WO2020010991A1 - 一种信道接入的方法及装置 - Google Patents

一种信道接入的方法及装置 Download PDF

Info

Publication number
WO2020010991A1
WO2020010991A1 PCT/CN2019/091921 CN2019091921W WO2020010991A1 WO 2020010991 A1 WO2020010991 A1 WO 2020010991A1 CN 2019091921 W CN2019091921 W CN 2019091921W WO 2020010991 A1 WO2020010991 A1 WO 2020010991A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data
duration
contention window
state
Prior art date
Application number
PCT/CN2019/091921
Other languages
English (en)
French (fr)
Inventor
王莹
李云波
西隆希米
特所迪克根纳季
爱普斯坦里奥尼德
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020010991A1 publication Critical patent/WO2020010991A1/zh
Priority to US17/146,990 priority Critical patent/US20210136817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and device for channel access.
  • the 802.11 protocol is a wireless communication protocol developed by the Institute of Electrical and Electronics Engineers (IEEE) and is mainly used for wireless communication between wireless access points and terminals and between terminals.
  • IEEE Institute of Electrical and Electronics Engineers
  • an access point AP
  • STAs stations
  • BSS basic service set
  • the embodiments of the present application provide a channel access method and device, which can reduce the probability of channel conflicts.
  • a method for channel access includes:
  • the site determines the rollback duration according to the current first competition window
  • a method for channel access provided in the embodiments of the present application. First, a station determines a fallback duration according to a current first contention window. Then, when the backoff duration is reached, the station determines a random padding duration according to the current second contention window, and sends padding data on the channel with a random padding duration. After that, when the padding data is sent, the station detects the status of the channel. If the state of the channel is idle, the station sends data on the channel. In this way, after reducing the probability of channel conflicts with other stations through the back-off duration, the station further sends padding data with a random padding duration and detects the channel status after the padding data is sent, thereby reducing interference with other The probability of a channel collision at a station.
  • the method further includes:
  • the method further includes:
  • the updating the first contention window and / or the second contention window according to a state of the channel includes:
  • the first update strategy includes: keeping the first competition window unchanged; or
  • the station if a station detects that the state of the channel is busy, the station updates the first contention window according to a first update policy. In this way, the subsequent stations determine the fallback time to be longer according to the updated first contention window, thereby reducing the probability of channel conflicts with other stations.
  • the updating the first contention window and / or the second contention window according to a state of the channel includes:
  • the second update strategy includes: keeping the second competition window unchanged; or
  • the station if the station detects that the state of the channel is busy, the station updates the second contention window according to a second update policy. In this way, the random filling duration determined by subsequent stations according to the updated second contention window will be longer, thereby reducing the probability of channel conflicts with other stations.
  • the updating the first contention window and / or the second contention window according to a state of the channel includes:
  • the first contention window is modified to a first initial contention window.
  • the station detects that the state of the channel is idle, the first contention window is modified to the first initial contention window. In this way, the random filling duration determined by subsequent stations according to the updated first contention window will be shorter, thereby improving the channel utilization.
  • the updating the first contention window and / or the second contention window according to a state of the channel includes:
  • the second contention window is modified to a second initial contention window.
  • the second contention window is modified to a second initial contention window. In this way, the random filling duration determined by subsequent stations according to the updated second contention window will be shorter, thereby improving the channel utilization.
  • the method before sending the padding data with the random padding duration on the channel, the method further includes:
  • the value of the length indication field in the traditional signaling in the L-preamble is the sum of the length of the data packet carrying the L-preamble and the length of the padding data .
  • An embodiment of the present application provides a method for channel access.
  • a station sends an L-preamble on a channel before sending padding data with a random padding duration on the channel.
  • other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the period corresponding to the value of the length indication field.
  • the data packet is a physical layer protocol data unit PPDU, and a data field of the PPDU is empty.
  • An embodiment of the present application provides a method for channel access.
  • a station sends a PPDU on a channel before sending padding data on the channel with a random padding duration.
  • other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the period corresponding to the value of the length indication field.
