WO2020012977A1 - Granular polishing material, polishing tool, and polishing method - Google Patents

Granular polishing material, polishing tool, and polishing method Download PDF

Info

Publication number
WO2020012977A1
WO2020012977A1 PCT/JP2019/025690 JP2019025690W WO2020012977A1 WO 2020012977 A1 WO2020012977 A1 WO 2020012977A1 JP 2019025690 W JP2019025690 W JP 2019025690W WO 2020012977 A1 WO2020012977 A1 WO 2020012977A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
binder
abrasive
aggregate
resin
Prior art date
Application number
PCT/JP2019/025690
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 潤
大祐 安井
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2020530102A priority Critical patent/JPWO2020012977A1/en
Publication of WO2020012977A1 publication Critical patent/WO2020012977A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to an abrasive. More specifically, the present invention relates to a granular abrasive for polishing a resin material.
  • the performance required of the polishing tool may be high working power, that is, high polishing rate.
  • high polishing rate In general, it is known to use abrasive grains having a large particle diameter to increase the polishing rate. However, when abrasive grains having a large particle diameter are used, the polishing rate is easily increased, but deep scratches occur on the surface to be polished. When a deep flaw is formed, the processing time required for removing the flaw in a later step increases, and the flaw cannot be applied as a process. For this reason, it has been a conventional problem to reduce the depth of scratches while increasing the polishing rate.
  • the painted surface of an automobile or the like is coated with a resin, but the surface layer has undulation at the time of painting and has fine irregularities, and the glossiness is not sufficient.
  • a polishing tool is attached to a hand polisher and polished to smooth the irregularities on the surface layer.
  • a polishing tool with a coarser larger particle size of the abrasive grains used in the polishing tool
  • the roughness of the resin surface layer on the painted surface is eliminated. It becomes a glossy surface.
  • Such a processing can be performed by using a polishing tool in which abrasive grains are fixed to a resin base material, so that a smooth surface can be obtained.
  • Patent Document 1 A technique of fixing the abrasive grains of a relatively soft resin material to reduce the depth of a flaw has been proposed (Patent Document 2).
  • Patent Document 1 since the abrasive grains are fired at a high temperature in order to retain the abrasive grains, the edges of the abrasive grains are rounded and essentially lose the processing power. Since it does not contain a binder that holds the grains, the processing power for processing the resin is poor. Further, in Patent Document 2, since the abrasive grains are held around the soft material, the effect of reducing the scratches on the surface to be polished is high. However, in the case of processing with mechanical energy, the abrasive grains are originally used. Since it cannot be held firmly, the processing power may be poor.
  • JP 2003-105324 A JP-T-2017-508018
  • the present invention is, for example, an abrasive used when polishing a resin material, which can suppress the depth of scratches on the surface to be polished while improving the polishing rate, and which does not reduce the processing power And a polishing tool.
  • the abrasive is a granular abrasive containing an agglomerate that includes an abrasive and a binder that bonds the abrasives together, wherein the abrasive has a structure that is at least partially covered by the binder, and the granular strength of the agglomerate
  • the above problem is solved by using an abrasive having a Mohs hardness of 20 MPa to 150 MPa, a Mohs hardness of the abrasive grains of 8 or more, and less than the Mohs hardness of the abrasive grains constituting the aggregate.
  • polishing which can suppress the depth of the damage
  • FIG. 1 shows an SEM photograph of an aggregate after granulation of the granular abrasive of the present invention.
  • 2 shows an SEM photograph of the aggregate shown in FIG. 1 after firing.
  • 1 is a schematic view of a polishing tool according to the present invention, in which (a) is a plan view, and (b) is a cross-sectional view taken along line AA of (a).
  • FIG. 4 is a schematic enlarged view of a surface portion of a cross-sectional view of the polishing tool of FIG. 3.
  • 5 shows an SEM photograph of a state in which the aggregate is fixed on a resin base material with a resin binder.
  • 9 shows SEM photographs of aggregates in which abrasive grains are bonded to each other in Comparative Examples 4 and 5.
  • FIG. 2 shows an SEM photograph of the polishing tool of Example 1 after polishing.
  • mold is shown.
  • (A) shows a three-dimensional shape
  • (b) is a diagram schematically showing a structure in a cross section taken along line BB of (a).
  • a schematic view of a polishing tool in which the granular abrasive of the present invention is formed into a grindstone and fixed on a resin base material is shown.
  • (A) is a schematic diagram of a polishing tool in which a segment-type grindstone is fixed on a resin base material
  • (b) is a cross-sectional view taken along line CC of (a).
  • the granular abrasive of the present invention includes an agglomerate containing abrasive grains and a binder, and the abrasive grains have a structure at least partially covered with a binder. Constructs a collection.
  • a granule refers to a product obtained by collecting and hardening fine powders of the same or different materials.
  • the granule strength of the aggregate is 20 MPa to 150 MPa, and the individual abrasive grains constituting the aggregate have a Mohs hardness of 8 or more and less than the Mohs hardness of the abrasive grains.
  • the abrasive grains may have a Mohs hardness of 8 or more, and are not particularly limited as long as they are 8 or more, but more preferably 9 or more.
  • Mohs hardness in the present specification means the old Mohs hardness (not the modified Mohs hardness). This is a method of evaluating the hardness in comparison with the following ten minerals as a standard substance, and rubbing the standard substance and the sample, and determining that the scratched one has a lower hardness. .
  • the composition can be determined from the composition analysis, and the determination can be made from the Mohs hardness of a substance having the same composition.
  • abrasive grains having a Mohs hardness of 8 or more include tungsten carbide (Mohs hardness 8), zirconium boride (Mohs hardness 8), aluminum nitride (Mohs hardness 8), aluminum oxide (Mohs hardness 9), and titanium nitride (Mohs hardness).
  • Hardness 9 titanium carbide (Mohs hardness 9), tantalum carbide (Mohs hardness 9), zirconium carbide (Mohs hardness 9), chromium (Mohs hardness 9), aluminum boride (Mohs hardness 9), boron carbide (Mohs hardness 9) , Silicon carbide (Mohs hardness 9), cubic boron nitride (cBN, Mohs hardness 9.5), boron carbide (Mohs hardness 9.5), titanium boride (Mohs hardness 9.5), diamond (Mohs hardness 10) Etc.
  • the Mohs hardness of the main component is 8 or more.
  • the particle diameter of the abrasive grains is determined by the required polishing rate and the value of the target flaw depth.
  • the average particle diameter is preferably 1 to 15 ⁇ m, more preferably 2 to 15 ⁇ m. To 10 ⁇ m, and more preferably 3 to 8 ⁇ m. More specifically, from the viewpoint of improving the polishing rate, the average particle size of the abrasive grains is preferably from 6 to 15 ⁇ m, and more preferably from 8 to 13 ⁇ m.
  • the average grain size of the abrasive grains is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the particle diameter can be measured using an electric resistance type particle size distribution analyzer (Multisizer 3 manufactured by Beckman Coulter, Inc.) or the like.
  • the binder In the granular abrasive of the present invention, the binder only needs to be less than the Mohs hardness of the abrasive grains constituting the aggregate. If the Mohs hardness of the binder is higher than the Mohs hardness of the abrasive grains, the agglomerates themselves will function as individual particles, causing deep flaws, and the agglomerates will be less likely to wear, causing immediate blinding and polishing. Tends to stop progressing. When the binder is a mixture of a plurality of types, it is only necessary that the Mohs hardness of the main component (the compound having the highest content) be less than the Mohs hardness of the abrasive grains.
  • a glass frit can be used as the binder.
  • a component of the glass frit for example, a component mainly containing SiO 2 (Mohs hardness 7) or the like can be used.
  • a low melting point glass frit containing Bi such as Bi 2 O 3 (Mohs hardness 2 to 3) may be used to reduce the firing cost.
  • the glass frit containing Bi has a high fluidity of the molten glass and the molten glass frit uniformly adheres around the abrasive grains, so that the abrasive frit holding power is maintained, the polishing rate is improved, and the viewpoint of reducing scratches is improved. Is also preferred.
  • a glass frit having a sintering temperature of 1100 ° C. or lower is preferably used.
  • a glass frit having a glass transition temperature of 800 ° C. or less is desirable, and 700 ° C. or less is more desirable.
  • the Mohs hardness of the binder is not particularly limited as long as it is less than the Mohs hardness of the abrasive grains, but is preferably 1.5 or more, more preferably 2 or more. Further, it is preferably 7.5 or less, more preferably 7 or less, and even more preferably 5 or less. When the Mohs hardness of the binder is within this range, scratches can be reduced. When the binder is a mixture of a plurality of types, the Mohs hardness of the main component compound may be within this range.
  • the content as Bi 2 O 3 is preferably 30% by mass or more of the whole glass frit, more preferably 50% by mass or more, and even more preferably 70% by mass or more. Most preferably, it is 80% by mass or more. Moreover, it is preferable that it is 95 mass% or less, and it is more preferable that it is 90 mass% or less. When the content as Bi 2 O 3 is within this range, scratches can be reduced.
  • the granule strength of the aggregate can be controlled to 20 MPa to 150 MPa by changing the volume ratio of the binder in accordance with the particle diameter of the abrasive grains and the size of the aggregate.
  • the granule strength is more preferably from 25 MPa to 120 MPa.
  • the volume ratio of the glass frit to the abrasive is 20 to 300%, preferably 40 to 200%, the granule strength can be easily controlled in the range of 20 MPa to 150 MPa.
  • the mixing ratio in terms of volume of the glass frit is preferably 10% to 200%, and more preferably 20% to 20% in order to keep the granule strength in the range of 20 MPa to 150 MPa. 175% is more preferable, and 30% to 150% is still more preferable.
  • the particle size of the aggregates is the same, the smaller the mixing ratio of the glass frit when the particle size of the abrasive used is large, the easier it is to obtain the optimal granule strength, and when the particle size of the abrasive used is small, The larger the mixing ratio, the easier it is to obtain the optimum granule strength.
  • the granule strength of the aggregate can be controlled by adjusting the particle size of the binder, adjusting the sintering temperature, adjusting the sintering time, and the like.
  • the aggregate has a structure in which the abrasive grains and the binder are uniformly dispersed. At least a portion of the abrasive grains is covered with a binder, and the abrasive grains are combined to form an aggregate.
  • Agglomerates can be typically obtained by the steps of granulation, drying, baking, crushing, and sieving.
  • Granulation is performed by mixing abrasive grains and a binder, adding water to form a slurry, and granulating and drying using, for example, a spray dryer.
  • a water-soluble polymer or a resin binder may be included.
  • a dispersant may be included to disperse the abrasive grains.
  • the drying temperature may be in the range of 100 to 250 ° C.
  • the inlet temperature of the dryer may be set to about 200 to 250 ° C
  • the outlet temperature may be set to about 100 to 150 ° C.
  • the granule strength of the aggregates is also affected by the porosity.
  • the porosity can be measured, for example, by pore distribution measurement, but is affected by the blending amount of the binder. In general, the porosity tends to decrease when the amount of the binder is increased. There is an optimum porosity for controlling the granule strength of the aggregate to 20 MPa to 150 MPa. For example, when abrasive grains having an average particle diameter of 4 ⁇ m are used, the porosity is preferably 5 to 19 vol%. And more preferably 5 to 18 vol%.
  • the granule strength can be measured by, for example, a compression tester.
  • a compression tester For example, a micro compression tester MCT-510 manufactured by Shimadzu Corporation can be used.
  • the measurement conditions are, for example, a test force of 100 [gf], a load speed of 16 (approximately 1.3 [gf / sec]), and a type of indenter of 50 ⁇ m.
  • the strength can be calculated by a formula relating to particles specified by the manufacturer.
  • water-soluble polymer a natural water-soluble polymer such as agar or starch, a synthetic water-soluble polymer such as polyvinyl alcohol or sodium polyacrylate, or a semi-synthetic water-soluble polymer derived from a natural material such as a cellulose derivative is used. can do.
  • the resin binder for example, a commercially available adhesive such as urethane resin, epoxy resin, and phenol resin can be used.
  • a commercially available adhesive such as urethane resin, epoxy resin, and phenol resin can be used.
  • any of an aqueous system, an oil system, and an organic system can be used, and the liquid property is not limited by the present invention.
  • a general dispersant such as polycarboxylic acid, polyethylene glycol, alkylsulfonic acid, quaternary ammonium, polyphosphate and the like can be used.
  • the firing temperature is about 400 to 1200 ° C.
  • the standard firing conditions set for the glass frit may be about 450 to 850 ° C.
  • the sintering is performed, for example, in a sintering furnace, and the sintering temperature may be measured by, for example, a reference thermo.
  • the firing temperature is 600 ° C. or lower, it is difficult to estimate the firing temperature from the reference thermometer. Therefore, the firing temperature may be estimated from temperature data of a thermocouple installed near the fired product.
  • FIG. 1 shows an SEM photograph of the fired aggregate.
  • ⁇ Agglomerates having the required particle size can be obtained by crushing the fired aggregates after calcination and, if necessary, sieving.
  • the particle diameter of the aggregate is not limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or more. Within this range, the amount of protrusion of the aggregate when used as a polishing tool described later tends to be appropriate.
  • the particle diameter of the aggregate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 70 ⁇ m or less. Within this range, the number of contact points between the aggregate and the object to be polished tends to be appropriate when used as a polishing tool described later.
  • the agglomerate is less than 10 ⁇ m, for example, in the case of a tool in which a granular abrasive is fixed on a resin film, the distance over which the granules protrude tends to be short, and the polishing performance tends to be low.
  • it exceeds 100 ⁇ m the number of granular abrasives that can be immobilized decreases, the voids become too large, and the contact area with the object to be polished becomes unstable, so that stable processing tends to be impossible.
  • the agglomerate obtained as described above has a granule strength of 20 MPa to 150 MPa, it is appropriately worn or disintegrated when used for polishing, reduces scratches on the surface to be polished of the material to be polished, The depth of the scratch can be suppressed. If the granule strength is too low, the agglomerates will be excessively worn or collapsed, and polishing will not proceed. If the granule strength is too high, the agglomerates are less likely to be worn, so that the abrasive particles constituting the agglomerates are maintained in a crushed state, and the chips generated during polishing are clogged in the agglomerates. Polishing does not proceed.
  • the polishing tool of the present invention can be obtained by fixing the aggregate 4 on the resin base material 2 with the resin binder 5 as schematically shown in FIGS.
  • FIG. 4 is an enlarged view of FIG. 1, and the surface portion 1 of FIG. 1 is formed by embedding the aggregate 4 of FIG.
  • the resin substrate 2 for example, a commercially available industrial resin film can be used.
  • Various surface treatments may be performed to improve the wettability and adhesion with the resin binder.
  • a resin film having a thickness of about 200 ⁇ m can be used.
  • a slurry solution in which the aggregate and the binder solution were mixed was prepared, and the slurry solution was applied on the resin film, thereby being applied on the resin film.
  • the aggregate can be immobilized in a state where a part of the aggregate is embedded in the resin binder.
  • the application of the slurry liquid can be performed using a wire bar coater.
  • a resin or an adhesive which is a general coating material, can be used, and any of an aqueous, an oil, and an organic can be used and is not limited by the liquid property.
  • urethane resin, epoxy resin, phenol resin and the like can be used.
  • the resin substrate 2 may be bonded to the sponge material 3 to constitute the polishing tool 1B.
  • the bonding between the resin base material 2 and the sponge material 3 can be performed using a double-sided tape or the like.
  • the sponge material a non-woven fabric used for a polishing pad or the like, a resin material having a porous structure such as urethane foam, or the like can be used.
  • the base material may be a combination of a plurality of materials.
  • a nonwoven fabric used for a polishing pad or the like may be attached to an industrial resin film with a double-sided tape or the like, and an arbitrary thickness can be used, and the combination thereof can be changed to give desired physical properties.
  • the thickness of the portion where the agglomerate is embedded with the resin binder may be an appropriate thickness, but it is preferable that the thickness is not more than half the particle diameter of the agglomerate. If the thickness of the resin binder exceeds half of the particle diameter of the aggregate, when the aggregate is self-generated and worn, the protrusion of the aggregate is short relative to the resin binder film, so that the polishing tends to be difficult to proceed. If the thickness of the resin binder is too small, the aggregates can be sufficiently retained, so that the aggregates fall off and the aggregates themselves are present at the polishing interface, increasing the risk of generating deep polishing flaws. Therefore, the thickness of the resin binder is preferably 5% to 50%, more preferably 10% to 25%, based on the average particle diameter of the aggregate.
  • the area occupied by the aggregates with respect to the surface area of the polishing tool varies depending on the concentration of the aggregates in the slurry solution.
  • the area occupied by the abrasive grains with respect to the surface area of the polishing tool can be improved by increasing the concentration of the aggregate when applying the aggregate, thereby increasing the occupied area and extending the usable time of the polishing tool.
  • the area occupied by the aggregates with respect to the surface area of the polishing tool is preferably 50% or less for the purpose of discharging chips.
  • the optimum concentration of the aggregates is affected by the particle size of the abrasive grains used and the particle size of the aggregates, but if the aggregates are about 40 ⁇ m, the occupied area is preferably 5 to 30%, more preferably 10 to 25%. preferable.
  • a resin material suitable as one of the objects to be polished is ABS resin, AS resin, epoxy resin, melamine resin, polyamide resin, polyester, polyethylene, polycarbonate, polyethylene terephthalate, phenol resin, polyimide resin, polymethyl methacrylate, polypropylene, polyurethane
  • a resin, a polyvinyl chloride resin, or the like is included, but the resin is not limited thereto, and may include another resin.
  • materials other than resin can be suitably polished.
  • the resin material may be a resin bulk itself, a resin film formed on a material surface such as wood or ceramics used for building materials, or a painted surface of a material surface such as a metal material used for automobiles or the like. It may be a resin film as described above.
  • the polishing of the resin material it is preferable to perform the polishing while supplying the liquid to the interface between the polishing tool and the object to be polished in order to improve the discharge property of the chips.
  • the liquid water or a general grinding liquid can be used. Polishing is possible even when no liquid is used, but it is preferable to polish while supplying the liquid to the interface in order to improve the polishing rate. Also, from the viewpoint of the working environment, it is preferable to supply the liquid in order to reduce the burden on the operator due to the dust of the swarf.
  • the polishing load for example, in the case of polishing a painted surface of an automobile or the like, the polishing is performed manually, and therefore the polishing is often performed under the condition that the polishing load is relatively small.
  • the polishing load is often set only by the own weight of the polisher, specifically, about 20 gf / cm 2 to 50 gf / cm 2 .
  • the polishing is generally performed at a processing pressure of 100 gf / cm 2 to 300 gf / cm 2 .
  • the polishing tool of the present invention can be suitably applied to polishing conditions having a relatively low polishing load.
  • the agglomerate 4 of the granular abrasive of the present invention is filled in a three-dimensional mold such as a cube, and fired again at a temperature at which the glass frit melts.
  • the grinding tool 1C can be molded.
  • the three-dimensional shape is not limited to a cube, but may be a rectangular parallelepiped, a cylinder, or the like.
  • voids 6 are formed between the particles, which can function as chip pockets at the time of polishing, thereby exhibiting good polishing performance as a grindstone.
  • FIG. 8B schematically shows a cross-sectional structure taken along the line BB of FIG. 8A. The number of repetitions of the structure including the aggregates 4 and the voids 6 depends on the size of the grindstone. .
  • a molded grinding stone-shaped polishing tool 1C can be used as a segment polishing tool 1D in which a resin binder (adhesive) 5 is fixed on a resin substrate 2.
  • the size of the segment is not particularly limited, but when fixing the segment-shaped whetstone-shaped polishing tool 1C on the soft resin base material 2, the size of the segment-shaped whetstone-shaped polishing tool 1C is set to the object to be polished. Since it is necessary to follow the shape of the lens, it is ideal to reduce the size. That is, it is desirable that the vertical and horizontal size of the segment-shaped grindstone-shaped polishing tool 1C be 1 mm ⁇ 1 mm or less.
  • the content of B 2 O 3 in the components of the glass frit was measured using a glass frit maker, and the content other than B 2 O 3 was measured with a fluorescent X-ray measuring device (EDX-720 manufactured by Shimadzu Corporation).
  • EDX-720 manufactured by Shimadzu Corporation
  • EDX-720 was used to measure an appropriate amount of glass frit molded by a manual press as a measurement sample, and each element was converted to an oxide to determine the composition ratio of each glass frit.
  • Other components are presumed to be trace components such as K and P mixed from the raw material and the glass frit manufacturing process.
  • the ratio of abrasive grains and binder contained in the slurry is the ratio shown in Table 2, but the solid content concentration in the slurry when introduced into the spray dryer is optimal depending on the model and temperature selection of the spray dryer. Value.
  • the inlet temperature of the spray dryer was about 240 ° C.
  • the outlet temperature was about 110 ° C.
  • the solid concentration in the slurry during spraying was about 50%.
  • the dried powder after granulation is a granular agglomerate in which abrasive grains and a binder are uniformly dispersed, and the average particle diameter is 40 ⁇ m according to a laser scattering type particle size analyzer (MT-3300EX manufactured by Microtrack). Met.
  • MT-3300EX laser scattering type particle size analyzer
  • the binder used was a glass frit containing SiO 2 and B 2 O 3 as components, and the average particle diameter was about 1 ⁇ m as measured by a laser scattering particle size distribution analyzer (LA-950, manufactured by HORIBA).
  • LA-950 laser scattering particle size distribution analyzer
  • the standard firing condition set for the glass frit is 850 ° C, but the actual firing temperature is measured by simultaneously placing the refera-thermo in the kiln during firing and measuring the length of the referather after firing with a micrometer. The ultimate temperature was determined to be 879 ° C.
  • the fired product of the aggregate after firing is crushed, and the aggregate passing through the standard sieve 1 is further passed through the standard sieve 1 (nominal size 53 ⁇ m) and standard sieve 2 (nominal size 32 ⁇ m). To extract aggregates that do not pass through the standard sieve 2.
  • the aggregate extracted by the sieve was mixed with a urethane resin binder solution.
  • the slurry composition after mixing was such that the urethane resin concentration was 20% by weight, the abrasive particles were 10%, and the remainder was solvent.
  • the mixed slurry was stirred with a magnetic stirrer for 30 minutes (rotation speed of the stirrer: 300 rpm), and after visually confirming that there was no precipitate, 2 ml of the slurry was dropped on an A4 size resin film (thickness: about 200 ⁇ m) and immediately.
  • Track No. 3 was applied on a resin film by a wire bar coater (standard thickness: about 7 ⁇ m). After drying at room temperature for 24 hours or more after the application, observation by SEM confirmed that, as shown in FIG. 5, the aggregates did not collapse and were fixed in a resin film shape.
  • a granular abrasive is cut out of a sheet fixed to a resin substrate in a predetermined size, and a sponge material (thickness: 10 mm) made of urethane foam and a surface to which no abrasive particles are applied is coated with a double-sided tape. Bonding was performed to produce a polishing tool. As shown in FIG. 4, an agglomerate 4 is fixed on a surface layer of a resin base material 2 made of a resin film by a resin binder 5, and a polishing tool 1B bonded to the sponge layer 3 with a double-sided tape is obtained.
  • Examples 2 to 11, Comparative Examples 1, 2, and 7 In Examples 2 to 11 and Comparative Examples 1, 2, and 7, abrasives, a binder, a mixture ratio of the binder to the abrasives, and a sintering temperature were formed as shown in Table 2 to form an aggregate and applied to the resin base material.
  • a polishing tool was prepared according to the contents shown in Table 2 for the concentration of aggregates contained in the slurry for polishing. Since the measurement of the firing temperature is 600 ° C. or less and it is difficult to estimate the firing temperature from the reference thermometer, the firing temperature was estimated from the temperature data of a thermocouple installed near the fired product.
  • Comparative Example 3 In Comparative Example 3, the abrasive grains were mixed with a urethane-based resin binder solution without forming an aggregate, and the mixed slurry was dropped on the resin film in the same manner as in Example 1, and the resultant was coated on the resin film with a wire bar coater. Applied. In the same manner as in Example 1, the resin film coated with the abrasive grains is cut into a predetermined size, and the surface on which the abrasive grains are not applied and a sponge material (10 mm thick) made of urethane foam are bonded with a double-sided tape, and a polishing tool is used. It was created.
  • Comparative Examples 4 to 6 agglomerates were formed by a spray dryer using only abrasive grains without using a binder, and the respective agglomerates were heated to about 1200 ° C. or more at the temperature at which the abrasive component itself was sintered. Agglomerates were formed by firing at the temperature shown in Table 2, and fixed to a substrate with a wire bar coater under the same drying conditions as in Example 1 to prepare a polishing tool.
  • Polishing machine CETR-CP4 manufactured by CETR Polishing object: Metal plate coated with synthetic resin paint Size: ⁇ 240 mm Polishing tool size: ⁇ 60mm Processing pressure: 0.513 psi Number of resin substrates: 1 flow rate: pure water 2 ml / min. Polishing time: 261 sec.
  • polishing rate is measured by measuring the film thickness of the synthetic resin paint before and after polishing with an electromagnetic induction type film thickness measuring device, measuring four places on the substrate 10 times each, taking the difference of the average value as a substitute, and dividing by the polishing time. Calculated.
  • the porosity of the aggregate was measured by pore distribution measurement using Autopore IV9520 manufactured by Shimadzu Corporation.
  • the same abrasive grains were used to change the amount of glass frit, but increasing the amount of glass frit reduced the porosity.
  • the porosity may be 5 to 19 vol%. It is more preferably 5 to 18 vol%.
  • the surface area of the aggregate was measured by pore distribution measurement using Autopore IV9520 manufactured by Shimadzu Corporation. As a measurement condition, a small amount of each sample was taken and the measurement was performed under the condition of an initial pressure of 11 kPa.
  • the granule strength was in the range of 20 MPa to 150 MPa by adjusting the size of the abrasive grains and the volume ratio of the glass frit binder to the abrasive grains.
  • the polishing rate was obtained.
  • the value was calculated by dividing the value of Rzjis by the polishing rate.
  • the value of Rzjis / polishing rate was less than 7, and it was confirmed that the scratch depth was sufficiently shallow with respect to the polishing rate.
  • Bi was contained in the binder, it was confirmed that the Rzjis / polishing rate was better.
  • Comparative Examples 1, 2, 4, 5, and 7 the granule strength of the aggregate was out of the range of 20 MPa to 150 MPa due to the presence or absence of the glass frit and the volume ratio thereof.
  • Comparative Example 6 the aggregate had a granule strength of 20 MPa to 150 MPa, but did not contain a glass frit as a binder.
  • Comparative Example 3 no aggregate was formed in the first place. For this reason, in these comparative examples, a high polishing rate cannot be obtained, and the value of Rzjis / polishing rate after polishing of the synthetic resin coating film on the metal material to be polished is 7 or more. It was confirmed that the depth of the scratch was deep.

