WO2020013109A1 - フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法 - Google Patents

フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法 Download PDF

Info

Publication number
WO2020013109A1
WO2020013109A1 PCT/JP2019/026939 JP2019026939W WO2020013109A1 WO 2020013109 A1 WO2020013109 A1 WO 2020013109A1 JP 2019026939 W JP2019026939 W JP 2019026939W WO 2020013109 A1 WO2020013109 A1 WO 2020013109A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
flange
peripheral surface
inner peripheral
flow guide
Prior art date
Application number
PCT/JP2019/026939
Other languages
English (en)
French (fr)
Inventor
武城 中山
康之 巽
壮男 ▲徳▼本
啓 鷺森
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201980039976.0A priority Critical patent/CN112352090B/zh
Priority to US16/973,511 priority patent/US11459912B2/en
Priority to KR1020207035921A priority patent/KR102485641B1/ko
Priority to DE112019003577.0T priority patent/DE112019003577T5/de
Priority to JP2020530162A priority patent/JP7048742B2/ja
Publication of WO2020013109A1 publication Critical patent/WO2020013109A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection

Definitions

  • the present invention relates to a flow guide, a steam turbine, an inner member, and a method for manufacturing a flow guide.
  • Patent Literature 1 discloses a technique in which a drain discharge hole is formed downstream of the leading edge of a rotor blade in the final stage on the axis in order to sufficiently discharge steam drain and reliably prevent erosion.
  • the rotor blade in the last stage of Patent Document 1 has a weld overlay or a seal plate attached to the back front edge portion or the tip portion to prevent erosion.
  • the object of the present invention is to provide a flow guide, a steam turbine, an inner member, and a method of manufacturing a flow guide that can increase the repair interval while suppressing the manufacturing cost and the repair cost.
  • a flow guide includes a flange, a guide plate, and an inner member.
  • the flange is disposed radially outward with respect to the axis with respect to the last stage rotor blade row of the steam turbine rotor rotating about the axis.
  • the guide plate forms an annular shape based on the axis, and gradually spreads outward in the radial direction toward the downstream side of the axis, which is the first side in the axial direction in which the axis extends.
  • the guide plate is arranged on the downstream side of the axis, which is the first side in the axial direction in which the axis extends, with respect to the flange.
  • the inner member is attached so as to cover the inner peripheral surface of the flange.
  • the flange is formed with a ring groove that is recessed radially outward from the inner peripheral surface of the flange and extends in the circumferential direction with respect to the axis.
  • the inner member includes a fitting portion, a cover portion, and a fin.
  • the fitting portion enters into the ring groove.
  • the cover portion faces the inner peripheral surface of the flange in the radial direction.
  • the fin extends radially inward from the cover portion with respect to the axis.
  • the cover portion covers at least a portion of the inner peripheral surface of the flange and the inner peripheral surface of the guide plate that faces the blade tip of the last-stage bucket row in the radial direction.
  • the cover portion is formed of a material having higher erosion resistance to steam and the drain of the steam than the flange.
  • the cover portion of the inner member is disposed so as to radially oppose the inner peripheral surface of the flange, and at least the radially innermost surface of the inner peripheral surface of the flange and the inner peripheral surface of the guide plate is disposed. It covers a portion of the step blade row facing the blade tip.
  • the cover portion is further formed of a material having higher erosion resistance than the flange. Therefore, it is possible to reduce the leakage flow flowing between the flange and the tip of the rotor blade by the fins of the inner member, and to prevent the steam drain from contacting the flange by the cover portion of the inner member. Therefore, compared with the case where the flange itself is formed of a material having high erosion resistance, the erosion of the flange can be suppressed and the repair interval can be lengthened while suppressing the manufacturing cost and the repair cost of the flow guide.
  • the cover portion according to the first aspect opposes in the radial direction an inner peripheral surface upstream portion which is a portion of the inner peripheral surface of the guide plate on the axis upstream side, You may make it cover the upstream side part of an inner peripheral surface.
  • the cover portion can be installed so as to extend between the inner peripheral surface of the flange and the inner peripheral surface of the guide plate. Therefore, the connection portion between the flange and the guide plate and the inner peripheral surface of the guide plate on the upstream side The erosion with each part can be suppressed.
  • the flow guide according to the second aspect may have a welded portion that joins the flange and the guide plate.
  • the welded portion can be covered from the radial inside by the cover portion. Therefore, erosion of the welded portion can be suppressed.
  • the guide plate of the second or third aspect may have an enlarged diameter portion.
  • the enlarged diameter portion is formed on the downstream side of the axis from the upstream portion of the inner peripheral surface, and the inner diameter gradually increases toward the downstream side of the axis.
  • An inner diameter of the downstream portion of the inner peripheral surface of the guide plate may be constant at any position in the axial direction.
  • the cover portion may have an inclined surface gradually radially outward toward the downstream side of the axis. The inclined surface may extend to a downstream end surface that is an end surface of the cover portion on the downstream side of the axis.
  • the inclined surface may include an extension of a tangent line in an imaginary plane including the axis at a position upstream of the axis in the inner peripheral surface of the enlarged diameter portion.
  • the inclined surface includes an extension of a tangent line in an imaginary plane including the axis at the most upstream position of the enlarged-diameter portion, so that separation occurs on the downstream side of the axis of the rotor blade in the final stage. And the pressure can be smoothly recovered from the main flow from the edge of the inclined surface on the upstream side of the axis toward the downstream side of the axis.
  • the flow guide according to the fourth aspect may include an elastic body disposed in the ring groove and pushing the inner member radially inward.
  • the fitting portion may have a radial positioning surface facing inward in the radial direction.
  • the ring groove may have a stopper surface facing the radial outside and in contact with the radial positioning surface.
  • the inclined surface may include an extension of the tangent.
  • the fitting portion of the inner member has a radial positioning surface facing inward in the radial direction, and the ring groove has a stopper surface facing the radial positioning surface in contact with the radial positioning surface, thereby displacing the inner member radially outward. It is possible to position the inner member while making it possible. Further, when the radial positioning surface and the stopper surface are in contact with each other, the inclined surface includes an extension of a tangent line on the upstream side of the axis of the guide plate. The pressure can be smoothly restored from the edge of the mainstream toward the downstream side of the axis.
  • the inner member according to any one of the first to fifth aspects is arranged such that the inner member extends radially inward from an inner peripheral surface of the cover facing the blade tip.
  • An extended fin may be provided.
  • a steam turbine includes the flow guide according to any one of the first to sixth aspects, the steam turbine rotor, and a vehicle compartment.
  • the vehicle compartment has a cylindrical shape around the axis, and the steam turbine rotor is disposed radially inward.
  • the vehicle compartment is provided with the flow guide.
  • a method for manufacturing a flow guide includes a preparing step and an assembling step.
  • the preparation step the flange, the guide plate, and the inner member are prepared.
  • the fitting portion of the inner member is inserted into the ring groove of the flange.
  • the fin according to the sixth aspect is configured such that the axially upstream end surface of the cover portion and the axially downstream end surface of the cover portion are axially upstream from the axial center position. May be arranged.
  • the fin according to the sixth or ninth aspect may extend radially inward from the cover portion and may be formed integrally with the cover portion. .
  • the fitting portion according to any one of the first to fifth, ninth, and tenth aspects includes a first fitting portion and a second fitting portion. You may have.
  • the second fitting portion is located radially outside the first fitting portion and has a larger width dimension than the first fitting portion.
  • a gap formed on the downstream side of the axis may be narrower than a gap formed on the upstream side of the axis.
  • the inner member is a flange of a flange disposed radially outward with respect to the axis with respect to the last stage rotor blade row of the steam turbine rotor rotating about the axis. It is attached to cover the inner peripheral surface.
  • the inner member includes a fitting portion, a cover portion, and fins.
  • the fitting portion enters into the ring groove of the flange.
  • the cover portion faces the inner peripheral surface of the flange in the radial direction.
  • the fin extends inward in the radial direction from the inner peripheral surface of the cover portion facing the blade tip of the last-stage bucket row in the inner peripheral surface of the cover portion.
  • the cover portion has an inner peripheral surface of the flange and an inner peripheral surface of a guide plate arranged on the downstream side of the flange with respect to the flange, and at least the moving blade tips of the final stage blade row in the radial direction. It is formed so as to cover the opposing portion.
  • the fin is disposed upstream of a central position in the axial direction between an end face of the cover portion on the upstream side of the axis and an end face of the cover portion on the downstream side of the axis.
  • the cover according to the twelfth aspect may have an inclined surface gradually radially outward toward the downstream side of the axis.
  • the fin according to the twelfth or thirteenth aspect may extend radially inward from the cover part and may be formed integrally with the cover part.
  • the inner member according to any one of the twelfth to fourteenth aspects includes an inner peripheral surface of the cover portion and an end surface on the axis upstream side. , May have a curved surface that is convex toward the outside.
  • the cover portion according to any one of the twelfth to fifteenth aspects is a material having higher erosion resistance to steam and drainage of the steam than the flange. May be formed.
  • the repair interval can be extended while the manufacturing cost and the repair cost are suppressed.
  • FIG. 1 is a sectional view showing a schematic configuration of the steam turbine according to the first embodiment of the present invention.
  • the steam turbine ST of the first embodiment is a steam turbine of a two-way exhaust type.
  • This steam turbine ST includes a first steam turbine unit 10a and a second steam turbine unit 10b.
  • the first steam turbine section 10a and the second steam turbine section 10b are both fixed to the turbine rotor (steam turbine rotor) 11 that rotates about the axis Ar, the casing 20 that covers the turbine rotor 11, and the casing 20.
  • a plurality of stationary blade rows 17 and a steam inflow pipe 19 are provided.
  • a circumferential direction around the axis Ar is simply referred to as a circumferential direction Dc, and a direction perpendicular to the axis Ar is referred to as a radial direction Dr.
  • the side of the axis Ar in the radial direction Dr is defined as a radially inner Dri, and the opposite side is defined as a radially outer Dro.
  • the first steam turbine section 10a and the second steam turbine section 10b share a steam inlet pipe 19. Except for the steam inflow pipe 19, the first steam turbine section 10a is disposed on one side in the axial direction Da with respect to the steam inflow pipe 19. Except for the steam inflow pipe 19, the second steam turbine section 10b is disposed on the other side in the axial direction Da with respect to the steam inflow pipe 19.
  • the configuration of the first steam turbine unit 10a and the configuration of the second steam turbine unit 10b are basically the same. Therefore, in the following description, the first steam turbine unit 10a will be mainly described, and the description of the second steam turbine unit 10b will be omitted.
