WO2020012688A1 - Radiation treatment system and method for verifying treatment plan data - Google Patents

Radiation treatment system and method for verifying treatment plan data Download PDF

Info

Publication number
WO2020012688A1
WO2020012688A1 PCT/JP2019/006028 JP2019006028W WO2020012688A1 WO 2020012688 A1 WO2020012688 A1 WO 2020012688A1 JP 2019006028 W JP2019006028 W JP 2019006028W WO 2020012688 A1 WO2020012688 A1 WO 2020012688A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
monitor
irradiation
signal
treatment
Prior art date
Application number
PCT/JP2019/006028
Other languages
French (fr)
Japanese (ja)
Inventor
貴啓 山田
徹 梅川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020012688A1 publication Critical patent/WO2020012688A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a radiation treatment system for irradiating a cancer affected part with radiation to perform cancer treatment, and a method for verifying treatment plan data.
  • Non-Patent Document 1 describes a patient-specific quality assurance (QA: Quality Assurance) of spot scanning proton beam therapy using SFUD (Single-Field Uniform Dose) for prostate cancer patients.
  • QA Quality Assurance
  • SFUD Single-Field Uniform Dose
  • Non-Patent Document 2 discloses three different methods for automatically restoring a planned dose in an intensity-modulated @ proton @ therapy (IMPT) on a daily CT image, and (1) a simple method using an optimization purpose of an initial plan. Dose restoration, (2) voxel-wise dose restoration, and (3) equi-dose restoration were performed and the results of comparison are described.
  • IMPT intensity-modulated @ proton @ therapy
  • Radiation therapy is a treatment method that irradiates a target tumor with radiation to damage the tumor.
  • X-rays are the most widely used radiotherapy, but the demand for particle beam therapy using particle beams represented by proton beams with high dose concentration and heavy particles such as carbon and helium is also growing. I have.
  • treatment plan data is created in which setting values of devices such as a radiation irradiation direction are stored for each patient. This treatment plan data is used for treatment after being verified by the patient QA.
  • Non-Patent Document 1 discloses completeness of data transfer as one of the verification items of the patient QA.
  • the particle beam is irradiated according to the treatment plan data at the gantry angle at the time of treatment without the patient on the treatment table, and it is confirmed that the particle beam treatment system operates properly.
  • Non-Patent Document 2 proposes an online adaptive treatment as a method of increasing the dose concentration on an affected part.
  • a treatment plan is adjusted based on a patient's anatomical structure measured on the treatment day, and then treatment is performed.
  • a patient is fixed on a treatment table, the patient is positioned at a position determined in advance by a treatment plan, and the particle beam is irradiated according to the treatment plan data.
  • online adaptive treatment it is determined based on patient images such as MRI images and CT images acquired on each treatment day whether or not a treatment plan needs to be modified.
  • the treatment is performed using the new treatment plan data re-planned in.
  • Patient images for each treatment day are acquired with the patient on the treatment table using an MRI apparatus or CT apparatus installed in the treatment room. This makes it possible to adjust the treatment plan in consideration of the condition of the patient on the day of the treatment, improve the concentration of the dose on the affected part, and reduce the dose applied to the normal tissue.
  • the present invention provides a radiation treatment system and a treatment planning data system capable of verifying the completeness of data transfer of treatment planning data while a patient is present in a treatment room. Provide a verification method.
  • the present invention includes a plurality of means for solving the above problems, a radiotherapy system for irradiating the affected part of the patient with radiation, to give an example, a radiation source for generating the radiation, A shielding unit that blocks radiation between the radiation source and the front of the patient, and a monitor signal simulator that simulates a signal of a radiation monitor while the radiation is blocked by the blocking unit.
  • Another example is a method of verifying treatment plan data in a radiation treatment system that irradiates an affected part of a patient with radiation, wherein the radiation treatment system includes a radiation source that generates the radiation, Blocking means for blocking radiation between the radiation source and the front of the patient, and a monitor signal simulating device that simulates a signal of a radiation monitor while the radiation is blocked by the blocking means, comprising: It is characterized in that the integrity of data transfer is verified without irradiating the radiation by blocking the radiation by the blocking means while the patient is in the room.
  • FIG. 2 is a diagram schematically illustrating a particle beam scanning irradiation nozzle of the particle beam therapy system according to the first embodiment. It is a figure which shows the layer irradiated with the same energy, a charged particle beam, and an irradiation spot at the time of scanning irradiation of an affected part. It is a figure which shows the dose distribution of the depth direction at the time of scanning irradiation of an affected part.
  • FIG. 4 is a diagram illustrating a display example of a display when mode switching of the overall control device is performed in the particle beam therapy system according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a display example of a display when mode switching of the overall control device is performed in the particle beam therapy system according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a flowchart of irradiation control in the particle beam therapy system according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a time chart of control of scanning irradiation in a treatment mode in the particle beam therapy system according to Embodiment 1.
  • FIG. 3 is a diagram showing a time chart of scanning irradiation control in a monitor signal simulation mode in the particle beam therapy system according to Embodiment 1. It is a figure showing the whole particle beam therapy system composition of Embodiment 2 of the present invention. It is a figure showing the whole particle beam therapy system composition of Embodiment 3 of the present invention. It is a figure showing an example of the whole particle beam therapy system composition of Embodiment 4 of the present invention.
  • Embodiment 1 of a radiation therapy system and a method for verifying treatment plan data of the present invention will be described with reference to FIGS. 1 to 8.
  • FIG. 1 is a diagram showing the overall configuration of the particle beam therapy system according to the present embodiment.
  • the particle beam therapy system 100 is a system that irradiates the affected part 51 of the patient 5 with a particle beam.
  • the accelerator 20 the beam transport system 30, the irradiation nozzle 40, the treatment table 50, ,
  • An overall control device 11 an accelerator / beam transport system control device 12, an irradiation control device 13, a display 14, an input device 15, a beam cutoff device 46, and a monitor signal simulation device 47.
  • the accelerator 20 is a device that generates and accelerates a charged particle beam (hereinafter, referred to as a beam 90, see FIG. 2), and includes an injector 21 and a synchrotron accelerator 22.
  • the beam transport system 30 is a group of devices that transport the beam 90 accelerated by the accelerator 20 to the irradiation nozzle 40 that irradiates the affected part 51 with the beam 90, and connects the accelerator 20 and the irradiation nozzle 40.
  • the beam 90 accelerated to 60 to 70% of the speed of light by the accelerator 20 is transported to the irradiation nozzle 40 while being bent in a vacuum by a magnetic field by the bending electromagnet 31 arranged in the beam transport system 30.
  • the beam 90 is shaped by the irradiation nozzle 40 so as to conform to the shape of the irradiation area, and is irradiated to the irradiation target.
  • the irradiation target is, for example, the affected part 51 (see FIG. 2) of the patient 5 lying on the treatment table 50.
  • the overall control device 11 includes a treatment planning device (both not shown), an accelerator / beam transport system control device 12, an irradiation control device 13, a monitor signal simulation device 47, a display 14, an input device 15 via an OIS (Oncology Information System). , Etc., and controls the operation of the entire particle beam therapy system 100.
  • a treatment planning device both not shown
  • an accelerator / beam transport system control device 12 an irradiation control device 13, a monitor signal simulation device 47, a display 14, an input device 15 via an OIS (Oncology Information System). , Etc., and controls the operation of the entire particle beam therapy system 100.
  • OIS Oncology Information System
  • the accelerator / beam transport system controller 12 controls the operation of each device constituting the accelerator 20 and the beam transport system 30.
  • the irradiation control device 13 controls the operation of each device constituting the irradiation nozzle 40.
  • the display 14 and the input device 15 are a set of input / output devices, and display information based on signals obtained from the overall control device 11. Further, it receives an input from a medical worker operating the particle beam therapy system 100 and transmits various operation instruction signals to the overall control device 11.
  • the treatment table 50 is a bed on which the patient 5 is placed.
  • the treatment table 50 can move in directions of three orthogonal axes based on an instruction from the overall control device 11, and can move in a so-called six-axis direction that rotates around each axis. By these movement and rotation, the position of the affected part 51 of the patient 5 can be moved to a desired position.
  • FIG. 2 is a view schematically showing an irradiation nozzle 40 for scanning a particle beam.
  • FIG. 3 is a diagram showing a layer irradiated with the same energy, a charged particle beam 90, and an irradiation spot 53 when the affected part 51 is scanned and irradiated.
  • FIG. 4 is a diagram showing a dose distribution in the depth direction when the affected part 51 is scanned and irradiated.
  • a beam cutoff device 46 scanning electromagnets 41A and 41B, a dose monitor 42, a position monitor 43, a ridge filter 44, and a range shifter 45 are arranged.
  • the irradiation control device 13 includes an irradiation nozzle control device 13A, a dose monitor control device 72, a position monitor control device 73, a scanning magnet power supply control device 71, and scanning electromagnet power supplies 61A and 61B. I have.
  • the irradiation nozzle 40 is a device that scans the beam 90 in a two-dimensional plane by the scanning electromagnets 41A and 41B for scanning the beam 90 on a plane perpendicular to the passing direction of the beam 90.
  • the beam 90 scanned by the scanning electromagnets 41 ⁇ / b> A and 41 ⁇ / b> B is applied to the affected part 51.
  • the beam blocking device 46 retreats from the trajectory of the beam 90 to prevent the irradiation of the beam 90 from being hindered.
  • the dose monitor 42 is a monitor that collects electrons generated by the passage of the beam 90 in order to calculate the dose of the beam 90 applied to each spot.
  • the detection signal (pulse signal obtained by collecting electrons) of the dose monitor 42 is input to the dose monitor control device 72.
  • the dose monitor control device 72 calculates the dose irradiated on each irradiation spot 53 based on the detection signal input from the dose monitor 42, and outputs the calculated dose to the irradiation nozzle control device 13A.
  • the position monitor 43 is a monitor that collects electrons generated by the passage of the beam 90 in order to calculate the position of each irradiation spot 53 (for example, the position of the center of gravity).
  • a detection signal (a pulse signal obtained by collecting electrons) of the position monitor 43 is input to the position monitor control device 73.
  • the position monitor control device 73 counts the dose at each irradiation spot 53 based on the detection signal input from the position monitor 43, and outputs the calculated count value to the irradiation nozzle control device 13A.
  • the irradiation nozzle control device 13A calculates the passing position of the beam 90 based on the signal input to the position monitor control device 73, calculates the position and width of the irradiation spot 53 from the obtained passing position data, and irradiates the beam 90. Check the position. Further, the irradiation nozzle control device 13 ⁇ / b> A controls the irradiation of the beam 90 in accordance with the irradiation dose input to the dose monitor control device 72.
  • the beam cut-off device 46 is configured to block a particle beam between the accelerator 20 and the front of the patient 5.
  • the beam cut-off device 46 physically blocks the particle beam, and the beam blocker 46 a moves with respect to the trajectory of the particle beam. It has a moving mechanism 46b for moving forward / backward.
  • the blocker 46a is an object that collides with the beam 90 when placed on the trajectory of the beam 90, and prevents the beam 90 from reaching the patient 5.
  • the blocking body 46a is a metal block made of, for example, brass, and the moving mechanism 46b allows the beam 90 to retreat from the trajectory and to advance the beam 90 onto the trajectory.
  • the shielding body 46a may be further provided with a shielding structure such as a shielding material for the purpose of preventing the patient 5 from being exposed to the secondary radiation. desirable.
  • the moving mechanism 46b includes wheels mounted on the blocking body 46a, rails on which the wheels roll, a driving mechanism for moving the blocking body 46a, and the like.
  • the drive mechanism can be of various configurations such as a pneumatic type, a hydraulic type, a mechanical drive type by a motor, and the like.
  • the monitor signal simulating device 47 is a device that simulates a signal of the particle beam monitor while the beam blocking device 46 blocks the particle beam from reaching the affected part 51 of the patient 5.
  • a simulated monitor signal that simulates a signal output from the dose monitor 42 for measuring the irradiation amount of the particle beam and a signal output from the position monitor 43 for measuring the irradiation position of the particle beam is generated.
  • the particle beam monitor is composed of the dose monitor 42 and the position monitor 43, but any one of them may be used, and another type of monitor may be appropriately included.
  • the dose monitor simulation signal output from the monitor signal simulation device 47 is combined with the detection signal of the dose monitor 42 and input to the dose monitor control device 72.
  • the position monitor simulation signal output by the monitor signal simulation device 47 is combined with the detection signal of the position monitor 43 and input to the position monitor control device 73.
  • the monitor signal simulation device 47 may simulate at least one of a dose monitor simulation signal and a position monitor simulation signal.
  • the monitor signal simulating device 47 retracts the blocking member 46a of the beam blocking device 46 from the trajectory of the beam 90 in the treatment mode, and the blocking member 46a of the beam blocking device 46 in the monitoring signal simulating mode.
  • a signal is output to the moving mechanism 46b so as to advance the beam on the trajectory of the beam 90.
  • the ridge filter 44 can be used when it is necessary to increase the Bragg peak.
  • the range shifter 45 can be inserted when adjusting the arrival position of the beam 90.
  • FIG. 3 is a schematic diagram of the particle beam scanning irradiation.
  • the affected part 51 is divided into layers 52, and the inside of each layer 52 is irradiated with the beam 90 of the same energy.
  • One or more irradiation spots 53 are arranged in one layer 52.
  • the energy of the beam 90 is changed.
  • the position at which the beam 90 reaches the body changes.
  • the charged particle beam 90 having high energy reaches a deep position in the body, and the charged particle beam 90 having low energy reaches only a shallow position in the body.
  • the energy of the beam 90 is changed to form a uniform dose distribution in the depth direction, and the irradiation amount is appropriately distributed to form a depth-direction SOBP (Spread Out Bragg Peak).
  • SOBP Read Out Bragg Peak
  • the overall control device 11 of the present embodiment has two modes: a treatment mode for controlling the operation during treatment, and a monitor signal simulation mode for controlling the operation during verification of data transfer integrity. . Switching between the treatment mode and the monitor signal simulation mode is performed by the operator selecting a mode in accordance with the screen display displayed on the display 14 shown in FIG.
  • FIG. 6 shows a flowchart at the time of irradiation.
  • the treatment plan data for each patient 5 created in advance by the treatment planning device is stored in the OIS from the treatment planning device.
  • the overall control device 11 recognizes the mode (step S101).
  • the treatment plan data is sent from the OIS to the overall control device 11 of the particle beam therapy system 100 (step S102).
  • the overall control device 11 sets parameters of the treatment table 50, the accelerator / beam transport system control device 12, and the irradiation control device 13 based on the treatment plan data (step S103). In addition, the overall control device 11 sends data of the energy, coordinate value, and irradiation amount of each spot set based on the treatment plan data to the monitor signal simulation device 47 in addition to the irradiation control device 13.
  • the coordinate value of the irradiation spot 53 is converted into an excitation current value of the scanning electromagnets 41A and 41B by the irradiation control device 13 and sent to the scanning electromagnet power supply control device 71 shown in FIG.
  • step S104 After the setting of the parameters is completed, the irradiation is started by the operation of the operator (step S104).
  • the overall control device 11 determines that the irradiation spot 53 that has been irradiated earlier is in the same layer. It is determined whether or not the spot in 52 is the last spot to be irradiated (step S106). If it is determined that the spot is the last spot, the process proceeds to step S107. On the other hand, when it is determined that the spot is not the final spot, the process proceeds to step S105 to execute irradiation of the next irradiation spot 53.
  • the overall control device 11 determines whether or not the layer 52 to which a certain irradiation spot 53 to which irradiation has been completed previously belongs is the layer 52 to be irradiated last (step S107). If it is determined that the layer is the last layer 52, the process proceeds to step S108. If it is determined that the layer is not the last layer 52, the process is performed in step S105 to change the energy and irradiate the next layer 52. Proceed to
  • the overall control device 11 creates actual data including the irradiation position and the irradiation amount for each spot, and transfers the data to the OIS (step S108).
  • FIG. 7 shows a time chart of the scanning irradiation in the treatment mode.
  • FIG. 7 shows irradiation of three spots from spot 1 to spot 3 as an example.
  • a signal indicating that the treatment mode is set is output from the overall control device 11 to the monitor signal simulation device 47 before the irradiation.
  • the monitor signal simulating device 47 outputs a retreat signal to the moving mechanism 46b of the beam intercepting device 46, and retreats the interceptor 46a from the trajectory of the beam 90.
  • a command is issued from the accelerator / beam transport system controller 12 shown in FIG. 1 to the accelerator 20 so as to irradiate with a predetermined beam intensity.
  • the ionization output of the dose monitor 42 in the irradiation nozzle 40 is pulse-converted and output.
  • the pulse count value counted by the dose monitor control device 72 starts to increase, and when irradiating a predetermined dose, the dose monitor control device 72 sends an expiration signal to the irradiation nozzle control device 13A, and The irradiation ends.