Abstract

The purpose of the present invention is to provide a polishing material whereby it becomes possible to reduce the depths of scratches while improving a polishing rate and the processing ability cannot be deteriorated. Provided is a granular polishing material which comprises aggregates each comprising abrasive grains and a binder that binds the grains together, the granular polishing material being characterized in that each of the abrasive grains has such a structure that at least a part is coated with the binder and the aggregates have grain strength of 20 to 150 MPa.

Description

顆粒状研磨材、研磨工具及び研磨方法Granular abrasive, polishing tool and polishing method
 本発明は、研磨材に関する。より詳しくは、樹脂素材を研磨するための顆粒状研磨材に関する。 The present invention relates to an abrasive. More specifically, the present invention relates to a granular abrasive for polishing a resin material.
 研磨工具に求められる性能として加工力が高い、すなわち研磨レートが高いことがある。一般に研磨レートを高くするために、粒子径の大きい砥粒を用いることが知られている。しかしながら、粒子径の大きい砥粒を使用すると、研磨レートは容易に高くなるものの、被研磨面に対し深い傷が入る。深い傷が入ると後工程により傷を除去するために費やされる加工時間が増大するため、プロセスとして適用できなくなる。このことから、研磨レートを高くしつつ、傷の深さを浅くすることが従来からの課題である。 The performance required of the polishing tool may be high working power, that is, high polishing rate. In general, it is known to use abrasive grains having a large particle diameter to increase the polishing rate. However, when abrasive grains having a large particle diameter are used, the polishing rate is easily increased, but deep scratches occur on the surface to be polished. When a deep flaw is formed, the processing time required for removing the flaw in a later step increases, and the flaw cannot be applied as a process. For this reason, it has been a conventional problem to reduce the depth of scratches while increasing the polishing rate.
 例えば、自動車等の塗装面は樹脂でコーティングされているが、表層は塗装時のうねりが生じており微小な凹凸が存在しており光沢度が十分では無い。その凹凸を解消するために一般的にはハンドポリシャーに研磨工具を貼り付けて研磨を行い表層の凹凸を平滑化することが行われている。通常、粗目(研磨工具に使用される砥粒の粒子径が大きい)の研磨工具から徐々に砥粒の粒子径を小さくした研磨工具を順に使用することで、塗装面の樹脂表層の凹凸が無くなり光沢のある面となる。このような加工は樹脂基材に砥粒を固定化した研磨工具を用いることで、平滑な面とすることができるが、使用する砥粒の粒子径が大きい場合、深い傷が入り被研磨面が白ボケ(深い傷による光の乱反射が起きた状態)し、上記のように深い傷を解消するために費やされる後工程の時間が長くなりすぎる。自動車等の塗装面である樹脂の研磨においても研磨レートの向上と傷深さの抑制が課題となっている。また、自動車塗装面の樹脂被膜以外でも、同様な課題がある。 For example, the painted surface of an automobile or the like is coated with a resin, but the surface layer has undulation at the time of painting and has fine irregularities, and the glossiness is not sufficient. Generally, in order to eliminate the irregularities, a polishing tool is attached to a hand polisher and polished to smooth the irregularities on the surface layer. Normally, by using a polishing tool with a coarser (larger particle size of the abrasive grains used in the polishing tool) in order from a coarser polishing tool, the roughness of the resin surface layer on the painted surface is eliminated. It becomes a glossy surface. Such a processing can be performed by using a polishing tool in which abrasive grains are fixed to a resin base material, so that a smooth surface can be obtained. However, white blurring occurs (a state in which light is irregularly reflected due to deep scratches), and the time of a post-process used for eliminating deep scratches as described above becomes too long. In polishing a resin which is a painted surface of an automobile or the like, improvement of a polishing rate and suppression of a scratch depth are issues. In addition, there is a similar problem other than the resin film on the painted surface of an automobile.
 研磨レートを高くしつつ、傷の深さを浅くすることができる技術として、研磨中に砥粒の凝集体が崩壊し、次々と新しい砥粒が自生(使用された砥粒が脱落しまだ使用されていない次の砥粒が出現)することにより、研磨レートが維持され、凝集体を構成する砥粒自体を小さくしておくことで傷の深さを低減する技術(特許文献1)や、比較的軟質な樹脂素材の砥粒を固定化することで傷の深さを浅くする技術(特許文献2)等が提案されている。 As a technology that can reduce the depth of scratches while increasing the polishing rate, agglomerates of abrasive grains collapse during polishing, and new abrasive grains grow in succession (used abrasive grains fall off and are still in use) The polishing rate is maintained by the appearance of the next abrasive grain that has not been formed), and the technique of reducing the depth of the scratch by reducing the size of the abrasive grains constituting the aggregate (Patent Document 1), A technique of fixing the abrasive grains of a relatively soft resin material to reduce the depth of a flaw has been proposed (Patent Document 2).
 しかしながら、特許文献1では、砥粒を保持するために砥粒を高温度で焼成するため、砥粒の端部が丸みを帯びてしまい本質的には加工力を失っており、また、そもそも砥粒を保持する結合材が含まれていないため、樹脂を加工するための加工力に乏しい。また、特許文献2では、軟質素材の周りに砥粒を保持させているため、被研磨面の傷を浅くする効果は高いものの、機械的なエネルギーで加工を行う用途においては、そもそも砥粒を強固に保持できないため、加工力が乏しいことがある。 However, in Patent Document 1, since the abrasive grains are fired at a high temperature in order to retain the abrasive grains, the edges of the abrasive grains are rounded and essentially lose the processing power. Since it does not contain a binder that holds the grains, the processing power for processing the resin is poor. Further, in Patent Document 2, since the abrasive grains are held around the soft material, the effect of reducing the scratches on the surface to be polished is high. However, in the case of processing with mechanical energy, the abrasive grains are originally used. Since it cannot be held firmly, the processing power may be poor.
特開2003-105324号公報JP 2003-105324 A 特表2017-508018号公報JP-T-2017-508018
 本発明は、例えば樹脂素材を研磨する際に使用する研磨材として、研磨レートを向上しつつ被研磨面の傷の深さを抑制することができ、しかも加工力が低下することのない研磨材および研磨工具を提供することを目的とする。 The present invention is, for example, an abrasive used when polishing a resin material, which can suppress the depth of scratches on the surface to be polished while improving the polishing rate, and which does not reduce the processing power And a polishing tool.
 本発明者らは、上記課題を解決すべく鋭意研究を積み重ねた。その結果、砥粒と砥粒同士を結合する結合材を含む凝集体を含む顆粒状研磨材であって、砥粒は結合材により少なくとも一部分が被覆された構造を有し、凝集体の顆粒強度が20MPa~150MPaであり、砥粒のモース硬度が8以上であり、且つ凝集体を構成する砥粒のモース硬度未満である研磨材を研磨に使用することで上記課題が解決されることを見出した。 The present inventors have conducted intensive research to solve the above-mentioned problems. As a result, the abrasive is a granular abrasive containing an agglomerate that includes an abrasive and a binder that bonds the abrasives together, wherein the abrasive has a structure that is at least partially covered by the binder, and the granular strength of the agglomerate Found that the above problem is solved by using an abrasive having a Mohs hardness of 20 MPa to 150 MPa, a Mohs hardness of the abrasive grains of 8 or more, and less than the Mohs hardness of the abrasive grains constituting the aggregate. Was.
 本発明によれば、樹脂素材の研磨する際に使用する研磨材として、研磨レートを向上しつつ被研磨面の傷の深さを抑制することができ、しかも加工力が低下することのない研磨材および研磨工具を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the grinding | polishing which can suppress the depth of the damage | wound of a to-be-polished surface while improving a grinding | polishing rate as an abrasive used when grind | polishing a resin raw material, and also does not reduce working power Materials and polishing tools can be provided.
本発明の顆粒状研磨材の造粒後の凝集体のSEM写真を示す。1 shows an SEM photograph of an aggregate after granulation of the granular abrasive of the present invention. 図1に示される凝集体の焼成後のSEM写真を示す。2 shows an SEM photograph of the aggregate shown in FIG. 1 after firing. 本発明の研磨工具の模式的な図を示し、(a)は平面図であり、(b)は(a)のA-Aにおける断面図である。1 is a schematic view of a polishing tool according to the present invention, in which (a) is a plan view, and (b) is a cross-sectional view taken along line AA of (a). 図3の研磨工具の断面図の表面部を模式的に拡大した図を示す。FIG. 4 is a schematic enlarged view of a surface portion of a cross-sectional view of the polishing tool of FIG. 3. 凝集体を樹脂基材上に樹脂バインダーにより固定化した状態のSEM写真を示す。5 shows an SEM photograph of a state in which the aggregate is fixed on a resin base material with a resin binder. 比較例4及び5において砥粒同士が結合した凝集体のSEM写真を示す。9 shows SEM photographs of aggregates in which abrasive grains are bonded to each other in Comparative Examples 4 and 5. 実施例1の研磨工具の研磨使用後のSEM写真を示す。2 shows an SEM photograph of the polishing tool of Example 1 after polishing. 本発明の顆粒状研磨材を砥石型に成形したものの形状の例を示す。(a)は立体形状を示すもので、(b)は(a)のB-Bにおける断面における構造を模式的に示す図である。The example of the shape of what shape | molded the granular abrasive of this invention in the grindstone type | mold is shown. (A) shows a three-dimensional shape, and (b) is a diagram schematically showing a structure in a cross section taken along line BB of (a). 本発明の顆粒状研磨材を砥石に成形し樹脂基材の上に固定化した研磨工具の模式図について示す。(a)はセグメント型砥石を樹脂基材の上に固定化した研磨工具の模式図であり、(b)は(a)のC-Cにおける断面図である。A schematic view of a polishing tool in which the granular abrasive of the present invention is formed into a grindstone and fixed on a resin base material is shown. (A) is a schematic diagram of a polishing tool in which a segment-type grindstone is fixed on a resin base material, and (b) is a cross-sectional view taken along line CC of (a).
 本発明の顆粒状研磨材は、砥粒と結合材を含む凝集体を含むもので、砥粒は結合材により少なくとも一部分が被覆された構造となっており、複数の砥粒が結合されて凝集体を構成している。なお顆粒とは同一又は異なる素材の微粉末を集合させて固めたもののことを呼ぶ。凝集体の顆粒強度は20MPa~150MPaであり、これを構成する個々の砥粒のモース硬度が8以上であり、且つ、砥粒のモース硬度未満であることにより、研磨時に凝集体が摩耗又は崩壊し、高い加工率および研磨速度を有し、かつ、被研磨面の傷の深さが抑制された高品位の研磨を行うことができる。  The granular abrasive of the present invention includes an agglomerate containing abrasive grains and a binder, and the abrasive grains have a structure at least partially covered with a binder. Constructs a collection. Note that a granule refers to a product obtained by collecting and hardening fine powders of the same or different materials. The granule strength of the aggregate is 20 MPa to 150 MPa, and the individual abrasive grains constituting the aggregate have a Mohs hardness of 8 or more and less than the Mohs hardness of the abrasive grains. In addition, it is possible to perform high-quality polishing with a high processing rate and a high polishing rate and with a reduced depth of a scratch on the surface to be polished.
<砥粒>
 本発明の顆粒状研磨材において、砥粒はモース硬度8以上のものであればよく、8以上であれば特に限定されないが、9以上であるとより好ましい。モ-ス硬度が8未満の砥粒のみであると、加工が進行しなくなる傾向にある。なお、本明細書における「モース硬度」は、旧モース硬度(修正モース硬度では無い)を意味する。これは、以下の10種の鉱物を標準物質として、これらと比較した硬さを評価する方法であり、標準物質とサンプルとをこすり、ひっかき傷が付いた方が低い硬度であるとして判定を行う。モース硬度を直接測定することが困難な場合、組成分析から組成を求め、同じ組成の物質のモース硬度から判断することができる。
<Abrasives>
