO2(シリカ)およびこれらの混合物などを主成分とするものであり、かさ密度を低くするなどで断熱性に優れたものが採用される。断熱材44は、例えば、鋼板42に所定ピッチで固定されたY字状のアンカーピン50によって鋼板42に対して後述する耐火材46とともに設置されている。Y字状のアンカーピン50は長さの違うものを用いて、鋼板42に対して断熱材44と耐火材46を別々に支持してもよい。断熱材44は、断熱性に優れる一方、サイクロン13や、サイクロン13に接続されているダクト30,31などの内部を流通する燃焼ガスに含まれる流動砂や燃焼灰などの粒子による浸食や摩耗に弱い。そのため、断熱材44の内面上には、断熱材44の保護を目的として耐火材46が施工されている。なお、鋼板42上に施工された断熱材44の厚さ(図2で示す上下方向)は、約200mmから400mmとされる。 The heat insulating material 44 is mainly composed of, for example, Al 2 O 3 (alumina), SiO 2 (silica), a mixture thereof, or the like, and a material having excellent heat insulating properties such as a low bulk density is employed. You. The heat insulating material 44 is installed together with a refractory material 46 to be described later on the steel plate 42 by, for example, a Y-shaped anchor pin 50 fixed to the steel plate 42 at a predetermined pitch. The Y-shaped anchor pins 50 having different lengths may be used to separately support the heat insulating material 44 and the refractory material 46 on the steel plate 42. The heat insulating material 44 is excellent in heat insulating property, but is resistant to erosion and abrasion by particles such as fluidized sand and combustion ash contained in the cyclone 13 and the combustion gas flowing inside the ducts 30 and 31 connected to the cyclone 13. weak. Therefore, a refractory material 46 is provided on the inner surface of the heat insulating material 44 for the purpose of protecting the heat insulating material 44. In addition, the thickness (the vertical direction shown in FIG. 2) of the heat insulating material 44 constructed on the steel plate 42 is about 200 mm to 400 mm.
 耐火材46は、断熱材44における鋼板42が位置する側の面とは反対側の面(燃焼ガスが流れる側)に施工され、例えば、Al2O3(アルミナ)やSiO2(シリカ)やSiC(炭化ケイ素)およびこれらの混合物などを主成分とし、かさ密度を高くして緻密化するなどして、耐摩耗性に優れたものが採用される。耐火材46は、平面視した場合、長辺が約1000mmから5000mm、厚さ(図2で示す上下方向)が約50mmから約150mmのブロック形状とされ、複数の耐火材46が面方向(例えば、図2で示す左右方向)に互いに所定の隙間を空けて断熱材44に接して施工されている。本実施形態において、断熱材44を鋼板42に対して固定しているアンカーピン50によって、耐火材46は断熱材44に対して設置されている。耐火材46同士の隙間は、例えば、目地52とされる。目地52の幅は、例えば、約5mmから約20mmとされる。目地52は、ボイラ2の起動時から通常運転時にかけての耐火材46の面方向の熱伸びに対して、隣接する耐火材46同士の干渉を発生させないように、熱伸びを吸収できるように設定された隙間である(図3参照)。目地52は、耐火材46の寸法、性状や形状によって適宜変更できることは言うまでもない。耐火材46は、例えば、断熱材44に仮設設置された型枠への流し込みよって成形してもよい。また別途製作したブロック状の耐火材46を取り付けてもよい。 The refractory material 46 is installed on the surface of the heat insulating material 44 opposite to the surface on which the steel plate 42 is located (the side on which the combustion gas flows). For example, Al 2 O 3 (alumina), SiO 2 (silica), A material having SiC (silicon carbide) and a mixture thereof as a main component and having excellent abrasion resistance by increasing the bulk density and densifying the material is employed. When viewed in a plan view, the refractory material 46 has a block shape having a long side of about 1000 mm to 5000 mm and a thickness (up and down direction shown in FIG. 2) of about 50 mm to about 150 mm. , Left and right directions shown in FIG. 2) with a predetermined gap therebetween in contact with the heat insulating material 44. In the present embodiment, the refractory material 46 is installed on the heat insulating material 44 by the anchor pins 50 that fix the heat insulating material 44 to the steel plate 42. The gap between the refractory materials 46 is, for example, a joint 52. The width of the joint 52 is, for example, about 5 mm to about 20 mm. The joint 52 is set so as to absorb the thermal elongation of the refractory material 46 in the surface direction from the start of the boiler 2 to the normal operation so as not to cause interference between adjacent refractory materials 46. This is the gap (see FIG. 3). Needless to say, the joint 52 can be appropriately changed depending on the size, properties and shape of the refractory material 46. The refractory material 46 may be formed, for example, by pouring into a mold temporarily provided on the heat insulating material 44. Alternatively, a separately manufactured block-shaped refractory material 46 may be attached.
 壁面構造40Aは、目地52に設置される緩衝材48を備える。緩衝材48は、例えば、Al2O3(アルミナ)やSiO2(シリカ)やMgO(マグネシア)CaO(カルシア)およびこれらの混合物などを主成分とする繊維状のセラミックスを、かさ密度約100kg/m^3から約500kg/m^3程度の綿状や多孔質状に形成したものであって、柔軟性を有するものとされる。なお、緩衝材48は、これらのものに限らず、耐火材46に熱伸びが生じていない場合、目地52に流動砂が侵入することを防止できる程度の低いかさ密度、またはそれ以上のかさ密度を有した素材であって、かつ、図3のように耐火材46に熱伸びが生じた場合に耐火材46の熱伸びを拘束しない程度に収縮が可能な柔軟性を有した素材であれば良い。 The wall structure 40 </ b> A includes a cushioning material 48 installed on the joint 52. The buffer material 48 is made of, for example, a fibrous ceramic mainly composed of Al2O3 (alumina), SiO2 (silica), MgO (magnesia), CaO (calcia), and a mixture thereof, with a bulk density of about 100 kg / m @ 3. It is formed in a flocculent or porous form of about 500 kg / m @ 3, and has flexibility. The cushioning material 48 is not limited to these materials. If the refractory material 46 does not undergo thermal expansion, the bulk density is low enough to prevent liquid sand from entering the joint 52, or higher. And a flexible material that can shrink to the extent that it does not restrict the thermal expansion of the refractory material 46 when the refractory material 46 undergoes thermal expansion as shown in FIG. good.