  • the ionization output of the position monitor 43 is also pulse-converted and output as in the case of the dose monitor 42.
  • the position monitor control device 73 inputs the result of adding the signals for one spot to the irradiation nozzle control device 13A.
  • the irradiation nozzle control device 13A calculates the position and width of the spot based on the output signal of the position monitor control device 73, and determines whether or not a predetermined position has been irradiated. As a result of the determination, when the deviation between the spot position and the width is large, the beam 90 is stopped.
  • the irradiation nozzle control device 13A In response to the expiration signal from the dose monitor control device 72, the irradiation nozzle control device 13A sends a signal for the next spot movement to the scanning magnet power supply control device 71, and the movement to the next spot is started. When the current value of the next spot is reached, the scanning electromagnet power controller 71 sends a movement completion signal to the irradiation nozzle controller 13A.
  • the above is the control flow of the scanning irradiation in the treatment mode.
  • a signal indicating that the mode is the simulation mode is output from the overall control device 11 to the monitor signal simulation device 47 before the irradiation.
  • the monitor signal simulator 47 outputs a forward signal to the moving mechanism 46b of the beam interrupter 46, and advances the interrupter 46a on the trajectory of the beam 90.
  • the beam 90 can be prevented from being transported to the patient 5 by setting the blocking body 46 a of the beam blocking device 46 installed in the irradiation nozzle 40 on the trajectory of the beam 90.
  • the overall control device 11 downloads the treatment plan data from the OIS, and sends the energy, coordinate value, and irradiation amount data of each spot to the irradiation nozzle control device 13A and the monitor signal simulation device 47.
  • the monitor signal simulator 47 calculates, for each spot, the signal intensity of the dose monitor simulation signal and the position monitor simulation signal according to the energy, coordinate value, and irradiation amount.
  • the signal intensity is calculated based on a conversion formula or a conversion table using the spot energy, coordinate value, and irradiation amount as variables.
  • the calculation of the signal intensity may be performed when the treatment plan data is downloaded, or may be calculated sequentially when irradiating the spot.
  • the devices other than the monitor signal simulation device 47 and the beam cutoff device 46 operate in the same manner as in the treatment mode.
  • the accelerator 20 emits the beam 90 after accelerating the beam 90 to the energy based on the treatment plan data, and the beam transport system 30 transports the beam 90 to the irradiation nozzle 40.
  • the accelerator / beam transport system controller 12 inputs a spot irradiation timing signal to the monitor signal simulator 47 when emitting the beam 90.
  • the monitor signal simulation device 47 outputs a monitor simulation signal corresponding to the irradiation spot 53 using the spot irradiation timing signal as a trigger.
  • the irradiation nozzle control device 13A controls irradiation based on the monitor simulation signal.
  • FIG. 8 shows a time chart of scanning irradiation in the monitor signal simulation mode.
  • FIG. 8 also shows irradiation of three spots from spot 1 to spot 3, as in FIG.
  • a command is issued from the accelerator / beam transport system controller 12 shown in FIG. 1 to the accelerator 20 so as to irradiate with a predetermined beam intensity.
  • the beam 90 is blocked by the beam blocking device 46, so that the beam 90 does not pass through the dose monitor 42 and the position monitor 43, and no signal is output.
  • the accelerator / beam transport system controller 12 inputs a spot irradiation timing signal to the monitor signal simulator 47 when emitting the beam 90.
  • the monitor signal simulation device 47 outputs a dose monitor simulation signal and a position monitor simulation signal using the spot irradiation timing signal as a trigger.
  • the pulse count value counted by the dose monitor control device 72 starts increasing, and when the count reaches a predetermined count, the dose monitor control device 72 emits an expiration signal. It is sent to the nozzle control device 13A, and the irradiation of the spot ends.
  • the monitor signal simulator 47 While the spot is being irradiated, the monitor signal simulator 47 outputs a position monitor simulator signal in the same manner as the dose monitor simulator signal.
  • the position monitor control device 73 inputs the result of adding the signals for one spot to the irradiation nozzle control device 13A.
  • the irradiation nozzle control device 13A calculates the position and width of the spot based on the output signal of the position monitor control device 73, and determines whether or not a predetermined position has been irradiated. As a result of the determination, when the deviation between the spot position and the width is large, the beam 90 is stopped.
  • the irradiation nozzle control device 13A In response to the expiration signal from the dose monitor control device 72, the irradiation nozzle control device 13A sends a signal for the next spot movement to the scanning magnet power supply control device 71, and the change to the exciting current value of the next spot is started. Upon reaching the exciting current value of the next spot, the scanning electromagnet power supply control device 71 sends a movement completion signal to the irradiation nozzle control device 13A.
  • the above is the control flow of the scanning irradiation in the monitor signal simulation mode.
  • the monitor signal simulator 47 outputs a pulse signal.
  • This pulse signal simulates a signal output by performing IV conversion and VF conversion on the ionization current signal generated by the dose monitor 42 and the position monitor 43.
  • the effect of the present embodiment does not change even if the monitor simulation signal is output by simulating a voltage signal and synthesized with the monitor signal before VF conversion.
  • the above-described particle beam therapy system 100 irradiates an affected part 51 of a patient 5 with a particle beam.
  • the accelerator 20 generates and accelerates charged particles, and the accelerator 20 and the patient 5 And a monitor signal simulator 47 for simulating a particle beam monitor signal while the particle beam is cut off by the beam cutoff device 46. .
  • the beam blocking device 46 installed in the irradiation nozzle 40, the beam 90 is not transported downstream of the beam blocking device 46, and even if the patient 5 is in the treatment room.
  • the beam 90 is not irradiated.
  • devices other than the monitor signal simulation device 47 and the beam cutoff device 46 operate in the same manner as in the treatment mode. In other words, a series of data transfer in which the treatment plan data is acquired from the OIS, the beam 90 is accelerated, emitted, and transported according to the treatment plan data, and the actual data is created and transferred to the OIS is the same operation as in the normal treatment mode. do.
  • the blocking means is a beam blocking device 46 having a blocking member 46a for physically blocking the particle beam and a moving mechanism 46b for moving the blocking member 46a forward / backward with respect to the trajectory of the particle beam. It is possible to prevent the particle beam from reaching the patient 5 reliably.
  • the monitor signal simulating device 47 is a signal output from the dose monitor 42 for measuring the irradiation amount of the particle beam, and a signal output from the position monitor 43 for measuring the irradiation position of the particle beam.
  • the beam cutoff device 46 is installed in the irradiation nozzle 40 for irradiating the affected part 51 with the particle beam, it is possible to actually transport the particle beam to the vicinity of the patient 5. An operation method closer to the integrity verification method is possible.
  • FIG. 9 is a diagram illustrating a particle beam therapy system according to the present embodiment.
  • the particle beam therapy system 100A of the present embodiment is different from the particle beam therapy system 100 of the first embodiment in the function of the beam blocking device 46A.
  • the configuration and operation of the particle beam therapy system 100A are substantially the same as those of the particle beam therapy system 100 of the first embodiment except for the beam cutoff device 46A and the monitor signal simulation device 47A, and the details are omitted.
  • the blocking body 46a1 of the beam blocking device 46A in the particle beam therapy system 100A of the present embodiment measures the dose of the particle beam for measuring the dose of each spot when the beam 90 is blocked. It further has a dosimeter. The spot irradiation amount measured by the dosimeter is input to the monitor signal simulator 47A.
  • the monitor signal simulator 47A generates a dose monitor simulation signal based on the input spot irradiation amount, and inputs the generated signal to the dose monitor controller 72.
  • the blocking member 46a1 of the beam blocking device 46A is, for example, a Faraday cup that is a metal (conductive) cup that captures charged particles in a vacuum, or an ionization chamber and brass installed downstream of the ionization chamber. Etc. (preferably the same configuration as that described in the first embodiment).
  • the blocking body 46a1 When the blocking body 46a1 is a Faraday cup, the blocking body 46a1 itself functions as a dosimeter and a blocking body. In the case of ionization chambers and blocks, the ionization chamber is a dosimeter and the block is a blocker.
  • the radiation therapy system and the method for verifying treatment plan data according to the second embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
  • the beam cut-off device 46A further has a dosimeter for measuring the dose of the particle beam, and the monitor signal simulating device 47A outputs a signal of the particle beam monitor based on the dose of the particle beam measured by the dosimeter.
  • FIG. 10 is a diagram illustrating a particle beam therapy system according to the present embodiment.
  • the particle beam therapy system 100B according to the present embodiment is different from the particle beam therapy system according to the first embodiment in that a beam position monitor 43B and a metal block are used as the beam blocking device 46B (the same structure as that described in the first embodiment). Is different in that it is installed.
  • the configuration and operation of the particle beam therapy system 100B are substantially the same as those of the particle beam therapy system 100 of the first embodiment except for the beam position monitor 43B and the monitor signal simulation device 47B, and the details are omitted.
  • the beam blocking device 46B in the particle beam therapy system 100B of the present embodiment further includes a beam position monitor 43B that measures the irradiation position of the particle beam. Measure the irradiation position for each. The measured spot irradiation position is input to the monitor signal simulator 47B.
  • the monitor signal simulation device 47B generates a position monitor simulation signal based on the input spot irradiation position, and inputs the generated signal to the position monitor control device 73.
  • the radiation therapy system and the method for verifying treatment plan data according to the third embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
  • the beam cutoff device 46B further includes a beam position monitor 43B for measuring the irradiation position of the particle beam, and the monitor signal simulating device 47B performs the measurement based on the irradiation position of the particle beam measured by the beam position monitor 43B.
  • the monitor signal simulating device 47B performs the measurement based on the irradiation position of the particle beam measured by the beam position monitor 43B.
  • the beam position monitor 43B in addition to measuring the irradiation position for each spot by the beam position monitor 43B, it is also possible to measure the irradiation amount for each spot when the beam 90 is cut off as described in the second embodiment. it can.
  • FIGS. 11 to 13 are views showing the particle beam therapy system according to the present embodiment.
  • the particle beam therapy system 100C of the present embodiment is different from the particle beam therapy system 100 of the first embodiment in that the beam blocking device 46C transports the particle beam from the accelerator 20 to the irradiation nozzle 40. Is installed in the beam transport system 30 of FIG.
  • the beam blocking device 46C has the same configuration and function as the beam blocking device 46 described in the first embodiment, the beam blocking device 46A described in the second embodiment, and the beam blocking device 46B described in the third embodiment. can do.
  • the monitor signal simulator 47C can have the same configuration and function as the monitor signal simulators 47, 47A, and 47B described in the first to third embodiments.
  • the monitor signal simulation device 47C of the present embodiment is In the monitor signal simulation mode, it is desirable to output a simulation signal to these beam monitors as needed.
  • the configuration and operation of the particle beam therapy system 100C are the same as those of the first embodiment except for the beam cutoff device 46C and the monitor signal simulating device 47C, and the details are omitted.
  • the beam cutoff device 46C is installed in the beam transport system 30 for transporting the particle beam from the accelerator 20 to the irradiation nozzle for irradiating the diseased part 51, so that the source of the secondary radiation accompanying the beam cutoff is provided. Can be kept away from the treatment room. This makes it possible to simplify the shielding structure for avoiding exposure of the patient 5 due to the secondary radiation.
  • the position of the beam blocking device 46C in the beam transport system 30 is not limited to the position as shown in FIG. 11 as in the present embodiment, and as shown in FIG.
  • the monitor signal simulator 47D can have the same configuration as the monitor signal simulators 47, 47A, 47B, and 47C.
  • the beam cutoff device 46E can be installed downstream of the emission point of the accelerator 20.
  • the beam transport system 30 has a sorting device 32 for sorting radiation to a plurality of irradiation nozzles 40. For this reason, the beam cutoff device 46E can be installed on the upstream side of the distribution device 32.
  • the distribution device 32 is configured by an electromagnet or the like.
  • the monitor signal simulator 47E can have the same configuration as the monitor signal simulators 47, 47A, 47B, and 47C, but must be connected to the plurality of irradiation nozzles 40, respectively. At the time of verification, a monitor simulation signal is output to the irradiation nozzle 40 to be verified among the plurality of irradiation nozzles 40.
  • monitor signal simulation device 47E does not need to be one, and may be provided to the irradiation nozzle 40 on a one-to-one basis.
  • the beam transport system 30 includes a distribution device 32 for distributing radiation to the plurality of irradiation nozzles 40, and a beam cutoff device 46E is installed upstream of the distribution device 32.
  • a beam blocking device in each of a plurality of treatment rooms.
  • existing facilities such as a Faraday cup provided in the beam transport system 30 can be effectively used. That is, a mechanism for cutting off the beam can be provided with minimum effort.
  • FIG. 14 is a diagram illustrating a particle beam therapy system according to the present embodiment.
  • the particle beam therapy system 100F of the present embodiment shown in FIG. 14 is different from the particle beam therapy system 100 of the first embodiment in the method of blocking the beam 90.
  • Other configurations and operations of the particle beam therapy system 100 are the same as those of the first embodiment except for the beam cutoff method and the monitor signal simulation device 47F, and therefore, the details are omitted.
  • the particle beam therapy system 100F of the present embodiment shown in FIG. 14 physically blocks the beam 90 using the beam blocking devices 46, 46A, 46B, 46C, 46D, and 46E as in the first to fourth embodiments. Instead, the beam 90 is cut off under the control of the accelerator 20.
  • control is performed to block the beam 90 by not entering the beam 90 into the accelerator 20 or by entering or accelerating but not emitting the beam 90.
  • control include, for example, shutting off the supply of the source gas to the injector 21, shutting off the supply of electric power to each device constituting the injector 21, adjusting the control parameters, and controlling each device in the accelerator 20. It is conceivable to cut off the supply of electric power or adjust control parameters (such as using a control parameter different from that for acceleration).
  • the monitor signal simulating device 47F In order to prevent the irradiation control from stalling due to not entering or exiting the beam 90, the monitor signal simulating device 47F generates a signal simulating the signal of the beam monitor in the accelerator 20 or the beam transport system 30, and performs each control. Input to the device.
  • the interrupting unit is the accelerator / beam transport system control device 12F. .
  • the radiation therapy system and the method for verifying treatment plan data according to the fifth embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
  • shutoff means is an accelerator / beam transport system control device 12F that shuts off the generation and acceleration of the particle beam in the accelerator 20, or cuts off the emission of the particle beam from the accelerator 20, the additional equipment is monitored. Since only the signal simulating device 47F is used, and there is no need to newly add a device such as the beam cutoff device 46, it is possible to easily apply the present invention to an existing device.
  • the beam 90 can be cut off by the control in the accelerator 20 but also the beam 90 can be cut off by the control in the beam transport system 30.
  • the beam 90 can be realized by cutting off the supply of power to each device in the beam transport system 30, adjusting control parameters, and the like.
  • Embodiments 1 to 4 it is possible to provide a beam cutoff device in the beam transport system 30 or the irradiation nozzle 40 to ensure completeness.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add, delete, or replace another configuration.
  • the discrete spot irradiation method in which the beam current is stopped between spots is described as an example, but the present invention can be similarly applied to a continuous spot irradiation method in which the beam current is not stopped between spots.
  • an irradiation method of forming a dose distribution according to the shape of a target using a collimator or a bolus after broadening a particle beam distribution such as a Wobbler method or a double scatterer method may be applied to the present invention. Can be.
  • accelerator 20 in addition to the synchrotron accelerator described in the first to fifth embodiments, various known accelerators such as a cyclotron accelerator and a synchrocyclotron accelerator can be used.
  • the radiation source that generates radiation is not only the charged particle accelerator 20 as in the first to fifth embodiments, but also an X-ray therapy apparatus using an electron linear accelerator in which the generated radiation is X-rays, or the generated radiation.
  • a gamma ray therapy apparatus using a gamma ray source which is a gamma ray is possible.
  • the monitor signal simulator simulates the signals of the dose monitor and the collimator position monitor. Otherwise, the configuration can be the same as in the first to fifth embodiments.
  • Beam transport system 32 Distributing device 40: Irradiation nozzles 41A, 41B ... Scanning magnet 42 ... Dose monitor 43 ... Position monitor 43B ... Beam position monitor 44 ... Ridge filter 45 ... Range shifters 46, 46A, 46B, 46C, 46D, 46E ... Beam blocking device 46a ... Blocking body 46b ... Moving mechanism 47, 47A, 47B, 47C, 47D, 47E, 47F ... Monitor signal simulating device 5 ...
  • Patient 50 ... Treatment table 51 ... Affected part 52 ... Affected part layer irradiated with the same energy 53 Irradiation spots 61A, 61B Scanning magnet power supply 71 Scanning magnet power supply controller 72 Dose monitor controller 73 Position monitor controller 90 Beams 100, 100A, 100B, 100C, 100D, 100E, 100F Particle beam therapy System (radiation therapy system)