  • the data packet is a physical layer PPDU
  • a MAC header in a data field of the PPDU includes a duration field
  • a value of the duration field is a length of the padding data, and a short frame.
  • the MAC frame in the data field is a CTS-to-self frame
  • the MAC header includes a duration field.
  • the data packet is a physical layer PPDU.
  • the MAC header in the data field of the PPDU includes a duration field.
  • the value of the duration field is the sum of the length of the padding data, the SIFS, and the length of the data. In this way, after receiving the PPDU, other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the duration corresponding to the value of the duration field.
  • the data packet is a zero data packet NDP.
  • the data packet is a zero data packet NDP.
  • other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the period corresponding to the value of the length indication field.
  • an apparatus for channel access includes:
  • a determining module configured to determine a rollback duration according to a current first competition window
  • the determining module is further configured to determine a random filling duration according to a current second competition window when the backoff duration is reached;
  • a sending module configured to send, on a channel, filling data whose duration is the random filling duration
  • a detection module configured to detect a state of the channel after the filling data is sent
  • the sending module is further configured to send data on the channel if the state of the channel is an idle state.
  • the sending module is further configured to not send the data on the channel if the state of the channel is busy.
  • the apparatus further includes:
  • An update module is configured to update the first contention window and / or the second contention window according to the state of the channel.
  • the sending module is further configured to send a traditional preamble L-preamble on the channel before sending padding data of the random padding duration on the channel.
  • the value of the length indication field in the traditional signaling in the L-preamble is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • a communication device includes a processor, a memory, and a transceiver.
  • the memory is used to store program instructions
  • the processor is configured to perform the following operations according to a program instruction stored in the memory:
  • the processor is further configured to perform the following operation according to a program instruction stored in the memory: if the state of the channel is busy, the channel is not passed through the transceiver on the channel. Send the data on.
  • the processor is further configured to perform the following operations according to a program instruction stored in the memory:
  • the processor performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the first update strategy includes: keeping the first competition window unchanged; or
  • the processor performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the second update strategy includes: keeping the second competition window unchanged; or
  • the processor performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the first contention window is modified to a first initial contention window.
  • the processor performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the second contention window is modified to a second initial contention window.
  • the processor before the processor executes the filling data that is sent on the channel with a random filling duration, the processor is further configured to: The stored program instructions perform the following operations: sending a traditional preamble L-preamble on the channel through the transceiver, wherein the value of the length indication field in the traditional signaling in the L-preamble carries the L-preamble The sum of the length of the preamble data packet and the length of the padding data.
  • the data packet is a physical layer protocol data unit PPDU, and a data field of the PPDU is empty.
  • the data packet is a physical layer PPDU, wherein a MAC header in a data field of the PPDU includes a duration field, and a value of the duration field is a length of the padding data, The sum of the short frame interval SIFS and the length of the data.
  • the data packet is a zero data packet NDP.
  • the communication device may be a station, or a chip in the station.
  • the processor includes the determining module, the detecting module, and the updating module in the second aspect;
  • the determining module is configured to determine a rollback duration according to a current first competition window; and is further configured to determine a random fill duration according to a current second competition window when the rollback duration is reached;
  • the detecting module is configured to detect a state of the channel after the filling data is sent;
  • the updating module is configured to update the first contention window according to a first update policy if the status of the channel is busy, and is further configured to update the second contention if the status of the channel is busy.
  • a strategy to update the second contention window and further configured to modify the first contention window to a first initial contention window if the state of the channel is idle. It is also used to modify the second contention window to a second initial contention window if the state of the channel is an idle state.
  • the value of the length indication field in the traditional signaling in the value is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • a computer-readable storage medium including instructions that, when the instructions run on a computer, cause the computer to execute the method according to the first aspect.