 ボイラ2の起動時において、耐火材46は、サイクロン13の内部を流通する燃焼ガスが約500℃に到達したときには、概ね熱膨張による熱伸びが完了している。耐火材46の熱伸びが完了した後であれば、仮に目地52に流動砂が侵入しても再起動するまでは耐火材46の熱伸びを拘束しないので、再起動時までの点検期間に緩衝材48を補修可能であれば、燃焼ガスが約500℃に到達したときに、緩衝材48が焼失や損傷をしていても良い。 (4) When the boiler 2 is started, when the combustion gas flowing through the inside of the cyclone 13 reaches about 500 ° C., the thermal expansion of the refractory material 46 is substantially completed due to thermal expansion. After the thermal expansion of the refractory material 46 is completed, the thermal expansion of the refractory material 46 will not be restricted until restarting even if liquid sand enters the joints 52. If the material 48 can be repaired, the buffer material 48 may be burned out or damaged when the combustion gas reaches about 500 ° C.
 次に、目地52に緩衝材48を保持する保持構造54Aについて説明する。
 図4に示すように、保持構造54Aは、目地52(緩衝材48)を挟んで対向する耐火材46の側面に形成された可動孔58に対して両端部が挿入された棘付きの保持ピン(ピン)56を備えている。
Next, a holding structure 54A that holds the cushioning material 48 at the joint 52 will be described.
As shown in FIG. 4, the holding structure 54 </ b> A has a barbed pin having both ends inserted into a movable hole 58 formed on the side surface of the refractory material 46 that faces the joint 52 (the buffer material 48). (Pins) 56 are provided.
 保持ピン56は、本体56aが棒状とされた細いピンとされ、その周囲には複数の棘56bが半径方向に形成されている。保持ピン56は高温の燃焼ガスに対する耐酸化性があることが好ましく、例えば金属製でステンレス系の材質である。なお、保持ピン56は、耐火材46に熱伸びが生じた場合でも、耐火材46の熱伸びを拘束しないように耐火材46より剛性を低くして、耐火材46の熱変形が発生した時には、耐火材46を損傷させずに変形可能とされたものが好ましい。保持ピン56は、図4で示す紙面垂直方向に所定間隔を空けて複数本設置されている。 The holding pin 56 is a thin pin having a main body 56a in a rod shape, and a plurality of barbs 56b are formed around the pin in a radial direction. The holding pin 56 preferably has oxidation resistance to high-temperature combustion gas, and is made of, for example, metal and stainless steel. In addition, even when thermal expansion occurs in the refractory material 46, the holding pin 56 has a lower rigidity than the refractory material 46 so as not to restrain the thermal expansion of the refractory material 46, and when thermal deformation of the refractory material 46 occurs, It is preferable that the refractory material 46 be deformable without damaging it. The plurality of holding pins 56 are provided at predetermined intervals in the direction perpendicular to the paper surface shown in FIG.
 可動孔58は、目地52(緩衝材48)を挟んで対向する耐火材46の側面に設けられ、その深さの方向が保持ピン56の長手方向と一致するように形成されている。一方の耐火材46に形成された可動孔58の底壁58aから、それに対向する他方の耐火材46に形成された可動孔58の底壁58aまでの距離は保持ピン56の長手方向の長さよりも長く、かつ、可動孔58の内径は保持ピン56の外径よりも大きく設定されている。これにより、保持ピン56は、目地52の内部に配置されつつも長手方向に移動が可能なので、耐火材46に熱伸びが生じた場合でも、保持ピン56が耐火材46の熱伸びを拘束することはなく、耐火材46および保持ピン56が損傷することを防ぐことができる。 The movable hole 58 is provided on the side surface of the refractory material 46 facing the joint 52 (the buffer material 48), and is formed so that the depth direction thereof matches the longitudinal direction of the holding pin 56. The distance from the bottom wall 58a of the movable hole 58 formed in the one refractory material 46 to the bottom wall 58a of the movable hole 58 formed in the other refractory material 46 opposite thereto is longer than the length of the holding pin 56 in the longitudinal direction. And the inside diameter of the movable hole 58 is set to be larger than the outside diameter of the holding pin 56. Accordingly, the holding pin 56 can be moved in the longitudinal direction while being disposed inside the joint 52, so that even when the refractory material 46 undergoes thermal expansion, the retaining pin 56 restrains the thermal extension of the refractory material 46. Therefore, it is possible to prevent the refractory material 46 and the holding pin 56 from being damaged.