In the granular abrasive of the present invention, the abrasive grains may have a Mohs hardness of 8 or more, and are not particularly limited as long as they are 8 or more, but more preferably 9 or more. When only the abrasive grains having a Mohs hardness of less than 8 are used, the processing tends to stop. The “Mohs hardness” in the present specification means the old Mohs hardness (not the modified Mohs hardness). This is a method of evaluating the hardness in comparison with the following ten minerals as a standard substance, and rubbing the standard substance and the sample, and determining that the scratched one has a lower hardness. . When it is difficult to directly measure the Mohs hardness, the composition can be determined from the composition analysis, and the determination can be made from the Mohs hardness of a substance having the same composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 モース硬度8以上を有する砥粒としては、例えば、タングステンカーバイド(モース硬度8)、ホウ化ジルコニウム(モース硬度8)、窒化アルミニウム(モース硬度8)、酸化アルミニウム(モース硬度9)、窒化チタン(モース硬度9)、炭化チタン(モース硬度9)、炭化タンタル(モース硬度9)、炭化ジルコニウム(モース硬度9)、クロム(モース硬度9)ホウ化アルミニウム(モース硬度9)、ボロンカーバイド(モース硬度9)、炭化ケイ素(モース硬度9)、立方晶窒化ホウ素(cBN、モース硬度9.5)、炭化ホウ素(モース硬度9.5)、ホウ化チタン(モース硬度9.5)、ダイヤモンド(モース硬度10)等がある。なお、砥粒が複数種類混合されている場合は、主成分のモース硬度が8以上であればよい。砥粒の粒子径は必要となる研磨レートと、目標とすべき傷深さの値により決定されるが、樹脂素材の研磨においては好ましくは平均粒子径が1~15μmであり、より好ましくは2~10μmであり、さらに好ましくは3~8μmである。より詳細には研磨レートを向上するという観点からは、砥粒の平均粒子径は好ましくは6~15μmであり、より好ましくは8~13μmである。傷深さの抑制という観点からは、砥粒の平均粒子径は好ましくは1~10μmであり、より好ましくは2~8μmである。なお、粒子径の測定は電気抵抗式粒度分布測定機(ベックマンコールター社製Multisizer3)等を用いて行うことができる。 Examples of abrasive grains having a Mohs hardness of 8 or more include tungsten carbide (Mohs hardness 8), zirconium boride (Mohs hardness 8), aluminum nitride (Mohs hardness 8), aluminum oxide (Mohs hardness 9), and titanium nitride (Mohs hardness). Hardness 9), titanium carbide (Mohs hardness 9), tantalum carbide (Mohs hardness 9), zirconium carbide (Mohs hardness 9), chromium (Mohs hardness 9), aluminum boride (Mohs hardness 9), boron carbide (Mohs hardness 9) , Silicon carbide (Mohs hardness 9), cubic boron nitride (cBN, Mohs hardness 9.5), boron carbide (Mohs hardness 9.5), titanium boride (Mohs hardness 9.5), diamond (Mohs hardness 10) Etc. When a plurality of types of abrasive grains are mixed, it is sufficient that the Mohs hardness of the main component is 8 or more. The particle diameter of the abrasive grains is determined by the required polishing rate and the value of the target flaw depth. In the polishing of a resin material, the average particle diameter is preferably 1 to 15 μm, more preferably 2 to 15 μm. To 10 μm, and more preferably 3 to 8 μm. More specifically, from the viewpoint of improving the polishing rate, the average particle size of the abrasive grains is preferably from 6 to 15 μm, and more preferably from 8 to 13 μm. From the viewpoint of suppressing the scratch depth, the average grain size of the abrasive grains is preferably 1 to 10 μm, more preferably 2 to 8 μm. The particle diameter can be measured using an electric resistance type particle size distribution analyzer (Multisizer 3 manufactured by Beckman Coulter, Inc.) or the like.
<結合材>
 本発明の顆粒状研磨材において、結合材は凝集体を構成する砥粒のモース硬度未満であればよい。結合材のモース硬度が砥粒のモース硬度以上であると、凝集体そのものが個体粒子として機能して傷が深くなったり、凝集体が摩耗しにくくなることですぐに目つぶれが発生し、研磨が進行しなくなる傾向にある。なお、結合材が複数の種類の混合物である場合は、主成分(最も含有量の多い化合物)のモース硬度が砥粒のモース硬度未満であればよい。
<Binder>
In the granular abrasive of the present invention, the binder only needs to be less than the Mohs hardness of the abrasive grains constituting the aggregate. If the Mohs hardness of the binder is higher than the Mohs hardness of the abrasive grains, the agglomerates themselves will function as individual particles, causing deep flaws, and the agglomerates will be less likely to wear, causing immediate blinding and polishing. Tends to stop progressing. When the binder is a mixture of a plurality of types, it is only necessary that the Mohs hardness of the main component (the compound having the highest content) be less than the Mohs hardness of the abrasive grains.
 結合材として、典型的にはガラスフリットを使用することができる。ガラスフリットの成分は例えばSiO(モース硬度7)等を主成分とするものを使用することができる。また焼成コスト低減のためBi(モース硬度2~3)等のBiを含む低融点ガラスフリットを使用しても良い。Biを含むガラスフリットは、溶融したガラスの流動性が良く砥粒周辺に溶融したガラスフリットが均一に付着するため、砥粒保持力が保たれ、研磨レートの向上、及び、傷の低減の観点からも好ましい。本発明においては酸化アルミニウムの形状が変化する温度以下で凝集体を焼成する必要があるため1100℃以下の焼結温度を持つガラスフリットを使用するとよい。具体的にはガラス転移温度が800℃以下のガラスフリットが望ましく、700℃以下がより望ましい。 Typically, a glass frit can be used as the binder. As a component of the glass frit, for example, a component mainly containing SiO 2 (Mohs hardness 7) or the like can be used. Further, a low melting point glass frit containing Bi such as Bi 2 O 3 (Mohs hardness 2 to 3) may be used to reduce the firing cost. The glass frit containing Bi has a high fluidity of the molten glass and the molten glass frit uniformly adheres around the abrasive grains, so that the abrasive frit holding power is maintained, the polishing rate is improved, and the viewpoint of reducing scratches is improved. Is also preferred. In the present invention, it is necessary to fire the aggregate at a temperature lower than the temperature at which the shape of the aluminum oxide changes, so that a glass frit having a sintering temperature of 1100 ° C. or lower is preferably used. Specifically, a glass frit having a glass transition temperature of 800 ° C. or less is desirable, and 700 ° C. or less is more desirable.
 結合材のモース硬度は、砥粒のモース硬度未満であれば特に制限されないが、1.5以上であると好ましく、2以上であるとより好ましい。また、7.5以下であると好ましく、7以下であるとより好ましく、5以下であるとさらに好ましい。結合材のモース硬度がこの範囲であると、傷を低減することができる。なお、結合材が複数の種類の混合物である場合は、主成分の化合物のモース硬度がこの範囲であればよい。 モ ー The Mohs hardness of the binder is not particularly limited as long as it is less than the Mohs hardness of the abrasive grains, but is preferably 1.5 or more, more preferably 2 or more. Further, it is preferably 7.5 or less, more preferably 7 or less, and even more preferably 5 or less. When the Mohs hardness of the binder is within this range, scratches can be reduced. When the binder is a mixture of a plurality of types, the Mohs hardness of the main component compound may be within this range.
 ガラスフリットにBiを含む場合、Biとしての含有量がガラスフリット全体の30質量%以上であると好ましく、50質量%以上であるとより好ましく、70質量%以上であるとさらに好ましく、80質量%以上であると最も好ましい。また、95質量%以下であると好ましく、90質量%以下であるとより好ましい。Biとしての含有量がこの範囲内であると、傷を低減することができる。 When Bi is contained in the glass frit, the content as Bi 2 O 3 is preferably 30% by mass or more of the whole glass frit, more preferably 50% by mass or more, and even more preferably 70% by mass or more. Most preferably, it is 80% by mass or more. Moreover, it is preferable that it is 95 mass% or less, and it is more preferable that it is 90 mass% or less. When the content as Bi 2 O 3 is within this range, scratches can be reduced.
 凝集体の顆粒強度を20MPa~150MPaに制御するには、砥粒の粒子径と凝集体の大きさに応じて、結合材の体積率を変えることによって行うことができる。顆粒強度は25MPa~120MPaがより好ましい。例えば、ガラスフリットの場合、一般的には、砥粒に対してガラスフリットの体積率は20~300%、好ましくは40~200%であると顆粒強度を20MPa~150MPaの範囲に制御しやすい。また、粒子径が4μmの砥粒とガラスフリットの場合、顆粒強度を20MPa~150MPaの範囲にするためには、ガラスフリットの体積換算での混合比率は10%~200%が好ましく、20%~175%がより好ましく、30%~150%がさらに好ましい。凝集体の粒子径が同等の場合で、使用する砥粒の粒子径が大きくなるとガラスフリットの混合比率は少ないほうが最適な顆粒強度が得やすく、使用する砥粒の粒子径が小さくなるとガラスフリットの混合比率は大きいほうが最適な顆粒強度が得やすくなる。その他、結合材の粒子径の調整、焼結温度の調整、焼結時間の調整等によっても凝集体の顆粒強度の制御が可能である。 顆粒 The granule strength of the aggregate can be controlled to 20 MPa to 150 MPa by changing the volume ratio of the binder in accordance with the particle diameter of the abrasive grains and the size of the aggregate. The granule strength is more preferably from 25 MPa to 120 MPa. For example, in the case of a glass frit, generally, when the volume ratio of the glass frit to the abrasive is 20 to 300%, preferably 40 to 200%, the granule strength can be easily controlled in the range of 20 MPa to 150 MPa. Further, in the case of an abrasive having a particle diameter of 4 μm and a glass frit, the mixing ratio in terms of volume of the glass frit is preferably 10% to 200%, and more preferably 20% to 20% in order to keep the granule strength in the range of 20 MPa to 150 MPa. 175% is more preferable, and 30% to 150% is still more preferable. When the particle size of the aggregates is the same, the smaller the mixing ratio of the glass frit when the particle size of the abrasive used is large, the easier it is to obtain the optimal granule strength, and when the particle size of the abrasive used is small, The larger the mixing ratio, the easier it is to obtain the optimum granule strength. In addition, the granule strength of the aggregate can be controlled by adjusting the particle size of the binder, adjusting the sintering temperature, adjusting the sintering time, and the like.
<凝集体の製造>
 本発明の顆粒状研磨材において、凝集体は砥粒と結合材が均一に分散された構造を有する。砥粒の少なくとも一部分が結合材により被覆されて、砥粒同士が結合することにより凝集体を構成している。
<Manufacture of aggregates>
In the granular abrasive of the present invention, the aggregate has a structure in which the abrasive grains and the binder are uniformly dispersed. At least a portion of the abrasive grains is covered with a binder, and the abrasive grains are combined to form an aggregate.
 凝集体は、典型的には、造粒、乾燥、焼成、粉砕、篩い分けの工程によって得ることができる。造粒は、砥粒と結合材とを混合し水を加えスラリーとし、例えば、噴霧式乾燥機を使用して造粒、乾燥することによって行われる。造粒のためには、水溶性高分子や樹脂バインダーを含んでもよい。また、砥粒を分散させるために分散剤を含んでも良い。ただし、これらの成分を含まなくとも砥粒同士の分子間力による結合や水中に含まれる塩分が固形化することで砥粒同士が凝集することによって造粒することも可能である。乾燥温度は、100~250℃の範囲でよく、例えば、噴霧式乾燥機の場合、乾燥機の入口温度を200~250℃程度、出口温度を100~150℃程度に設定してもよい。 Agglomerates can be typically obtained by the steps of granulation, drying, baking, crushing, and sieving. Granulation is performed by mixing abrasive grains and a binder, adding water to form a slurry, and granulating and drying using, for example, a spray dryer. For granulation, a water-soluble polymer or a resin binder may be included. Further, a dispersant may be included to disperse the abrasive grains. However, even if these components are not included, it is also possible to perform granulation by agglomeration of the abrasive grains due to the bonding between the abrasive grains due to the intermolecular force and solidification of the salt contained in the water. The drying temperature may be in the range of 100 to 250 ° C. For example, in the case of a spray dryer, the inlet temperature of the dryer may be set to about 200 to 250 ° C, and the outlet temperature may be set to about 100 to 150 ° C.
 凝集体の顆粒強度は空隙率によっても左右される。空隙率は、例えば、細孔分布測定により行うことがきるが、結合材の配合量によって影響を受ける。一般的には、結合材の配合量を増やすと空隙率が低下する傾向にある。凝集体の顆粒強度を20MPa~150MPaに制御するための最適な空隙率が存在し、例えば、平均粒子径が4μmの砥粒を用いた場合には空隙率が5~19vol%であることが好ましく、5~18vol%であることがより好ましい。 顆粒 The granule strength of the aggregates is also affected by the porosity. The porosity can be measured, for example, by pore distribution measurement, but is affected by the blending amount of the binder. In general, the porosity tends to decrease when the amount of the binder is increased. There is an optimum porosity for controlling the granule strength of the aggregate to 20 MPa to 150 MPa. For example, when abrasive grains having an average particle diameter of 4 μm are used, the porosity is preferably 5 to 19 vol%. And more preferably 5 to 18 vol%.
 顆粒強度は例えば圧縮試験装置によって測定することができる。例えば、島津製作所社製の微小圧縮試験装置MCT-510を使用することができる。測定条件は、例えば、試験力100[gf]、負荷速度16(約1.3[gf/sec])、圧子の種類を平面圧子50μmとすることができる。強度の計算はメーカー指定の粒子に関する計算式により算出することができる。 The granule strength can be measured by, for example, a compression tester. For example, a micro compression tester MCT-510 manufactured by Shimadzu Corporation can be used. The measurement conditions are, for example, a test force of 100 [gf], a load speed of 16 (approximately 1.3 [gf / sec]), and a type of indenter of 50 μm. The strength can be calculated by a formula relating to particles specified by the manufacturer.