  • a method for channel access provided in the embodiments of the present application. First, a station determines a fallback duration according to a current first contention window. Then, when the backoff duration is reached, the station determines a random padding duration according to the current second contention window, and sends padding data on the channel with a random padding duration. After that, when the padding data is sent, the station detects the status of the channel. If the state of the channel is idle, the station sends data on the channel. In this way, after reducing the probability of channel conflicts with other stations through the backoff duration, the station further sends padding data with a random padding duration and detects the channel status after the padding data is sent to pass the two layers. The backoff mechanism reduces the probability of channel conflicts with other stations.
  • FIG. 1 is a system architecture diagram of a communication network according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of channel conflicts provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a channel access method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a channel access method according to an embodiment of the present application.
  • Example 5 is a flowchart of Example 1 of a channel access method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a channel access method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a channel access method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a channel access method according to an embodiment of the present application.
  • FIG. 9 is a flowchart of Example 2 of a channel access method according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a channel access apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is a system architecture diagram of a communication network according to an embodiment of the present invention.
  • the system includes multiple BSSs, where each BSS includes one AP and multiple STAs.
  • an AP is a device that connects a STA to a wireless network in a communication system, and may also be called a radio access network (RAN) node (or device), a base station, and the like.
  • RAN radio access network
  • some examples of APs are: gNB, transmission receiving point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (node B).
  • NB base station controller
  • BSC base transceiver station
  • HNB home NodeB, or home NodeB, HNB
  • BBU baseband unit
  • Wi-Fi access point and other interface devices capable of working in a wireless environment.
  • STA is a device with wireless connection function that can provide users with voice and / or data connectivity. It can also be called terminal equipment, user equipment (UE), mobile station (MS), Mobile terminal (MT).
  • UE user equipment
  • MS mobile station
  • MT Mobile terminal
  • STAs include: mobile phones, tablet computers, laptops, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals in transportation, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, vehicle-mounted equipment, and the like.
  • the station in the embodiment of the present application may be the foregoing AP or the foregoing STA.
  • Contention window In the IEEE 802.11 protocol, when the transmission medium shifts from a busy state to an idle state, multiple STAs may start sending data at the same time. In order to reduce the probability of channel collision, the STA will randomly generate a response before preparing to transmit data Fallback value, and postpone the fallback value by a timing duration (that is, the fallback duration) before transmitting.
  • the competition window limits the generation interval of the backoff value. Specifically, the randomly generated backoff value is a uniformly distributed random integer generated in the [0, competition window] interval.
  • the IEEE 802.11 protocol can include the IEEE 802.11p protocol, the IEEE 802.11 next generation vehicle communication (NGV) protocol, and the IEEE 1609 standard.
  • IEEE802.11p is a protocol mainly used for in-vehicle communication, which is mainly used to define the information and data exchange methods between vehicles and between vehicles and roadside infrastructure.
  • channels are divided into control channels (control channels, CCH) and service channels (service channels, SCH).
  • CCH is responsible for transmitting security-related information and control information, etc .
  • SCH is responsible for transmitting non-security-related information.
  • Time is divided into several timings. At the beginning of each timing, the STA can select any channel (such as CCH or SCH) for data transmission.
  • IEEE802.11p broadcast and multicast account for most of data transmission.
  • the IEEE 802.11NGV protocol is a next-generation vehicle networking communication protocol based on IEEE 802.11p. It is mainly used to improve various transmission performances (such as reducing information transmission delay, increasing transmission rate, and enhancing channel utilization).
  • the IEEE 1609 standard is a high-level standard based on the IEEE 802.11p communication protocol.
  • the IEEE 802.11p and IEEE 1609 standards define on-board communications for dedicated short-range communications (DSRC).
  • DCF distributed coordination function
  • the STA detects an acknowledgement (acknowledgement, ACK) timeout, and the STA can also double the CW to further reduce the probability of channel collision caused by simultaneous transmission with other STAs.
  • acknowledgement acknowledgement
  • ACK acknowledgement
  • the STA performs channel switching in units of timing (that is, at the beginning of the timing, the STA selects a channel for data transmission).
  • the STA selects a channel for data transmission.
  • multiple STAs switch to the same channel at the same time, and when the MPDU transmission queues of multiple STAs on the channel are not empty, multiple STAs send data on the channel at the same time, resulting in a channel collision.