 緩衝材48は前述の通り柔軟性に優れているので、保持ピン56が設置された目地52にサイクロン13の内部側から押し込むことができる。目地52に押し込まれた緩衝材48は、目地52の内側で目地52および保持ピン56の形状に合わせた形状に柔軟に変形する。これにより、緩衝材48は保持ピン56の棘56bに引っ掛かるので目地52に保持される。 (4) Since the cushioning member 48 has excellent flexibility as described above, the cushioning member 48 can be pushed from the inside of the cyclone 13 into the joint 52 where the holding pin 56 is installed. The cushioning material 48 pushed into the joint 52 flexibly deforms into a shape corresponding to the shape of the joint 52 and the holding pin 56 inside the joint 52. As a result, the cushioning material 48 is caught by the barbs 56 b of the holding pins 56 and is thus held by the joint 52.
 本実施形態において、保持ピン56は、例えば次のように可動孔58に設置される。
 まず、保持ピン56の両端部に可動孔58の形状に合わせた紙等の柔軟で焼損し易い保護材を巻き付けておく。前述の通り耐火材46は型枠への流し込みによって成形されるので、両端部に紙等が巻き付けられた保持ピン56が配置された状態で流し込みを行う。これにより、保持ピン56が紙等を介して固定された耐火材46が成形される。この状態でボイラ2の起動を行うと、耐火材46の熱伸びが完了する温度(例えば、500℃程度)に到達する前に保持ピン56の両端部に巻き付けられた紙等が焼失して隙間となる。耐火材46が熱伸びする温度に到達するときには、可動孔58によって保持ピン56が設置された耐火材46となる。すなわち、図4の状態になる。
In the present embodiment, the holding pins 56 are installed in the movable holes 58 as follows, for example.
First, a flexible and easily burnable protective material such as paper adapted to the shape of the movable hole 58 is wound around both ends of the holding pin 56. As described above, since the refractory material 46 is formed by pouring into a mold, pouring is performed in a state where the holding pins 56 around which paper or the like is wound are disposed at both ends. Thereby, the refractory material 46 to which the holding pins 56 are fixed via the paper or the like is formed. When the boiler 2 is started in this state, the paper wound around the both ends of the holding pin 56 burns out before reaching the temperature at which the thermal expansion of the refractory material 46 is completed (for example, about 500 ° C.), and the gap is removed. It becomes. When the temperature reaches the temperature at which the refractory material 46 thermally expands, the movable hole 58 becomes the refractory material 46 on which the holding pins 56 are installed. That is, the state is as shown in FIG.
 なお、保持ピン56は、例えば次のように可動孔58に設置しても良い。
 耐火材46を流し込みによって成形するとき、可動孔58に加えて、図5に示すような装着用空間60を耐火材46に形成する。装着用空間60は、可動孔58よりもサイクロン13の燃焼ガスが流通する側である内部側に形成され、保持ピン56の長手方向の長さよりも可動孔58の長手方向の幅が狭く、可動孔58に接続された空間である。可動孔58および装着用空間60が形成された耐火材46を用いることで、図5に示すように、サイクロン13の内部側から保持ピン56を一方の長手方向へ偏心させつつ可動孔58に挿入して、他方側へと戻して偏心を解除することで、保持ピン56を耐火材46に設置できる。このとき、装着用空間60は、保持ピン56と耐火材46の干渉を避けるスペースとなる。
The holding pin 56 may be provided in the movable hole 58 as follows, for example.
When the refractory material 46 is formed by pouring, in addition to the movable hole 58, a mounting space 60 as shown in FIG. The mounting space 60 is formed on the inner side of the cyclone 13 where the combustion gas flows, rather than the movable hole 58, and the movable hole 58 has a narrower width in the longitudinal direction than the length of the holding pin 56 in the longitudinal direction. The space is connected to the hole 58. By using the refractory material 46 in which the movable hole 58 and the mounting space 60 are formed, as shown in FIG. 5, the holding pin 56 is inserted into the movable hole 58 while being eccentric in one longitudinal direction from the inside of the cyclone 13. Then, by returning to the other side to release the eccentricity, the holding pin 56 can be installed on the refractory material 46. At this time, the mounting space 60 is a space for avoiding interference between the holding pins 56 and the refractory material 46.
 本実施形態においては、以下の効果を奏する。
 流動砂などの流動材を含む燃焼ガスが流通している領域において、ボイラ2の起動時から通常運転時までの間にかけて、緩衝材48の柔軟性によって隣接する耐火材46同士の熱伸びを吸収しつつ、緩衝材48の存在によって目地52に流動材が堆積することを防止できる。このとき、緩衝材48は、保持構造54Aが備える保持ピン56によって目地52に保持された状態で設置されているので、緩衝材48に自重が作用したり、燃焼ガスの流通によるエジェクタ効果に起因する引力が作用したり、耐火材46が熱膨張で移動をしても、緩衝材48が目地52から脱落することがない。つまり、設置状態や運転状態に依らずに隙間に流動材が堆積することを防止でき、耐火材46同士の熱伸びの拘束を避けることができる。
The present embodiment has the following advantages.
In the region where the combustion gas containing the fluidized material such as the fluidized sand flows, the elasticity of the buffer material 48 absorbs the thermal expansion between the adjacent refractory materials 46 from the start of the boiler 2 to the normal operation. In addition, the fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48. At this time, since the cushioning member 48 is installed while being held at the joint 52 by the holding pin 56 provided in the holding structure 54A, the buffer member 48 may be subjected to its own weight or may be caused by the ejector effect due to the flow of the combustion gas. Even if an attractive force is applied or the refractory material 46 moves due to thermal expansion, the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
 また、緩衝材48は柔軟性を有する素材とされている。このため、前述したように耐火材46の熱伸びを吸収できるだけでなく、その柔軟性によって目地52に容易に設置することができる。例えば、目地52や保持構造54Aが備える保持ピン56が複雑な形状とされた場合、緩衝材48を隙間に押し込めば、緩衝材48が目地52の内側で目地52や保持ピン56の形状に合わせた緩衝材48の形状へと柔軟に変形する。 緩衝 The cushioning material 48 is a flexible material. Therefore, as described above, the refractory material 46 can not only absorb the thermal elongation but also can be easily installed on the joint 52 by its flexibility. For example, when the joint 52 and the holding pin 56 of the holding structure 54A have a complicated shape, if the cushioning material 48 is pushed into the gap, the cushioning material 48 matches the shape of the joint 52 and the holding pin 56 inside the joint 52. It is flexibly deformed into the shape of the cushioning material 48.