 水溶性高分子としては、寒天やデンプン等の天然水溶性高分子、ポリビニルアルコール、ポリアクリル酸ナトリウム等の合成水溶性高分子、セルロース誘導体等の天然原料由来の半合成水溶性高分子等を使用することができる。 As the water-soluble polymer, a natural water-soluble polymer such as agar or starch, a synthetic water-soluble polymer such as polyvinyl alcohol or sodium polyacrylate, or a semi-synthetic water-soluble polymer derived from a natural material such as a cellulose derivative is used. can do.
 樹脂バインダーとしては、例えば、市販されているウレタン樹脂、エポキシ樹脂、フェノール樹脂等の接着剤が使用可能である。また、水系、油系、有機系のいずれも使用可能であり液性が本発明で限定されるものではない。 接着 As the resin binder, for example, a commercially available adhesive such as urethane resin, epoxy resin, and phenol resin can be used. In addition, any of an aqueous system, an oil system, and an organic system can be used, and the liquid property is not limited by the present invention.
 分散剤としては、ポリカルボン酸系、ポリエチレングリコール、アルキルスルホン酸、四級アンモニウム、ポリリン酸塩等の一般的な分散剤を使用することができる。 と し て As the dispersant, a general dispersant such as polycarboxylic acid, polyethylene glycol, alkylsulfonic acid, quaternary ammonium, polyphosphate and the like can be used.
 得られた造粒後の乾燥粉中に含まれる結合材を焼結させるため、結合材の種類に応じて推奨される標準的な焼成条件にて焼成する。一般的には焼成温度は400~1200℃程度である。例えば、ガラスフリットに設定された標準の焼成条件は450~850℃程度であればよい。焼成は例えば、焼成炉で行われ、焼成温度は例えばリファサーモによって測定してもよい。焼成温度が600℃以下の場合はリファサーモから焼成温度を推定することが難しいため、焼成物付近に設置した熱電対の温度データから焼成温度を推定してもよい。焼成の凝集体のSEM写真を図1に示した。 焼 成 In order to sinter the binder contained in the obtained granulated dry powder, bake it under standard baking conditions recommended according to the type of binder. Generally, the firing temperature is about 400 to 1200 ° C. For example, the standard firing conditions set for the glass frit may be about 450 to 850 ° C. The sintering is performed, for example, in a sintering furnace, and the sintering temperature may be measured by, for example, a reference thermo. When the firing temperature is 600 ° C. or lower, it is difficult to estimate the firing temperature from the reference thermometer. Therefore, the firing temperature may be estimated from temperature data of a thermocouple installed near the fired product. FIG. 1 shows an SEM photograph of the fired aggregate.
 焼成後の凝集体の焼成物を解砕し、必要に応じて、篩い分けすることにより適宜必要とされる粒子径を有する凝集体を得ることができる。凝集体の粒子径は限定されないが、10μm以上が好ましく、20μm以上がより好ましく、30μm以上がさらに好ましい。この範囲であれば、後述する研磨工具として使用する際の凝集体の突出し量が適切となる傾向にある。また凝集体の粒子径は100μm以下が好ましく、80μm以下がより好ましく、70μm以下がさらに好ましい。この範囲であれば、後述する研磨工具として使用する際に凝集体と研磨対象物との接触点数が適切となる傾向にある。凝集体が10μmを下回ると例えば樹脂フィルム上に顆粒状研磨材を固定化した工具の場合、顆粒が突出す距離が短くなり研磨性能が低くなる傾向にある。また、100μmを超えると固定化できる顆粒状研磨材の個数が減り空隙が多くなりすぎて研磨対象物との接触面積が不安定となり安定的な加工ができなくなる傾向にある。 凝集 Agglomerates having the required particle size can be obtained by crushing the fired aggregates after calcination and, if necessary, sieving. The particle diameter of the aggregate is not limited, but is preferably 10 μm or more, more preferably 20 μm or more, and further preferably 30 μm or more. Within this range, the amount of protrusion of the aggregate when used as a polishing tool described later tends to be appropriate. The particle diameter of the aggregate is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 70 μm or less. Within this range, the number of contact points between the aggregate and the object to be polished tends to be appropriate when used as a polishing tool described later. If the agglomerate is less than 10 μm, for example, in the case of a tool in which a granular abrasive is fixed on a resin film, the distance over which the granules protrude tends to be short, and the polishing performance tends to be low. On the other hand, if it exceeds 100 μm, the number of granular abrasives that can be immobilized decreases, the voids become too large, and the contact area with the object to be polished becomes unstable, so that stable processing tends to be impossible.
 上記のようにして得られた凝集体は、顆粒強度が20MPa~150MPaを有するため、研磨に使用することにより適度に摩耗又は崩壊し、被研磨材の被研磨面における傷を減少し、また、傷の深さを抑制することができる。顆粒強度が低すぎる場合は凝集体が過度に磨耗するか崩壊し、研磨加工が進行しない。顆粒強度が高すぎる場合、凝集体が摩耗しにくいため、凝集体を構成する研磨粒子が目つぶれした状態が維持されてしまうことと、研磨に伴って発生した切粉が凝集体中に目詰まりし研磨加工が進行しない。 Since the agglomerate obtained as described above has a granule strength of 20 MPa to 150 MPa, it is appropriately worn or disintegrated when used for polishing, reduces scratches on the surface to be polished of the material to be polished, The depth of the scratch can be suppressed. If the granule strength is too low, the agglomerates will be excessively worn or collapsed, and polishing will not proceed. If the granule strength is too high, the agglomerates are less likely to be worn, so that the abrasive particles constituting the agglomerates are maintained in a crushed state, and the chips generated during polishing are clogged in the agglomerates. Polishing does not proceed.
<研磨工具>
 本発明の研磨工具は、図3および図4に模式的に示されるように、凝集体4を樹脂基材2上に樹脂バインダー5により固定化することにより得ることができる。なお、図4は図1を拡大したものであり、図1の表面部1は図4の凝集体4が樹脂バインダー5に埋め込まれて形成されるものである。樹脂基材2は、例えば市販されている工業用の樹脂フィルムが使用できる。樹脂バインダーとの濡れ性や密着性を向上させるために各種表面処理が実施されたものでも良い。例えば、厚み約200μm程度の樹脂フィルムを使用することができる。
<Polishing tool>
The polishing tool of the present invention can be obtained by fixing the aggregate 4 on the resin base material 2 with the resin binder 5 as schematically shown in FIGS. FIG. 4 is an enlarged view of FIG. 1, and the surface portion 1 of FIG. 1 is formed by embedding the aggregate 4 of FIG. As the resin substrate 2, for example, a commercially available industrial resin film can be used. Various surface treatments may be performed to improve the wettability and adhesion with the resin binder. For example, a resin film having a thickness of about 200 μm can be used.
 凝集体を樹脂フィルム上に固定化するためには、まず、凝集体とバインダー溶液を混合したスラリー溶液を作成し、このスラリー溶液を樹脂フィルム上に塗布することにより、樹脂フィルム上に塗布された樹脂バインダー中に凝集体の一部が埋め込まれた状態で固定化することができる。スラリー液の塗布はワイヤーバーコーターを使用して行うことができる。樹脂バインダーとしては、一般的なコーティング材である樹脂や接着剤を使用することができ、水系、油系、有機系のいずれも使用可能であり液性によって限定されるものではない。例えば、ウレタン樹脂、エポキシ樹脂、フェノール樹脂等を使用することができる。 In order to fix the aggregate on the resin film, first, a slurry solution in which the aggregate and the binder solution were mixed was prepared, and the slurry solution was applied on the resin film, thereby being applied on the resin film. The aggregate can be immobilized in a state where a part of the aggregate is embedded in the resin binder. The application of the slurry liquid can be performed using a wire bar coater. As the resin binder, a resin or an adhesive, which is a general coating material, can be used, and any of an aqueous, an oil, and an organic can be used and is not limited by the liquid property. For example, urethane resin, epoxy resin, phenol resin and the like can be used.
 樹脂基材2は、スポンジ材3に接着して研磨工具1Bを構成してもよい。樹脂基材2とスポンジ材3の接着は両面テープなどを使用して行うことができる。スポンジ材としては、研磨パッド等で使用される不織布状のもの、発泡ウレタン等の多孔質構造の樹脂素材等を使用することができる。このように基材は複数の素材を組み合わせても良い。例えば工業樹脂フィルムに対し、研磨パッド等で使用される不織布を両面テープ等で貼りあわせる等、任意の厚みのものが使用でき、所望の物性を持たせるためそれらの組み合わせを変えることができる。 The resin substrate 2 may be bonded to the sponge material 3 to constitute the polishing tool 1B. The bonding between the resin base material 2 and the sponge material 3 can be performed using a double-sided tape or the like. As the sponge material, a non-woven fabric used for a polishing pad or the like, a resin material having a porous structure such as urethane foam, or the like can be used. Thus, the base material may be a combination of a plurality of materials. For example, a nonwoven fabric used for a polishing pad or the like may be attached to an industrial resin film with a double-sided tape or the like, and an arbitrary thickness can be used, and the combination thereof can be changed to give desired physical properties.
 樹脂バインダーによる凝集体の埋め込み部分の厚み、すなわち、樹脂バインダーの膜厚は適当な厚みでよいが、凝集体の粒子径の半分以下の厚みであることが望ましい。凝集体の粒子径に対し樹脂バインダーの膜厚が半分を超えると凝集体が自生し摩耗した場合に凝集体の突出しが樹脂バインダーの膜に対し短いため研磨が進行しづらくなる傾向にある。また樹脂バインダーの膜厚が薄すぎると凝集体を十分に保持できるため凝集体の脱落が発生し凝集体そのものが研磨界面に存在してしまい深い研磨傷の発生のリスクが上がる。したがって、凝集体の平均粒子径に対し樹脂バインダーの膜厚が5%~50%が好ましく、10%~25%がより好ましい。 (4) The thickness of the portion where the agglomerate is embedded with the resin binder, that is, the thickness of the resin binder may be an appropriate thickness, but it is preferable that the thickness is not more than half the particle diameter of the agglomerate. If the thickness of the resin binder exceeds half of the particle diameter of the aggregate, when the aggregate is self-generated and worn, the protrusion of the aggregate is short relative to the resin binder film, so that the polishing tends to be difficult to proceed. If the thickness of the resin binder is too small, the aggregates can be sufficiently retained, so that the aggregates fall off and the aggregates themselves are present at the polishing interface, increasing the risk of generating deep polishing flaws. Therefore, the thickness of the resin binder is preferably 5% to 50%, more preferably 10% to 25%, based on the average particle diameter of the aggregate.
 研磨工具の表面において、研磨工具の表面積に対し凝集体が占める面積は、スラリー溶液中の凝集体の濃度によって変動する。研磨工具の表面積に対する砥粒が占める面積は、凝集体を塗布する際に凝集体の濃度を上げることで占有面積を向上させ、研磨工具の使用可能時間を延ばすことが可能となる。研磨工具の表面積に対し凝集体が占める面積は切粉排出性のために50%以下が好ましい。最適な凝集体の濃度は使用する砥粒の粒子径及び凝集体の粒子径によって影響されるが約40μmの凝集体であれば占有面積は5~30%が好ましく、10%~25%がより好ましい。 面積 On the surface of the polishing tool, the area occupied by the aggregates with respect to the surface area of the polishing tool varies depending on the concentration of the aggregates in the slurry solution. The area occupied by the abrasive grains with respect to the surface area of the polishing tool can be improved by increasing the concentration of the aggregate when applying the aggregate, thereby increasing the occupied area and extending the usable time of the polishing tool. The area occupied by the aggregates with respect to the surface area of the polishing tool is preferably 50% or less for the purpose of discharging chips. The optimum concentration of the aggregates is affected by the particle size of the abrasive grains used and the particle size of the aggregates, but if the aggregates are about 40 μm, the occupied area is preferably 5 to 30%, more preferably 10 to 25%. preferable.
<研磨対象物と研磨条件>
 研磨対象物の一つとして好適な樹脂素材はABS樹脂、AS樹脂、エポキシ樹脂、メラミン樹脂、ポリアミド樹脂、ポリエステル、ポリエチレン、ポリカーボネート、ポリエチレンテレフタレート、フェノール樹脂、ポリイミド樹脂、ポリメタクリル酸メチル、ポリプロピレン、ポリウレタン樹脂、ポリ塩化ビニル樹脂等が含まれるが、これに限定されるものではなく、その他の樹脂を含むものであってもよい。また、樹脂以外の材料についても好適に研磨できる。
<Polishing target and polishing conditions>
A resin material suitable as one of the objects to be polished is ABS resin, AS resin, epoxy resin, melamine resin, polyamide resin, polyester, polyethylene, polycarbonate, polyethylene terephthalate, phenol resin, polyimide resin, polymethyl methacrylate, polypropylene, polyurethane A resin, a polyvinyl chloride resin, or the like is included, but the resin is not limited thereto, and may include another resin. In addition, materials other than resin can be suitably polished.