  • STA1, STA2, STA3, and STA4 switch to CCH at timing 2 at the same time, then STA1, STA2, STA3, and STA4 will send data in the MPDU transmission queue on the CCH channel at the beginning of timing 2 , Resulting in the occurrence of a channel collision.
  • IEEE 802.11p also uses DCF to reduce channel collisions. Prior to the timing of the channel switching timing, each STA performs a random backoff process according to the pre-stored CW to reduce the probability of channel collision caused by multiple STAs performing data transmission simultaneously. However, based on the 802.11p and IEEE 802.11 NGV scenarios, most of the data transmission is concentrated on broadcast and multicast. Because broadcast and multicast do not have an ACK mechanism, it is not possible to estimate the degree of channel competition based on the ACK timeout and update the CW (i.e. CW is a fixed value).
  • DCF is used to reduce the probability of channel collisions
  • the probability of channel collisions between multiple STAs is still high. Frequent channel collisions between STAs will reduce STAs. Transmission rate and channel utilization.
  • the fixed CW cannot reflect the current competition level of the channel, and the CW cannot be adjusted according to the competition level. Therefore, if the pre-stored CW is too small, a large number of channel collisions will be caused, and if the pre-stored CW is too large, a low channel utilization rate will be caused.
  • a channel access method provided in an embodiment of the present application firstly, a station determines a rollback duration according to a current first contention window. Then, when the backoff duration is reached, the station determines a random padding duration according to the current second contention window, and sends padding data on the channel with a random padding duration. After that, when the padding data is sent, the station detects the status of the channel. If the state of the channel is idle, the station sends data on the channel and modifies the first contention window to the first initial contention window and the second contention window to the second initial contention window.
  • the station If the status of the channel is busy, the station does not send data on the channel, and updates the first contention window according to the first update policy and updates the second contention window according to the second update policy. In this way, when a station accesses a channel, it can avoid a channel conflict with other stations through a two-layer backoff mechanism, and update the contention window according to the degree of channel competition.
  • Step 301 The site determines a rollback duration according to the current first competition window.
  • the site may have a first contention window stored in advance.
  • the first contention window may be set by a technician based on experience, and the site may update the first contention window according to the state of the channel. The specific process of the station updating the first contention window according to the status of the channel will be described in detail later.
  • the station may randomly determine a first positive integer that is less than or equal to the first contention window (that is, the backoff duration).
  • site 1 determines a fallback duration of 3 according to the current first competition window
  • site 2 determines a fallback duration of 3 according to the current first competition window.
  • Site 3 determines a fallback duration of 3 according to the current first competition window
  • Site 4 determines a fallback duration of 4 according to the current first competition window.
  • Step 302 When the rollback duration is reached, the site determines a random fill duration according to the current second competition window.
  • the station may store a second contention window in advance.
  • the second contention window may be set by a technician based on experience, and the station may update the second contention window according to the status of the channel.
  • the specific process of the station updating the second contention window according to the channel status will be described in detail later.
  • the station may also store a unit slot duration in advance.
  • the unit slot duration may be set by a technician based on experience, or it may be an agreement or a site notified to the AP in advance by the access point AP. This embodiment of the present application does not Specific limitations.
  • the duration of the unit time slot may be greater than or equal to the sum of the duration of the switching of the transceiver status of the site and the duration of the status of the channel detected by the site.
  • the switching time of the receiving / transmitting state of the station is the time required for the station to switch from the state of sending data to the state of receiving data, or the time required for the station to switch from the state of receiving data to the state of transmitting data.
  • the time period for the station to detect the state of the channel is the time required for the station to determine the state of the channel through a detection algorithm. For example, the length of time that a station performs clear channel assessment (CCA) detection.
  • CCA clear channel assessment
  • the first timer may be started.
  • the first timer may perform timing according to a preset timing strategy (such as ascending order or descending order).
  • a preset timing strategy such as ascending order or descending order.
  • the station may randomly determine a second positive integer that is less than or equal to the second contention window.