 また、保持ピン56を耐火材46に対して設置する場合、保持ピン56を設置できるように耐火材46にのみ加工を施せば良く、例えば、耐火材46を流し込みによって成形する場合、保持ピン56を固定するための可動孔58や装着用空間60が容易に成形できる。 When the holding pin 56 is installed on the refractory material 46, only the refractory material 46 needs to be processed so that the holding pin 56 can be installed. For example, when the refractory material 46 is formed by casting, the holding pin 56 The movable hole 58 and the mounting space 60 for fixing the head can be easily formed.
 なお、図6に示すようにサイクロン13の燃焼ガスが流通する側である内部側から壁面構造40Aを平面視した場合、保持ピン56は、その長手方向が目地52の長手方向に沿うように配置されても良い。この場合、例えば、保持ピン56の両端のうち一端が一の耐火材46に向けて略直角に折り曲げられ、保持ピン56の他端が一の耐火材46に目地52を挟んで対向する他の耐火材46向けて略直角折り曲げられ、保持ピン56のそれぞれの端部がそれぞれの耐火材46に形成された可動孔58に対して設置される。これにより、保持ピン56は耐火材46に対して設置される。 As shown in FIG. 6, when the wall structure 40 </ b> A is viewed in a plan view from the inner side where the combustion gas of the cyclone 13 flows, the holding pins 56 are arranged so that the longitudinal direction thereof is along the longitudinal direction of the joint 52. May be. In this case, for example, one end of both ends of the holding pin 56 is bent at a substantially right angle toward one refractory material 46, and the other end of the holding pin 56 faces the one refractory material 46 with the joint 52 interposed therebetween. The holding pin 56 is bent at a substantially right angle toward the refractory material 46, and each end of the holding pin 56 is installed in a movable hole 58 formed in each refractory material 46. Thus, the holding pins 56 are installed on the refractory material 46.
〔第2実施形態〕
 以下、本開示の第2実施形態について、図7から図10を用いて説明する。
 本実施形態の壁面構造40Bは、第1実施形態と保持ピン56の形態が異なり、その他の点については同様である。したがって、第1実施形態と異なる点についてのみ説明し、その他は同一の符号を用いてその説明を省略する。
[Second embodiment]
Hereinafter, a second embodiment of the present disclosure will be described with reference to FIGS. 7 to 10.
The wall structure 40B of the present embodiment differs from the first embodiment in the form of the holding pins 56, and is otherwise the same. Therefore, only the differences from the first embodiment will be described, and the other portions will be denoted by the same reference numerals and description thereof will be omitted.
 図7に示すように、壁面構造40Bは、保持構造54Bとして、断熱材44に設置された棘付きの保持ピン56を備えている。 壁面 As shown in FIG. 7, the wall structure 40B includes, as the holding structure 54B, a holding pin 56 with barbs installed on the heat insulating material 44.
 保持ピン56は、棒状の本体56aの長手方向が耐火材46の厚さ方向に一致する細いピンとされ、その周囲には複数の棘56bが半径方向に形成されている。保持ピン56は、高温の燃焼ガスに対する耐酸化性があることが好ましく、例えば金属製でステンレス系の材質である。断熱材44には、耐火材46が設置される側から保持ピン56を差し込んで固定できるような穴が設けられる。この穴に保持ピン56が押し込まれることで、保持ピン56が断熱材44に対して固定される。なお、保持ピン56は、耐火材46に熱伸びが生じた場合でも、耐火材46の熱伸びを拘束しないように耐火材46よりも剛性を低くして、耐火材46の熱変形が発生した時には、耐火材46を損傷させずに変形可能とされたもの好ましい。保持ピン56は、図7で示す紙面垂直方向に所定間隔を空けて複数設置されている。 The holding pin 56 is a thin pin whose longitudinal direction coincides with the thickness direction of the refractory material 46, and a plurality of barbs 56b are formed around the pin in the radial direction. The holding pin 56 preferably has oxidation resistance to high-temperature combustion gas, and is made of, for example, metal and stainless steel. The heat insulating material 44 is provided with a hole through which the holding pin 56 can be inserted and fixed from the side where the refractory material 46 is installed. When the holding pin 56 is pushed into the hole, the holding pin 56 is fixed to the heat insulating material 44. In addition, even if the thermal expansion of the refractory material 46 occurs, the holding pin 56 has a lower rigidity than the refractory material 46 so as not to restrain the thermal expansion of the refractory material 46, and the thermal deformation of the refractory material 46 occurs. Sometimes, it is preferable that the refractory material 46 be deformable without damaging it. The plurality of holding pins 56 are provided at predetermined intervals in the direction perpendicular to the paper surface shown in FIG.
 なお、保持ピン56は、図7に示すような棘付きのピンに限らず、例えば、図8に示すような返し付きのピンであっても良いし、図9に示すように先端がスプリング状に加工されたピンであっても良い。その他、目地52に設置された緩衝材48がサイクロン13の内部に脱落することなく保持するように加工されたピンであれば良い。 The holding pin 56 is not limited to a pin with a barb as shown in FIG. 7, but may be a pin with a barb as shown in FIG. 8 or a spring-shaped tip as shown in FIG. It may be a pin processed into a shape. In addition, any pin may be used as long as it is processed so that the cushioning member 48 provided at the joint 52 is held in the cyclone 13 without falling off.