 また樹脂素材は、樹脂のバルクそのものであっても良いし、建材等で用いられる木材やセラミックス等の物質表層に形成された樹脂被膜や、自動車等で用いられる金属材等の物質表層の塗装面のような樹脂被膜などであっても良い。 The resin material may be a resin bulk itself, a resin film formed on a material surface such as wood or ceramics used for building materials, or a painted surface of a material surface such as a metal material used for automobiles or the like. It may be a resin film as described above.
 樹脂素材の研磨においては、切粉の排出性の向上のため研磨工具と研磨対象物の界面に液体を供給しながら研磨を行うことが好ましい。液体は水や一般的な研削液などが使用できる。液体を使用しない場合でも研磨は可能であるが、研磨レートの向上のため液体を界面に供給しながら研磨することが好ましい。また、作業環境の観点からも切粉の粉塵による作業者への負担を軽減するためにも液体を供給することが好ましい。 研磨 In the polishing of the resin material, it is preferable to perform the polishing while supplying the liquid to the interface between the polishing tool and the object to be polished in order to improve the discharge property of the chips. As the liquid, water or a general grinding liquid can be used. Polishing is possible even when no liquid is used, but it is preferable to polish while supplying the liquid to the interface in order to improve the polishing rate. Also, from the viewpoint of the working environment, it is preferable to supply the liquid in order to reduce the burden on the operator due to the dust of the swarf.
 研磨荷重については、例えば、自動車等の塗装面の研磨においては手作業での研磨であるため比較的研磨の荷重が小さい条件で研磨されることが多い。一般的にポリッシャーの自重のみで研磨荷重を設定する場合が多く、具体的には20g重/cm~50g重/cm程度である。半導体基板や硬脆材素材等を研磨する場合、一般的には100g重/cm~300g重/cmの加工圧力で研磨されることが多い。本発明の研磨工具は比較的研磨荷重の低い研磨条件により好適に適用可能である。 Regarding the polishing load, for example, in the case of polishing a painted surface of an automobile or the like, the polishing is performed manually, and therefore the polishing is often performed under the condition that the polishing load is relatively small. Generally, the polishing load is often set only by the own weight of the polisher, specifically, about 20 gf / cm 2 to 50 gf / cm 2 . When polishing a semiconductor substrate, a hard brittle material, or the like, the polishing is generally performed at a processing pressure of 100 gf / cm 2 to 300 gf / cm 2 . The polishing tool of the present invention can be suitably applied to polishing conditions having a relatively low polishing load.
(砥石状研磨工具)
 図8(a)に模式的に示すように、本発明の顆粒状研磨材の凝集体4を立方体等の3次元形状の型に充填し、再度ガラスフリットの溶融する温度で焼成することで砥石状研磨工具1Cを成型することができる。3次元形状は、立方体に限らず、直方体、円柱等であってよい。凝集体4を充填することにより、粒子間に空隙6ができ研磨時にチップポケットとして機能させることができるため、砥石として良好な研磨性能を発揮する。図8(b)は、図8(a)のB-Bにおける断面の構造を模式的に示すものであるが、凝集体4と空隙6からなる構造の反復数は砥石の大きさに依存する。
(Whetstone polishing tool)
As schematically shown in FIG. 8 (a), the agglomerate 4 of the granular abrasive of the present invention is filled in a three-dimensional mold such as a cube, and fired again at a temperature at which the glass frit melts. The grinding tool 1C can be molded. The three-dimensional shape is not limited to a cube, but may be a rectangular parallelepiped, a cylinder, or the like. By filling the agglomerates 4, voids 6 are formed between the particles, which can function as chip pockets at the time of polishing, thereby exhibiting good polishing performance as a grindstone. FIG. 8B schematically shows a cross-sectional structure taken along the line BB of FIG. 8A. The number of repetitions of the structure including the aggregates 4 and the voids 6 depends on the size of the grindstone. .
(セグメント研磨工具)
 図9に模式的に示すように、成型した砥石状研磨工具1Cを樹脂基材2の上に樹脂バインダー(接着剤)5で固定化したセグメント研磨工具1Dとしても利用することができる。セグメントのサイズは特に限定されるものではないが、軟質な樹脂基材2の上のセグメント形状の砥石状研磨工具1Cを固定化する場合、セグメント形状の砥石状研磨工具1Cのサイズは研磨対象物の形状に追従させる必要があるため小さくすることが理想的である。すなわち、セグメント形状の砥石状研磨工具1Cの縦横のサイズが1mm×1mm以下であることが望ましい。
(Segment polishing tool)
As schematically shown in FIG. 9, a molded grinding stone-shaped polishing tool 1C can be used as a segment polishing tool 1D in which a resin binder (adhesive) 5 is fixed on a resin substrate 2. The size of the segment is not particularly limited, but when fixing the segment-shaped whetstone-shaped polishing tool 1C on the soft resin base material 2, the size of the segment-shaped whetstone-shaped polishing tool 1C is set to the object to be polished. Since it is necessary to follow the shape of the lens, it is ideal to reduce the size. That is, it is desirable that the vertical and horizontal size of the segment-shaped grindstone-shaped polishing tool 1C be 1 mm × 1 mm or less.
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、下記実施例において、特記しない限り、操作は室温(20~25℃)/相対湿度40~50%RHの条件下で行われた。 The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, unless otherwise specified, operations were performed at room temperature (20 to 25 ° C.) / Relative humidity of 40 to 50% RH.
<研磨工具の製造>
 (実施例1)
 表2に示される酸化アルミニウムからなる砥粒(フジミインコーポレーテッド社製WA、モース硬度9)及び結合材(SiO=78.2質量%、B=19.0質量%、その他=2.8質量%からなる組成を有するガラスフリットであり、主成分であるSiOのモース硬度=7。以下、「ガラスフリット1」とも称する)を表2に示される分量で混合し水を加えスラリーとし噴霧式乾燥機で造粒乾燥を行った。なお、ガラスフリットの成分中のBの含有量はガラスフリットメーカーの計測値を用いて、B以外の含有量は蛍光X線測定装置(株式会社島津製作所製EDX-720)を用いて、ガラスフリットの適量を手動プレス機にて成形したものを測定試料として測定し、各元素を酸化物として換算し各ガラスフリットの組成比率を求めた。その他の成分は、原料及びガラスフリット製造工程から混入するKやP等の微量成分であると推定される。
<Manufacture of polishing tools>
(Example 1)
Abrasive grains (WA manufactured by Fujimi Incorporated, Mohs hardness 9) and binder (SiO 2 = 78.2% by mass, B 2 O 3 = 19.0% by mass, other = 2) made of aluminum oxide shown in Table 2 A glass frit having a composition of 0.8% by mass, and Mohs hardness of SiO 2 as a main component = 7, hereinafter also referred to as “glass frit 1”), mixed in amounts shown in Table 2, added with water, and slurried. Granulation drying was performed using a spray dryer. The content of B 2 O 3 in the components of the glass frit was measured using a glass frit maker, and the content other than B 2 O 3 was measured with a fluorescent X-ray measuring device (EDX-720 manufactured by Shimadzu Corporation). Was used to measure an appropriate amount of glass frit molded by a manual press as a measurement sample, and each element was converted to an oxide to determine the composition ratio of each glass frit. Other components are presumed to be trace components such as K and P mixed from the raw material and the glass frit manufacturing process.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 スラリー中に含まれる砥粒と結合材の比率は表2に示される比率であるが、噴霧式乾燥機に導入する際のスラリー中の固形分濃度は噴霧式乾燥機の型式や温度選定により最適な値をとる。実施例1においては噴霧式乾燥機の入口温度は約240℃、出口温度は約110℃であり、噴霧中のスラリー中の固形分濃度は約50%であった。 The ratio of abrasive grains and binder contained in the slurry is the ratio shown in Table 2, but the solid content concentration in the slurry when introduced into the spray dryer is optimal depending on the model and temperature selection of the spray dryer. Value. In Example 1, the inlet temperature of the spray dryer was about 240 ° C., the outlet temperature was about 110 ° C., and the solid concentration in the slurry during spraying was about 50%.
 造粒後の乾燥粉は砥粒と結合材が均一に分散された顆粒状の凝集体となっておりその平均粒子径はレーザー散乱式粒度測定機(マイクロトラック社製MT-3300EX)によると40μmであった。顆粒状研磨材をSEMにより観察したところ、図1に示されるように砥粒と結合材が均一に分散した凝集体となっていることを確認した。 The dried powder after granulation is a granular agglomerate in which abrasive grains and a binder are uniformly dispersed, and the average particle diameter is 40 μm according to a laser scattering type particle size analyzer (MT-3300EX manufactured by Microtrack). Met. When the granular abrasive was observed by SEM, it was confirmed that, as shown in FIG. 1, an aggregate in which the abrasive grains and the binder were uniformly dispersed was formed.
 得られた凝集体中に含まれる結合材を焼結させるため、焼成を行った。使用した結合材はSiO、Bが成分であるガラスフリットであり平均粒子径はレーザー散乱式粒度分布測定機(HORIBA社製LA-950)による測定より約1μmである。ガラスフリットに設定された標準の焼成条件は850℃であるが、実際の焼成温度の測定は焼成時にリファサーモを同時に焼成炉内に入れ、リファサーモの焼成後の長さをマイクロメーターで測定することにより到達温度を判定したところ879℃であった。 Firing was performed to sinter the binder contained in the obtained aggregate. The binder used was a glass frit containing SiO 2 and B 2 O 3 as components, and the average particle diameter was about 1 μm as measured by a laser scattering particle size distribution analyzer (LA-950, manufactured by HORIBA). The standard firing condition set for the glass frit is 850 ° C, but the actual firing temperature is measured by simultaneously placing the refera-thermo in the kiln during firing and measuring the length of the referather after firing with a micrometer. The ultimate temperature was determined to be 879 ° C.
 得られた焼成後の凝集体をSEM観察したところ、図2に示されるように凝集体に含まれるガラスフリット成分が溶融しており砥粒を保持していることが確認できた。島津製作所社製の微小圧縮試験装置MCT-510を使用して、焼成後の凝集体の任意で抽出した10個について顆粒強度を測定したところ、その平均値は31MPaであった。測定条件は試験力100[gf]、負荷速度16(約1.3[gf/sec])、圧子の種類を平面圧子50μmとした。強度の計算はメーカー指定の粒子に関する計算式、強度[MPa]=(2.48×試験力[N])/(π×粒子径[mm]の二乗)により算出された値である。 (2) When the obtained aggregate after firing was observed by SEM, as shown in FIG. 2, it was confirmed that the glass frit component contained in the aggregate was molten and retained the abrasive grains. Granular strength of 10 randomly selected aggregates after firing was measured using a micro compression tester MCT-510 manufactured by Shimadzu Corporation. The average value was 31 MPa. The measurement conditions were a test force of 100 [gf], a load speed of 16 (approximately 1.3 [gf / sec]), and an indenter type of a flat indenter of 50 μm. The calculation of the strength is a value calculated by a calculation formula for particles specified by the manufacturer, strength [MPa] = (2.48 × test force [N]) / (π × square of particle diameter [mm]).
 次に、焼成後の凝集体の焼成物を解砕しJISの標準篩1(呼び寸法53μm)及び標準篩2(呼び寸法32μm)を用い、標準篩1を通過した凝集体をさらに標準篩2でふるい、標準篩2を通過しない凝集体を抽出した。 Next, the fired product of the aggregate after firing is crushed, and the aggregate passing through the standard sieve 1 is further passed through the standard sieve 1 (nominal size 53 μm) and standard sieve 2 (nominal size 32 μm). To extract aggregates that do not pass through the standard sieve 2.
 篩により抽出された凝集体をウレタン系樹脂バインダー溶液と混合した。混合した後のスラリー組成はウレタン系樹脂濃度が重量比率で20%、砥粒が10%、残りは溶媒分であった。混合したスラリーをマグネティックスターラーにて30分攪拌(スターラー回転数300rpm)し、目視で沈殿物が無いことを確認した後、スラリー2mlをA4サイズの樹脂フィルム(厚み約200μm)上に滴下し速やかに番線No.3のワイヤーバーコーター(規格上の膜厚が約7μm)で樹脂フィルム上に塗布した。塗布後に常温にて24時間以上乾燥した後、SEMで観察したところ、図5に示されるように、凝集体は崩壊しておらず、樹脂フィルム状に固定化されていることを確認した。 凝集 The aggregate extracted by the sieve was mixed with a urethane resin binder solution. The slurry composition after mixing was such that the urethane resin concentration was 20% by weight, the abrasive particles were 10%, and the remainder was solvent. The mixed slurry was stirred with a magnetic stirrer for 30 minutes (rotation speed of the stirrer: 300 rpm), and after visually confirming that there was no precipitate, 2 ml of the slurry was dropped on an A4 size resin film (thickness: about 200 μm) and immediately. Track No. 3 was applied on a resin film by a wire bar coater (standard thickness: about 7 μm). After drying at room temperature for 24 hours or more after the application, observation by SEM confirmed that, as shown in FIG. 5, the aggregates did not collapse and were fixed in a resin film shape.