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A radiation treatment system 100 for radiating a particle beam to an affected part 51 of a patient 5 is provided with an accelerator 20 for generating and accelerating charged particles, a beam cutoff device 46 for cutting off the particle beam between the accelerator 20 and in front of the patient 5, and a monitor signal simulation device 47 for simulating a signal of a particle beam monitor while the particle beam is being cut off by the beam cutoff device 46. Through this configuration, it is possible to verify the data transfer integrity of treatment plan data while the patient is present in a treatment room.

Description

放射線治療システムおよび治療計画データの検証方法Radiotherapy system and treatment plan data verification method
 本発明は、放射線をがん患部に照射してがん治療を行う放射線治療システムおよび治療計画データの検証方法に関する。 (4) The present invention relates to a radiation treatment system for irradiating a cancer affected part with radiation to perform cancer treatment, and a method for verifying treatment plan data.
 非特許文献1には、前立腺癌患者のSFUD(Single-Field Uniform Dose)を用いたスポットスキャニング陽子線治療の患者特有の品質保証(QA:Quality Assurance)に関して記載されている。 Non-Patent Document 1 describes a patient-specific quality assurance (QA: Quality Assurance) of spot scanning proton beam therapy using SFUD (Single-Field Uniform Dose) for prostate cancer patients.
 また、非特許文献2には、毎日のCT画像上でIMPT(Intensity-modulated proton therapy)における計画線量を自動的に復元する3つの異なる方法、(1)初期計画の最適化目的を用いた単純線量修復、(2)ボクセル-ワイズ線量修復、(3)等線量修復を実施し、比較した結果が記載されている。 Non-Patent Document 2 discloses three different methods for automatically restoring a planned dose in an intensity-modulated @ proton @ therapy (IMPT) on a daily CT image, and (1) a simple method using an optimization purpose of an initial plan. Dose restoration, (2) voxel-wise dose restoration, and (3) equi-dose restoration were performed and the results of comparison are described.
 放射線治療は、標的となる腫瘍に対して放射線を照射することによって腫瘍にダメージを与える治療方法である。 Radiation therapy is a treatment method that irradiates a target tumor with radiation to damage the tumor.
 治療に用いる放射線ではX線が最も広く利用されているが、線量集中性が高い陽子線や炭素やヘリウム等の重粒子線に代表される粒子線を利用した粒子線治療への需要も高まっている。 X-rays are the most widely used radiotherapy, but the demand for particle beam therapy using particle beams represented by proton beams with high dose concentration and heavy particles such as carbon and helium is also growing. I have.
 このような放射線治療では、患者ごとに放射線の照射方向などの機器の設定値を保存した治療計画データを作成する。この治療計画データは患者QAにより検証されたのちに治療に用いられる。 (4) In such radiation treatment, treatment plan data is created in which setting values of devices such as a radiation irradiation direction are stored for each patient. This treatment plan data is used for treatment after being verified by the patient QA.
 非特許文献1には、患者QAの検証項目の一つとして、データ転送の完全性が開示されている。データ転送完全性の検証では、患者が治療台上にいない状態で、治療時のガントリー角度で治療計画データ通りに粒子線を照射し、粒子線治療システムが正しく動作することを確認する。 Non-Patent Document 1 discloses completeness of data transfer as one of the verification items of the patient QA. In the verification of data transfer integrity, the particle beam is irradiated according to the treatment plan data at the gantry angle at the time of treatment without the patient on the treatment table, and it is confirmed that the particle beam treatment system operates properly.
 また、非特許文献2には、患部への線量集中性を高める方法としてオンラインアダプティブ治療が提案されている。この方法では、治療日に計測した患者の解剖学的構造に基づき、治療計画を調整してから治療する。 Non-Patent Document 2 proposes an online adaptive treatment as a method of increasing the dose concentration on an affected part. In this method, a treatment plan is adjusted based on a patient's anatomical structure measured on the treatment day, and then treatment is performed.
 特に、粒子線治療では、治療台上に患者を固定して、予め治療計画で決められた位置に患者を位置決めし、治療計画データに従って粒子線を照射する。 Particularly, in particle beam therapy, a patient is fixed on a treatment table, the patient is positioned at a position determined in advance by a treatment plan, and the particle beam is irradiated according to the treatment plan data.
 オンラインアダプティブ治療では、治療日毎に取得したMRI画像やCT画像などの患者画像に基づき、治療計画を修正する必要があるかどうかを判断し、再計画の必要があると判断されれば、その場で再計画された新しい治療計画データを用いて治療を実施する。 In online adaptive treatment, it is determined based on patient images such as MRI images and CT images acquired on each treatment day whether or not a treatment plan needs to be modified. The treatment is performed using the new treatment plan data re-planned in.
 治療日毎の患者画像は、治療室内に設置されたMRI装置やCT装置を用いて、治療台に患者が乗った状態で取得される。これにより、治療日当日の患者の状況を考慮した治療計画の調整が可能となり、患部への線量集中性を高められ、正常組織へ付与される線量を低減することができる。 患者 Patient images for each treatment day are acquired with the patient on the treatment table using an MRI apparatus or CT apparatus installed in the treatment room. This makes it possible to adjust the treatment plan in consideration of the condition of the patient on the day of the treatment, improve the concentration of the dose on the affected part, and reduce the dose applied to the normal tissue.
 しかしながら、再計画により作成された新たな治療計画データは、治療に使用される前に患者QAによって検証されなければならない。 However, new treatment plan data created by replanning must be validated by the patient QA before being used for treatment.
 従来の方法では、データ転送完全性の検証のために治療室に粒子線を照射する必要がある。このため、不要な被ばくを避けるためには、患者を一度治療室から退室させる必要がある。 (4) In the conventional method, it is necessary to irradiate the treatment room with a particle beam in order to verify data transfer integrity. Therefore, in order to avoid unnecessary exposure, it is necessary to leave the patient from the treatment room once.
 患者を治療室から退室させる場合、入退室および再度実施される患者位置決めに時間を要し、一人の患者の治療にかかる時間が増大する、との課題がある。 (4) When a patient leaves the treatment room, there is a problem that it takes time to enter and leave the room and perform positioning of the patient again, and the time required for treatment of one patient increases.
 また、治療台の乗り降りに伴って、患者の解剖学的構造が変化することが懸念されるため、線量集中性を更に向上させる余地がある。 Further, there is a concern that the patient's anatomical structure may change with getting on and off the treatment table, so there is room for further improving the dose concentration.
 このような課題に対して、本発明は、患者が治療室に在室している状態で、治療計画データのデータ転送完全性の検証を実施することが可能な放射線治療システムおよび治療計画データの検証方法を提供する。 In order to solve such a problem, the present invention provides a radiation treatment system and a treatment planning data system capable of verifying the completeness of data transfer of treatment planning data while a patient is present in a treatment room. Provide a verification method.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、患者の患部に対して放射線を照射する放射線治療システムであって、前記放射線を発生させる放射線源と、前記放射線源と前記患者の前との間で放射線を遮断する遮断手段と、前記遮断手段によって放射線が遮断されている間、放射線モニタの信号を模擬するモニタ信号模擬装置と、を備えたことを特徴とする。 The present invention includes a plurality of means for solving the above problems, a radiotherapy system for irradiating the affected part of the patient with radiation, to give an example, a radiation source for generating the radiation, A shielding unit that blocks radiation between the radiation source and the front of the patient, and a monitor signal simulator that simulates a signal of a radiation monitor while the radiation is blocked by the blocking unit. Features.
 また、他の一例をあげるならば、患者の患部に対して放射線を照射する放射線治療システムにおける治療計画データの検証方法であって、前記放射線治療システムは、前記放射線を発生させる放射線源と、前記放射線源と前記患者の前との間で放射線を遮断する遮断手段と、前記遮断手段によって放射線が遮断されている間、放射線モニタの信号を模擬するモニタ信号模擬装置と、を備え、治療室内に前記患者が在室した状態のまま、前記遮断手段によって前記放射線を遮断することで前記放射線を照射することなくデータ転送の完全性を検証することを特徴とする。 Another example is a method of verifying treatment plan data in a radiation treatment system that irradiates an affected part of a patient with radiation, wherein the radiation treatment system includes a radiation source that generates the radiation, Blocking means for blocking radiation between the radiation source and the front of the patient, and a monitor signal simulating device that simulates a signal of a radiation monitor while the radiation is blocked by the blocking means, comprising: It is characterized in that the integrity of data transfer is verified without irradiating the radiation by blocking the radiation by the blocking means while the patient is in the room.
 本発明によれば、患者が治療室に在室している状態で、治療計画データのデータ転送完全性の検証を実施することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to verify the completeness of the data transfer of the treatment plan data while the patient is in the treatment room. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の実施形態1の粒子線治療システムの全体構成を示す図である。It is a figure showing the whole particle beam therapy system composition of Embodiment 1 of the present invention. 実施形態1の粒子線治療システムの粒子線スキャニング照射ノズルの概略を示す図である。FIG. 2 is a diagram schematically illustrating a particle beam scanning irradiation nozzle of the particle beam therapy system according to the first embodiment. 患部をスキャニング照射していく時の、同じエネルギーで照射する層と荷電粒子ビームと照射スポットを示す図である。It is a figure which shows the layer irradiated with the same energy, a charged particle beam, and an irradiation spot at the time of scanning irradiation of an affected part. 患部をスキャニング照射していく時の深さ方向の線量分布を示す図である。It is a figure which shows the dose distribution of the depth direction at the time of scanning irradiation of an affected part. 実施形態1の粒子線治療システムにおける全体制御装置のモード切替を実施する際のディスプレイの表示例を示す図である。FIG. 4 is a diagram illustrating a display example of a display when mode switching of the overall control device is performed in the particle beam therapy system according to Embodiment 1. 実施形態1の粒子線治療システムにおける照射制御のフローチャートを示す図である。FIG. 2 is a diagram illustrating a flowchart of irradiation control in the particle beam therapy system according to Embodiment 1. 実施形態1の粒子線治療システムでの治療モードにおけるスキャニング照射の制御のタイムチャートを示す図である。FIG. 3 is a diagram illustrating a time chart of control of scanning irradiation in a treatment mode in the particle beam therapy system according to Embodiment 1. 実施形態1の粒子線治療システムでのモニタ信号模擬モードにおけるスキャニング照射の制御のタイムチャートを示す図である。FIG. 3 is a diagram showing a time chart of scanning irradiation control in a monitor signal simulation mode in the particle beam therapy system according to Embodiment 1. 本発明の実施形態2の粒子線治療システムの全体構成を示す図である。It is a figure showing the whole particle beam therapy system composition of Embodiment 2 of the present invention. 本発明の実施形態3の粒子線治療システムの全体構成を示す図である。It is a figure showing the whole particle beam therapy system composition of Embodiment 3 of the present invention. 本発明の実施形態4の粒子線治療システムの全体構成の一例を示す図である。It is a figure showing an example of the whole particle beam therapy system composition of Embodiment 4 of the present invention. 本発明の実施形態4の粒子線治療システムの全体構成の他の一例を示す図である。It is a figure showing other examples of the whole composition of the particle beam therapy system of Embodiment 4 of the present invention. 本発明の実施形態4の粒子線治療システムの全体構成の他の一例を示す図である。It is a figure showing other examples of the whole composition of the particle beam therapy system of Embodiment 4 of the present invention. 本発明の実施形態5の粒子線治療システムの全体構成の一例を示す図である。It is a figure showing an example of the whole composition of the particle beam therapy system of Embodiment 5 of the present invention.
 以下に本発明の放射線治療システムおよび治療計画データの検証方法の実施形態を、図面を用いて説明する。 Hereinafter, embodiments of the radiation therapy system and the method for verifying treatment plan data of the present invention will be described with reference to the drawings.
 以下の各実施形態では、患者の患部に対して照射する放射線として、陽子や炭素等の重粒子を用いる粒子線治療システムを例に説明する。 In the following embodiments, a particle beam therapy system using heavy particles such as protons and carbon as radiation for irradiating an affected part of a patient will be described as an example.
 <実施形態1> 
 本発明の放射線治療システムおよび治療計画データの検証方法の実施形態1について図1乃至図8を用いて説明する。
<First embodiment>
Embodiment 1 of a radiation therapy system and a method for verifying treatment plan data of the present invention will be described with reference to FIGS. 1 to 8.
 最初に、粒子線治療システムの全体構成について図1を用いて説明する。図1は本実施形態の粒子線治療システムの全体構成を示す図である。 First, the overall configuration of the particle beam therapy system will be described with reference to FIG. FIG. 1 is a diagram showing the overall configuration of the particle beam therapy system according to the present embodiment.
 粒子線治療システム100は、患者5の患部51に対して粒子線を照射するシステムであり、図1に示すように、加速器20と、ビーム輸送系30と、照射ノズル40と、治療台50と、全体制御装置11と、加速器・ビーム輸送系制御装置12と、照射制御装置13と、ディスプレイ14と、入力装置15と、ビーム遮断装置46と、モニタ信号模擬装置47と、を備えている。 The particle beam therapy system 100 is a system that irradiates the affected part 51 of the patient 5 with a particle beam. As shown in FIG. 1, the accelerator 20, the beam transport system 30, the irradiation nozzle 40, the treatment table 50, , An overall control device 11, an accelerator / beam transport system control device 12, an irradiation control device 13, a display 14, an input device 15, a beam cutoff device 46, and a monitor signal simulation device 47.
 加速器20は、荷電粒子ビーム(以下、ビーム90、図2参照)を生成、加速する装置であり、入射器21とシンクロトロン加速器22を備える。 The accelerator 20 is a device that generates and accelerates a charged particle beam (hereinafter, referred to as a beam 90, see FIG. 2), and includes an injector 21 and a synchrotron accelerator 22.
 ビーム輸送系30は、患部51にビーム90を照射する照射ノズル40まで加速器20で加速されたビーム90を輸送する装置郡であり、加速器20と照射ノズル40とを接続している。 The beam transport system 30 is a group of devices that transport the beam 90 accelerated by the accelerator 20 to the irradiation nozzle 40 that irradiates the affected part 51 with the beam 90, and connects the accelerator 20 and the irradiation nozzle 40.
 加速器20で光速の6~7割まで加速されたビーム90は、ビーム輸送系30に配置された偏向電磁石31により真空中を磁場で曲げられながら照射ノズル40まで輸送される。 The beam 90 accelerated to 60 to 70% of the speed of light by the accelerator 20 is transported to the irradiation nozzle 40 while being bent in a vacuum by a magnetic field by the bending electromagnet 31 arranged in the beam transport system 30.
 照射ノズル40でビーム90は照射領域の形状に合致するように整形され、照射対象に照射される。照射対象は、例えば治療台50に横になった患者5の患部51(図2参照)などである。 (4) The beam 90 is shaped by the irradiation nozzle 40 so as to conform to the shape of the irradiation area, and is irradiated to the irradiation target. The irradiation target is, for example, the affected part 51 (see FIG. 2) of the patient 5 lying on the treatment table 50.
 全体制御装置11は、OIS(Oncology Information System)を介して治療計画装置(ともに図示省略)、加速器・ビーム輸送系制御装置12、照射制御装置13、モニタ信号模擬装置47、ディスプレイ14、入力装置15、などと接続されており、粒子線治療システム100全体の動作を制御する。 The overall control device 11 includes a treatment planning device (both not shown), an accelerator / beam transport system control device 12, an irradiation control device 13, a monitor signal simulation device 47, a display 14, an input device 15 via an OIS (Oncology Information System). , Etc., and controls the operation of the entire particle beam therapy system 100.
 加速器・ビーム輸送系制御装置12は、加速器20やビーム輸送系30を構成する各機器の動作を制御する。 (4) The accelerator / beam transport system controller 12 controls the operation of each device constituting the accelerator 20 and the beam transport system 30.
 照射制御装置13は、照射ノズル40を構成する各機器の動作を制御する。 The irradiation control device 13 controls the operation of each device constituting the irradiation nozzle 40.
 ディスプレイ14および入力装置15は、入出力装置の一式であり、全体制御装置11から取得した信号に基づいて情報を表示する。また、粒子線治療システム100を操作する医療従事者からの入力を受け取り、全体制御装置11に様々な操作指示信号を送信する。 The display 14 and the input device 15 are a set of input / output devices, and display information based on signals obtained from the overall control device 11. Further, it receives an input from a medical worker operating the particle beam therapy system 100 and transmits various operation instruction signals to the overall control device 11.
 治療台50は、患者5を載せるベッドである。治療台50は全体制御装置11からの指示に基づき、直交する3軸の方向へ移動することができ、さらにそれぞれの軸を中心として回転する、いわゆる6軸方向に移動することができる。これらの移動と回転により、患者5の患部51の位置を所望の位置に移動させることができる。 The treatment table 50 is a bed on which the patient 5 is placed. The treatment table 50 can move in directions of three orthogonal axes based on an instruction from the overall control device 11, and can move in a so-called six-axis direction that rotates around each axis. By these movement and rotation, the position of the affected part 51 of the patient 5 can be moved to a desired position.
 次に、粒子線をスキャニングさせる照射ノズル40、ビーム遮断装置46、モニタ信号模擬装置47の詳細について図2乃至図4を用いて説明する。図2は粒子線スキャニング用の照射ノズル40の概略を示す図である。図3は患部51をスキャニング照射していく時の、同じエネルギーで照射する層と荷電粒子ビーム90と照射スポット53を示す図である。図4は患部51をスキャニング照射していく時の深さ方向の線量分布を示す図である。 Next, the details of the irradiation nozzle 40 for scanning the particle beam, the beam blocking device 46, and the monitor signal simulating device 47 will be described with reference to FIGS. FIG. 2 is a view schematically showing an irradiation nozzle 40 for scanning a particle beam. FIG. 3 is a diagram showing a layer irradiated with the same energy, a charged particle beam 90, and an irradiation spot 53 when the affected part 51 is scanned and irradiated. FIG. 4 is a diagram showing a dose distribution in the depth direction when the affected part 51 is scanned and irradiated.
 図2に示すように、照射ノズル40内には、ビーム遮断装置46、走査電磁石41A,41B、線量モニタ42、位置モニタ43、リッジフィルタ44、レンジシフタ45が配置されている。 ビ ー ム As shown in FIG. 2, in the irradiation nozzle 40, a beam cutoff device 46, scanning electromagnets 41A and 41B, a dose monitor 42, a position monitor 43, a ridge filter 44, and a range shifter 45 are arranged.
 また、図2に示すように、照射制御装置13は、照射ノズル制御装置13A、線量モニタ制御装置72、位置モニタ制御装置73、走査電磁石電源制御装置71、走査電磁石電源61A,61Bを有している。 As shown in FIG. 2, the irradiation control device 13 includes an irradiation nozzle control device 13A, a dose monitor control device 72, a position monitor control device 73, a scanning magnet power supply control device 71, and scanning electromagnet power supplies 61A and 61B. I have.