  • the side of the steam inflow pipe 19 in the axial direction Da is defined as the axis upstream Dau
  • the opposite side is defined as the axis downstream Dad.
  • the turbine rotor 11 has a rotor shaft 12 extending in the axial direction Da about the axis Ar, and a plurality of rotor blade rows 13 attached to the rotor shaft 12.
  • the turbine rotor 11 is supported by a bearing 18 so as to be rotatable about an axis Ar.
  • the plurality of bucket rows 13 are arranged in the axial direction Da.
  • Each of the plurality of moving blade rows 13 includes a plurality of moving blades arranged in the circumferential direction Dc.
  • the turbine rotor 11 of the first steam turbine unit 10a and the turbine rotor 11 of the second steam turbine unit 10b are located on the same axis Ar, are connected to each other, and rotate integrally about the axis Ar.
  • the casing 20 has an inner casing 21 and an exhaust casing 25.
  • the inner casing 21 forms an annular first space 21s around the axis Ar between the rotor casing 12 and the rotor shaft 12.
  • the steam (fluid) flowing from the steam inflow pipe 19 flows through the first space 21s in the axial direction Da (more specifically, toward the axial downstream side Dad).
  • the plurality of bucket rows 13 of the turbine rotor 11 are arranged in the first space 21s.
  • the plurality of stationary blade rows 17 are arranged in the first space 21 s side by side in the axial direction Da. Each of the plurality of stationary blade rows 17 is arranged on the axial upstream side Dau of any one of the plurality of rotor blade rows 13.
  • the plurality of stationary blade rows 17 are fixed to the inner casing 21.
  • the exhaust casing 25 has a diffuser 26 and an outer casing 30.
  • the outer casing 30 surrounds the turbine rotor 11 and the inner casing 21, and forms a second space 30 s from which the steam flowing through the first space 21 s is discharged between the outer casing 30 and the inner casing 21.
  • the second space 30s communicates with the diffuser 26 and extends in the circumferential direction Dc on the outer peripheral side of the diffuser 26.
  • the outer casing 30 guides the steam flowing from the diffuser space 26 s into the second space 30 s to the exhaust port 31.
  • the outer casing 30 has an exhaust port 31 on a first side (lower side in FIG. 1) in a direction orthogonal to the axis Ar.
  • the outer casing 30 illustrated in this embodiment is open vertically downward.
  • the steam turbine ST of this embodiment is a so-called downward exhaust type steam turbine, and a condenser (not shown) for returning steam to water is connected to the exhaust port 31.
  • the outer casing 30 in this embodiment includes a downstream end plate 32, an upstream end plate 34, and a side peripheral plate 36, respectively.
  • the downstream end plate 32 extends from the edge of the radially outer Dro of the bearing cone 29 to the radially outer Dro, and defines the edge of the axially downstream side Dad of the second space 30s.
  • the upstream end plate 34 is arranged on the axis upstream Dau with respect to the diffuser 26.
  • the upstream end plate 34 extends from the outer peripheral surface 21o of the inner casing 21 to the radially outer side Dro, and defines an edge of the axial upstream Dau of the second space 30s.
  • the side peripheral plate 36 is connected to the downstream side end plate 32 and the upstream side end plate 34, spreads in the axial direction Da and spreads in the circumferential direction Dc around the axis Ar, and forms an edge of the radially outer Dro of the second space 30s. Is defined.
  • the diffuser 26 is disposed on the downstream side of the inner casing 21 on the axis line Dad, and connects the first space 21s and the second space 30s.
  • the diffuser 26 forms an annular diffuser space 26s that gradually radially outwards toward the axis downstream Dad.
  • the steam that has flowed out from the last-stage bucket row 13a of the turbine rotor 11 toward the axis downstream Dad flows into the diffuser space 26s.
  • the last-stage bucket row 13a is a bucket row 13 arranged at the most downstream side of the axis line Dad among a plurality of bucket rows 13 provided in the first steam turbine unit 10a.
  • the diffuser 26 includes a flow guide (or a steam guide, also referred to as an outer diffuser) 27 that defines an edge of a radially outer Dro of the diffuser space 26 s, and a bearing cone (or, an edge of a radially inner Dri of the diffuser space 26s). , 29).
  • a flow guide or a steam guide, also referred to as an outer diffuser
  • a bearing cone or, an edge of a radially inner Dri of the diffuser space 26s.
  • the bearing cone 29 is formed in a cylindrical shape extending to the downstream side of the axis Dad so as to be continuous with the outer peripheral surface 12a of the rotor shaft 12 forming the first space 21s.
  • the bearing cone 29 has a ring-shaped cross section perpendicular to the axis Ar, and gradually increases in diameter toward the outer side Dro toward the axis downstream Dad.
  • the edge 29 a of the bearing cone 29 is connected to the downstream end plate 32 of the outer casing 30.
  • the flow guide 27 has a cylindrical shape extending from the edge of the inner casing 21 on the downstream side of the axis Dad toward the downstream side of the axis Dad.
  • the flow guide 27 has a ring-shaped cross section perpendicular to the axis Ar, and gradually increases in diameter toward the axis downstream Dad.
  • the flow guide 27 in this embodiment is connected to the inner casing 21.
  • FIG. 2 is an enlarged sectional view of the flow guide according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged sectional view of the seal ring according to the first embodiment of the present invention.
  • the flow guide 27 includes a flange 41, a guide plate 42, and an inner member 43.
  • the flange 41 is disposed radially outward Dro with respect to the final stage rotor blade row 13a of the turbine rotor 11 that rotates about the axis Ar.
  • the plurality of flanges 41 are arranged in a circumferential direction around the axis Ar to form an annular shape.
  • the dimension of the flange 41 in the radial direction Dr is longer than the axial direction Da.
  • the flange 41 includes a plurality of through holes 41h penetrating in the axial direction Da at intervals in the circumferential direction Dc.
  • the flange 41 is fixed to the end of the inner casing 21 on the axial downstream side Dad by inserting a fastener B (see FIG. 1) such as a bolt into these through holes 41 h.
  • Flange 41 is formed of a metal material such as carbon steel.
  • a ring groove 44 is formed in the flange 41.
  • the ring groove 44 is recessed radially outward from the inner peripheral surface 45 of the flange 41 and extends in the circumferential direction Dc.
  • the ring groove 44 is formed on the radially inner side Dri and opens toward the radially inner side Dri, a second groove 48 formed on the radially outer side Dro of the first groove 47, and a stopper surface. 46.
  • the width of the second groove 48 in the axial direction Da is larger than that of the first groove 47.
  • the stopper surface 46 is a surface formed inside the ring groove 44 and facing the radially inner side Dri.
  • the stopper surface 46 restricts the displacement of the inner member 43 toward the radially inner Dri by contacting a radial positioning surface of the inner member 43 described later.
  • the stopper surfaces 46 are formed on the axis upstream Dau and the axis downstream Dad, respectively. These stopper surfaces 46 are formed between the first groove 47 and the second groove 48.
  • the stopper surface 46 illustrated in this embodiment is inclined so as to be arranged radially outward Dro as the distance from the first groove portion 47 to the second groove portion 48 increases, but the stopper surface 46 is not limited to this configuration. .
  • the guide plate 42 is disposed on the axis downstream side Dad with respect to the flange 41.
  • the guide plate 42 has an annular shape based on the axis Ar.
  • the guide plate 42 includes an inner peripheral surface upstream side portion 51, an enlarged diameter portion 52, and a rib 53.
  • the guide plate 42 can be formed of, for example, stainless steel (SUS) steel.
  • the inner peripheral surface upstream portion 51 is a portion of the inner peripheral surface 42a of the guide plate 42 that is disposed on the axial upstream Dau.
  • the inner peripheral surface upstream side portion 51 is fixed to the flange 41 via a welded portion 54 (see FIG. 3).
  • the welded portion 54 may be formed by a combination of groove welding and fillet welding.
  • the inner peripheral surface upstream side portion 51 has a constant inner diameter at any position in the axial direction Da. That is, the inner peripheral surface 51a of the inner peripheral surface upstream side portion 51 is formed in a cylindrical shape parallel to the axis Ar. In this embodiment, the length of the inner peripheral surface upstream side portion 51 in the axial direction Da is smaller than the thickness of the flange 41 in the axial direction Da.
  • the inner peripheral surface 51a of the guide plate 42 and the inner peripheral surface 45 of the flange 41 are arranged at the same position in the radial direction Dr. In other words, the inner peripheral surface 51a of the guide plate 42 and the inner peripheral surface 45 of the flange 41 are arranged flush with each other and are arranged so as to be continuous along the axis Ar.
  • the enlarged diameter portion 52 is formed on the downstream side of the inner peripheral surface upstream side portion 51 on the axis line Dad.
  • the inner diameter of the enlarged diameter portion 52 centered on the axis Ar gradually increases toward the downstream side of the axis Dad.
  • the cross-sectional shape of the guide plate 42 by a virtual plane including the axis Ar is formed in a curved shape that protrudes toward the axis Ar.
  • the rib 53 extends radially outward Dro from the outer peripheral surface of the inner peripheral surface upstream portion 51 and the enlarged diameter portion 52.
  • a plurality of ribs 53 are provided at intervals in the circumferential direction Dc.
  • the rib 53 is provided, for example, to improve the rigidity and strength of the inner peripheral surface upstream side portion 51 and the enlarged diameter portion 52.
  • the inner member 43 is attached so as to cover the inner peripheral surface 45 of the flange 41.
  • the inner member 43 exemplified in this embodiment has a function of suppressing steam leakage between the flange 41 and the last-stage bucket row 13a in the radial direction Dr.
  • the inner member 43 includes a fitting portion 61, a cover portion 62, fins 63, and an elastic body 64.
  • the fitting portion 61 enters the ring groove 44 of the flange 41.
  • the fitting portion 61 is formed so as to protrude from the cover portion 62 to the outside Dro in the radial direction.
  • the fitting portion 61 includes a first fitting portion 66, a second fitting portion 65, and a radial positioning surface 67.
  • the first fitting portion 66 is arranged at the same position as the first groove portion 47 in the radial direction Dr.
  • the length of the first fitting portion 66 in the radial direction Dr is slightly larger than the length of the first groove portion 47 in the radial direction Dr.
  • the width of the first fitting portion 66 in the axial direction Da is slightly smaller than the width of the first groove 47 in the axial direction Da.
  • the second fitting part 65 is located on the outer side Dro in the radial direction of the first fitting part 66.
  • the second fitting portion 65 is arranged at the same position as the second groove portion 48 in the radial direction Dr.
  • the length of the second fitting portion 65 in the radial direction Dr is slightly smaller than the length of the second groove portion 48 in the radial direction Dr.
  • the width of the second fitting portion 65 in the axial direction Da is slightly smaller than the width of the second groove 48 in the axial direction Da.
  • the width dimension of the second fitting section 65 is larger than the width dimension of the first fitting section 66.
  • the second fitting portion 65 has a receiving recess 68 for receiving and positioning the elastic body 64 on a surface facing the radially outer side Dro.
  • the radial positioning surface 67 is formed between the first fitting portion 66 and the second fitting portion 65 and faces radially inward.
  • the radial positioning surface 67 is an inclined surface facing the stopper surface 46 of the ring groove 44 described above.
  • the cover portion 62 faces the inner peripheral surface 45 of the flange 41 in the radial direction Dr.
  • the cover portion 62 is a portion of the inner peripheral surface 45 of the flange 41 and the inner peripheral surface 42a of the guide plate 42 that faces at least the tip portion (blade tip) 13at of the final stage bucket row 13a in the radial direction Dr. cover.
  • the cover portion 62 in this embodiment is opposed to a part of the axially upstream side Dau of the inner peripheral surface 51a of the inner peripheral surface upstream portion 51 of the guide plate 42 in the radial direction Dr. That is, the cover portion 62 covers a part of the axially upstream side Dau of the inner peripheral surface upstream side portion 51 from the radially inner side Dri.