 研磨性能を評価するため、顆粒状研磨材を樹脂基材に固定化したシートから所定のサイズで切り取り、砥粒の塗布されていない面とウレタンフォームからなるスポンジ材(厚み10mm)を両面テープで接着し、研磨工具を作製した。図4に示されるように、樹脂フィルムからなる樹脂基材2の表層には凝集体4が樹脂バインダー5により固定化されており、スポンジ層3と両面テープで接着した研磨工具1Bを得た。 In order to evaluate the polishing performance, a granular abrasive is cut out of a sheet fixed to a resin substrate in a predetermined size, and a sponge material (thickness: 10 mm) made of urethane foam and a surface to which no abrasive particles are applied is coated with a double-sided tape. Bonding was performed to produce a polishing tool. As shown in FIG. 4, an agglomerate 4 is fixed on a surface layer of a resin base material 2 made of a resin film by a resin binder 5, and a polishing tool 1B bonded to the sponge layer 3 with a double-sided tape is obtained.
 (実施例2~11、比較例1、2、7)
 実施例2~11、比較例1、2、7は、砥粒、結合材、砥粒に対する結合材の混合比、焼成温度を表2に示す内容で凝集体を形成し、樹脂基材に塗布するためのスラリー中に含まれる凝集体の濃度を表2に示す内容で研磨工具を作成した。なお、焼成温度の測定は600℃以下でありリファサーモから焼成温度を推定することが難しいため、焼成物付近に設置した熱電対の温度データから焼成温度を推定した。また、表2に示す結合材で「ガラスフリット2」は、B=12.0質量%、Bi=85.7質量%、その他=2.3質量%からなる成分を有し、主成分であるBiのモース硬度=2~3であり、「ガラスフリット3」は、B=12.0質量%、SiO=5.7質量%、Bi=59.2質量%、Alが10.2質量%、ZrOが7.6質量%、その他が5.3質量%からなる組成を有し、主成分であるBiのモース硬度=2~3である。ガラスフリット1~3の組成を表3に示した。
(Examples 2 to 11, Comparative Examples 1, 2, and 7)
In Examples 2 to 11 and Comparative Examples 1, 2, and 7, abrasives, a binder, a mixture ratio of the binder to the abrasives, and a sintering temperature were formed as shown in Table 2 to form an aggregate and applied to the resin base material. A polishing tool was prepared according to the contents shown in Table 2 for the concentration of aggregates contained in the slurry for polishing. Since the measurement of the firing temperature is 600 ° C. or less and it is difficult to estimate the firing temperature from the reference thermometer, the firing temperature was estimated from the temperature data of a thermocouple installed near the fired product. In the binder shown in Table 2, “glass frit 2” has a component composed of B 2 O 3 = 12.0% by mass, Bi 2 O 3 = 85.7% by mass, and others = 2.3% by mass. The Mohs hardness of Bi 2 O 3 , which is the main component, is 2-3, and “glass frit 3” is B 2 O 3 = 12.0 mass%, SiO 2 = 5.7 mass%, Bi 2 O 3 = 59.2 wt%, Al 2 O 3 is 10.2 wt%, ZrO 2 7.6% by weight, has a composition other consists of 5.3 wt%, Bi 2 O 3 as the main component Has a Mohs hardness of 2-3. Table 3 shows the compositions of the glass frits 1 to 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (比較例3)
 比較例3は、凝集体を形成せずに、砥粒をウレタン系樹脂バインダー溶液と混合し、実施例1と同様に、混合したスラリーを樹脂フィルム上に滴下しワイヤーバーコーターで樹脂フィルム上に塗布した。実施例1と同様に、砥粒が塗布された樹脂フィルムを所定のサイズで切り取り、砥粒の塗布されていない面とウレタンフォームからなるスポンジ材(厚み10mm)を両面テープで接着し、研磨工具を作成した。
(Comparative Example 3)
In Comparative Example 3, the abrasive grains were mixed with a urethane-based resin binder solution without forming an aggregate, and the mixed slurry was dropped on the resin film in the same manner as in Example 1, and the resultant was coated on the resin film with a wire bar coater. Applied. In the same manner as in Example 1, the resin film coated with the abrasive grains is cut into a predetermined size, and the surface on which the abrasive grains are not applied and a sponge material (10 mm thick) made of urethane foam are bonded with a double-sided tape, and a polishing tool is used. It was created.
 (比較例4~6)
 比較例4~6は、結合材を使用しないで砥粒のみで噴霧式乾燥機により凝集体を形成し、それぞれ、その凝集体を砥粒成分そのものが焼結する温度の凡そ1200℃以上となる表2に記載の温度で焼成することにより凝集体を形成し、実施例1同様にして、同様の乾燥条件で基材にワイヤーバーコーターで固定化することにより研磨工具を作成した。
(Comparative Examples 4 to 6)
In Comparative Examples 4 to 6, agglomerates were formed by a spray dryer using only abrasive grains without using a binder, and the respective agglomerates were heated to about 1200 ° C. or more at the temperature at which the abrasive component itself was sintered. Agglomerates were formed by firing at the temperature shown in Table 2, and fixed to a substrate with a wire bar coater under the same drying conditions as in Example 1 to prepare a polishing tool.
<評価>
 上記で準備した実施例1~6及び比較例1~6の研磨工具を用いて、下記に示す条件で、合成樹脂表面の研磨を行ない、研磨レート、合成樹脂の被研磨面の表面粗さを測定したところ、表2に示す結果が得られた。
<Evaluation>
Using the polishing tools of Examples 1 to 6 and Comparative Examples 1 to 6 prepared above, the synthetic resin surface was polished under the following conditions, and the polishing rate and the surface roughness of the polished surface of the synthetic resin were determined. As a result of the measurement, the results shown in Table 2 were obtained.
(研磨条件)
研磨機:CETR社製 CETR-CP4
研磨対象物:合成樹脂塗料で塗装された金属板
基板サイズ:φ240mm
研磨工具サイズ:φ60mm
加工圧力:0.513psi
樹脂基板枚数:1枚
流量:純水 2ml/min.
研磨時間:261sec.
(Polishing conditions)
Polishing machine: CETR-CP4 manufactured by CETR
Polishing object: Metal plate coated with synthetic resin paint Size: φ240 mm
Polishing tool size: φ60mm
Processing pressure: 0.513 psi
Number of resin substrates: 1 flow rate: pure water 2 ml / min.
Polishing time: 261 sec.
(研磨レート)
 研磨レートは研磨前後の合成樹脂塗料の膜厚を電磁誘導式の膜厚測定器にて測定し、基板の4箇所を各10回測定しその平均値の差分を取代とし、研磨時間で除算し算出した。
(Polishing rate)
The polishing rate is measured by measuring the film thickness of the synthetic resin paint before and after polishing with an electromagnetic induction type film thickness measuring device, measuring four places on the substrate 10 times each, taking the difference of the average value as a substitute, and dividing by the polishing time. Calculated.
(表面粗さ)
 表面粗さについて、Ra及びRz jisはキーエンス社製VK-X200により研磨後の合成樹脂塗料の表面を均等に4箇所、1000倍の倍率で観察し、観察範囲全面について各粗さパラメータを装置のソフトウェアにて算出し、4箇所の平均値を示した。なお。表2において研磨レート、Ra、Rzjis、Rzjis/研磨レートは小数点第3位を四捨五入している。
(Surface roughness)
Regarding the surface roughness, Ra and Rz nis observed the surface of the synthetic resin paint after polishing with VK-X200 manufactured by KEYENCE CORPORATION evenly at four places at a magnification of 1000 times, and determined each roughness parameter of the apparatus over the entire observation range. Calculated by software, and the average value at four locations is shown. In addition. In Table 2, the polishing rate, Ra, Rzjis, and Rzjis / polishing rate are rounded off to two decimal places.
(空隙率) 
 凝集体の空隙率は株式会社島津製作所製オートポアIV9520を使用した細孔分布測定により行った。実施例1及び実施例2、比較例1及び比較例2については、それぞれ同じ砥粒を用いてガラスフリットの配合量を変えているが、ガラスフリットの配合量を増やすと空隙率が低下していることが確認できた。同じ砥粒を用いた場合には適切な自生を発生させるための最適な空隙率が存在し、平均粒子径が4μmの砥粒を用いた場合には空隙率が5~19vol%であることが好ましく、5~18vol%であることがより好ましい。
(Porosity)
The porosity of the aggregate was measured by pore distribution measurement using Autopore IV9520 manufactured by Shimadzu Corporation. In Examples 1 and 2, and Comparative Examples 1 and 2, the same abrasive grains were used to change the amount of glass frit, but increasing the amount of glass frit reduced the porosity. Was confirmed. When the same abrasive grains are used, there is an optimum porosity for generating appropriate self-generation, and when the abrasive grains having an average particle diameter of 4 μm are used, the porosity may be 5 to 19 vol%. It is more preferably 5 to 18 vol%.
(比表面積)
 凝集体の表面積は株式会社島津製作所製オートポアIV9520を使用した細孔分布測定により行った。測定条件としては各サンプルを少量採り、初期圧力11kPaの条件で測定した。
(Specific surface area)
The surface area of the aggregate was measured by pore distribution measurement using Autopore IV9520 manufactured by Shimadzu Corporation. As a measurement condition, a small amount of each sample was taken and the measurement was performed under the condition of an initial pressure of 11 kPa.
 表2に示されるように、実施例1~11では、砥粒の大きさと砥粒に対するガラスフリット結合材の体積率を調整することによって、顆粒強度が20MPa~150MPaの範囲内であるため、高い研磨レートが得られた。スクラッチ傷深さの評価については、研磨レートによって許容される傷の深さは変化するため、Rzjisの値を研磨レートで除算した値にて評価した。実施例1~6ではRzjis/研磨レートの値が7未満であり、研磨レートに対して十分に傷の深さが浅いことが確認できた。特に結合材にBiが含まれる実施例7~11においては、より良好なRzjis/研磨レートであることが確認できた。図示しないが、焼成後の顆粒をSEM等で観察するとBiを含むガラスフリットを使用したものは砥粒周辺に溶融したガラスフリットが均一に付着していることが確認できた。これは、Biを含むガラスフリットは溶融したガラスの流動性が良いため、溶融したガラスが砥粒に均一に付着したことから砥粒保持力が向上し、研磨性能が向上したと考えられる。 As shown in Table 2, in Examples 1 to 11, the granule strength was in the range of 20 MPa to 150 MPa by adjusting the size of the abrasive grains and the volume ratio of the glass frit binder to the abrasive grains. The polishing rate was obtained. Regarding the evaluation of the scratch flaw depth, since the flaw depth allowed by the polishing rate changes, the value was calculated by dividing the value of Rzjis by the polishing rate. In Examples 1 to 6, the value of Rzjis / polishing rate was less than 7, and it was confirmed that the scratch depth was sufficiently shallow with respect to the polishing rate. In particular, in Examples 7 to 11 in which Bi was contained in the binder, it was confirmed that the Rzjis / polishing rate was better. Although not shown, when the granules after firing were observed by SEM or the like, it was confirmed that the glass frit containing Bi 2 O 3 was uniformly adhered to the melted glass frit around the abrasive grains. This is thought to be because the glass frit containing Bi 2 O 3 has good fluidity of the molten glass, and the molten glass uniformly adhered to the abrasive grains, so that the abrasive holding power was improved and the polishing performance was improved. Can be
 これに対して、比較例1、2、4、5及び7はガラスフリットの有無及びその体積率等の影響によって凝集体の顆粒強度が20MPa~150MPaの範囲外となった。比較例6は、凝集体の顆粒強度は20MPa~150MPaであるが、結合材であるガラスフリットを含まないものである。また、比較例3ではそもそも凝集体が形成されていない。このため、これらの比較例では高い研磨レートが得られず、被研磨材である金属材上の合成樹脂塗膜の研磨後のRzjis/研磨レートの値が7以上であり、研磨レートに対して傷の深さが深いことが確認できた。 On the other hand, in Comparative Examples 1, 2, 4, 5, and 7, the granule strength of the aggregate was out of the range of 20 MPa to 150 MPa due to the presence or absence of the glass frit and the volume ratio thereof. In Comparative Example 6, the aggregate had a granule strength of 20 MPa to 150 MPa, but did not contain a glass frit as a binder. In Comparative Example 3, no aggregate was formed in the first place. For this reason, in these comparative examples, a high polishing rate cannot be obtained, and the value of Rzjis / polishing rate after polishing of the synthetic resin coating film on the metal material to be polished is 7 or more. It was confirmed that the depth of the scratch was deep.
 本発明によれば、樹脂素材の研磨において、研磨レートを向上しつつ傷深さを抑制することができ、しかも加工力が低下することのない研磨材を提供することができ、産業上の利用可能性が高い。 Advantageous Effects of Invention According to the present invention, in polishing a resin material, it is possible to provide a polishing material that can suppress a scratch depth while improving a polishing rate, and that does not cause a reduction in working force. Probability is high.
1B 研磨工具
1  表面部
2  樹脂基材
3  スポンジ材
4  凝集体
5  樹脂バインダー
6  空隙
1C 砥石状研磨工具
1D セグメント研磨工具
1B Polishing tool 1 Surface part 2 Resin base material 3 Sponge material 4 Aggregate 5 Resin binder 6 Void 1C Grindstone-shaped polishing tool 1D Segment polishing tool