 本実施形態においては、以下の効果を奏する。
 流動砂などの流動材を含む燃焼ガスが流通している領域において、ボイラ2の起動時から通常運転時までの間にかけて、緩衝材48の柔軟性によって耐火材46同士の熱伸びを吸収しつつ、緩衝材48の存在によって目地52に流動材が堆積することを防止できる。このとき、緩衝材48は、保持構造54Bが備える保持ピン56によって目地52に保持された状態で設置されているので、緩衝材48に自重が作用したり、燃焼ガスの流通によるエジェクタ効果に起因する引力が作用したり、耐火材46が熱膨張で移動をしても、緩衝材48が目地52から脱落することがない。つまり、設置状態や運転状態に依らずに隙間に流動材が堆積することを防止でき、耐火材46同士の熱伸びの拘束を避けることができる。
The present embodiment has the following advantages.
In the region where the combustion gas containing the fluidized material such as the fluidized sand flows, the thermal expansion between the refractory materials 46 is absorbed by the flexibility of the buffer material 48 from the start of the boiler 2 to the normal operation. The fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48. At this time, since the cushioning member 48 is installed in a state of being held at the joint 52 by the holding pin 56 provided in the holding structure 54B, the buffer member 48 may be subjected to its own weight or may be caused by the ejector effect due to the flow of the combustion gas. Even if an attractive force is applied or the refractory material 46 moves due to thermal expansion, the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
 また、緩衝材48は柔軟性を有する素材とされている。このため、前述したように耐火材46の熱伸びを吸収できるだけでなく、その柔軟性によって目地52に容易に設置することができる。例えば、目地52や保持構造54Bが備える保持ピン56が複雑な形状とされた場合、緩衝材48を隙間に押し込めば、緩衝材48が目地52の内側で目地52や保持ピン56の形状に合わせた緩衝材48の形状へと柔軟に変形する。 緩衝 The cushioning material 48 is a flexible material. Therefore, as described above, the refractory material 46 can not only absorb the thermal elongation but also can be easily installed on the joint 52 by its flexibility. For example, when the joint 52 and the holding pin 56 of the holding structure 54B have a complicated shape, if the cushioning material 48 is pushed into the gap, the cushioning material 48 matches the shape of the joint 52 and the holding pin 56 inside the joint 52. It is flexibly deformed into the shape of the cushioning material 48.
 また、保持ピン56を断熱材44に対して設置する場合、仮に、耐火材46の交換が必要になった場合でも、容易に耐火材46を交換できる。また、耐火材46の側面にピンを固定するための加工を施す必要がなく、断熱材44に保持ピン56を押し込んで固定できる穴を設ければよいので、既に耐火材46が設置されている既存設備に対しても容易に適用できる。 場合 Further, when the holding pins 56 are installed with respect to the heat insulating material 44, even if the refractory material 46 needs to be replaced, the refractory material 46 can be easily replaced. Further, it is not necessary to perform a process for fixing the pins on the side surfaces of the refractory material 46, and it is only necessary to provide a hole that allows the holding pins 56 to be pressed into the heat insulating material 44 and fixed, so the refractory material 46 is already installed. It can be easily applied to existing equipment.
 なお、図10に示すようにサイクロン13の内部側から壁面構造40Bを平面視した場合、保持ピン56は、その長手方向が目地52の方向に沿うように配置されても良い。この場合、例えば、断熱材44に設けた穴に固定ピン62を押し込んで固定する。この固定された固定ピン62に保持ピン56を取り付けることで、断熱材44に対して保持ピン56が設置される。固定ピン62は、例えば、断熱材44に固定され耐火材46の厚さ方向(図10で示す紙面垂直方向)に延在するピン状の部材とされ、高温の燃焼ガスに対する耐酸化性があることが好ましく、例えば金属製でステンレス系の材質である。 In addition, as shown in FIG. 10, when the wall structure 40 </ b> B is viewed in plan from the inside of the cyclone 13, the holding pins 56 may be arranged so that the longitudinal direction thereof is along the joint 52. In this case, for example, the fixing pin 62 is pressed into a hole provided in the heat insulating material 44 and fixed. By attaching the holding pins 56 to the fixed fixing pins 62, the holding pins 56 are installed on the heat insulating material 44. The fixing pin 62 is, for example, a pin-shaped member that is fixed to the heat insulating material 44 and extends in the thickness direction of the refractory material 46 (the direction perpendicular to the paper surface of FIG. 10), and has oxidation resistance to high-temperature combustion gas. It is preferable to use, for example, a stainless steel material made of metal.
〔第3実施形態〕
 以下、本開示の第3実施形態について、図11から図13を用いて説明する。
 本実施形態の壁面構造40Cは、第1および第2実施形態と保持構造54の形態が異なり、その他の点については同様である。したがって、第1および第2実施形態と異なる点についてのみ説明し、その他は同一の符号を用いてその説明を省略する。
[Third embodiment]
Hereinafter, a third embodiment of the present disclosure will be described with reference to FIGS.
The wall structure 40C of the present embodiment is different from the first and second embodiments in the form of the holding structure 54, and is otherwise the same. Therefore, only the differences from the first and second embodiments will be described, and the description of the other components will be omitted using the same reference numerals.