  • the above-described welded portion 54 is also covered by the cover portion 62 from the radially inner side Dri.
  • the cover part 62 has an inclined surface 69 at the end of the axially downstream side Dad, of the inner peripheral surface facing the radially inner side Dri.
  • the inclined surface 69 is inclined so as to gradually move toward the outer side Dro in the radial direction toward the downstream side of the axis Dad.
  • the inclined surface 69 reaches a downstream end surface 70 that is an end surface of the cover portion 62 on the axis downstream side Dad.
  • the inclined surface 69 is located at the position of the Dau most upstream of the inner peripheral surface 52a of the enlarged diameter portion 52 in a virtual plane including the axis Ar shown in FIG. 3 (in other words, a cross section by the virtual plane including the axis Ar).
  • An extension line TLE of the tangent line TL is included. More specifically, when the radial positioning surface 37 of the inner member 43 is in contact with the stopper surface 46, the inclined surface 69 includes an extension line TLE of the tangent line TL.
  • the cover portion 62 is formed of a material having higher erosion resistance to steam and steam drain than the flange 41.
  • the entire inner member 43 is formed of the same material as the cover 62.
  • 12 chromium (Cr) steel can be used as a material having higher erosion resistance to steam and steam drain than the flange 41.
  • the fins 63 extend from the cover 62 toward the inside Dri in the radial direction.
  • the fins 63 are formed integrally with the cover 62 by, for example, cutting.
  • the tips of the fins 63 are slightly reduced so that the fins 63 do not come into contact with the final stage blade cascade 13a while suppressing the clearance flow between the tip end 13at of the radially outer Dro of the final stage rotor cascade 13a. It is arranged with a great gap.
  • the inner member 43 having the fins 63 may be referred to as a “seal ring”.
  • the fins 63 may be provided as needed.
  • the fins 63 may be omitted if the inner member 43 does not have a function of suppressing steam leakage between the flange 41 and the last-stage bucket row 13a in the radial direction Dr.
  • the elastic bodies 64 are provided at two places with an interval in the axial direction Da. These elastic bodies 64 constantly press the fitting portion 61 toward the radially inner side Dri.
  • the elastic body 64 shown in FIG. 3 exemplifies a coil spring, but any other elastic body such as a leaf spring may be used as long as the fitting portion 61 can be pressed radially inwardly Dri. .
  • FIG. 4 is a flowchart of the flow guide manufacturing method according to the first embodiment of the present invention.
  • a preparation step step S01
  • an assembling step step S02
  • the flange 41, the guide plate 42, and the inner member 43 are prepared.
  • the flange 41 is formed of carbon steel
  • the guide plate 42 is formed of 12 chrome steel
  • the inner member 43 is formed of stainless steel.
  • the flange 41 and the guide plate 42 are fixed by the welding portion 54. At this time, the flange 41, the guide plate 42, and the inner member 43 are not formed in an annular shape around the axis Ar.
  • the fitting portion 61 of the inner member 43 is inserted into the ring groove 44 of the flange 41. Specifically, the fitting portion 61 of the inner member 43 is inserted into the ring groove 44 of the flange 41 together with the elastic body 64 in the circumferential direction Dc. Thereafter, the assembly in which the fitting portion 61 is inserted into the ring groove 44 is fixed to the inner casing 21 with fasteners B such as bolts so as to be arranged in the circumferential direction Dc to form an annular shape.
  • the cover portion 62 of the inner member 43 is disposed so as to face the inner peripheral surface 45 of the flange 41 in the radial direction Dr, and the edge of the axially upstream side Dau on the inner peripheral surface 45 of the flange 41. It covers at least the area from 45a to the edge 45b of the axis downstream Dad.
  • the cover 62 is formed of a material having higher erosion resistance than the flange 41. Therefore, the steam drain contacts the flange 41 by the cover portion 62 of the inner member 43 while reducing the leakage flow flowing between the flange 41 and the tip end 13at of the final stage bucket row 13a by the fins 63 of the inner member 43. Can be suppressed.
  • the erosion of the flange 41 is suppressed and the repair interval is lengthened while the manufacturing cost and the repair cost of the flow guide 27 are suppressed. Can be.
  • the cover portion 62 can be installed so as to extend over the inner peripheral surface 45 of the flange 41 and the inner peripheral surface 42a of the guide plate 42. Therefore, the erosion between the connection portion between the flange 41 and the guide plate 42 and the upstream portion 51 on the inner peripheral surface of the guide plate 42 can be suppressed.
  • the welded portion 54 can be covered by the cover portion 62 from the radial inside. Therefore, erosion of the welded portion 54 can be suppressed.
  • the inclined surface 69 includes an extension line TLE of the tangent line TL in the imaginary plane including the axis Ar at the position of the maximum diameter upstream side Dau of the enlarged diameter portion 52. Therefore, the separation is suppressed from occurring on the axis downstream side Dad of the final stage bucket row 13a, and the main flow of steam smoothly recovers from the edge 69a of the axis upstream side Dau of the inclined surface 69 toward the axis downstream side Dad. Can be done.
  • the elastic member 64 that pushes the inner member 43 toward the radially inner side Dri is provided. Therefore, when the tip 13at of the final stage bucket row 13a contacts the fins 63 and the force of the final stage bucket row 13a pushing the fins 63 becomes larger than the force of the elastic body 64 pushing the inner member 43. In addition, the inner member 43 can be displaced radially outward Dro.
  • the fitting portion 61 of the inner member 43 has a radial positioning surface 67 facing the radially inner Dri, and the ring groove 44 has a stopper surface 46 facing the radially outer Dro and in contact with the radial positioning surface 67.
  • the inner member 43 can be positioned while the inner member 43 can be displaced radially outward Dro.
  • the inclined surface 69 includes an extension line TLE of the tangent line TL of the guide plate 42 on the upstream side Dau of the axis, so that the steam turbine ST is in normal operation.
  • the main stream of steam can be smoothly recovered in pressure from the edge 69a of the inclined surface 69 on the upstream side Dau toward the downstream side Dad.
  • the interval for repairing the flow guide 27 can be lengthened, so that the burden on the operator who repairs the steam turbine ST can be reduced.
  • the fitting 61 of the inner member 43 only needs to be inserted into the ring groove 44 of the flange 41, so that the flow guide 27 can be easily manufactured.
  • the inner member 43 is prepared by simply preparing the inner member 43 and inserting the fitting portion 61 into the ring groove 44 of the flange 41. Can be attached.
  • FIG. 5 is a sectional view corresponding to FIG. 3 in a second embodiment of the present invention.
  • the flow guide 27B of the second embodiment includes a flange 41, a guide plate 42, and an inner member 43B.
  • a ring groove 44 is formed in the flange 41.
  • the ring groove 44 includes a first groove 47, a second groove 48, and a stopper surface 46B.
  • the stopper surface 46B is a surface formed inside the ring groove 44 and facing inward in the radial direction Dri.
  • the stopper surface 46B regulates the displacement of the inner member 43B toward the radially inner Dri by contacting the radial positioning surface 67B of the inner member 43B.
  • the stopper surfaces 46B are formed on the axis upstream Dau and the axis downstream Dad, respectively. These stopper surfaces 46B are formed between the first groove 47 and the second groove 48.
  • the stopper surface 46B exemplified in the second embodiment extends in the axial direction Da.
  • the inner member 43B is attached so as to cover the inner peripheral surface 45 of the flange 41.
  • the inner member 43B has a function of suppressing steam leakage between the flange 41 and the last-stage bucket row 13a in the radial direction Dr, similarly to the inner member 43 of the first embodiment.
  • the inner member 43B includes a fitting portion 61, a cover portion 62B, a fin 63B, and an elastic body 64.
  • the fitting portion 61 has the same configuration as that of the first embodiment, and enters the ring groove 44 of the flange 41.
  • the fitting portion 61 is formed so as to protrude radially outward from the cover portion 62B.
  • the fitting portion 61 includes a first fitting portion 66, a second fitting portion 65, and a radial positioning surface 67B.
  • the size of the gap G2 formed on the axis downstream Dad is larger than the size of the gap G1 formed on the axis upstream Dau. Is also getting smaller.
  • the size of the gap G2 formed on the downstream side of the axis Dad is zero is illustrated.
  • the cover 62B faces the inner peripheral surface 45 of the flange 41 in the radial direction Dr.
  • the cover portion 62B is a portion of the inner peripheral surface 45 of the flange 41 and the inner peripheral surface 42a of the guide plate 42 which faces at least the tip portion (the tip of the moving blade) 13at of the final stage bucket row 13a in the radial direction Dr. cover.
  • the cover portion 62B in the second embodiment is opposed to a portion of the inner peripheral surface 51a of the guide plate 42 in the axial upstream Dau of the inner peripheral surface upstream portion 51 in the radial direction Dr. That is, the cover portion 62B covers a part of the axially upstream side Dau of the inner peripheral surface upstream side portion 51 from the radially inner side Dri.
  • the above-described welded portion 54 is also covered from the radially inner side Dri by the cover portion 62B.
  • the cover portion 62B has an inclined surface 69 at the end of the axially downstream side Dad of the inner peripheral surface 62a facing the radially inner side Dri.
  • the inclined surface 69 is inclined so as to gradually move toward the outer side Dro in the radial direction toward the downstream side of the axis Dad.
  • This inclined surface 69 reaches a downstream end surface 70 which is an end surface of the cover portion 62B on the axis downstream side Dad.
  • An extension line TLE of the tangent line TL is included.
  • the cover portion 62B has a curved surface 72 between the inner peripheral surface 62a and an end surface 71 on the axial upstream side Dau of the cover portion 62B in the axial direction Da. More specifically, a curved surface 72 protruding outward is provided between an end surface 71 and a portion of the inner peripheral surface 62a extending in the axial direction Da on the axis upstream side Dau of the inclined surface 69. have.
  • the curved surface 72 may have a constant radius of curvature, or may be formed by combining a plurality of curved surfaces having different radii of curvature.
  • the cover portion 62B is formed of a material having higher erosion resistance to steam and steam drain than the flange 41.
  • the flange 41 is made of a metal material such as carbon steel, for example, 12 chrome (Cr) steel is used as a material having higher erosion resistance to steam and steam drain than the flange 41. it can.
  • the fin 63B extends from the cover portion 62B toward the radially inner side Dri.
  • the fin 63B is formed integrally with the cover 62B by cutting or the like.
  • the fin 63B and the cover portion 62B are formed of the same metal material and are continuous without a joining surface.
  • the tip of the fin 63B is slightly reduced so as not to contact the fin 63B and the final stage rotor blade row 13a while suppressing the clearance flow between the tip end 13at of the radial outer Dro of the final stage rotor row 13a. It is arranged with a great gap.
  • the fin 63B is disposed on the axis upstream Dau with respect to the center position C between the end face 71 on the axis upstream Dau of the cover 62B and the end face 70 on the axis downstream Dad of the cover 62B in the axis direction Da.
  • the case where the fin 63B is further disposed on the Dau side upstream of the center position 13c in the axial direction Da of the tip end 13at of the final stage bucket row 13a is illustrated.
  • the present invention is not limited to the above embodiments, and includes various modifications of the above embodiments without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like described in the embodiments are merely examples, and can be appropriately changed.
  • Each of the steam turbines of the above-described embodiments is a downward exhaust type, but may be a side exhaust type.
  • the steam turbines of the above-described embodiments are all of the two-way exhaust type, but the present invention may be applied to a steam turbine that does not divide the exhaust gas.
  • the repair interval can be extended while the manufacturing cost and the repair cost are suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