  • the station may randomly determine a second positive integer less than or equal to the second contention window based on the second contention window. Then, the second positive integer is multiplied by the duration of the unit slot to obtain a random padding duration.
  • Site 1 determines the random filling duration to be 2 unit timeslot durations according to the current second contention window; Station 2 determines the random filling based on the current second contention window. Duration is 2 unit timeslot duration; Station 3 determines the random filling duration is 3 unit timeslot duration according to the current second contention window; Station 4 determines the random filling duration is 1 unit duration according to the current second contention window Gap time.
  • Step 303 The station sends padding data on the channel with a random padding duration.
  • the station after the station determines the random padding duration, it can send padding data with a random padding duration on the channel. Take the scenario shown in Figure 1 as an example. In Figure 4, station 1 sends padding data of 2 unit timeslot duration, station 2 sends padding data of 2 unit timeslot duration, and station 3 sends 3 unit slot times The filling data of the station 4; the station 4 sends filling data of a unit time slot duration.
  • Step 304 After sending the filling data, the station detects the status of the channel.
  • the station can further detect the status of the channel.
  • the station may select a clear channel assessment (CCA) algorithm to detect the channel status, or may use other algorithms to detect the channel status, which is not limited in this embodiment of the present application.
  • CCA clear channel assessment
  • Step 305 If the station detects that the state of the channel is idle, the station sends data on the channel.
  • the station can send data on the channel.
  • a station may send data on the channel after waiting for a short frame interval (SIFS) duration.
  • SIFS short frame interval
  • the station 3 can further detect the status of the channel. At this time, other stations do not send data on the channel. Therefore, station 3 detects that the channel status is idle, and then station 3 can wait for the SIFS duration to send data on the channel.
  • the station does not send data on the channel.
  • the station if the station detects that the channel status is busy, it means that there are other stations currently sending data on the channel, and the station can give up sending data on the channel.
  • the station 4 can further detect the status of the channel. At this time, station 3 sends padding data on the channel. Therefore, station 4 detects that the channel status is busy and does not send data on the channel.
  • an embodiment of the present application further provides a method for updating the first contention window according to a state of a channel.
  • the specific processing procedure is to update the first contention window and / or the second contention window according to the state of the channel.
  • the station may update the first contention window and / or the second contention window according to the status of the channel.
  • the station may update only the first contention window, or only the second contention window, or both the first contention window and the second contention window.
  • the station may update only the first contention window or only the second contention window, and may also update both the first contention window and the second contention window.
  • the embodiments of the present application are not limited. The specific process for the station to update the first contention window and the second contention window according to the channel status is as follows:
  • Case 1 if the state of the channel is busy, update the first contention window according to the first update policy
  • the first update strategy includes: keeping the first competition window unchanged; or
  • the site may have a first update policy stored in advance
  • the first update policy may also be indicated to the site by the access point
  • the first update policy may also be agreed by the protocol
  • the first update policy may also be determined by technology. The personnel are set according to experience.
  • the station may update the first contention window according to the first update policy.
  • the first update strategy includes: keeping the first competition window unchanged; or multiplying the first competition window by a first coefficient; or adding a constant to the first competition window. In this way, the subsequent stations determine the fallback time to be longer according to the updated first contention window, thereby reducing the probability of channel conflicts with other stations.
  • the current first competition window is 50 and the first coefficient is 2. If the station detects that the channel status is busy, the station may multiply the first contention window by a first coefficient, and accordingly, the first contention window is 100.
  • the station may also use other methods or update strategies to update the first competition window, which is not limited in the embodiment of the present application.
  • the second update strategy includes: keeping the second competition window unchanged; or,
  • the site may have a second update policy stored in advance
  • the second update policy may also be indicated to the site by the access point
  • the second update policy may also be agreed by the agreement
  • the second update policy may also be determined by technology The personnel are set according to experience.
  • the station can update the second contention window according to the second update policy.