 照射ノズル40は、ビーム90の通過方向に対して垂直な平面にビーム90を走査するための走査電磁石41A,41Bにより二次元平面内にビーム90を走査する装置である。走査電磁石41A,41Bにより走査されたビーム90は、患部51に照射される。治療のための照射時は、ビーム遮断装置46はビーム90の軌道上から後退し、ビーム90の照射を妨げることを防いでいる。 The irradiation nozzle 40 is a device that scans the beam 90 in a two-dimensional plane by the scanning electromagnets 41A and 41B for scanning the beam 90 on a plane perpendicular to the passing direction of the beam 90. The beam 90 scanned by the scanning electromagnets 41 </ b> A and 41 </ b> B is applied to the affected part 51. At the time of irradiation for treatment, the beam blocking device 46 retreats from the trajectory of the beam 90 to prevent the irradiation of the beam 90 from being hindered.
 線量モニタ42は各スポットに照射されるビーム90の線量を演算するために、ビーム90の通過によって生じた電子を収集するモニタである。線量モニタ42の検出信号(電子を収集して得られたパルス信号)は線量モニタ制御装置72に入力される。 The dose monitor 42 is a monitor that collects electrons generated by the passage of the beam 90 in order to calculate the dose of the beam 90 applied to each spot. The detection signal (pulse signal obtained by collecting electrons) of the dose monitor 42 is input to the dose monitor control device 72.
 線量モニタ制御装置72は、線量モニタ42から入力された検出信号に基づいて各照射スポット53に照射される照射量を演算し、演算した照射量を照射ノズル制御装置13Aに出力する。 The dose monitor control device 72 calculates the dose irradiated on each irradiation spot 53 based on the detection signal input from the dose monitor 42, and outputs the calculated dose to the irradiation nozzle control device 13A.
 位置モニタ43は各照射スポット53の位置(例えば重心の位置)を演算するために、ビーム90の通過によって生じた電子を収集するモニタである。位置モニタ43の検出信号(電子を収集して得られたパルス信号)は位置モニタ制御装置73に入力される。 The position monitor 43 is a monitor that collects electrons generated by the passage of the beam 90 in order to calculate the position of each irradiation spot 53 (for example, the position of the center of gravity). A detection signal (a pulse signal obtained by collecting electrons) of the position monitor 43 is input to the position monitor control device 73.
 位置モニタ制御装置73は、位置モニタ43から入力された検出信号に基づいて各照射スポット53における線量をカウントし、演算したカウント値を照射ノズル制御装置13Aに出力する。 The position monitor control device 73 counts the dose at each irradiation spot 53 based on the detection signal input from the position monitor 43, and outputs the calculated count value to the irradiation nozzle control device 13A.
 照射ノズル制御装置13Aは、位置モニタ制御装置73に入力された信号に基づきビーム90の通過位置を求め、求めた通過位置のデータから照射スポット53の位置および幅の演算を行い、ビーム90の照射位置を確認する。更には、照射ノズル制御装置13Aは、線量モニタ制御装置72に入力された照射線量に応じてビーム90の照射の制御を進行する。 The irradiation nozzle control device 13A calculates the passing position of the beam 90 based on the signal input to the position monitor control device 73, calculates the position and width of the irradiation spot 53 from the obtained passing position data, and irradiates the beam 90. Check the position. Further, the irradiation nozzle control device 13 </ b> A controls the irradiation of the beam 90 in accordance with the irradiation dose input to the dose monitor control device 72.
 ビーム遮断装置46は、加速器20と患者5の前との間で粒子線を遮断する構成であり、粒子線を物理的に遮断する遮断体46aや、遮断体46aを粒子線の軌道に対して前進/後退させる移動機構46b等を有している。 The beam cut-off device 46 is configured to block a particle beam between the accelerator 20 and the front of the patient 5. The beam cut-off device 46 physically blocks the particle beam, and the beam blocker 46 a moves with respect to the trajectory of the particle beam. It has a moving mechanism 46b for moving forward / backward.
 遮断体46aは、ビーム90の軌道上に配置される際にビーム90と衝突する物体であり、患者5までビーム90が到達することを防ぐ。遮断体46aは、例えば真鍮等の金属製のブロックであり、移動機構46bによりビーム90の軌道上からの後退、ビーム90の軌道上への前進が可能となっている。なお、ビーム遮断に伴いガンマ線や中性子線などの二次放射線が発生することから、患者5の二次放射線による被ばくを防ぐ目的で、遮断体46aには遮蔽材などの遮蔽構造を更に設けることが望ましい。 The blocker 46a is an object that collides with the beam 90 when placed on the trajectory of the beam 90, and prevents the beam 90 from reaching the patient 5. The blocking body 46a is a metal block made of, for example, brass, and the moving mechanism 46b allows the beam 90 to retreat from the trajectory and to advance the beam 90 onto the trajectory. In addition, since secondary radiation such as gamma rays and neutron rays is generated due to the beam interruption, the shielding body 46a may be further provided with a shielding structure such as a shielding material for the purpose of preventing the patient 5 from being exposed to the secondary radiation. desirable.
 移動機構46bは遮断体46aに取り付けられた車輪、その車輪が転がるレール、遮断体46aを移動させる駆動機構等から構成される。駆動機構は空圧式、油圧式、モータなどによる機械駆動式、など様々な構成とすることができる。 The moving mechanism 46b includes wheels mounted on the blocking body 46a, rails on which the wheels roll, a driving mechanism for moving the blocking body 46a, and the like. The drive mechanism can be of various configurations such as a pneumatic type, a hydraulic type, a mechanical drive type by a motor, and the like.
 モニタ信号模擬装置47は、ビーム遮断装置46によって粒子線が患者5の患部51まで到達することが遮断されている間、粒子線モニタの信号を模擬する装置である。本実施例では、粒子線の照射量を計測する線量モニタ42の出力する信号、および粒子線の照射位置を計測する位置モニタ43の出力する信号を模擬した模擬モニタ信号を生成する。 The monitor signal simulating device 47 is a device that simulates a signal of the particle beam monitor while the beam blocking device 46 blocks the particle beam from reaching the affected part 51 of the patient 5. In the present embodiment, a simulated monitor signal that simulates a signal output from the dose monitor 42 for measuring the irradiation amount of the particle beam and a signal output from the position monitor 43 for measuring the irradiation position of the particle beam is generated.
 本実施例では、粒子線モニタは線量モニタ42および位置モニタ43から構成されるが、いずれか一方でも構わないし、また他の種類のモニタを適宜含むことができる。 In the present embodiment, the particle beam monitor is composed of the dose monitor 42 and the position monitor 43, but any one of them may be used, and another type of monitor may be appropriately included.
 モニタ信号模擬装置47が出力する線量モニタ模擬信号は、線量モニタ42の検出信号と合成されて線量モニタ制御装置72に入力される。モニタ信号模擬装置47が出力する位置モニタ模擬信号は、位置モニタ43の検出信号と合成されて位置モニタ制御装置73に入力される。 The dose monitor simulation signal output from the monitor signal simulation device 47 is combined with the detection signal of the dose monitor 42 and input to the dose monitor control device 72. The position monitor simulation signal output by the monitor signal simulation device 47 is combined with the detection signal of the position monitor 43 and input to the position monitor control device 73.
 なお、モニタ信号模擬装置47は、線量モニタ模擬信号と位置モニタ模擬信号のうち、少なくともいずれかの信号を模擬するものであってもよい。 The monitor signal simulation device 47 may simulate at least one of a dose monitor simulation signal and a position monitor simulation signal.
 また、モニタ信号模擬装置47は、治療モードの際には、ビーム遮断装置46の遮断体46aをビーム90の軌道上から後退させ、モニタ信号模擬モードの際にはビーム遮断装置46の遮断体46aをビーム90の軌道上に前進させるよう、移動機構46bに対して移動信号を出力する。 The monitor signal simulating device 47 retracts the blocking member 46a of the beam blocking device 46 from the trajectory of the beam 90 in the treatment mode, and the blocking member 46a of the beam blocking device 46 in the monitoring signal simulating mode. A signal is output to the moving mechanism 46b so as to advance the beam on the trajectory of the beam 90.
 リッジフィルタ44は、ブラッグピークを太らせることが必要な場合に使用することができる。また、レンジシフタ45は、ビーム90の到達位置を調整する際に挿入することができる。 The ridge filter 44 can be used when it is necessary to increase the Bragg peak. The range shifter 45 can be inserted when adjusting the arrival position of the beam 90.
 本実施形態のようなスキャニング照射では、あらかじめ治療計画装置で患部51を一様な線量で照射するための照射スポット53の位置と各照射スポット53に対する目標照射量を計算する。粒子線スキャニング照射の模式図を図3に示す。 In the scanning irradiation as in the present embodiment, the position of the irradiation spot 53 for irradiating the diseased part 51 with a uniform dose and the target irradiation amount for each irradiation spot 53 are calculated in advance by the treatment planning device. FIG. 3 is a schematic diagram of the particle beam scanning irradiation.
 図3に示すように、スキャニング照射では、患部51を層52に分割し、各層52内は同じエネルギーのビーム90で照射していく。一つの層52内には照射スポット53が1つ以上配置される。 As shown in FIG. 3, in the scanning irradiation, the affected part 51 is divided into layers 52, and the inside of each layer 52 is irradiated with the beam 90 of the same energy. One or more irradiation spots 53 are arranged in one layer 52.
 ビーム90の進行方向、すなわち患部51深さ方向の照射位置変更には、ビーム90のエネルギーを変更する。ビーム90のエネルギーが変化すると、ビーム90の体内到達位置が変わる。エネルギーの高い荷電粒子ビーム90は、体内の深い位置まで到達し、エネルギーの低い荷電粒子ビーム90は体内の浅い位置までしか到達しない。 To change the irradiation position in the direction of travel of the beam 90, that is, in the depth direction of the affected part 51, the energy of the beam 90 is changed. When the energy of the beam 90 changes, the position at which the beam 90 reaches the body changes. The charged particle beam 90 having high energy reaches a deep position in the body, and the charged particle beam 90 having low energy reaches only a shallow position in the body.
 スキャニング照射では、深さ方向の一様な線量分布形成にビーム90のエネルギーを変更して、照射量を適切に配分することにより深さ方向のSOBP(Spread Out Bragg Peak)を形成する。各エネルギーの照射量を適切に配分することで各エネルギーのブラッグカーブ81を重ね合わせて、図4に示すように深さ方向に一様な線量分布SOBP82を形成する。 In the scanning irradiation, the energy of the beam 90 is changed to form a uniform dose distribution in the depth direction, and the irradiation amount is appropriately distributed to form a depth-direction SOBP (Spread Out Bragg Peak). By appropriately allocating the irradiation amount of each energy, the Bragg curves 81 of each energy are superimposed to form a uniform dose distribution SOBP 82 in the depth direction as shown in FIG.
 図1に戻り、本実施例の全体制御装置11は、治療時の動作を制御する治療モードと、データ転送完全性の検証時の動作を制御するモニタ信号模擬モード、との2つのモードを有する。治療モードとモニタ信号模擬モードの切り替えは、図5に示すディスプレイ14に表示される画面表示に従い、オペレータがモードを選択することでなされる。 Returning to FIG. 1, the overall control device 11 of the present embodiment has two modes: a treatment mode for controlling the operation during treatment, and a monitor signal simulation mode for controlling the operation during verification of data transfer integrity. . Switching between the treatment mode and the monitor signal simulation mode is performed by the operator selecting a mode in accordance with the screen display displayed on the display 14 shown in FIG.
 照射時のフローチャートを図6に示す。予め治療計画装置で作成された患者5毎の治療計画データは、治療計画装置からOISに保存されている。 FIG. 6 shows a flowchart at the time of irradiation. The treatment plan data for each patient 5 created in advance by the treatment planning device is stored in the OIS from the treatment planning device.
 最初に、これから実施する照射が、患者5の患部51への実照射を行う治療モードと、データ転送完全性の検証のための模擬照射を行うモード(モニタ信号模擬モード)とのいずれであるかが、図5に示すような画面を用いて選択されると、全体制御装置11はモードがいずれであるかを認識する(ステップS101)。 First, whether the irradiation to be performed is a treatment mode for actually irradiating the affected part 51 of the patient 5 or a mode for performing simulated irradiation for verifying the integrity of data transfer (monitor signal simulated mode) Is selected using the screen as shown in FIG. 5, the overall control device 11 recognizes the mode (step S101).
 ステップS101におけるモードの選択後、治療計画データがOISから粒子線治療システム100の全体制御装置11に送られる(ステップS102)。 After the selection of the mode in step S101, the treatment plan data is sent from the OIS to the overall control device 11 of the particle beam therapy system 100 (step S102).
 全体制御装置11は、治療計画データに基づき、治療台50、加速器・ビーム輸送系制御装置12、照射制御装置13のパラメータを設定する(ステップS103)。また、全体制御装置11は、治療計画データに基づき設定された各スポットのエネルギー、座標値、照射量のデータを照射制御装置13に加えてモニタ信号模擬装置47に対して送る。 The overall control device 11 sets parameters of the treatment table 50, the accelerator / beam transport system control device 12, and the irradiation control device 13 based on the treatment plan data (step S103). In addition, the overall control device 11 sends data of the energy, coordinate value, and irradiation amount of each spot set based on the treatment plan data to the monitor signal simulation device 47 in addition to the irradiation control device 13.
 照射スポット53の座標値は、照射制御装置13において走査電磁石41A,41Bの励磁電流値に変換されて、図2に示す走査電磁石電源制御装置71に送られる。 座標 The coordinate value of the irradiation spot 53 is converted into an excitation current value of the scanning electromagnets 41A and 41B by the irradiation control device 13 and sent to the scanning electromagnet power supply control device 71 shown in FIG.
 パラメータの設定などが完了した後、オペレータの操作により照射が開始される(ステップS104)。 After the setting of the parameters is completed, the irradiation is started by the operation of the operator (step S104).
 照射が開始されると、全体制御装置11は、加速器・ビーム輸送系制御装置12にエネルギー変更、ビーム90の出射信号又は出射停止信号などを出力する。治療計画データに記録された順に従い、N=1から順次ある照射スポット53に対して、定められた照射量のビーム90を照射する(ステップS105)。 When the irradiation is started, the overall control device 11 outputs an energy change, an emission signal of the beam 90 or an emission stop signal to the accelerator / beam transport system control device 12. According to the order recorded in the treatment plan data, a beam 90 having a predetermined dose is irradiated to a certain irradiation spot 53 sequentially from N = 1 (step S105).
 線量モニタからの信号、あるいはモニタ信号模擬装置47からの信号に基づいて規定の線量が照射されたと判定されたときは、全体制御装置11は、先に照射が完了したある照射スポット53が同じ層52内の最後に照射すべきスポットであったか否かを判定する(ステップS106)。最終スポットであったと判定されたときは処理をステップS107に進める。これに対し、最終スポットでなかったと判定されたときは次の照射スポット53の照射を実行するために、処理をステップS105に進める。 When it is determined based on the signal from the dose monitor or the signal from the monitor signal simulating device 47 that the specified dose has been irradiated, the overall control device 11 determines that the irradiation spot 53 that has been irradiated earlier is in the same layer. It is determined whether or not the spot in 52 is the last spot to be irradiated (step S106). If it is determined that the spot is the last spot, the process proceeds to step S107. On the other hand, when it is determined that the spot is not the final spot, the process proceeds to step S105 to execute irradiation of the next irradiation spot 53.
 次いで、全体制御装置11は、先に照射が完了したある照射スポット53が属する層52が最後に照射すべき層52であったか否かを判定する(ステップS107)。最後の層52であったと判定されたときは処理をステップS108に進め、最後の層52でなかったと判定されたときはエネルギー変更して次の層52の照射を行うために、処理をステップS105に進める。 Next, the overall control device 11 determines whether or not the layer 52 to which a certain irradiation spot 53 to which irradiation has been completed previously belongs is the layer 52 to be irradiated last (step S107). If it is determined that the layer is the last layer 52, the process proceeds to step S108. If it is determined that the layer is not the last layer 52, the process is performed in step S105 to change the energy and irradiate the next layer 52. Proceed to
 照射が完了すると、全体制御装置11は、スポット毎の照射位置および照射量を含む実績データを作成し、OISに転送する(ステップS108)。 When the irradiation is completed, the overall control device 11 creates actual data including the irradiation position and the irradiation amount for each spot, and transfers the data to the OIS (step S108).
 次に、治療モードにおけるスキャニング照射のタイムチャートを図7に示す。図7では例としてスポット1からスポット3までの3スポットの照射を示す。 Next, FIG. 7 shows a time chart of the scanning irradiation in the treatment mode. FIG. 7 shows irradiation of three spots from spot 1 to spot 3 as an example.
 治療モードでは、照射の前に、全体制御装置11からモニタ信号模擬装置47に対して治療モードであるとの信号が出力される。モニタ信号模擬装置47は治療モードであることを認識したときは、ビーム遮断装置46の移動機構46bに対して後退信号を出力し、遮断体46aをビーム90の軌道上から後退させる。 In the treatment mode, a signal indicating that the treatment mode is set is output from the overall control device 11 to the monitor signal simulation device 47 before the irradiation. When recognizing that the monitor mode is the treatment mode, the monitor signal simulating device 47 outputs a retreat signal to the moving mechanism 46b of the beam intercepting device 46, and retreats the interceptor 46a from the trajectory of the beam 90.
 加速器20には、所定のビーム強度で照射するように図1に示す加速器・ビーム輸送系制御装置12から指令を出す。ビーム90の照射が開始されると照射ノズル40内の線量モニタ42の電離出力がパルス変換されて出力される。 (1) A command is issued from the accelerator / beam transport system controller 12 shown in FIG. 1 to the accelerator 20 so as to irradiate with a predetermined beam intensity. When the irradiation of the beam 90 is started, the ionization output of the dose monitor 42 in the irradiation nozzle 40 is pulse-converted and output.
 ビーム90の照射に伴い、線量モニタ制御装置72で計数されるパルスカウント値が増加し始め、所定の照射量を照射すると線量モニタ制御装置72は満了信号を照射ノズル制御装置13Aに送り、スポットの照射は終了する。 With the irradiation of the beam 90, the pulse count value counted by the dose monitor control device 72 starts to increase, and when irradiating a predetermined dose, the dose monitor control device 72 sends an expiration signal to the irradiation nozzle control device 13A, and The irradiation ends.
 スポットが照射されている間、線量モニタ42と同様に、位置モニタ43の電離出力もパルス変換されて出力される。スポットの照射が終了すると、位置モニタ制御装置73は、1スポット分の信号を合算した結果を照射ノズル制御装置13Aに入力する。 While the spot is being irradiated, the ionization output of the position monitor 43 is also pulse-converted and output as in the case of the dose monitor 42. When the irradiation of the spot is completed, the position monitor control device 73 inputs the result of adding the signals for one spot to the irradiation nozzle control device 13A.
 照射ノズル制御装置13Aは、位置モニタ制御装置73の出力信号に基づき、スポットの位置、幅を演算し、所定の位置に照射されたかどうか判定する。判定した結果、スポット位置、幅のずれが大きいときは、ビーム90を停止する。 The irradiation nozzle control device 13A calculates the position and width of the spot based on the output signal of the position monitor control device 73, and determines whether or not a predetermined position has been irradiated. As a result of the determination, when the deviation between the spot position and the width is large, the beam 90 is stopped.