フローガイド(27)は、フランジ(41)と、ガイド板(42)と、内側部材(43)と、を備える。フランジ(41)には、内周面(45)から径方向外側に凹み、軸線を基準にした周方向に延びるリング溝(44)が形成されている。内側部材(43)は、リング溝(44)内に入り込む嵌り込み部(61)と、フランジ(41)の内周面(45)と径方向で対向するカバー部(62)と、を有する。カバー部は(62)、フランジ(41)の内周面(45)とガイド板(42)の内周面(42a)とのうち、少なくとも径方向で動翼先端と対向する部分を覆う。カバー部(62)は、フランジ(41)よりも蒸気及び蒸気のドレンに対する耐エロ―ジョン性が高い材料で形成されている。

Description

フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法
 この発明は、フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法に関する。
 本願は、2018年7月13日に日本に出願された特願2018-133119号について優先権を主張し、その内容をここに援用する。
 蒸気タービンの最終段動翼の先端部は、蒸気ドレンによって浸食を受け易い。
 特許文献1には、蒸気ドレンの排出を十分に行ってエロージョン防止が確実に図れるように、最終段の動翼の前縁よりも軸線下流側にドレン排出孔を形成する技術が開示されている。この特許文献1の最終段の動翼は、背側前縁部や先端部に浸食防止のために、溶接肉盛りやシール板を取り付ける等している。
特開昭60-184904号公報
 特許文献1に記載の蒸気タービンにおいて、セグメントホルダ(以下、フランジと称する)の軸線下流側の部分は、蒸気ドレンによりエロージョンが進展することがある。フランジのエロージョンが進展してラジアルストリップ(以下、シールリングと称する)の取り付け部分に至ると、シールリングがフランジから脱落する可能性がある。そのため、特許文献1に記載されている蒸気タービンでは、フランジの補修間隔を短くする必要がある。
 この発明は、製造コスト及び補修コストを抑えつつも、補修間隔を長くすることができるフローガイド、蒸気タービン、内側部材及びフローガイドの製造方法を提供することを目的とする。
 この発明の第一態様によれば、フローガイドは、フランジと、ガイド板と、内側部材と、を備える。フランジは、軸線を中心として回転する蒸気タービンロータの最終段動翼列に対して、前記軸線を基準にした径方向外側に配置されている。ガイド板は、前記軸線を基準にして環状を成し、前記軸線が延びる軸線方向の第一側である軸線下流側に向かうに連れて次第に前記径方向外側に広がる。ガイド板は、前記フランジに対して、前記軸線が延びる軸線方向の第一側である軸線下流側に配置されている。内側部材は、前記フランジの内周面を覆うように取り付けられている。前記フランジには、前記フランジの内周面から前記径方向外側に凹み、前記軸線を基準にした周方向に延びるリング溝が形成されている。前記内側部材は、嵌りこみ部と、カバー部と、フィンと、を備える。嵌り込み部は、前記リング溝内に入り込む。カバー部は、前記フランジの前記内周面と前記径方向で対向する。フィンは、前記カバー部から前記軸線を基準にした径方向内側に向かって延びる。前記カバー部は、前記フランジの内周面と前記ガイド板の内周面とのうち、少なくとも前記径方向で前記最終段動翼列の動翼先端と対向する部分を覆う。前記カバー部は、前記フランジよりも蒸気及び前記蒸気のドレンに対する耐エロ―ジョン性が高い材料で形成されている。
 この第一態様では、内側部材のカバー部が、フランジの内周面と径方向で対向するように配置され、フランジの内周面とガイド板の内周面とのうち、少なくとも径方向で最終段動翼列の動翼先端と対向する部分を覆っている。このカバー部は、更に、フランジよりも耐エロージョン性が高い材料で形成されている。そのため、内側部材のフィンによってフランジと動翼の先端との間を流れる漏れ流れを低減しつつ、内側部材のカバー部によってフランジに蒸気ドレンが接触することを抑制できる。したがって、フランジ自体を耐エロージョン性の高い材料で形成する場合と比較して、フローガイドの製造コスト及び補修コストを抑えつつも、フランジのエロージョンを抑制して補修間隔を長くすることができる。
 この発明の第二態様によれば、第一態様に係るカバー部は、前記ガイド板の内周面の前記軸線上流側の部分である内周面上流側部と前記径方向で対向し、前記内周面上流側部を覆うようにしても良い。
 このように構成することで、フランジの内周面とガイド板の内周面とに渡るようにカバー部を設置できるため、フランジとガイド板との接続部分と、ガイド板の内周面上流側部とのエロージョンをそれぞれ抑制することができる。
 この発明の第三態様によれば、第二態様に係るフローガイドは、前記フランジと前記ガイド板とを接合する溶接部を有していてもよい。
 このように構成することで、溶接部をカバー部によって径方向内側から覆うことができる。そのため、溶接部のエロージョンを抑制できる。
 この発明の第四態様によれば、第二又は第三態様のガイド板は、拡径部を有していても良い。拡径部は、前記内周面上流側部よりも前記軸線下流側に形成され、前記軸線下流側に向かうに連れて次第に内径が大きくなる。前記ガイド板の前記内周面下流側部は、前記軸線方向のいずれの位置でも内径が一定であってもよい。前記カバー部は、前記軸線下流側に向かうに連れて次第に径方向外側に向かう傾斜面を有していてもよい。前記傾斜面は、前記カバー部の前記軸線下流側の端面である下流側端面まで延びていてもよい。前記傾斜面は、前記拡径部の内周面中で最も前記軸線上流側の位置における前記軸線を含む仮想平面内での接線の延長線を含むようにしても良い。
 上記のように傾斜面が、拡径部の最も軸線上流側の位置における軸線を含む仮想平面内の接線の延長線を含むことで、最終段の動翼の軸線下流側において、剥離が生じることを抑制し、傾斜面の軸線上流側の縁から軸線下流側に向かって主流を円滑に圧力回復させることができる。
 この発明の第五態様によれば、第四態様に係るフローガイドは、前記リング溝内に配置され、前記内側部材を前記径方向内側に押す弾性体を備えていてもよい。前記嵌まり込み部は、前記径方向内側を向く径方向位置決め面を有していてもよい。前記リング溝は、前記径方向外側を向き前記径方向位置決め面に接するストッパ面を有していてもよい。前記径方向位置決め面と前記ストッパ面とが接しているときに、前記傾斜面は、前記接線の延長線を含むようにしても良い。
 内側部材を径方向内側に押す弾性体を備えていることで、例えば、動翼の先端がフィンに接触して、弾性体の内側部材を径方向内側に押す力を上回った場合に、内側部材を径方向外側に変位させることができる。内側部材の嵌り込み部が径方向内側を向く径方向位置決め面を備え、リング溝が径方向外側を向き径方向位置決め面に接するストッパ面を備えていることで、内側部材を径方向外側に変位可能としつつ、内側部材を位置決めすることができる。さらに、径方向位置決め面と前記ストッパ面とが接しているときに、傾斜面がガイド板の軸線上流側の接線の延長線を含むことで、蒸気タービンが定常運転時には、傾斜面の軸線上流側の縁から軸線下流側に向かって主流を円滑に圧力回復させることができる。
 この発明の第六態様によれば、第一から第五態様のいずれか一つの態様に係る内側部材は、前記動翼先端と対向する前記カバー部の内周面から前記径方向内側に向かって延びるフィンを備えていてもよい。
 上記フィンを備えていることで、フランジと最終段動翼列との間から蒸気が漏れることを抑制できる。
 この発明の第七態様によれば、蒸気タービンは、第一から第六態様のいずれか一つの態様に係るフローガイドと、前記蒸気タービンロータと、車室と、を備えている。車室は、前記軸線を中心として筒状を成し、前記径方向内側に前記蒸気タービンロータが配置されている。車室は、前記フローガイドが取り付けられている。
 このように構成することで、フローガイドを補修する間隔を長くすることができるため、蒸気タービンの補修を行う作業者の負担を軽減できる。
 この発明の第八態様によれば、フローガイドの製造方法は、準備工程と、組み付け工程とを含む。準備工程では、前記フランジ、前記ガイド板、及び前記内側部材を準備する。組み付け工程では、前記内側部材の嵌まり込み部を前記フランジの前記リング溝に入れる。
 このようにすることで、準備工程によって、フランジと内側部材とを別々の材料によって容易に成形することができる。さらに、準備工程で準備したフランジの溝に対して、組み付け工程で、内側部材の嵌り込み部を入れることができる。そのため、容易にフローガイドを製造することができる。内側部材のエロージョンが進展して内側部材を交換する際にも、内側部材を準備して嵌り込み部をフランジの溝に入れるだけで内側部材をフランジに取り付けることができる。
 この発明の第九態様によれば、第六態様に係るフィンは、前記カバー部の軸線上流側の端面と、前記カバー部の軸線下流側の端面と、の軸線方向中央位置よりも軸線上流側に配置されていてもよい。
 この発明の第十態様によれば、第六又は第九態様に係るフィンは、前記カバー部から径方向内側に向かって延びており、前記カバー部と一体に形成されているようにしてもよい。
 この発明の第十一態様によれば、第一から第五、第九及び第十態様の何れか一つの態様に係る嵌り込み部は、第一嵌り込み部と、第二嵌り込み部とを備えていてもよい。第二嵌り込み部は、第一嵌り込み部の径方向外側に位置して前記第一嵌り込み部よりも大きい幅寸法を有している。前記第一嵌り込み部と前記リング溝との間に形成される隙間のうち、軸線下流側に形成される隙間は、軸線上流側に形成される隙間よりも狭いようにしてもよい。
 この発明の第十二態様によれば、内側部材は、軸線を中心として回転する蒸気タービンロータの最終段動翼列に対して、前記軸線を基準にした径方向外側に配置されているフランジの内周面を覆うように取り付けられる。内側部材は、嵌り込み部と、カバー部と、フィンとを備える。嵌り込み部は、フランジのリング溝内に入り込む。カバー部は、前記フランジの内周面に前記径方向で対向する。フィンは、前記カバー部の内周面のうち、前記最終段動翼列の動翼先端と対向する前記カバー部の内周面から前記径方向の内側に向かって延びる。カバー部は、前記フランジの内周面と、前記フランジに対して軸線下流側に配置されたガイド板の内周面とのうち、少なくとも前記径方向で前記最終段動翼列の動翼先端と対向する部分を覆うように形成されている。フィンは、カバー部の軸線上流側の端面と、前記カバー部の軸線下流側の端面との軸線方向中央位置よりも上流側に配置されている。
 この発明の第十三態様によれば、第十二態様に係るカバー部は、軸線下流側に向かうに連れて次第に径方向外側に向かう傾斜面を有していてもよい。
 この発明の第十四態様によれば、第十二又は第十三態様に係るフィンは、前記カバー部から径方向内側に向かって延び、前記カバー部と一体に成形されていてもよい。
 この発明の第十五態様によれば、第十二から第十四態様の何れか一つの態様に係る内側部材は、前記カバー部の内周面と、前記軸線上流側の端面との間に、外側に向かって凸の曲面を有するようにしてもよい。
 この発明の第十六態様によれば、第十二から第十五態様の何れか一つの態様に係るカバー部は、前記フランジよりも蒸気及び前記蒸気のドレンに対する耐エロ―ジョン性の高い材料で形成されていてもよい。
 上記フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法によれば、製造コスト及び補修コストを抑えつつも、補修間隔を長くすることができる。
この発明の第一実施形態における蒸気タービンの概略構成を示す断面図である。 この発明の第一実施形態におけるフローガイドを拡大した断面図である。 この発明の第一実施形態におけるシールリングを拡大した断面図である。 この発明の第一実施形態におけるフローガイドの製造方法のフローチャートである。 この発明の第二実施形態における図3に相当する断面図である。
 以下、この発明の実施形態におけるフローガイド、蒸気タービン及びフローガイドの製造方法を図面に基づき説明する。
(第一実施形態)
 図1は、この発明の第一実施形態における蒸気タービンの概略構成を示す断面図である。
 図1に示すように、この第一実施形態の蒸気タービンSTは、二分流排気型の蒸気タービンである。この蒸気タービンSTは、第一蒸気タービン部10aと第二蒸気タービン部10bとを備えている。第一蒸気タービン部10a及び第二蒸気タービン部10bは、いずれも、軸線Arを中心として回転するタービンロータ(蒸気タービンロータ)11と、タービンロータ11を覆うケーシング20と、ケーシング20に固定されている複数の静翼列17と、蒸気流入管19と、を備えている。以下の説明において、軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。さらに、径方向Drで軸線Arの側を径方向内側Dri、その反対側を径方向外側Droとする。