 図11に示すように、壁面構造40Cは、保持構造54Cとして、サイクロン13の燃焼ガスが流通する側である内部側から断熱材44に向かって耐火材46の厚さ方向において目地52が拡幅する拡幅部64を備えている。 As shown in FIG. 11, in the wall structure 40C, the joint 52 widens in the thickness direction of the refractory material 46 from the inner side of the cyclone 13 where the combustion gas flows as the holding structure 54C toward the heat insulating material 44. An enlarged portion 64 is provided.
 拡幅部64は、目地52の一部を形成しており、サイクロン13の内部側の耐火材46の表面から断熱材44側へ向かって目地52の幅が一定とされている区間(縮小部65)に接続されている。拡幅部64は、その縮小部65から断熱材44側へ向かって目地52(緩衝材48)を挟んで対向する2つ耐火材46の側面の間隔、すなわち目地52の幅が末広がり形状に拡大するように形成されている。換言すれば、拡幅部64においては、断熱材44側から耐火材46の燃焼ガスが流通する側である表面側に位置する縮小部65に向かって目地52の幅が狭くなっている。縮小部65における目地52の幅は、例えば、約5mmから約20mmに設定された、ボイラ2の起動時から通常運転時までの間にかけての耐火材46の熱伸びを吸収できるように設定された隙間である。なお、拡幅部64は、例えば、耐火材46の型枠への流し込みと同時に成形されてもよい。 The widened portion 64 forms a part of the joint 52, and a section where the width of the joint 52 is constant from the surface of the refractory material 46 inside the cyclone 13 toward the heat insulating material 44 (reducing portion 65. )It is connected to the. The widened portion 64 expands from the reduced portion 65 to the heat insulating material 44 side such that the interval between the side surfaces of the two refractory materials 46 opposed to each other with the joint 52 (the buffer material 48) interposed therebetween, that is, the width of the joint 52 widens. It is formed as follows. In other words, in the widened portion 64, the width of the joint 52 is reduced from the heat insulating material 44 side to the reduced portion 65 located on the surface side where the combustion gas of the refractory material 46 flows. The width of the joint 52 in the reduced portion 65 is set, for example, from about 5 mm to about 20 mm, and is set so as to absorb the thermal expansion of the refractory material 46 from the start of the boiler 2 to the normal operation. It is a gap. The widened portion 64 may be formed, for example, simultaneously with pouring the refractory material 46 into the mold.
 緩衝材48は前述の通り柔軟性に優れているので、拡幅部64が設けられた目地52にサイクロン13の内部側から押し込むことができる。押し込まれた緩衝材48は、目地52および拡幅部64の内側で目地52および拡幅部64の形状に合わせた形状に柔軟に変形する。拡幅部64は、断熱材44側から縮小部65に向かって目地52が狭くなっているので、緩衝材48は、断熱材44側から縮小部65に向かう方向に拘束されて脱落しない。 (4) Since the cushioning member 48 has excellent flexibility as described above, it can be pushed into the joint 52 provided with the widened portion 64 from the inside of the cyclone 13. The pushed-in cushioning material 48 flexibly deforms into a shape matching the shape of the joint 52 and the widened portion 64 inside the joint 52 and the widened portion 64. Since the joint 52 of the widened portion 64 is narrowed from the heat insulating material 44 toward the reduced portion 65, the cushioning material 48 is restrained in the direction from the heat insulating material 44 toward the reduced portion 65 and does not fall off.
 本実施形態においては、以下の効果を奏する。
 流動砂などの流動材を含む燃焼ガスが流通している領域において、ボイラ2の起動時から通常運転時までの間にかけて、緩衝材48の柔軟性によって隣接する耐火材46同士の熱伸びを吸収しつつ、緩衝材48の存在によって目地52に流動材が堆積することを防止できる。このとき、緩衝材48は、保持構造54Cが備える拡幅部64によって目地52に保持された状態で設置されているので、緩衝材48に自重が作用したり、燃焼ガスの流通によるエジェクタ効果に起因する引力が作用したり、耐火材46が熱膨張で移動をしても、緩衝材48が目地52から脱落することがない。つまり、設置状態や運転状態に依らずに隙間に流動材が堆積することを防止でき、耐火材46同士の熱伸びの拘束を避けることができる。
The present embodiment has the following advantages.
In the region where the combustion gas containing the fluidized material such as the fluidized sand flows, the elasticity of the buffer material 48 absorbs the thermal expansion between the adjacent refractory materials 46 from the start of the boiler 2 to the normal operation. In addition, the fluid material can be prevented from being deposited on the joint 52 due to the presence of the buffer material 48. At this time, since the cushioning member 48 is installed in a state where it is held at the joint 52 by the widened portion 64 provided in the holding structure 54C, its own weight acts on the cushioning member 48, and the cushioning member 48 is caused by the ejector effect due to the flow of the combustion gas. Even if an attractive force is applied or the refractory material 46 moves due to thermal expansion, the buffer material 48 does not fall off from the joint 52. That is, it is possible to prevent the flow material from accumulating in the gaps regardless of the installation state or the operation state, and to avoid restraint of the thermal expansion between the refractory materials 46.
 また、別途に緩衝材48を保持するための部材を用意する必要がなく施工コストを低減できる。さらに、目地52の内部に別途の部材を設けないので、緩衝材48を押し込む際に緩衝材48に干渉するものが無く、緩衝材48の設置がより容易になる。 Also, there is no need to separately prepare a member for holding the cushioning material 48, and the construction cost can be reduced. Further, since no separate member is provided inside the joint 52, there is no interference with the buffer material 48 when the buffer material 48 is pushed in, and the installation of the buffer material 48 becomes easier.