Claims (15)

  1.  砥粒と前記砥粒同士を結合する結合材を含む凝集体を含む顆粒状研磨材であって、
     前記砥粒は結合材により少なくとも一部分が被覆された構造を有し、
     前記凝集体の顆粒強度が20MPa~150MPaであり、前記砥粒のモース硬度が8以上であり、前記結合材のモース硬度が前記砥粒のモース硬度未満であることを特徴とする顆粒状研磨材。
    Abrasive grains and a granular abrasive containing agglomerates including a binder bonding the abrasive grains together,
    The abrasive grains have a structure at least partially coated with a binder,
    The granular abrasive according to claim 1, wherein the aggregate has a granule strength of 20 MPa to 150 MPa, the Mohs hardness of the abrasive grains is 8 or more, and the Mohs hardness of the binder is less than the Mohs hardness of the abrasive grains. .
  2.  前記結合材がガラスフリットであることを特徴とする請求項1に記載の顆粒状研磨材。 顆粒 The granular abrasive according to claim 1, wherein the binder is a glass frit.
  3.  前記ガラスフリットがBiを含むことを特徴とする請求項2に記載の顆粒状研磨材。 顆粒 The granular abrasive according to claim 2, wherein the glass frit contains Bi.
  4.  前記砥粒が酸化アルミニウムを含むことを特徴とする請求項1~3のいずれか一項に記載の顆粒状研磨材。 顆粒 The granular abrasive according to any one of claims 1 to 3, wherein the abrasive grains include aluminum oxide.
  5.  前記凝集体の空隙率が5~19vol%であることを特徴とする請求項1~4のいずれか一項に記載の顆粒状研磨材。 顆粒 The granular abrasive according to any one of claims 1 to 4, wherein the porosity of the aggregate is 5 to 19 vol%.
  6.  研磨に使用することにより前記凝集体が摩耗又は崩壊することを特徴とする請求項1~5に記載の顆粒状研磨材。 (6) The granular abrasive according to any one of (1) to (5), wherein the agglomerates are worn or collapsed when used for polishing.
  7.  前記凝集体の顆粒強度が25MPa~120MPaであることを特徴とする請求項1~6のいずれか一項に記載の顆粒状研磨材。 顆粒 The granular abrasive according to any one of claims 1 to 6, wherein the aggregate has a granule strength of 25 MPa to 120 MPa.
  8.  前記凝集体に含まれる前記砥粒に対する前記結合材の含有量の体積率が30%以上150%以下であることを特徴とする請求項1~7のいずれか一項に記載の顆粒状研磨材。 The granular abrasive according to any one of claims 1 to 7, wherein a volume ratio of a content of the binder to the abrasive grains contained in the aggregate is 30% or more and 150% or less. .
  9.  請求項1に記載の顆粒状研磨材の凝集体を樹脂基材上に樹脂バインダーにより固定化した研磨工具。 A polishing tool in which the aggregate of the granular abrasive according to claim 1 is fixed on a resin substrate with a resin binder.
  10.  前記樹脂基材が樹脂フィルム、不織布、発泡ウレタンのいずれか、又は、それらの組み合わせであることを特徴とする請求項9に記載の研磨工具。 The polishing tool according to claim 9, wherein the resin substrate is any one of a resin film, a nonwoven fabric, and urethane foam, or a combination thereof.
  11.  請求項1に記載の顆粒状研磨材の凝集体を三次元形状に成形し再焼結した砥石状研磨工具。 A whetstone-like polishing tool obtained by forming the aggregate of the granular abrasive according to claim 1 into a three-dimensional shape and resintering the same.
  12.  請求項11に記載の砥石状研磨工具を基材の上に固定化した研磨工具。 A polishing tool comprising the grinding wheel-shaped polishing tool according to claim 11 fixed on a substrate.
  13.  噴霧式乾燥機を用いて砥粒と結合材を造粒し、造粒粉を焼成することにより請求項1~8のいずれか一項に記載の顆粒状研磨材を製造する製造方法。 (10) A method for producing a granular abrasive according to any one of (1) to (8), wherein the abrasive and the binder are granulated by using a spray dryer, and the granulated powder is fired.
  14.  請求項1~8のいずれか一項に記載の顆粒状研磨材を使用して樹脂素材を研磨する研磨方法。 A polishing method for polishing a resin material using the granular abrasive according to any one of claims 1 to 8.
  15.  請求項9~12のいずれか一項に記載の研磨工具を使用して、研磨対象物と前記研磨工具の界面に液体を供給しながら研磨を行う研磨方法。 A polishing method for performing polishing using the polishing tool according to any one of claims 9 to 12, while supplying a liquid to an interface between the polishing object and the polishing tool.
PCT/JP2019/025690 2018-07-09 2019-06-27 Granular polishing material, polishing tool, and polishing method WO2020012977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530102A JPWO2020012977A1 (en) 2018-07-09 2019-06-27 Granular Abrasives, Polishing Tools and Polishing Methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-129827 2018-07-09
JP2018129827 2018-07-09
JP2019-059414 2019-03-26
JP2019059414 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020012977A1 true WO2020012977A1 (en) 2020-01-16