 第一蒸気タービン部10aと第二蒸気タービン部10bとは、蒸気流入管19を共有する。第一蒸気タービン部10aは、この蒸気流入管19を除き、この蒸気流入管19を基準にして軸線方向Daの一方側に配置されている。第二蒸気タービン部10bは、この蒸気流入管19を除き、この蒸気流入管19を基準にして軸線方向Daの他方側に配置されている。ここで、第一蒸気タービン部10aの構成と第二蒸気タービン部10bの構成とは、基本的に同一である。そのため、以下の説明では、主に第一蒸気タービン部10aについて説明し、第二蒸気タービン部10bの説明を省略する。第一蒸気タービン部10aにおいて、軸線方向Daの蒸気流入管19の側を軸線上流側Dau、その反対側を軸線下流側Dadとする。
 タービンロータ11は、軸線Arを中心として軸線方向Daに延びるロータ軸12と、このロータ軸12に取り付けられている複数の動翼列13と、を有する。タービンロータ11は、軸線Arを中心として回転可能に軸受18で支持されている。複数の動翼列13は、軸線方向Daに並んでいる。複数の動翼列13は、いずれも、周方向Dcに並んでいる複数の動翼で構成される。第一蒸気タービン部10aのタービンロータ11と、第二蒸気タービン部10bのタービンロータ11とは、同一の軸線Ar上に位置して互いに連結されて、軸線Arを中心として一体回転する。
 ケーシング20は、内側ケーシング21と、排気ケーシング25とを有する。
 内側ケーシング21は、ロータ軸12との間に、軸線Arを中心とした環状をなす第一空間21sを形成する。蒸気流入管19から流入した蒸気(流体)は、この第一空間21sを軸線方向Daに(より具体的には軸線下流側Dadに向かって)流れる。タービンロータ11の複数の動翼列13は、この第一空間21s内に配置されている。複数の静翼列17は、軸線方向Daに並んで、この第一空間21s内に配置されている。複数の静翼列17のそれぞれは、複数の動翼列13のうちいずれか一つの動翼列13の軸線上流側Dauに配置されている。複数の静翼列17は、内側ケーシング21に固定されている。
 排気ケーシング25は、ディフューザ26と、外側ケーシング30とを有する。
 外側ケーシング30は、タービンロータ11及び内側ケーシング21を囲うとともに、第一空間21sを流れた蒸気が排出される第二空間30sを内側ケーシング21との間に形成する。この第二空間30sは、ディフューザ26に連通し、ディフューザ26の外周側で周方向Dcに広がっている。この外側ケーシング30は、ディフューザ空間26sから第二空間30sに流入した蒸気を排気口31に導く。
 外側ケーシング30は、軸線Arに直交する方向の第一側(図1において下側)に排気口31を有する。この実施形態で例示する外側ケーシング30は、鉛直下方向に向かって開口している。この実施形態の蒸気タービンSTは、いわゆる下方排気型の復水蒸気タービンであり、排気口31には、蒸気を水に戻す復水器(図示せず)が接続されている。この実施形態における外側ケーシング30は、下流側端板32と、上流側端板34と、側周板36と、をそれぞれ備えている。
 下流側端板32は、ベアリングコーン29の径方向外側Droの縁から径方向外側Droに広がって、第二空間30sの軸線下流側Dadの縁を画定する。
 上流側端板34は、ディフューザ26よりも軸線上流側Dauに配置されている。この上流側端板34は、内側ケーシング21の外周面21oから径方向外側Droに広がって、第二空間30sの軸線上流側Dauの縁を画定する。
 側周板36は、下流側端板32及び上流側端板34に接続され、軸線方向Daに広がり且つ軸線Arを中心として周方向Dcに広がって、第二空間30sの径方向外側Droの縁を画定する。
 ディフューザ26は、内側ケーシング21の軸線下流側Dadに配置されて、第一空間21sと第二空間30sとを連通させる。このディフューザ26は、軸線下流側Dadに向うに連れて次第に径方向外側に向かう環状のディフューザ空間26sを形成する。ディフューザ空間26s内には、タービンロータ11の最終段動翼列13aから軸線下流側Dadに向かって流出した蒸気が流入する。ここで、最終段動翼列13aとは、第一蒸気タービン部10aが備える複数の動翼列13のうち、最も軸線下流側Dadに配置されている動翼列13である。
 ディフューザ26は、ディフューザ空間26sの径方向外側Droの縁を画定するフローガイド(又は、スチームガイド、外側ディフューザともいう)27と、ディフューザ空間26sの径方向内側Driの縁を画定するベアリングコーン(又は、内側ディフューザともいう)29と、を有する。
 ベアリングコーン29は、第一空間21sを形成するロータ軸12の外周面12aと連続するように軸線下流側Dadに延びる筒状に形成されている。ベアリングコーン29は、軸線Arに対して垂直な断面が環状を成し、軸線下流側Dadに向うにしたがって径方向外側Droに向かって漸次拡径している。ベアリングコーン29の端縁29aは、外側ケーシング30の下流側端板32に接続されている。
 フローガイド27は、内側ケーシング21の軸線下流側Dadの端縁から軸線下流側Dadに向かって延びる筒状をなしている。フローガイド27は、軸線Arに対して垂直な断面が環状を成し、軸線下流側Dadに向かうにしたがって漸次拡径している。この実施形態におけるフローガイド27は、内側ケーシング21に接続されている。
 図2は、この発明の第一実施形態におけるフローガイドを拡大した断面図である。図3は、この発明の第一実施形態におけるシールリングを拡大した断面図である。
 図2に示すように、フローガイド27は、フランジ41と、ガイド板42と、内側部材43と、を備えている。
 フランジ41は、軸線Arを中心として回転するタービンロータ11の最終段動翼列13aに対して、径方向外側Droに配置されている。フランジ41は、軸線Arを中心とした周方向に複数配列されることで環状を成している。フランジ41は、軸線方向Daよりも径方向Drの寸法が長く形成されている。フランジ41は、軸線方向Daに貫通する貫通孔41hを周方向Dcに間隔をあけて複数備えている。フランジ41は、これら貫通孔41hにボルト等の留め具B(図1参照)を挿通して内側ケーシング21の軸線下流側Dadの端部に固定される。
 フランジ41は、炭素鋼等の金属材料で形成されている。このフランジ41には、リング溝44が形成されている。リング溝44は、フランジ41の内周面45から径方向外側Droに凹むとともに、周方向Dcに延びている。
 リング溝44は、径方向内側Driに形成されて径方向内側Driに向けて開口する第一溝部47と、この第一溝部47の径方向外側Droに形成された第二溝部48と、ストッパ面46と、を備えている。第二溝部48は、第一溝部47よりも軸線方向Daの幅寸法が大きい。
 図3に示すように、ストッパ面46は、リング溝44の内部に形成され、径方向内側Driを向く面である。ストッパ面46は、後述する内側部材43の径方向位置決め面に接することで、内側部材43の径方向内側Driへの変位を規制する。ストッパ面46は、軸線上流側Dauと軸線下流側Dadとにそれぞれ形成されている。これらストッパ面46は、第一溝部47と第二溝部48との間に形成されている。この実施形態で例示するストッパ面46は、第一溝部47から第二溝部48に近づくほど径方向外側Droに配置されるように傾斜しているが、ストッパ面46は、この構成に限られない。
 ガイド板42は、フランジ41に対して、軸線下流側Dadに配置されている。ガイド板42は、軸線Arを基準にした環状を成している。ガイド板42は、内周面上流側部51と、拡径部52と、リブ53と、を備えている。ガイド板42は、例えば、ステンレス(SUS)鋼によって形成することができる。
 内周面上流側部51は、ガイド板42の内周面42aのうち軸線上流側Dauに配置される部分である。この内周面上流側部51は、フランジ41に対して溶接部54(図3参照)を介して固定されている。なお、溶接部54は、開先溶接と隅肉溶接との組み合わせによって形成してもよい。
 この内周面上流側部51は、軸線方向Daのいずれの位置でも内径が一定となっている。つまり、内周面上流側部51の内周面51aは、軸線Arと平行な円筒状に形成されている。この実施形態において、内周面上流側部51の軸線方向Daの長さは、フランジ41の軸線方向Daの厚さよりも小さい。ガイド板42の内周面51aと、フランジ41の内周面45とは、径方向Drで同一位置に配置されている。言い換えれば、ガイド板42の内周面51aと、フランジ41の内周面45とは、面一に配置され、軸線Arに沿って連続するように配置されている。
 拡径部52は、内周面上流側部51よりも軸線下流側Dadに形成されている。拡径部52は、軸線下流側Dadに向かうに連れて次第に軸線Arを中心とした内径が大きくなる。ガイド板42の軸線Arを含む仮想平面による断面の形状は、軸線Ar側に向かって凸となる曲線状に形成されている。
 リブ53は、内周面上流側部51と拡径部52との外周面から径方向外側Droに延びている。リブ53は、周方向Dcに間隔をあけて複数設けられている。リブ53は、例えば、内周面上流側部51及び拡径部52の剛性や強度を向上させるために設けられている。
 内側部材43は、フランジ41の内周面45を覆うように取り付けられている。この実施形態で例示する内側部材43は、径方向Drでフランジ41と最終段動翼列13aとの間の蒸気漏れを抑える機能を有している。図3に示すように、内側部材43は、嵌り込み部61と、カバー部62とフィン63と、弾性体64と、を備えている。
 嵌り込み部61は、フランジ41のリング溝44内に入り込む。嵌り込み部61は、カバー部62から径方向外側Droに突出するように形成されている。嵌り込み部61は、第一嵌り込み部66と、第二嵌り込み部65と、径方向位置決め面67と、を備えている。
 第一嵌り込み部66は、径方向Drにおいて第一溝部47と同じ位置に配置される。第一嵌り込み部66の径方向Drの長さは、第一溝部47の径方向Drの長さよりも僅かに大きい。第一嵌り込み部66の軸線方向Daの幅寸法は、第一溝部47の軸線方向Daの幅寸法よりも僅かに小さい。
 第二嵌り込み部65は、第一嵌り込み部66の径方向外側Droに位置する。第二嵌り込み部65は、径方向Drにおいて第二溝部48と同じ位置に配置される。第二嵌り込み部65の径方向Drの長さは、第二溝部48の径方向Drの長さよりも僅かに小さい。第二嵌り込み部65の軸線方向Daの幅寸法は、第二溝部48の軸線方向Daの幅寸法よりも僅かに小さい。第二嵌り込み部65の幅寸法は、第一嵌り込み部66の幅寸法よりも大きい。第二嵌り込み部65は、径方向外側Droを向く面に、弾性体64を収容して位置決めする収容凹部68が形成されている。
 径方向位置決め面67は、第一嵌り込み部66と第二嵌り込み部65との間に形成され、径方向内側を向いている。径方向位置決め面67は、上述したリング溝44のストッパ面46と対向する傾斜面とされている。
 カバー部62は、フランジ41の内周面45と径方向Drで対向する。カバー部62は、フランジ41の内周面45とガイド板42の内周面42aとのうち、少なくとも径方向Drで最終段動翼列13aの先端部(動翼先端)13atと対向する部分を覆う。この実施形態におけるカバー部62は、ガイド板42の内周面上流側部51の内周面51aの軸線上流側Dauの一部と径方向Drで対向している。すなわち、カバー部62は、内周面上流側部51の軸線上流側Dauの一部を径方向内側Driから覆っている。これにより、上述した溶接部54もカバー部62によって径方向内側Driから覆われる。
 カバー部62は、その径方向内側Driを向く内周面のうち、軸線下流側Dadの端部に、傾斜面69を有している。傾斜面69は、軸線下流側Dadに向かうに連れて次第に径方向外側Droに向かうように傾斜している。この傾斜面69は、カバー部62の軸線下流側Dadの端面である下流側端面70に至っている。傾斜面69は、図3に示す軸線Arを含む仮想平面内(言い換えれば、軸線Arを含む仮想平面による断面)において、拡径部52の内周面52aのうち最も軸線上流側Dauの位置の接線TLの延長線TLEを含んでいる。より具体的には、内側部材43の径方向位置決め面37とストッパ面46とが接しているときに、傾斜面69は、接線TLの延長線TLEを含む。