  • the second update strategy includes: keeping the second competition window unchanged; or multiplying the second competition window by a second coefficient. In this way, the random filling duration determined by subsequent stations according to the updated second contention window will be longer, thereby reducing the probability of channel conflicts with other stations. For example, the current second competition window is 100 and the second coefficient is 1.5. If the station detects that the channel status is busy, the station may multiply the second contention window by a second coefficient, and accordingly, the second contention window is 150.
  • the site may also use other methods or update strategies to update the second competition window, which is not limited in the embodiment of the present application.
  • Case three if the state of the channel is an idle state, the first contention window is modified to the first initial contention window.
  • a first initial competition window may be stored in the site in advance, and the first initial competition window may be set by a technician based on experience.
  • the first initial competition window may be an initial value of the first competition window. If the station detects that the channel status is idle, it indicates that the current channel has a low degree of competition, and the station may modify the first contention window to the first initial contention window. In this way, the random filling duration determined by subsequent stations according to the updated first contention window will be shorter, thereby improving the channel utilization. For example, the current first competition window is 50 and the first initial window is 20. If the station detects that the channel status is idle, the station may modify the first contention window to 20.
  • the site may have a second initial competition window stored in advance, and the second initial competition window may be set by a technician based on experience.
  • the second initial competition window may be an initial value of the second competition window. If the station detects that the channel status is idle, it indicates that the current channel competition is low, and the station may modify the second contention window to the second initial contention window. In this way, the random filling duration determined by subsequent stations according to the updated second contention window will be shorter, thereby improving the channel utilization. For example, the current second competition window is 100 and the second initial window is 50. If the station detects that the channel status is idle, the station may modify the second contention window to 50.
  • the first initial competition window and the second initial competition window may be stored in the site, may also be indicated to the site by the access point, may be agreed by the agreement, and may be set by a technician based on experience.
  • the application examples are not specifically limited.
  • a method for channel access provided in the embodiments of the present application. First, a station determines a fallback duration according to a current first contention window. Then, when the backoff duration is reached, the station determines a random padding duration according to the current second contention window, and sends padding data on the channel with a random padding duration. After that, when the padding data is sent, the station detects the status of the channel. If the state of the channel is idle, the station sends data on the channel. In this way, after reducing the probability of channel conflicts with other stations through the backoff duration, the station further sends padding data with a random padding duration and detects the channel status after the padding data is sent, thereby further reducing the The probability of channel collisions at other stations.
  • FIG. 5 is an example of a channel access method according to an embodiment of the present application. As shown in FIG. 5, the specific steps are as follows:
  • Step 501 The site determines a rollback duration according to the current first competition window.
  • Step 502 When the rollback duration is reached, the station determines a random filling duration according to the current second competition window.
  • Step 503 The station sends padding data with a random padding duration on the channel.
  • Step 504 After sending the filling data, the station detects the status of the channel.
  • the station performs steps 505 to 506; if the state of the channel is busy, the station performs steps 507 to 508.
  • Step 505 The station sends data on the channel.
  • Step 506 The station changes the first competition window to a first initial competition window, and changes the second competition window to a second initial competition window.
  • Step 507 The station does not send data on the channel.
  • Step 508 The site updates the first competition window according to the first update policy, and updates the second competition window according to the second update policy.
  • steps 505 and 506 may be performed simultaneously. It may also be performed sequentially, for example, step 505 may be performed first, and then step 506 may be performed; step 506 may be performed first, and then step 505 may be performed.
  • steps 505 and 506 may be performed simultaneously. It may also be performed sequentially, for example, step 505 may be performed first, and then step 506 may be performed; step 506 may be performed first, and then step 505 may be performed.
  • the embodiments of the present application are not limited.
  • the station may also send L-preamble on the channel before sending the padding data with random padding duration on the channel, where the value of the length indicator field in the traditional signaling field in L-preamble carries L -The sum of the length of the preamble packet and the length of the padding data.
  • the station may also send only the legacy preamble (L-preamble) on the channel, where the value of the length indication field in the traditional signaling in the L-preamble carries the L- The sum of the length of the preamble packet and the length of the padding data.