 また、線量モニタ制御装置72の満了信号により、照射ノズル制御装置13Aは走査電磁石電源制御装置71に次のスポット移動の信号を送り、次のスポットへの移動が開始される。次のスポットの電流値に到達すると、走査電磁石電源制御装置71は移動完了信号を照射ノズル制御装置13Aに送る。 (5) In response to the expiration signal from the dose monitor control device 72, the irradiation nozzle control device 13A sends a signal for the next spot movement to the scanning magnet power supply control device 71, and the movement to the next spot is started. When the current value of the next spot is reached, the scanning electromagnet power controller 71 sends a movement completion signal to the irradiation nozzle controller 13A.
 以上が治療モードにおけるスキャニング照射の制御の流れである。 The above is the control flow of the scanning irradiation in the treatment mode.
 次に、本発明の特徴である、データ転送完全性の検証時における粒子線治療システムの動作方法(治療計画データの検証方法)について説明する。 Next, an operation method (a method of verifying treatment plan data) of the particle beam therapy system at the time of verifying data transfer integrity, which is a feature of the present invention, will be described.
 モニタ信号模擬モードでは、照射の前に、全体制御装置11からモニタ信号模擬装置47に対して模擬モードであるとの信号が出力される。モニタ信号模擬装置47は模擬モードであることを認識したときは、ビーム遮断装置46の移動機構46bに対して前進信号を出力し、遮断体46aをビーム90の軌道上に前進させる。これにより照射ノズル40内に設置されたビーム遮断装置46の遮断体46aがビーム90の軌道上に設置されることでビーム90は患者5まで輸送されることを防ぐことができる。 In the monitor signal simulation mode, a signal indicating that the mode is the simulation mode is output from the overall control device 11 to the monitor signal simulation device 47 before the irradiation. When recognizing that the monitor mode is the simulation mode, the monitor signal simulator 47 outputs a forward signal to the moving mechanism 46b of the beam interrupter 46, and advances the interrupter 46a on the trajectory of the beam 90. Thereby, the beam 90 can be prevented from being transported to the patient 5 by setting the blocking body 46 a of the beam blocking device 46 installed in the irradiation nozzle 40 on the trajectory of the beam 90.
 モニタ信号模擬モードであっても、制御のフローチャートは図6に従う。 っ て も Even in the monitor signal simulation mode, the control flowchart follows FIG.
 全体制御装置11は、OISから治療計画データをダウンロードし、各スポットのエネルギー、座標値、照射量のデータを照射ノズル制御装置13Aおよびモニタ信号模擬装置47に送る。 The overall control device 11 downloads the treatment plan data from the OIS, and sends the energy, coordinate value, and irradiation amount data of each spot to the irradiation nozzle control device 13A and the monitor signal simulation device 47.
 モニタ信号模擬装置47は、スポット毎に、エネルギー、座標値、照射量に応じて線量モニタ模擬信号および位置モニタ模擬信号の信号強度を計算する。信号強度は、スポットのエネルギー、座標値、照射量を変数とする変換式または変換テーブルに基づき計算される。信号強度の計算は、治療計画データのダウンロード時に実施しても良いが、スポットの照射時に逐次計算しても良い。 The monitor signal simulator 47 calculates, for each spot, the signal intensity of the dose monitor simulation signal and the position monitor simulation signal according to the energy, coordinate value, and irradiation amount. The signal intensity is calculated based on a conversion formula or a conversion table using the spot energy, coordinate value, and irradiation amount as variables. The calculation of the signal intensity may be performed when the treatment plan data is downloaded, or may be calculated sequentially when irradiating the spot.
 モニタ信号模擬モードにおいても、モニタ信号模擬装置47およびビーム遮断装置46以外の装置は治療モードと同様の動作をする。 In the monitor signal simulation mode, the devices other than the monitor signal simulation device 47 and the beam cutoff device 46 operate in the same manner as in the treatment mode.
 つまり、加速器20は治療計画データに基づくエネルギーにビーム90を加速したのちに出射し、ビーム輸送系30は照射ノズル40までビーム90を輸送する。 That is, the accelerator 20 emits the beam 90 after accelerating the beam 90 to the energy based on the treatment plan data, and the beam transport system 30 transports the beam 90 to the irradiation nozzle 40.
 モニタ信号模擬モードでは、加速器・ビーム輸送系制御装置12はビーム90を出射する時に、スポット照射タイミング信号をモニタ信号模擬装置47に入力する。モニタ信号模擬装置47はスポット照射タイミング信号をトリガーとして、照射スポット53に応じたモニタ模擬信号を出力する。 In the monitor signal simulation mode, the accelerator / beam transport system controller 12 inputs a spot irradiation timing signal to the monitor signal simulator 47 when emitting the beam 90. The monitor signal simulation device 47 outputs a monitor simulation signal corresponding to the irradiation spot 53 using the spot irradiation timing signal as a trigger.
 ビーム遮断装置46によりビーム90が遮断されるため、線量モニタ42および位置モニタ43から検出信号は出力されない。照射ノズル制御装置13Aはモニタ模擬信号に基づき照射の制御を進行する。 Since the beam 90 is blocked by the beam blocking device 46, no detection signal is output from the dose monitor 42 and the position monitor 43. The irradiation nozzle control device 13A controls irradiation based on the monitor simulation signal.
 次に、モニタ信号模擬モードにおけるスキャニング照射のタイムチャートを図8に示す。図8でも図7と同様にスポット1からスポット3までの3スポットの照射を示す。 Next, FIG. 8 shows a time chart of scanning irradiation in the monitor signal simulation mode. FIG. 8 also shows irradiation of three spots from spot 1 to spot 3, as in FIG.
 加速器20には、所定のビーム強度で照射するように図1に示す加速器・ビーム輸送系制御装置12から指令を出す。 (1) A command is issued from the accelerator / beam transport system controller 12 shown in FIG. 1 to the accelerator 20 so as to irradiate with a predetermined beam intensity.
 ビーム90の照射が開始されても、ビーム遮断装置46によりビーム90が遮断されるため、線量モニタ42および位置モニタ43をビーム90が通過せず、信号は出力されない。 Even if the irradiation of the beam 90 is started, the beam 90 is blocked by the beam blocking device 46, so that the beam 90 does not pass through the dose monitor 42 and the position monitor 43, and no signal is output.
 ここで、本モニタ信号模擬モードでは、加速器・ビーム輸送系制御装置12はビーム90を出射する時に、スポット照射タイミング信号をモニタ信号模擬装置47に入力する。モニタ信号模擬装置47はスポット照射タイミング信号をトリガーとして、線量モニタ模擬信号および位置モニタ模擬信号を出力する。 Here, in the monitor signal simulation mode, the accelerator / beam transport system controller 12 inputs a spot irradiation timing signal to the monitor signal simulator 47 when emitting the beam 90. The monitor signal simulation device 47 outputs a dose monitor simulation signal and a position monitor simulation signal using the spot irradiation timing signal as a trigger.
 モニタ信号模擬装置47からの線量モニタ模擬信号の入力に伴い、線量モニタ制御装置72で計数されるパルスカウント値が増加し始め、所定のカウント数に到達すると線量モニタ制御装置72は満了信号を照射ノズル制御装置13Aに送り、スポットの照射は終了する。 With the input of the dose monitor simulation signal from the monitor signal simulation device 47, the pulse count value counted by the dose monitor control device 72 starts increasing, and when the count reaches a predetermined count, the dose monitor control device 72 emits an expiration signal. It is sent to the nozzle control device 13A, and the irradiation of the spot ends.
 スポットが照射されている間、線量モニタ模擬信号と同様に、モニタ信号模擬装置47から位置モニタ模擬信号が出力される。 While the spot is being irradiated, the monitor signal simulator 47 outputs a position monitor simulator signal in the same manner as the dose monitor simulator signal.
 スポットの照射が終了すると、位置モニタ制御装置73は、1スポット分の信号を合算した結果を照射ノズル制御装置13Aに入力する。照射ノズル制御装置13Aは、位置モニタ制御装置73の出力信号に基づき、スポットの位置、幅を演算し、所定の位置に照射されたかどうか判定する。判定した結果、スポット位置、幅のずれが大きいときは、ビーム90を停止する。 When the irradiation of the spot is completed, the position monitor control device 73 inputs the result of adding the signals for one spot to the irradiation nozzle control device 13A. The irradiation nozzle control device 13A calculates the position and width of the spot based on the output signal of the position monitor control device 73, and determines whether or not a predetermined position has been irradiated. As a result of the determination, when the deviation between the spot position and the width is large, the beam 90 is stopped.
 線量モニタ制御装置72の満了信号により、照射ノズル制御装置13Aは走査電磁石電源制御装置71に次のスポット移動の信号を送り、次のスポットの励磁電流値への変更が開始される。次のスポットの励磁電流値に到達すると、走査電磁石電源制御装置71は移動完了信号を照射ノズル制御装置13Aに送る。 (5) In response to the expiration signal from the dose monitor control device 72, the irradiation nozzle control device 13A sends a signal for the next spot movement to the scanning magnet power supply control device 71, and the change to the exciting current value of the next spot is started. Upon reaching the exciting current value of the next spot, the scanning electromagnet power supply control device 71 sends a movement completion signal to the irradiation nozzle control device 13A.
 以上がモニタ信号模擬モードにおけるスキャニング照射の制御の流れである。 The above is the control flow of the scanning irradiation in the monitor signal simulation mode.
 上記では、モニタ信号模擬装置47はパルス信号を出力するように説明した。このパルス信号は、線量モニタ42および位置モニタ43で発生する電離電流信号を、I-V変換およびV-F変換されて出力される信号を模擬している。モニタ模擬信号は、電圧信号を模擬して出力し、V-F変換前にモニタ信号と合成することでも本実施形態の効果は変わらない。 In the above description, the monitor signal simulator 47 outputs a pulse signal. This pulse signal simulates a signal output by performing IV conversion and VF conversion on the ionization current signal generated by the dose monitor 42 and the position monitor 43. The effect of the present embodiment does not change even if the monitor simulation signal is output by simulating a voltage signal and synthesized with the monitor signal before VF conversion.
 次に、本実施形態の効果について説明する。 Next, effects of the present embodiment will be described.
 上述した本発明の実施形態1の粒子線治療システム100は、患者5の患部51に対して粒子線を照射するものであって、荷電粒子を生成、加速する加速器20と、加速器20と患者5の前との間で粒子線を遮断するビーム遮断装置46と、ビーム遮断装置46によって粒子線が遮断されている間、粒子線モニタの信号を模擬するモニタ信号模擬装置47と、を備えている。 The above-described particle beam therapy system 100 according to Embodiment 1 of the present invention irradiates an affected part 51 of a patient 5 with a particle beam. The accelerator 20 generates and accelerates charged particles, and the accelerator 20 and the patient 5 And a monitor signal simulator 47 for simulating a particle beam monitor signal while the particle beam is cut off by the beam cutoff device 46. .
 このように、モニタ信号模擬モードにおいて、照射ノズル40内に設置されたビーム遮断装置46を用いることで、ビーム遮断装置46の下流にはビーム90は輸送されず、治療室に患者5がいてもビーム90が照射されることはない。一方、モニタ信号模擬装置47およびビーム遮断装置46以外の装置は治療モードと同様の動作をする。つまり、OISから治療計画データを取得し、治療計画データに従ってビーム90を加速、出射、輸送し、実績データを作成してOISに転送する、という一連のデータ転送は通常の治療モードと同様の動作をする。 As described above, in the monitor signal simulation mode, by using the beam blocking device 46 installed in the irradiation nozzle 40, the beam 90 is not transported downstream of the beam blocking device 46, and even if the patient 5 is in the treatment room. The beam 90 is not irradiated. On the other hand, devices other than the monitor signal simulation device 47 and the beam cutoff device 46 operate in the same manner as in the treatment mode. In other words, a series of data transfer in which the treatment plan data is acquired from the OIS, the beam 90 is accelerated, emitted, and transported according to the treatment plan data, and the actual data is created and transferred to the OIS is the same operation as in the normal treatment mode. do.
 以上により、患者5が治療台50に乗った状態で、データ転送完全性の検証を実施することが可能となる。そのため、患者5を治療室から退室させる必要がなくなり、入退室および再度実施される患者位置決めが不要となるため、治療時間の短縮を図ることができるとともに、治療台50の乗り降りに伴った患者の解剖学的構造の変化を防ぐことができ、線量集中性を更に向上させることができる、との効果が得られる。 に よ り As described above, it is possible to verify the data transfer integrity while the patient 5 is on the treatment table 50. Therefore, there is no need to leave the patient 5 from the treatment room, and it is not necessary to enter and leave the patient 5 and to perform the patient positioning again, so that the treatment time can be shortened and the patient with the getting on and off the treatment table 50 can be reduced. An effect is obtained that a change in the anatomical structure can be prevented, and the dose concentration can be further improved.
 また、遮断手段は、粒子線を物理的に遮断する遮断体46a、遮断体46aを粒子線の軌道に対して前進/後退させる移動機構46bを有するビーム遮断装置46であるため、ビーム90を物理的に遮断することができ、患者5に粒子線が到達することを確実に防止することができる。 Further, the blocking means is a beam blocking device 46 having a blocking member 46a for physically blocking the particle beam and a moving mechanism 46b for moving the blocking member 46a forward / backward with respect to the trajectory of the particle beam. It is possible to prevent the particle beam from reaching the patient 5 reliably.
 更に、モニタ信号模擬装置47は、粒子線の照射量を計測する線量モニタ42の出力する信号、および粒子線の照射位置を計測する位置モニタ43の出力する信号、のうち少なくともいずれか一方の信号を模擬することで、従来のデータ転送完全性の検証方法に近い運転方法が可能となる。 Further, the monitor signal simulating device 47 is a signal output from the dose monitor 42 for measuring the irradiation amount of the particle beam, and a signal output from the position monitor 43 for measuring the irradiation position of the particle beam. By simulating the above, an operation method close to the conventional data transfer integrity verification method becomes possible.
 また、ビーム遮断装置46は、粒子線を患部51に照射するための照射ノズル40内に設置されることにより、患者5の近くまで粒子線を実際に輸送することができるため、従来のデータ転送完全性の検証方法により近い運転方法が可能となる。 Further, since the beam cutoff device 46 is installed in the irradiation nozzle 40 for irradiating the affected part 51 with the particle beam, it is possible to actually transport the particle beam to the vicinity of the patient 5. An operation method closer to the integrity verification method is possible.
 <実施形態2> 
 本発明の実施形態2の放射線治療システムおよび治療計画データの検証方法について図9を用いて説明する。実施形態1と同じ構成には同一の符号を示し、説明は省略する。以下の実施形態においても同様とする。図9は、本実施形態の粒子線治療システムを示す図である。
<Embodiment 2>
A radiation therapy system and a method for verifying treatment plan data according to the second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the following embodiments. FIG. 9 is a diagram illustrating a particle beam therapy system according to the present embodiment.
 本実施形態の粒子線治療システム100Aは、実施形態1の粒子線治療システム100と比較して、ビーム遮断装置46Aの機能が異なる。 粒子 The particle beam therapy system 100A of the present embodiment is different from the particle beam therapy system 100 of the first embodiment in the function of the beam blocking device 46A.
 粒子線治療システム100Aの構成・動作はビーム遮断装置46Aおよびモニタ信号模擬装置47Aを除いて実施形態1の粒子線治療システム100と略同じ構成・動作であり、詳細は省略する。 The configuration and operation of the particle beam therapy system 100A are substantially the same as those of the particle beam therapy system 100 of the first embodiment except for the beam cutoff device 46A and the monitor signal simulation device 47A, and the details are omitted.
 図9に示すように、本実施形態の粒子線治療システム100Aにおけるビーム遮断装置46Aの遮断体46a1は、ビーム90を遮断する際にスポット毎の照射量を計測する粒子線の照射量を計測する線量計を更に有している。線量計により計測されたスポット照射量はモニタ信号模擬装置47Aに入力される。 As shown in FIG. 9, the blocking body 46a1 of the beam blocking device 46A in the particle beam therapy system 100A of the present embodiment measures the dose of the particle beam for measuring the dose of each spot when the beam 90 is blocked. It further has a dosimeter. The spot irradiation amount measured by the dosimeter is input to the monitor signal simulator 47A.
 モニタ信号模擬装置47Aは、入力されたスポット照射量に基づき、線量モニタ模擬信号を生成し、線量モニタ制御装置72に入力する。 The monitor signal simulator 47A generates a dose monitor simulation signal based on the input spot irradiation amount, and inputs the generated signal to the dose monitor controller 72.
 ビーム遮断装置46Aのうち遮断体46a1は、例えば、帯電した粒子を真空中で捕捉する金属製(導電性)のカップであるファラデーカップ、あるいは電離箱およびその電離箱の下流側に設置される真鍮等の金属製のブロック(好適には実施形態1で説明したものと同じ構成)、から構成される。 The blocking member 46a1 of the beam blocking device 46A is, for example, a Faraday cup that is a metal (conductive) cup that captures charged particles in a vacuum, or an ionization chamber and brass installed downstream of the ionization chamber. Etc. (preferably the same configuration as that described in the first embodiment).
 遮断体46a1がファラデーカップの場合は、それ自体が線量計と遮断体とを兼ねる。電離箱およびブロックの場合は、電離箱が線量計で、ブロックが遮断体となる。 場合 When the blocking body 46a1 is a Faraday cup, the blocking body 46a1 itself functions as a dosimeter and a blocking body. In the case of ionization chambers and blocks, the ionization chamber is a dosimeter and the block is a blocker.
 本発明の実施形態2の放射線治療システムおよび治療計画データの検証方法においても、前述した実施形態1の放射線治療システムおよび治療計画データの検証方法とほぼ同様な効果が得られる。 に お い て The radiation therapy system and the method for verifying treatment plan data according to the second embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
 また、ビーム遮断装置46Aは、粒子線の照射量を計測する線量計を更に有しており、モニタ信号模擬装置47Aは、線量計によって計測された粒子線の照射量に基づき粒子線モニタの信号を模擬することにより、より従来のデータ転送完全性の検証方法に近い運転方法が可能となる。 Further, the beam cut-off device 46A further has a dosimeter for measuring the dose of the particle beam, and the monitor signal simulating device 47A outputs a signal of the particle beam monitor based on the dose of the particle beam measured by the dosimeter. By simulating the above, an operation method closer to the conventional method of verifying the integrity of data transfer becomes possible.
 <実施形態3> 
 本発明の実施形態3の放射線治療システムおよび治療計画データの検証方法について図10を用いて説明する。図10は、本実施形態の粒子線治療システムを示す図である。
<Embodiment 3>
A radiation therapy system and a method for verifying treatment plan data according to the third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a diagram illustrating a particle beam therapy system according to the present embodiment.
 本実施形態の粒子線治療システム100Bは、実施形態1の粒子線治療システムと比較して、ビーム遮断装置46Bとしてビーム位置モニタ43Bと金属製ブロック(実施形態1で説明したものと同様の構造)が設置されているという点で異なる。 The particle beam therapy system 100B according to the present embodiment is different from the particle beam therapy system according to the first embodiment in that a beam position monitor 43B and a metal block are used as the beam blocking device 46B (the same structure as that described in the first embodiment). Is different in that it is installed.
 粒子線治療システム100Bの構成・動作は、ビーム位置モニタ43Bおよびモニタ信号模擬装置47Bを除いて実施形態1の粒子線治療システム100と略同じ構成・動作であり、詳細は省略する。 The configuration and operation of the particle beam therapy system 100B are substantially the same as those of the particle beam therapy system 100 of the first embodiment except for the beam position monitor 43B and the monitor signal simulation device 47B, and the details are omitted.