 カバー部62は、フランジ41よりも蒸気及び蒸気ドレンに対する耐エロージョン性の高い材料で形成されている。この実施形態においては、内側部材43の全体が、カバー部62と同一材料で形成されている。フランジ41よりも蒸気及び蒸気ドレンに対する耐エロージョン性の高い材料としては、例えば、12クロム(Cr)鋼を用いることができる。
 フィン63は、カバー部62から径方向内側Driに向かって延びている。フィン63は、例えば、切削加工等により、カバー部62と一体に成形されている。フィン63の先端部は、最終段動翼列13aの径方向外側Droの先端部13atとの間のクリアランス流れを抑制しつつ、フィン63と最終段動翼列13aとが接触しないように、僅かな隙間をあけて配置されている。ここで、フィン63を有した内側部材43は、「シールリング」と称する場合がある。このフィン63は、必要に応じて設ければよい。例えば、内側部材43に対して径方向Drでフランジ41と最終段動翼列13aとの間の蒸気漏れを抑える機能を持たせない場合にはフィン63を省略するようにしてもよい。
 弾性体64は、軸線方向Daに間隔をあけて二個所に設けられている。これら弾性体64は、嵌り込み部61を径方向内側Driに常時押している。図3に示す弾性体64は、コイルばねを例示しているが、嵌り込み部61を径方向内側Driに押圧可能であればよく、例えば、板バネ等の他の弾性体を用いても良い。
 図4は、この発明の第一実施形態におけるフローガイドの製造方法のフローチャートである。
 図4に示すように、上述したフローガイド27を製造する場合、準備工程(ステップS01)と、組み付け工程(ステップS02)とを実施する。
 準備工程においては、フランジ41、ガイド板42、及び内側部材43をそれぞれ準備する。この実施形態においては、例えば、フランジ41を炭素鋼によって形成し、ガイド板42を12クロム鋼により形成し、内側部材43をステンレス鋼により形成する。さらに、準備工程においては、フランジ41とガイド板42とを溶接部54により固定する。この時点で、フランジ41、ガイド板42、及び、内側部材43は、それぞれ軸線Arを中心とした環状に形成されていない。
 組み付け工程においては、内側部材43の嵌り込み部61をフランジ41のリング溝44に入れる。具体的には、フランジ41のリング溝44に対して、内側部材43の嵌り込み部61を弾性体64と共に周方向Dcから挿入する。その後、リング溝44に嵌り込み部61が挿入された組立体を、周方向Dcに並べて環状を成すように、内側ケーシング21に対してボルト等の留め具Bによって固定する。
 上述した第一実施形態では、内側部材43のカバー部62が、フランジ41の内周面45と径方向Drで対向するように配置され、フランジ41の内周面45における軸線上流側Dauの縁45aから軸線下流側Dadの縁45bまでの間を少なくとも覆っている。そして、カバー部62は、フランジ41よりも耐エロージョン性が高い材料で形成されている。そのため、内側部材43のフィン63によってフランジ41と最終段動翼列13aの先端部13atとの間を流れる漏れ流れを低減しつつ、内側部材43のカバー部62によってフランジ41に蒸気ドレンが接触することを抑制できる。
 その結果、フランジ41自体を耐エロージョン性の高い材料で形成する場合と比較して、フローガイド27の製造コスト及び補修コストを抑えつつも、フランジ41のエロージョンを抑制して補修間隔を長くすることができる。
 さらに、フランジ41の内周面45とガイド板42の内周面42aとに渡るようにカバー部62を設置できる。そのため、フランジ41とガイド板42との接続部分と、ガイド板42の内周面上流側部51とのエロージョンをそれぞれ抑制することができる。
 また、溶接部54をカバー部62によって径方向内側から覆うことができる。そのため、溶接部54のエロージョンを抑制できる。
 さらに、傾斜面69が、拡径部52の最も軸線上流側Dauの位置における軸線Arを含む仮想平面内の接線TLの延長線TLEを含む。そのため、最終段動翼列13aの軸線下流側Dadにおいて、剥離が生じることを抑制し、傾斜面69の軸線上流側Dauの縁69aから軸線下流側Dadに向かって蒸気の主流を円滑に圧力回復させることができる。
 上述した第一実施形態では、内側部材43を径方向内側Driに押す弾性体64を備えている。そのため、最終段動翼列13aの先端部13atがフィン63に接触して、弾性体64が内側部材43を押す力よりも、最終段動翼列13aがフィン63を押す力が大きくなった場合に、内側部材43を径方向外側Droに変位させることができる。
 さらに、内側部材43の嵌り込み部61が径方向内側Driを向く径方向位置決め面67を備え、リング溝44が径方向外側Droを向き径方向位置決め面67に接するストッパ面46を備えていることで、内側部材43を径方向外側Droに変位可能としつつ、内側部材43を位置決めすることができる。さらに、径方向位置決め面67とストッパ面46とが接しているときに、傾斜面69がガイド板42の軸線上流側Dauの接線TLの延長線TLEを含むことで、蒸気タービンSTが定常運転時には、傾斜面69の軸線上流側Dauの縁69aから軸線下流側Dadに向かって蒸気の主流を円滑に圧力回復させることができる。
 また、蒸気タービンSTが上述した第一実施形態のフローガイド27を備えることで、フローガイド27を補修する間隔を長くすることができるため、蒸気タービンSTの補修を行う作業者の負担を軽減できる。
 さらに、フローガイド27を製造する場合には、内側部材43の嵌り込み部61をフランジ41のリング溝44に入れるだけでよいので、容易にフローガイド27を製造できる。また、内側部材43のエロージョンが進展して内側部材43を交換する際にも、内側部材43を準備して嵌り込み部61をフランジ41のリング溝44に入れるだけで内側部材43をフランジ41に取り付けることができる。
(第二実施形態)
 次に、この発明の第二実施形態を図面に基づき説明する。この第二実施形態は、上述した第一実施形態と内側部材のみ相違する。そのため、第一実施形態と同一部分に同一符号を付して、重複説明を省略する。
 図5は、この発明の第二実施形態における、図3に相当する断面図である。
 図5に示すように、この第二実施形態のフローガイド27Bは、フランジ41と、ガイド板42と、内側部材43Bと、を備えている。
 フランジ41には、リング溝44が形成されている。
 リング溝44は、第一溝部47と、第二溝部48と、ストッパ面46Bとを備えている。
 ストッパ面46Bは、リング溝44の内部に形成され、径方向内側Driを向く面である。ストッパ面46Bは、内側部材43Bの径方向位置決め面67Bに接することで、内側部材43Bの径方向内側Driへの変位を規制する。ストッパ面46Bは、軸線上流側Dauと軸線下流側Dadとにそれぞれ形成されている。これらストッパ面46Bは、第一溝部47と第二溝部48との間に形成されている。この第二実施形態で例示するストッパ面46Bは、軸線方向Daに延びている。
 内側部材43Bは、フランジ41の内周面45を覆うように取り付けられている。内側部材43Bは、第一実施形態の内側部材43と同様に、径方向Drでフランジ41と最終段動翼列13aとの間の蒸気漏れを抑える機能を有している。
 内側部材43Bは、嵌り込み部61と、カバー部62Bと、フィン63Bと、弾性体64と、を備えている。
 嵌り込み部61は、第一実施形態と同様の構成であり、フランジ41のリング溝44内に入り込む。嵌り込み部61は、カバー部62Bから径方向外側Droに突出するように形成されている。嵌り込み部61は、第一嵌り込み部66と、第二嵌り込み部65と、径方向位置決め面67Bと、を備えている。
 前記第一嵌り込み部66とリング溝44との間に形成される隙間のうち、軸線下流側Dadに形成される隙間G2の大きさは、軸線上流側Dauに形成される隙間G1の大きさよりも狭くなっている。この第二実施形態では、軸線下流側Dadに形成される隙間G2の大きさがゼロである場合を例示している。
 カバー部62Bは、フランジ41の内周面45と径方向Drで対向する。カバー部62Bは、フランジ41の内周面45とガイド板42の内周面42aとのうち、少なくとも径方向Drで最終段動翼列13aの先端部(動翼先端)13atと対向する部分を覆う。
 この第二実施形態におけるカバー部62Bは、ガイド板42の内周面51aのうち内周面上流側部51の軸線上流側Dauの一部に対して、径方向Drで対向している。すなわち、カバー部62Bは、内周面上流側部51の軸線上流側Dauの一部を径方向内側Driから覆っている。これにより、上述した溶接部54もカバー部62Bによって径方向内側Driから覆われる。
 カバー部62Bは、その径方向内側Driを向く内周面62aのうち、軸線下流側Dadの端部に、傾斜面69を有している。傾斜面69は、軸線下流側Dadに向かうに連れて次第に径方向外側Droに向かうように傾斜している。この傾斜面69は、カバー部62Bの軸線下流側Dadの端面である下流側端面70に至っている。傾斜面69は、図5に示す軸線Arを含む仮想平面内(言い換えれば、軸線Arを含む仮想平面による断面)において、拡径部52の内周面52aのうち最も軸線上流側Dauの位置の接線TLの延長線TLEを含んでいる。
 カバー部62Bは、内周面62aと、軸線方向Daにおけるカバー部62Bの軸線上流側Dauの端面71との間に、曲面72を有している。より具体的には、内周面62aのうち、傾斜面69よりも軸線上流側Dauで軸線方向Daに延びる部分と、端面71との間に、外側に向かって凸状に形成された曲面72を有している。曲面72は、一定の曲率半径であってもよいし、曲率半径の異なる複数の曲面を組み合わせて形成してもよい。
 カバー部62Bは、フランジ41よりも蒸気及び蒸気ドレンに対する耐エロージョン性の高い材料で形成されている。第一実施形態と同様に、フランジ41が炭素鋼等の金属材料の場合、フランジ41よりも蒸気及び蒸気ドレンに対する耐エロージョン性の高い材料としては、例えば、12クロム(Cr)鋼を用いることができる。
 フィン63Bは、カバー部62Bから径方向内側Driに向かって延びている。フィン63Bは、切削加工等により、カバー部62Bと一体に成形されている。言い換えれば、フィン63Bとカバー部62Bとは、同一の金属材料で形成されて接合面を有さずに連続している。
 フィン63Bの先端部は、最終段動翼列13aの径方向外側Droの先端部13atとの間のクリアランス流れを抑制しつつ、フィン63Bと最終段動翼列13aとが接触しないように、僅かな隙間をあけて配置されている。
 フィン63Bは、軸線方向Daにおけるカバー部62Bの軸線上流側Dauの端面71とカバー部62Bの軸線下流側Dadの端面70との中央位置Cよりも軸線上流側Dauに配置されている。この第二実施形態のフィン63Bでは、さらに、最終段動翼列13aの先端部13atの軸線方向Daにおける中央位置13cよりも軸線上流側Dauに配置されている場合を例示している。
 この発明は、上述した各実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 上述した実施形態の蒸気タービンは、いずれも下方排気型であるが、側方排気型であってもよい。
 上述した実施形態の蒸気タービンは、いずれも二分流排気型であるが、排気を分流しない蒸気タービンに、本発明を適用してもよい。
 上記フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法によれば、製造コスト及び補修コストを抑えつつも、補修間隔を長くすることができる。
10a 第一蒸気タービン部
10b 第二蒸気タービン部
11 タービンロータ(蒸気タービンロータ)
12 ロータ軸
12a 外周面
13 動翼列
13a 最終段動翼列
13at 先端部(動翼先端)
17 静翼列
18 軸受
19 蒸気流入管
20 ケーシング
21 内側ケーシング
21o 外周面
21s 第一空間
25 排気ケーシング
26 ディフューザ
26s ディフューザ空間
27 フローガイド
29 ベアリングコーン
29a 端縁
30 外側ケーシング
30s 第二空間
31 排気口
32 下流側端板
34 上流側端板
36 側周板
37 面
41 フランジ
41h 貫通孔
42 ガイド板
42a 内周面
43,43B 内側部材
44 リング溝
45 内周面
45a 縁
45b 縁
46,46B ストッパ面
47 第一溝部
48 第二溝部
51 内周面上流側部
51a 内周面
52 拡径部
52a 内周面
53 リブ
54 溶接部
61 嵌り込み部
62,62B カバー部
63,63B フィン
64 弾性体
65 第二嵌り込み部
66 第一嵌り込み部
67,67B 径方向位置決め面
68 収容凹部
69 傾斜面
69a 縁
70 下流側端面