 なお、拡幅部64は、図11に示すように、縮小部65より断熱材44側の全区間に亘って拡幅している必要は無く、図12,図13に示すように、耐火材46の燃焼ガスが流通する側に、耐火材46の断熱材44側に設けた拡幅部64より幅が狭い縮小部65を少なくとも一部の区間に設けるようにしていれば良い。 Note that the widened portion 64 does not need to be widened over the entire section on the heat insulating material 44 side from the reduced portion 65 as shown in FIG. 11, and as shown in FIGS. On the side where the combustion gas flows, a reduced portion 65 narrower than the widened portion 64 provided on the heat insulating material 44 side of the refractory material 46 may be provided in at least a part of the section.
 本開示は、前述の各実施形態に係る発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記各実施形態では、本開示を循環流動層ボイラ2に適用する例について説明したが、本開示は、流動床ボイラ(BFB:Bubbling Fluidized Bed)に適用してもよい。
 また、図2から図5,図7,図11から図13の左右方向(面方向)は、必ずしも実際の水平方向と一致するものではなく、壁面構造40の設置状態によって変化する。例えば、図2に示す壁面構造40Aがサイクロン13の側壁に採用される場合、図2で示す面方向は実際の鉛直方向となる。また、壁面構造40は平面状でなく円筒状の内面である曲面でもよい。
The present disclosure is not limited to the invention according to each of the above-described embodiments, and can be appropriately modified without departing from the gist thereof.
For example, in each of the above embodiments, an example in which the present disclosure is applied to the circulating fluidized bed boiler 2 has been described, but the present disclosure may be applied to a fluidized bed boiler (BFB: Bubbling Fluidized Bed).
The horizontal direction (plane direction) in FIGS. 2 to 5, 7 and 11 to 13 does not always coincide with the actual horizontal direction, and varies depending on the installation state of the wall structure 40. For example, when the wall structure 40A shown in FIG. 2 is adopted for the side wall of the cyclone 13, the plane direction shown in FIG. 2 is the actual vertical direction. Further, the wall surface structure 40 may be a curved surface which is not a flat surface but a cylindrical inner surface.
1 発電システム
2 循環流動層ボイラ(ボイラ)
3 蒸気タービン
4 発電機
5 火炉
11 炉底
12 空気ノズル
13 サイクロン(容器)
29 風箱
30,31 ダクト
40(40A,40B,40C) 壁面構造
42 鋼板
44 断熱材
46 耐火材
48 緩衝材
50 アンカーピン
52 目地
54(54A,54B,54C) 保持構造
56 保持ピン
58 可動孔
58a 底壁
60 装着用空間
62 固定ピン
64 拡幅部
65 縮小部
1 power generation system 2 circulating fluidized bed boiler (boiler)
3 Steam turbine 4 Generator 5 Furnace 11 Furnace bottom 12 Air nozzle 13 Cyclone (vessel)
29 Wind boxes 30, 31 Duct 40 (40A, 40B, 40C) Wall structure 42 Steel plate 44 Insulation material 46 Fireproof material 48 Buffer material 50 Anchor pin 52 Joint 54 (54A, 54B, 54C) Holding structure 56 Holding pin 58 Movable hole 58a Bottom wall 60 Mounting space 62 Fixing pin 64 Widening section 65 Reduction section

Claims (8)

  1.  鋼板と、
     該鋼板上の面に配置された断熱材と、
     該断熱材上の面に互いに間隔を空けて配置された複数の耐火材と、
     該耐火材に接して流動材を含むガスが流通する領域に面するとともに複数の前記耐火材間の隙間に配置された緩衝材と、
     前記隙間に前記緩衝材を保持する保持構造と、
    を備えている壁面構造。
    Steel sheet,
    Heat insulating material arranged on a surface on the steel plate,
    A plurality of refractory materials spaced apart from each other on a surface on the heat insulating material;
    A cushioning material facing the region where the gas containing the fluidizing material flows in contact with the refractory material and arranged in a gap between the plurality of refractory materials,
    A holding structure for holding the cushioning material in the gap,
    Wall structure with.
  2.  前記保持構造は、前記隙間に設置された棘付きのピンを備えている請求項1に記載の壁面構造。 The wall structure according to claim 1, wherein the holding structure includes a barbed pin provided in the gap.
  3.  前記ピンは、前記耐火材に対して設置されている請求項2に記載の壁面構造。 The wall structure according to claim 2, wherein the pin is provided for the refractory material.
  4.  前記ピンは、前記断熱材に対して設置されている請求項2に記載の壁面構造。 壁面 The wall structure according to claim 2, wherein the pin is provided for the heat insulating material.
  5.  前記保持構造は、前記流動材を含むガスが流通する前記領域側から前記断熱材側に向かって前記隙間が拡幅する拡幅部を備えている請求項1に記載の壁面構造。 The wall structure according to claim 1, wherein the holding structure includes a widened portion in which the gap widens from the region through which the gas containing the fluid flows, toward the heat insulating material.
  6.  前記緩衝材は、繊維状または多孔質状のセラミックスとされる請求項1から5のいずれかに記載の壁面構造。 The wall structure according to any one of claims 1 to 5, wherein the cushioning material is a fibrous or porous ceramic.
  7.  内部に前記流動材を含むガスを流動する火炉に接続されたダクトまたは容器の壁部とされる請求項1から6のいずれかに記載の壁面構造。 The wall structure according to any one of claims 1 to 6, wherein the wall is a wall of a duct or a container connected to a furnace in which the gas containing the flowing material flows.