 図10に示すように、本実施形態の粒子線治療システム100Bにおけるビーム遮断装置46Bは、粒子線の照射位置を計測するビーム位置モニタ43Bを更に有しており、ビーム90を遮断する際にスポット毎の照射位置を計測する。計測されたスポット照射位置はモニタ信号模擬装置47Bに入力される。 As shown in FIG. 10, the beam blocking device 46B in the particle beam therapy system 100B of the present embodiment further includes a beam position monitor 43B that measures the irradiation position of the particle beam. Measure the irradiation position for each. The measured spot irradiation position is input to the monitor signal simulator 47B.
 モニタ信号模擬装置47Bは、入力されたスポット照射位置に基づき、位置モニタ模擬信号を生成し、位置モニタ制御装置73に入力する。 The monitor signal simulation device 47B generates a position monitor simulation signal based on the input spot irradiation position, and inputs the generated signal to the position monitor control device 73.
 本発明の実施形態3の放射線治療システムおよび治療計画データの検証方法においても、前述した実施形態1の放射線治療システムおよび治療計画データの検証方法とほぼ同様な効果が得られる。 に お い て The radiation therapy system and the method for verifying treatment plan data according to the third embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
 また、ビーム遮断装置46Bは、粒子線の照射位置を計測するビーム位置モニタ43Bを更に有しており、モニタ信号模擬装置47Bは、ビーム位置モニタ43Bによって計測された粒子線の照射位置に基づき粒子線モニタの信号を模擬することにより、従来のデータ転送完全性の検証方法に近い運転方法が可能となる。 Further, the beam cutoff device 46B further includes a beam position monitor 43B for measuring the irradiation position of the particle beam, and the monitor signal simulating device 47B performs the measurement based on the irradiation position of the particle beam measured by the beam position monitor 43B. By simulating the signal of the line monitor, an operation method similar to the conventional data transfer integrity verification method becomes possible.
 なお、本実施形態では、ビーム位置モニタ43Bによってスポット毎の照射位置を計測することに加えて、実施形態2で説明したようにビーム90を遮断する際にスポット毎の照射量も計測することができる。 In the present embodiment, in addition to measuring the irradiation position for each spot by the beam position monitor 43B, it is also possible to measure the irradiation amount for each spot when the beam 90 is cut off as described in the second embodiment. it can.
 <実施形態4> 
 本発明の実施形態4の放射線治療システムおよび治療計画データの検証方法について図11乃至図13を用いて説明する。図11乃至図13は、本実施形態の粒子線治療システムを示す図である。
<Embodiment 4>
A radiation treatment system and a method for verifying treatment plan data according to a fourth embodiment of the present invention will be described with reference to FIGS. 11 to 13 are views showing the particle beam therapy system according to the present embodiment.
 図11に示すように、本実施形態の粒子線治療システム100Cは、実施形態1の粒子線治療システム100と比較して、ビーム遮断装置46Cが粒子線を加速器20から照射ノズル40に輸送するためのビーム輸送系30内に設置されているという点が異なる。 As shown in FIG. 11, the particle beam therapy system 100C of the present embodiment is different from the particle beam therapy system 100 of the first embodiment in that the beam blocking device 46C transports the particle beam from the accelerator 20 to the irradiation nozzle 40. Is installed in the beam transport system 30 of FIG.
 ビーム遮断装置46Cは、上述の実施形態1で説明したビーム遮断装置46や実施形態2で説明したビーム遮断装置46A、実施形態3で説明したビーム遮断装置46Bと同等の構成、機能を持つものとすることができる。 The beam blocking device 46C has the same configuration and function as the beam blocking device 46 described in the first embodiment, the beam blocking device 46A described in the second embodiment, and the beam blocking device 46B described in the third embodiment. can do.
 また、モニタ信号模擬装置47Cについても、上述の実施形態1乃至3で説明したモニタ信号模擬装置47,47A,47Bと同等の構成、機能を持つものとすることができる。 Also, the monitor signal simulator 47C can have the same configuration and function as the monitor signal simulators 47, 47A, and 47B described in the first to third embodiments.
 なお、ビーム遮断装置46Cより下流側にビームモニタが設けられており、またそのビームモニタに対してもモニタ模擬信号が入力されることが望まれる場合は、本実施例のモニタ信号模擬装置47Cは、モニタ信号模擬モードの際にはそれらのビームモニタに対しても必要に応じて模擬信号を出力することが望ましい。 If a beam monitor is provided downstream of the beam cutoff device 46C, and it is desired that a monitor simulation signal is also input to the beam monitor, the monitor signal simulation device 47C of the present embodiment is In the monitor signal simulation mode, it is desirable to output a simulation signal to these beam monitors as needed.
 粒子線治療システム100Cの構成・動作はビーム遮断装置46Cおよびモニタ信号模擬装置47Cを除いて実施形態1と同様であり、詳細は省略する。 The configuration and operation of the particle beam therapy system 100C are the same as those of the first embodiment except for the beam cutoff device 46C and the monitor signal simulating device 47C, and the details are omitted.
 本発明の実施形態4の放射線治療システムおよび治療計画データの検証方法においても、前述した実施形態1の放射線治療システムおよび治療計画データの検証方法とほぼ同様な効果が得られる。 放射線 In the radiation therapy system and the method for verifying treatment plan data according to the fourth embodiment of the present invention, substantially the same effects as those of the radiation treatment system and the method for verifying treatment plan data according to the first embodiment described above can be obtained.
 また、ビーム遮断装置46Cは、粒子線を加速器20から患部51に照射するための照射ノズルに輸送するためのビーム輸送系30内に設置されることにより、ビーム遮断に伴う二次放射線の発生源を治療室から遠ざけることが可能となる。これにより、二次放射線による患者5の被ばくを避けるための遮蔽構造を簡略化することが可能となる。 Further, the beam cutoff device 46C is installed in the beam transport system 30 for transporting the particle beam from the accelerator 20 to the irradiation nozzle for irradiating the diseased part 51, so that the source of the secondary radiation accompanying the beam cutoff is provided. Can be kept away from the treatment room. This makes it possible to simplify the shielding structure for avoiding exposure of the patient 5 due to the secondary radiation.
 なお、本実施形態のようにビーム輸送系30内のビーム遮断装置46Cの位置は図11のような位置に限られず、図12に示す様に、粒子線治療システム100Dは、ビーム輸送系30が患者5の周りを回転する回転ガントリーである場合、回転ガントリーの入り口部分にビーム遮断装置46Dを設置することも可能である。モニタ信号模擬装置47Dについては、モニタ信号模擬装置47,47A,47B,47Cと同様の構成とすることができる。 Note that the position of the beam blocking device 46C in the beam transport system 30 is not limited to the position as shown in FIG. 11 as in the present embodiment, and as shown in FIG. In the case of a rotating gantry that rotates around the patient 5, it is also possible to install the beam blocking device 46D at the entrance of the rotating gantry. The monitor signal simulator 47D can have the same configuration as the monitor signal simulators 47, 47A, 47B, and 47C.
 また、図13に示す様に、照射ノズル40を複数備える粒子線治療システム100Eであれば、加速器20の出射点の下流にビーム遮断装置46Eを設置することも可能である。 In addition, as shown in FIG. 13, in the case of the particle beam therapy system 100E including a plurality of irradiation nozzles 40, the beam cutoff device 46E can be installed downstream of the emission point of the accelerator 20.
 粒子線治療システム100Eは、ビーム輸送系30は複数の照射ノズル40に放射線を振り分ける振り分け装置32を有している。このため、振り分け装置32の上流側にビーム遮断装置46Eを設置することができる。 In the particle beam therapy system 100E, the beam transport system 30 has a sorting device 32 for sorting radiation to a plurality of irradiation nozzles 40. For this reason, the beam cutoff device 46E can be installed on the upstream side of the distribution device 32.
 振り分け装置32は、電磁石などで構成される。 The distribution device 32 is configured by an electromagnet or the like.
 モニタ信号模擬装置47Eについては、モニタ信号模擬装置47,47A,47B,47Cと同様の構成とすることができるが、複数の照射ノズル40に対してそれぞれ接続されている必要がある。また、検証時には、複数の照射ノズル40のうち、検証を行う対象の照射ノズル40に対してモニタ模擬信号を出力する。 The monitor signal simulator 47E can have the same configuration as the monitor signal simulators 47, 47A, 47B, and 47C, but must be connected to the plurality of irradiation nozzles 40, respectively. At the time of verification, a monitor simulation signal is output to the irradiation nozzle 40 to be verified among the plurality of irradiation nozzles 40.
 なお、モニタ信号模擬装置47Eは1台である必要はなく、照射ノズル40に1対1で設けてもよい。 Note that the monitor signal simulation device 47E does not need to be one, and may be provided to the irradiation nozzle 40 on a one-to-one basis.
 この図13に示すように、照射ノズル40を複数備え、ビーム輸送系30は複数の照射ノズル40に放射線を振り分ける振り分け装置32を有し、ビーム遮断装置46Eは、振り分け装置32の上流側に設置されることで、複数ある治療室のそれぞれにビーム遮断装置を設置する必要がなくなる。また、ビーム輸送系30に設けられているファラデーカップなどの既存の設備を有効活用することができる。すなわち、ビームを遮断するための機構を最小限の手間で設けることができる。 As shown in FIG. 13, a plurality of irradiation nozzles 40 are provided, the beam transport system 30 includes a distribution device 32 for distributing radiation to the plurality of irradiation nozzles 40, and a beam cutoff device 46E is installed upstream of the distribution device 32. This eliminates the need to install a beam blocking device in each of a plurality of treatment rooms. In addition, existing facilities such as a Faraday cup provided in the beam transport system 30 can be effectively used. That is, a mechanism for cutting off the beam can be provided with minimum effort.
 <実施形態5> 
 本発明の実施形態5の放射線治療システムおよび治療計画データの検証方法について図14を用いて説明する。図14は、本実施形態の粒子線治療システムを示す図である。
<Embodiment 5>
A radiation therapy system and a method for verifying treatment plan data according to the fifth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a diagram illustrating a particle beam therapy system according to the present embodiment.
 図14に示す本実施形態の粒子線治療システム100Fは、実施形態1の粒子線治療システム100と比較して、ビーム90を遮断する方法が異なる。粒子線治療システム100のその他の構成・動作はビーム遮断方法およびモニタ信号模擬装置47Fを除いて実施形態1と同様であるため、詳細は省略する。 粒子 The particle beam therapy system 100F of the present embodiment shown in FIG. 14 is different from the particle beam therapy system 100 of the first embodiment in the method of blocking the beam 90. Other configurations and operations of the particle beam therapy system 100 are the same as those of the first embodiment except for the beam cutoff method and the monitor signal simulation device 47F, and therefore, the details are omitted.
 図14に示す本実施形態の粒子線治療システム100Fは、実施形態1乃至4のようにビーム遮断装置46,46A,46B,46C,46D,46Eを用いて物理的にビーム90を遮断するのではなく、加速器20の制御によってビーム90を遮断するものである。 The particle beam therapy system 100F of the present embodiment shown in FIG. 14 physically blocks the beam 90 using the beam blocking devices 46, 46A, 46B, 46C, 46D, and 46E as in the first to fourth embodiments. Instead, the beam 90 is cut off under the control of the accelerator 20.
 すなわち、粒子線治療システム100Fでは、加速器20にビーム90を入射しない、または入射、加速はするがビーム90を出射しないことによってビーム90を遮断する制御を実行する。 That is, in the particle beam therapy system 100F, control is performed to block the beam 90 by not entering the beam 90 into the accelerator 20 or by entering or accelerating but not emitting the beam 90.
 制御の具体例としては、例えば、入射器21への原料ガスの供給の遮断、入射器21を構成する各機器への電力の供給の遮断や制御パラメータの調整、加速器20内の各機器への電力の供給の遮断や制御パラメータの調整(加速用とは異なる制御パラメータを用いる等)等が考えられる。 Specific examples of the control include, for example, shutting off the supply of the source gas to the injector 21, shutting off the supply of electric power to each device constituting the injector 21, adjusting the control parameters, and controlling each device in the accelerator 20. It is conceivable to cut off the supply of electric power or adjust control parameters (such as using a control parameter different from that for acceleration).
 ビーム90の入射または出射をしないことによって照射制御が進まなくなることを防ぐために、モニタ信号模擬装置47Fは加速器20やビーム輸送系30内のビームモニタの信号を模擬する信号を生成し、それぞれの制御装置に入力する。 In order to prevent the irradiation control from stalling due to not entering or exiting the beam 90, the monitor signal simulating device 47F generates a signal simulating the signal of the beam monitor in the accelerator 20 or the beam transport system 30, and performs each control. Input to the device.
 本実施形態では、加速器20での粒子線の生成を遮断する、または加速器20からの粒子線の出射を遮断する制御を実行することから、遮断手段は、加速器・ビーム輸送系制御装置12Fになる。 In the present embodiment, since the control for interrupting the generation of the particle beam in the accelerator 20 or the emission of the particle beam from the accelerator 20 is executed, the interrupting unit is the accelerator / beam transport system control device 12F. .
 その他の構成・動作は前述した実施形態1の粒子線治療システム100と略同じ構成・動作であり、詳細は省略する。 Other configurations and operations are substantially the same as those of the particle beam therapy system 100 according to Embodiment 1 described above, and the details are omitted.
 本発明の実施形態5の放射線治療システムおよび治療計画データの検証方法においても、前述した実施形態1の放射線治療システムおよび治療計画データの検証方法とほぼ同様な効果が得られる。 放射線 The radiation therapy system and the method for verifying treatment plan data according to the fifth embodiment of the present invention also provide substantially the same effects as the radiation treatment system and the method for verifying treatment plan data according to the first embodiment.
 また、遮断手段は、加速器20での粒子線の生成,加速を遮断する、または加速器20からの粒子線の出射を遮断する加速器・ビーム輸送系制御装置12Fであることにより、追加する設備はモニタ信号模擬装置47Fのみであり、ビーム遮断装置46等の装置を新たに追加する必要がないことから、既存の装置への適用が容易である、との効果を奏する。 Further, since the shutoff means is an accelerator / beam transport system control device 12F that shuts off the generation and acceleration of the particle beam in the accelerator 20, or cuts off the emission of the particle beam from the accelerator 20, the additional equipment is monitored. Since only the signal simulating device 47F is used, and there is no need to newly add a device such as the beam cutoff device 46, it is possible to easily apply the present invention to an existing device.
 なお、加速器20内での制御によってビーム90を遮断するだけではなく、ビーム輸送系30内の制御によってビーム90を遮断することが可能である。例えば、ビーム輸送系30内の各機器への電力の供給の遮断や制御パラメータの調整等によって実現することができる。 In addition, not only the beam 90 can be cut off by the control in the accelerator 20 but also the beam 90 can be cut off by the control in the beam transport system 30. For example, it can be realized by cutting off the supply of power to each device in the beam transport system 30, adjusting control parameters, and the like.
 更には、実施形態1乃至4のように、ビーム輸送系30内や照射ノズル40内にビーム遮断装置を設けて、万全を期すことが可能である。 Furthermore, as in Embodiments 1 to 4, it is possible to provide a beam cutoff device in the beam transport system 30 or the irradiation nozzle 40 to ensure completeness.
 <その他> 
 なお、本発明は、上記の実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
Note that the present invention is not limited to the above embodiment, and includes various modifications. The above embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることも可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add, delete, or replace another configuration.
 例えば、上述の実施形態では、スポット間でビーム電流を停止する離散スポット照射法を例に説明したが、スポット間でビーム電流を停止しない連続スポット照射法にも同様に適用することができる。また、この他として、ワブラー法や二重散乱体法など粒子線の分布を広げた後、コリメータやボーラスを用いて標的の形状に合わせた線量分布を形成する照射法も本発明に適用することができる。 For example, in the above embodiment, the discrete spot irradiation method in which the beam current is stopped between spots is described as an example, but the present invention can be similarly applied to a continuous spot irradiation method in which the beam current is not stopped between spots. In addition, an irradiation method of forming a dose distribution according to the shape of a target using a collimator or a bolus after broadening a particle beam distribution such as a Wobbler method or a double scatterer method may be applied to the present invention. Can be.
 また、加速器20は、実施形態1乃至5で説明したシンクロトロン加速器の他に、サイクロトロン加速器やシンクロサイクロトロン加速器などの様々な公知の加速器を用いることができる。 加速 As the accelerator 20, in addition to the synchrotron accelerator described in the first to fifth embodiments, various known accelerators such as a cyclotron accelerator and a synchrocyclotron accelerator can be used.
 また、放射線を発生させる放射線源は、実施形態1乃至5のような荷電粒子の加速器20だけでなく、発生させる放射線がX線である電子線形加速器を用いたX線治療装置や、発生させる放射線がガンマ線であるガンマ線源を使用したガンマ線治療装置とすることが可能である。 The radiation source that generates radiation is not only the charged particle accelerator 20 as in the first to fifth embodiments, but also an X-ray therapy apparatus using an electron linear accelerator in which the generated radiation is X-rays, or the generated radiation. A gamma ray therapy apparatus using a gamma ray source which is a gamma ray is possible.
 X線治療装置およびガンマ線治療装置の場合、モニタ信号模擬装置は、線量モニタおよびコリメータ位置モニタの信号を模擬するものとする。それ以外は実施形態1乃至5と同様の構成とすることができる。 In the case of an X-ray therapy apparatus and a gamma ray therapy apparatus, the monitor signal simulator simulates the signals of the dose monitor and the collimator position monitor. Otherwise, the configuration can be the same as in the first to fifth embodiments.
11…全体制御装置
12,12F…加速器・ビーム輸送系制御装置
13…照射制御装置
13A…照射ノズル制御装置
14…ディスプレイ
15…入力装置
20…加速器(放射線源)
30…ビーム輸送系
32…振り分け装置
40…照射ノズル
41A,41B…走査電磁石
42…線量モニタ
43…位置モニタ
43B…ビーム位置モニタ
44…リッジフィルタ
45…レンジシフタ
46,46A,46B,46C,46D,46E…ビーム遮断装置
46a…遮断体
46b…移動機構
47,47A,47B,47C,47D,47E,47F…モニタ信号模擬装置
5…患者
50…治療台
51…患部
52…同じエネルギーで照射する患部の層
53…照射スポット
61A,61B…走査電磁石電源
71…走査電磁石電源制御装置
72…線量モニタ制御装置
73…位置モニタ制御装置
90…ビーム
100,100A,100B,100C,100D,100E,100F…粒子線治療システム(放射線治療システム)
11 ... Overall controller 12, 12F ... Accelerator / beam transport system controller 13 ... Irradiation controller 13A ... Irradiation nozzle controller 14 ... Display 15 ... Input device 20 ... Accelerator (radiation source)
Reference numeral 30: Beam transport system 32: Distributing device 40: Irradiation nozzles 41A, 41B ... Scanning magnet 42 ... Dose monitor 43 ... Position monitor 43B ... Beam position monitor 44 ... Ridge filter 45 ... Range shifters 46, 46A, 46B, 46C, 46D, 46E ... Beam blocking device 46a ... Blocking body 46b ... Moving mechanism 47, 47A, 47B, 47C, 47D, 47E, 47F ... Monitor signal simulating device 5 ... Patient 50 ... Treatment table 51 ... Affected part 52 ... Affected part layer irradiated with the same energy 53 Irradiation spots 61A, 61B Scanning magnet power supply 71 Scanning magnet power supply controller 72 Dose monitor controller 73 Position monitor controller 90 Beams 100, 100A, 100B, 100C, 100D, 100E, 100F Particle beam therapy System (radiation therapy system)