Claims (16)

  1.  軸線を中心として回転する蒸気タービンロータの最終段動翼列に対して、前記軸線を基準にした径方向外側に配置されているフランジと、
     前記軸線を基準にして環状を成し、前記軸線が延びる軸線方向の第一側である軸線下流側に向かうに連れて次第に前記径方向外側に広がり、前記フランジに対して、前記軸線が延びる軸線方向の第一側である軸線下流側に配置されているガイド板と、
     前記フランジの内周面を覆うように取り付けられた内側部材と、
     を備え、
     前記フランジには、前記フランジの内周面から前記径方向外側に凹み、前記軸線を基準にした周方向に延びるリング溝が形成され、
     前記内側部材は、前記リング溝内に入り込む嵌り込み部と、前記フランジの前記内周面と前記径方向で対向するカバー部と、を有し、
     前記カバー部は、前記フランジの内周面と前記ガイド板の内周面とのうち、少なくとも前記径方向で前記最終段動翼列の動翼先端と対向する部分を覆うとともに、前記フランジよりも蒸気及び前記蒸気のドレンに対する耐エロ―ジョン性が高い材料で形成されているフローガイド。
  2.  前記カバー部は、前記ガイド板における内周面の前記軸線上流側の部分である内周面上流側部と前記径方向で対向して前記内周面上流側部も覆う請求項1に記載のフローガイド。
  3.  前記フランジと前記ガイド板とを接合する溶接部を有する、請求項2に記載のフローガイド。
  4.  前記ガイド板は、前記内周面上流側部よりも前記軸線下流側に、前記軸線下流側に向かうに連れて次第に内径が大きくなる拡径部を有し、
     前記ガイド板の前記内周面上流側部は、前記軸線方向のいずれの位置でも内径が一定であり、
     前記カバー部は、前記軸線下流側に向かうに連れて次第に径方向外側に向かう傾斜面を有し、
     前記傾斜面は、前記カバー部の前記軸線下流側の端面である下流側端面まで延びて、前記拡径部の内周面中で最も前記軸線上流側の位置における、前記軸線を含む仮想平面内での接線の延長線を含んでいる請求項2又は3に記載のフローガイド。
  5.  前記リング溝内に配置され、前記内側部材を前記径方向外側に押す弾性体を備え、
     前記嵌まり込み部は、前記径方向内側を向く径方向位置決め面を有し、
     前記リング溝は、前記径方向外側を向き前記径方向位置決め面に接するストッパ面を有し、
     前記径方向位置決め面と前記ストッパ面とが接しているときに、前記傾斜面は、前記接線の延長線を含む、請求項4に記載のフローガイド。
  6.  前記内側部材は、
     前記動翼先端と対向する前記カバー部の内周面から前記径方向内側に向かって延びるフィンを備える請求項1から5の何れか一項に記載のフローガイド。
  7.  請求項1から6のいずれか一項に記載のフローガイドと、
     前記蒸気タービンロータと、
     前記軸線を中心として筒状を成し、前記径方向内側に前記蒸気タービンロータが配置され、前記フローガイドが取り付けられている車室と、
    を備える蒸気タービン。
  8.  請求項1から6のいずれか一項に記載のフローガイドの製造方法であって、
     前記フランジ、前記ガイド板、及び前記内側部材を準備する準備工程と、
     前記内側部材の嵌まり込み部を前記フランジの前記リング溝に入れる組み付け工程と、を含むフローガイドの製造方法。
  9.  前記フィンは、
     前記カバー部の軸線上流側の端面と、前記カバー部の軸線下流側の端面と、の軸線方向中央位置よりも軸線上流側に配置されている、
    請求項6に記載のフローガイド。
  10.  前記フィンは、
     前記カバー部から径方向内側に向かって延びており、前記カバー部と一体に形成されている、
    請求項6又は9に記載のフローガイド。
  11.  前記嵌りこみ部は、
     第一嵌り込み部と、
     前記第一嵌り込み部の径方向外側に位置して前記第一嵌り込み部よりも大きい幅寸法を有した第二嵌りこみ部と、を備え、
     前記第一嵌り込み部と前記リング溝との間に形成される隙間のうち、軸線下流側に形成される隙間は、軸線上流側に形成される隙間よりも狭い、
    請求項1から5,9,10の何れか一項に記載のフローガイド。
  12.  軸線を中心として回転する蒸気タービンロータの最終段動翼列に対して、前記軸線を基準にした径方向外側に配置されているフランジの内周面を覆うように取り付けられる内側部材であって、
     前記フランジのリング溝内に入り込む嵌まり込み部と、
     前記フランジの内周面に前記径方向で対向するカバー部と、
     前記カバー部の内周面のうち、前記最終段動翼列の動翼先端と対向する前記カバー部の内周面から前記径方向の内側に向かって延びるフィンと、を備え、
     前記カバー部は、
     前記フランジの内周面と、前記フランジに対して軸線下流側に配置されたガイド板の内周面とのうち、少なくとも前記径方向で前記最終段動翼列の動翼先端と対向する部分を覆うように形成され、
     前記フィンは、
     前記カバー部の軸線上流側の端面と、前記カバー部の軸線下流側の端面との軸線方向中央位置よりも上流側に配置されている内側部材。
  13.  前記カバー部は、
     前記軸線下流側に向かうに連れて次第に径方向外側に向かう傾斜面を有する
    請求項12に記載の内側部材。
  14.  前記フィンは、前記カバー部から径方向内側に向かって延び、前記カバー部と一体に成形されている
    請求項12又は13に記載の内側部材。
  15.  前記カバー部の内周面と、前記軸線上流側の端面との間に、外側に向かって凸の曲面を有する
    請求項12から14の何れか一項に記載の内側部材。
  16.  前記カバー部は、前記フランジよりも蒸気及び前記蒸気のドレンに対する耐エロ―ジョン性の高い材料で形成されている
    請求項12から15の何れか一項に記載の内側部材。
PCT/JP2019/026939 2018-07-13 2019-07-08 フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法 WO2020013109A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980039976.0A CN112352090B (zh) 2018-07-13 2019-07-08 导流板、蒸汽涡轮、内侧部件及导流板的制造方法
US16/973,511 US11459912B2 (en) 2018-07-13 2019-07-08 Flow guide, steam turbine, inside member, and method for manufacturing flow guide
KR1020207035921A KR102485641B1 (ko) 2018-07-13 2019-07-08 플로 가이드, 증기 터빈, 내측 부재 및 플로 가이드의 제조 방법
DE112019003577.0T DE112019003577T5 (de) 2018-07-13 2019-07-08 Strömungsführung, Dampfturbine, Innenelement und Verfahren zur Herstellung von Strömungsführung
JP2020530162A JP7048742B2 (ja) 2018-07-13 2019-07-08 フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133119 2018-07-13
JP2018133119 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013109A1 true WO2020013109A1 (ja) 2020-01-16