  8.  鋼板と、
     該鋼板上の面に配置された断熱材と、
     該断熱材上の面に互いに間隔を空けて配置された複数の耐火材と、
     該耐火材に接して流動材を含むガスが流通する領域に面するとともに複数の前記耐火材間の隙間に配置された緩衝材と、
     前記隙間に前記緩衝材を保持する保持構造と、
    を備えている壁面構造の組み付け方法であって、
     前記保持構造に前記緩衝材を設置する工程を含む壁面構造の組み付け方法。
    Steel sheet,
    Heat insulating material arranged on a surface on the steel plate,
    A plurality of refractory materials spaced apart from each other on a surface on the heat insulating material;
    A cushioning material facing the region where the gas containing the fluidizing material flows in contact with the refractory material and arranged in a gap between the plurality of refractory materials,
    A holding structure for holding the cushioning material in the gap,
    A method of assembling a wall structure having
    A method of assembling a wall structure including a step of installing the cushioning material on the holding structure.
PCT/JP2019/027055 2018-07-13 2019-07-08 Wall surface structure and method for assembling same WO2020013145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12020551769A PH12020551769A1 (en) 2018-07-13 2020-10-23 Wall structure and assembly method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133158 2018-07-13
JP2018133158A JP6441530B1 (en) 2018-07-13 2018-07-13 Wall surface structure and its assembling method

Publications (1)

Publication Number Publication Date
WO2020013145A1 true WO2020013145A1 (en) 2020-01-16

Family

ID=64668705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027055 WO2020013145A1 (en) 2018-07-13 2019-07-08 Wall surface structure and method for assembling same

Country Status (3)

Country Link
JP (1) JP6441530B1 (en)
PH (1) PH12020551769A1 (en)
WO (1) WO2020013145A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113356990B (en) * 2021-07-29 2022-07-29 中国电建集团河南工程有限公司 Internal heat insulation structure of gas turbine exhaust diffusion section and construction method
KR102403668B1 (en) * 2021-12-28 2022-05-30 강신명 Structure for fire resistance in order to make the dam use for heat exchanger of circulating fluidized bed sombustion boiler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128931U (en) * 1977-03-19 1978-10-13
JPS5913856U (en) * 1982-07-19 1984-01-27 財団法人電力中央研究所 Heat shielding structure for walls exposed to high heat
JPH01134197A (en) * 1987-11-19 1989-05-26 Shinagawa Refract Co Ltd Furnace wall structure by ceramic fiber and execution method thereof
JPH0525145U (en) * 1991-08-16 1993-04-02 三菱重工業株式会社 Fireproof block dropout prevention mechanism
JPH0534430U (en) * 1991-10-15 1993-05-07 株式会社プランテツク Side wall structure of garbage incinerator
JP2000186811A (en) * 1998-12-21 2000-07-04 Hec Corp Wall structure for incinerator
JP2002206705A (en) * 2001-01-11 2002-07-26 Sumitomo Heavy Ind Ltd Fluidized bed furnace and cyclone
JP2004089808A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Cleaning system
JP2004092965A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Structure for preventing excess deformation of refractory material structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128931U (en) * 1977-03-19 1978-10-13
JPS5913856U (en) * 1982-07-19 1984-01-27 財団法人電力中央研究所 Heat shielding structure for walls exposed to high heat
JPH01134197A (en) * 1987-11-19 1989-05-26 Shinagawa Refract Co Ltd Furnace wall structure by ceramic fiber and execution method thereof
JPH0525145U (en) * 1991-08-16 1993-04-02 三菱重工業株式会社 Fireproof block dropout prevention mechanism
JPH0534430U (en) * 1991-10-15 1993-05-07 株式会社プランテツク Side wall structure of garbage incinerator
JP2000186811A (en) * 1998-12-21 2000-07-04 Hec Corp Wall structure for incinerator
JP2002206705A (en) * 2001-01-11 2002-07-26 Sumitomo Heavy Ind Ltd Fluidized bed furnace and cyclone
JP2004089808A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Cleaning system
JP2004092965A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Structure for preventing excess deformation of refractory material structure

Also Published As

Publication number Publication date
PH12020551769A1 (en) 2021-07-12
JP2020012565A (en) 2020-01-23
JP6441530B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US20140352634A1 (en) Method and Apparatus for Improved Firing of Biomass and Other Solid Fuels for Steam Production and Gasification
WO2020013145A1 (en) Wall surface structure and method for assembling same
JP6199174B2 (en) Boiler equipment
JP5410590B2 (en) Boiler furnace for power plant
CA2021344A1 (en) Combustion chamber and process for combusting at least partially combustible substances
CN114729744A (en) Biomass heating system with secondary air flow and components thereof
JP5473228B2 (en) Refractory support structure
JP2011220541A (en) Boiler facility
JP4295286B2 (en) Boiler structure with swirl melting furnace
JP6388555B2 (en) Biomass gasification system and boiler equipment using the same
JP2009198096A (en) Circulating fluidized bed combustion furnace
JP3897664B2 (en) Structure to prevent excessive deformation of refractory material structures
JP2009204264A (en) Refractory structure for boiler lower hopper and boiler comprising the same
JP6284345B2 (en) boiler
JPH08254301A (en) Furnace wall structure for fluidized bed boiler
JP6087796B2 (en) boiler
JP5881584B2 (en) boiler
JP6109718B2 (en) boiler
JP6087793B2 (en) boiler
WO2020226104A1 (en) Furnace and boiler equipped with same
JP6653186B2 (en) Refractory structures
WO2019107564A1 (en) Combustion apparatus and combustion method
JP5733906B2 (en) Boiler equipment
JPH0972503A (en) Method and apparatus for burning pulverized coal
JP5886144B2 (en) Waste treatment equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833723

Country of ref document: EP

Kind code of ref document: A1