Claims (15)

  1.  患者の患部に対して放射線を照射する放射線治療システムであって、
     前記放射線を発生させる放射線源と、
     前記放射線源と前記患者の前との間で放射線を遮断する遮断手段と、
     前記遮断手段によって放射線が遮断されている間、放射線モニタの信号を模擬するモニタ信号模擬装置と、を備えた
     ことを特徴とする放射線治療システム。
    A radiation therapy system for irradiating an affected part of a patient with radiation,
    A radiation source that generates the radiation,
    Blocking means for blocking radiation between the radiation source and the front of the patient,
    A monitor signal simulating device that simulates a signal of a radiation monitor while the radiation is blocked by the blocking unit.
  2.  請求項1に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線を物理的に遮断する遮断体、前記遮断体を前記放射線の軌道に対して前進/後退させる移動機構を有する遮断装置である
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The radiation treatment system according to claim 1, wherein the blocking unit is a blocking unit that includes a blocking unit that physically blocks the radiation, and a moving mechanism that moves the blocking unit forward and backward with respect to the trajectory of the radiation.
  3.  請求項1に記載の放射線治療システムにおいて、
     前記モニタ信号模擬装置は、前記放射線の照射量を計測する線量モニタの出力する信号、および前記放射線の照射位置を計測する位置モニタの出力する信号、のうち少なくともいずれか一方の信号を模擬する
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The monitor signal simulation device simulates at least one of a signal output from a dose monitor that measures the radiation dose and a signal output from a position monitor that measures an irradiation position of the radiation. A radiation therapy system characterized by the following.
  4.  請求項2に記載の放射線治療システムにおいて、
     前記モニタ信号模擬装置は、前記放射線の照射量を計測する線量モニタの出力する信号、および前記放射線の照射位置を計測する位置モニタの出力する信号、のうち少なくともいずれか一方の信号を模擬する
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The monitor signal simulation device simulates at least one of a signal output from a dose monitor that measures the radiation dose and a signal output from a position monitor that measures an irradiation position of the radiation. A radiation therapy system characterized by the following.
  5.  請求項2に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線の照射量を計測する線量計を更に有しており、
     前記モニタ信号模擬装置は、前記線量計によって計測された前記放射線の照射量に基づき前記放射線モニタの信号を模擬する
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The blocking means further includes a dosimeter for measuring the radiation dose,
    The radiation therapy system, wherein the monitor signal simulation device simulates a signal of the radiation monitor based on a radiation dose of the radiation measured by the dosimeter.
  6.  請求項2に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線の照射位置を計測する位置モニタを更に有しており、
     前記モニタ信号模擬装置は、前記位置モニタによって計測された前記放射線の照射位置に基づき前記放射線モニタの信号を模擬する
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The blocking unit further includes a position monitor that measures an irradiation position of the radiation,
    The radiation therapy system, wherein the monitor signal simulation device simulates a signal of the radiation monitor based on an irradiation position of the radiation measured by the position monitor.
  7.  請求項2に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線を前記患部に照射するための照射ノズル内に設置される
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The radiation treatment system, wherein the blocking means is provided in an irradiation nozzle for irradiating the affected part with the radiation.
  8.  請求項2に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線を前記放射線源から前記患部に照射するための照射ノズルに輸送するためのビーム輸送系内に設置される
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The radiation treatment system, wherein the blocking unit is provided in a beam transport system for transporting the radiation from the radiation source to an irradiation nozzle for irradiating the affected part with the radiation.
  9.  請求項8に記載の放射線治療システムにおいて、
     前記照射ノズルを複数備え、
     前記ビーム輸送系は複数の前記照射ノズルに前記放射線を振り分ける振り分け装置を有し、
     前記遮断手段は、前記振り分け装置の上流側に設置される
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 8,
    A plurality of irradiation nozzles,
    The beam transport system has a distribution device that distributes the radiation to the plurality of irradiation nozzles,
    The radiation treatment system, wherein the blocking unit is installed on an upstream side of the sorting device.
  10.  請求項2に記載の放射線治療システムにおいて、
     前記遮断体は、ファラデーカップ、あるいは金属製ブロックの何れかである
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 2,
    The radiation treatment system, wherein the blocker is one of a Faraday cup and a metal block.
  11.  請求項1に記載の放射線治療システムにおいて、
     前記遮断手段は、前記放射線源での前記放射線の生成,加速を遮断する制御装置、または前記放射線源からの前記放射線の出射を遮断する制御装置、のうち少なくともいずれかである
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The blocking means is at least one of a control device for blocking generation and acceleration of the radiation in the radiation source, and a control device for blocking emission of the radiation from the radiation source. Radiation therapy system.
  12.  請求項1に記載の放射線治療システムにおいて、
     前記放射線源は荷電粒子を生成、加速する加速器であり、
     前記放射線は前記加速器で加速された荷電粒子である
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The radiation source is an accelerator that generates and accelerates charged particles,
    The radiation treatment system, wherein the radiation is charged particles accelerated by the accelerator.
  13.  請求項1に記載の放射線治療システムにおいて、
     前記放射線源は電子加速器であり、
     前記放射線はX線である
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The radiation source is an electron accelerator;
    The radiation treatment system according to claim 1, wherein the radiation is X-rays.
  14.  請求項1に記載の放射線治療システムにおいて、
     前記放射線源はガンマ線源であり、
     前記放射線はガンマ線である
     ことを特徴とする放射線治療システム。
    The radiotherapy system according to claim 1,
    The radiation source is a gamma ray source;
    The radiation treatment system, wherein the radiation is a gamma ray.
  15.  患者の患部に対して放射線を照射する放射線治療システムにおける治療計画データの検証方法であって、
     前記放射線治療システムは、前記放射線を発生させる放射線源と、前記放射線源と前記患者の前との間で放射線を遮断する遮断手段と、前記遮断手段によって放射線が遮断されている間、放射線モニタの信号を模擬するモニタ信号模擬装置と、を備え、
     治療室内に前記患者が在室した状態のまま、前記遮断手段によって前記放射線を遮断することで前記放射線を照射することなくデータ転送の完全性を検証する
     ことを特徴とする治療計画データの検証方法。
    A method of verifying treatment plan data in a radiation therapy system that irradiates an affected part of a patient with radiation,
    The radiation therapy system is a radiation source that generates the radiation, a blocking unit that blocks the radiation between the radiation source and the patient, and a radiation monitor while the radiation is blocked by the blocking unit. A monitor signal simulator for simulating a signal,
    A method of verifying treatment plan data, wherein the radiation is blocked by the blocking unit while the patient is present in the treatment room, thereby verifying the completeness of data transfer without irradiating the radiation. .
PCT/JP2019/006028 2018-07-12 2019-02-19 Radiation treatment system and method for verifying treatment plan data WO2020012688A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132658A JP6968761B2 (en) 2018-07-12 2018-07-12 How to verify radiation therapy system and treatment plan data
JP2018-132658 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020012688A1 true WO2020012688A1 (en) 2020-01-16