Family

ID=69141905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025690 WO2020012977A1 (en) 2018-07-09 2019-06-27 Granular polishing material, polishing tool, and polishing method

Country Status (3)

Country Link
JP (1) JPWO2020012977A1 (en)
TW (1) TW202022081A (en)
WO (1) WO2020012977A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514017A (en) * 2000-11-10 2004-05-13 スリーエム イノベイティブ プロパティズ カンパニー Spray drying method for producing agglomerated abrasive grains and abrasive article
JP2009511289A (en) * 2005-10-18 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー Massive abrasive grains and method for producing massive abrasive grains
JP2013503103A (en) * 2009-08-25 2013-01-31 スリーエム イノベイティブ プロパティズ カンパニー Method for producing fired aggregate, fired aggregate, abrasive composition, and abrasive article
JP2018503520A (en) * 2014-12-01 2018-02-08 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article comprising an aggregate having silicon carbide and an inorganic binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514017A (en) * 2000-11-10 2004-05-13 スリーエム イノベイティブ プロパティズ カンパニー Spray drying method for producing agglomerated abrasive grains and abrasive article
JP2009511289A (en) * 2005-10-18 2009-03-19 スリーエム イノベイティブ プロパティズ カンパニー Massive abrasive grains and method for producing massive abrasive grains
JP2013503103A (en) * 2009-08-25 2013-01-31 スリーエム イノベイティブ プロパティズ カンパニー Method for producing fired aggregate, fired aggregate, abrasive composition, and abrasive article
JP2018503520A (en) * 2014-12-01 2018-02-08 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive article comprising an aggregate having silicon carbide and an inorganic binder

Also Published As

Publication number Publication date
TW202022081A (en) 2020-06-16
JPWO2020012977A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
FI126896B (en) Improved coated abrasives
EP1280631B1 (en) Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
CA2479712C (en) Abrasive articles with novel structures and methods for grinding
ES2882324T3 (en) Abrasive articles with novel structures and grinding methods
JP5110600B2 (en) Fixed abrasive tool and method of manufacturing the same
CA2746931C (en) Dish-shaped abrasive particles with a recessed surface
JP5580977B2 (en) Polishing article having new structure and grinding method
JP5539339B2 (en) High porosity vitrified superabrasive product and manufacturing method
US8888878B2 (en) Coated abrasive aggregates and products containg same
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
WO2020012977A1 (en) Granular polishing material, polishing tool, and polishing method
JP2000246624A (en) Polishing compact, and polishing surface plate and polishing method using the same
WO2015097704A1 (en) Abrasive surface preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833701

Country of ref document: EP

Kind code of ref document: A1