Family

ID=69141484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026939 WO2020013109A1 (ja) 2018-07-13 2019-07-08 フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法

Country Status (6)

Country Link
US (1) US11459912B2 (ja)
JP (1) JP7048742B2 (ja)
KR (1) KR102485641B1 (ja)
CN (1) CN112352090B (ja)
DE (1) DE112019003577T5 (ja)
WO (1) WO2020013109A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136314A1 (ja) * 2022-01-17 2023-07-20 三菱重工業株式会社 シール装置及び回転機械

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114542188A (zh) * 2022-03-31 2022-05-27 哈尔滨汽轮机厂有限责任公司 一种50MW等级轴流sCO2透平

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184904A (ja) * 1984-03-02 1985-09-20 Toshiba Corp 蒸気タ−ビンのノズルダイヤフラム
JPH06129206A (ja) * 1992-10-14 1994-05-10 Toshiba Corp 回転機械
JP2002206405A (ja) * 2001-01-10 2002-07-26 Fuji Electric Co Ltd 蒸気タービン
JP2005002917A (ja) * 2003-06-12 2005-01-06 Toshiba Corp 蒸気タービンシール装置およびそれを備えた蒸気タービン
JP2015098789A (ja) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 回転機械のシール装置
JP2016084861A (ja) * 2014-10-24 2016-05-19 株式会社東芝 ラビリンスシール装置および軸流型ターボ機械
JP2017172382A (ja) * 2016-03-22 2017-09-28 株式会社東芝 蒸気タービン

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546943B2 (ja) 1973-11-05 1980-11-27
JPS5971902U (ja) 1982-11-08 1984-05-16 三菱重工業株式会社 タ−ビンのフロ−ガイド装置
JPS61181801U (ja) * 1985-04-30 1986-11-13
US7229246B2 (en) * 2004-09-30 2007-06-12 General Electric Company Compliant seal and system and method thereof
US7870742B2 (en) * 2006-11-10 2011-01-18 General Electric Company Interstage cooled turbine engine
JP2010216321A (ja) * 2009-03-16 2010-09-30 Hitachi Ltd 蒸気タービンの動翼及びそれを用いた蒸気タービン
EP2386726B1 (de) 2010-05-12 2012-10-31 Siemens Aktiengesellschaft Kanalwandabschnitt für einen ringförmigen Strömungskanal einer Axialturbomaschine mit Radialspalteinstellung, zugehöriger Axialverdichter und Gasturbine
US8668450B2 (en) 2010-12-29 2014-03-11 General Electric Company Removable upper steam guide segment for steam turbine
JP5823305B2 (ja) * 2012-01-19 2015-11-25 株式会社東芝 蒸気タービンおよび蒸気タービンの動翼
WO2014010287A1 (ja) 2012-07-11 2014-01-16 三菱重工業株式会社 軸流排気タービン
JP5972374B2 (ja) * 2012-07-11 2016-08-17 三菱日立パワーシステムズ株式会社 軸流流体機械
JP6785041B2 (ja) * 2015-12-10 2020-11-18 三菱パワー株式会社 シール構造及びタービン
JP6730853B2 (ja) * 2016-06-07 2020-07-29 三菱重工マリンマシナリ株式会社 蒸気タービン
JP6869777B2 (ja) 2017-03-30 2021-05-12 三菱パワー株式会社 ドレン除去装置及び蒸気タービン
JP7076390B2 (ja) * 2019-02-27 2022-05-27 三菱重工業株式会社 ダイヤフラム、蒸気タービン及びダイヤフラムの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184904A (ja) * 1984-03-02 1985-09-20 Toshiba Corp 蒸気タ−ビンのノズルダイヤフラム
JPH06129206A (ja) * 1992-10-14 1994-05-10 Toshiba Corp 回転機械
JP2002206405A (ja) * 2001-01-10 2002-07-26 Fuji Electric Co Ltd 蒸気タービン
JP2005002917A (ja) * 2003-06-12 2005-01-06 Toshiba Corp 蒸気タービンシール装置およびそれを備えた蒸気タービン
JP2015098789A (ja) * 2013-11-18 2015-05-28 三菱日立パワーシステムズ株式会社 回転機械のシール装置
JP2016084861A (ja) * 2014-10-24 2016-05-19 株式会社東芝 ラビリンスシール装置および軸流型ターボ機械
JP2017172382A (ja) * 2016-03-22 2017-09-28 株式会社東芝 蒸気タービン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136314A1 (ja) * 2022-01-17 2023-07-20 三菱重工業株式会社 シール装置及び回転機械

Also Published As

Publication number Publication date
KR102485641B1 (ko) 2023-01-06
CN112352090B (zh) 2023-01-10
JPWO2020013109A1 (ja) 2021-06-24
US20210239014A1 (en) 2021-08-05
US11459912B2 (en) 2022-10-04
CN112352090A (zh) 2021-02-09
DE112019003577T5 (de) 2021-06-24
JP7048742B2 (ja) 2022-04-05
KR20210006458A (ko) 2021-01-18

Similar Documents

Publication Publication Date Title
JP2008169705A (ja) 蒸気タービン
US7857582B2 (en) Abradable labyrinth tooth seal
EP3018298A1 (en) Flexible film-riding seal
US20090096174A1 (en) Blade outer air seal for a gas turbine engine
US8177493B2 (en) Airtight external shroud for a turbomachine turbine wheel
JP5085987B2 (ja) タービンを組立てる方法及びシステム
WO2020013109A1 (ja) フローガイド、蒸気タービン、内側部材及びフローガイドの製造方法
EP2295728A2 (en) Steam turbine and cooling method of operating steam turbine
JP6000354B2 (ja) 軸流排気タービン
JP2002013647A (ja) 軸シール機構及びガスタービン
WO2013146637A1 (ja) シール部材、タービン、及びガスタービン
US20090072488A1 (en) Labyrinth seals and methods of manufacture
JP6944871B2 (ja) 排気室及び蒸気タービン
JPH1181910A (ja) ガスタービンディスク内の締結ボルト孔とボルト間のシール装置
US6679681B2 (en) Flush tenon cover for steam turbine blades with advanced sealing
JP6506533B2 (ja) タービンノズルを固定する方法及びシステム
JP6197985B2 (ja) シール構造、これを備えたタービン装置
JP4326315B2 (ja) 翼環構造
JP2009236038A (ja) 蒸気タービン
CN114165300B (zh) 一种可降低热应力的涡轮后承力浮动结构
WO2022034783A1 (ja) 静翼セグメント、及びこれを備える蒸気タービン
EP3179045A1 (en) Steam turbine nozzle segment with complete sidewall and integrated hook design
JP5868606B2 (ja) シール構造
US11927112B2 (en) Sealing device and rotary machine
WO2022270387A1 (ja) 初段静翼セグメント、静止ユニット、初段静翼セグメントユニット、及び蒸気タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207035921

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19834013

Country of ref document: EP

Kind code of ref document: A1