Family

ID=69142299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006028 WO2020012688A1 (en) 2018-07-12 2019-02-19 Radiation treatment system and method for verifying treatment plan data

Country Status (2)

Country Link
JP (1) JP6968761B2 (en)
WO (1) WO2020012688A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107637A1 (en) * 2005-04-01 2006-10-12 Wisconsin Alumni Research Foundation Small field intensity modulated radiation therapy machine
JP2016220753A (en) * 2015-05-27 2016-12-28 株式会社日立製作所 Particle beam therapy system
JP2018094147A (en) * 2016-12-14 2018-06-21 住友重機械工業株式会社 Charged-particle beam therapy apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107637A1 (en) * 2005-04-01 2006-10-12 Wisconsin Alumni Research Foundation Small field intensity modulated radiation therapy machine
JP2016220753A (en) * 2015-05-27 2016-12-28 株式会社日立製作所 Particle beam therapy system
JP2018094147A (en) * 2016-12-14 2018-06-21 住友重機械工業株式会社 Charged-particle beam therapy apparatus

Also Published As

Publication number Publication date
JP2020006108A (en) 2020-01-16
JP6968761B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP7416742B2 (en) Automatic treatment in particle beam therapy
CN109195664B (en) Radiation therapy system and method
JP5330253B2 (en) Particle beam irradiation equipment
US8618521B2 (en) Pluridirectional very high electron energy radiation therapy systems and processes
JP5074915B2 (en) Charged particle beam irradiation system
CN104857638B (en) Beam position monitoring arrangement and charged particle beam irradiation system
US11938342B2 (en) Time optimized radiation treatment
JP5735101B2 (en) Particle beam generator and method for controlling the same
JP4726869B2 (en) Charged particle beam irradiation system and control method thereof
WO2012117538A1 (en) Particle beam irradiation system and control method for particle beam irradiation system
US6687330B2 (en) System and method for intensity modulated radiation therapy
JP2010253000A (en) Radiation irradiation system
US20110098522A1 (en) Particle Beam Treatment System
TWI524912B (en) Particle beam therapy system
WO2018116354A1 (en) Radiation exposure planning device, clinical assessment assistance device, and program
WO2020012688A1 (en) Radiation treatment system and method for verifying treatment plan data
EP2146354A1 (en) Irradiation system for ion beam scanning of moving targets
Schippers et al. Fast scanning techniques for cancer therapy with hadrons–a domain of cyclotrons
WO2018173468A1 (en) Radiation treatment system and interference determination device
JP2014028310A (en) Particle beam irradiation system
JP7220403B2 (en) Particle beam therapy system, measurement particle beam CT image generation method, and CT image generation program
JP2019180738A (en) Particle beam therapy system and radiation position control method for particle beam therapy system
WO2018235649A1 (en) Charged particle beam therapy device and evaluation device
Mazal et al. Proton and Other Heavy Charged-Particle Beams
JP2019055005A (en) Particle beam treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833970

Country of ref document: EP

Kind code of ref document: A1