  • L-preamble legacy preamble
  • the station may also send only the legacy preamble (L-preamble) on the channel, where the value of the length indication field in the traditional signaling in the L-preamble carries the L- The sum of the length of the preamble packet and the length of the padding data.
  • L-preamble legacy preamble
  • the station may also send only the legacy preamble (L-preamble) on the channel, where the value of the length indication field in the traditional signaling in the L-preamble carries the L- The sum of the length of the preamble packet and the length of the padding data.
  • other stations may determine, based on the value of the length indication field in the traditional signaling, that the channel will send the data
  • station 1, station 2, station 3, and station 4 may also send L-preamble on the channel.
  • the value of the length indication field in the traditional signaling in the L-preamble is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • the L-preamble data packets sent by the station on the channel may be various.
  • the embodiments of the present application provide several feasible methods, as follows:
  • the data packet is a physical layer PPDU, and the data field of the PPDU is empty.
  • the data packet carrying the L-preamble sent by the station on the channel may be a physical layer protocol data unit (PPDU).
  • the data field of the PPDU is empty.
  • other stations may determine, based on the value of the length indication field in the traditional signaling, that the channel will send the data packet and the padding data carrying the L-preamble whose length is the value of the length indication field. Therefore, other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the period corresponding to the value of the length indication field.
  • the data packet is a physical layer PPDU.
  • the media access control (MAC) header in the data field of the PPDU includes a duration field.
  • the value of the duration field is the length of the data. The sum of the length of the data.
  • the data packet carrying the L-preamble sent by the station on the channel may be a physical layer PPDU.
  • the MAC header in the data field of the PPDU includes a duration field.
  • the value of the duration field is the sum of the length of the padding data, the short interframe space (SIFS), and the length of the data.
  • the data field of the PPDU may carry a self-permitted transmission frame (CTS, Self-Cert), or other types of frames, which are not limited in the embodiment of the present application. In this way, when other sites receive the PPDU, they can parse the PPDU to obtain the duration field carried in the MAC header in the data field of the PPDU.
  • CTS self-permitted transmission frame
  • the MAC frame carried in the data field in the PPDU is CTS to self as an example for description. As shown in FIG. 7, before transmitting the padding data to each of the stations 1, 2, 3, and 4, the CTS can also be transmitted on the channel.
  • the MAC header in the data field that CTS can carry includes a duration field, and the value of the duration field is the sum of the length of the padding data, the short frame interval SIFS, and the length of the data.
  • the data field of the PPDU can also be other frame types, for example, control frames, management frames, and the like.
  • the data packet is a zero data packet NDP.
  • the data packet sent by the station on the channel and carrying the L-preamble may be a null data package (NDP).
  • NDP null data package
  • other stations may determine, based on the value of the length indication field in the traditional signaling, that the channel will send the data packet and the padding data carrying the L-preamble whose length is the value of the length indication field. Therefore, other stations may determine that the status of the channel is busy, and abandon sending data on the channel within the period corresponding to the value of the length indication field.
  • NDP can also be sent on the channel.
  • the value of the length indication field in the traditional signaling in the L-preamble of the NDP is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • FIG. 9 is a second example of a channel access method according to an embodiment of the present application. As shown in FIG. 5, the specific steps are as follows:
  • Step 901 The site determines a rollback duration according to the current first competition window.
  • Step 902 When the rollback duration is reached, the station determines a random fill duration according to the current second competition window.
  • Step 903 The station sends an L-preamble on the channel.
  • the value of the length indication field in the traditional signaling in L-preamble is the sum of the length of the data packet carrying the L-preamble and the length of the padding data. .
  • Step 904 The station sends padding data with a random padding duration on the channel.
  • step 905 after sending the padding data, the station detects the status of the channel.
  • the station performs steps 906 to 907; if the state of the channel is busy, the station performs steps 908 to 909.
  • Step 906 The station sends data on the channel.
  • step 907 the site changes the first competition window to a first initial competition window, and changes the second competition window to a second initial competition window.
  • step 908 the station does not send data on the channel.
  • Step 909 The site updates the first competition window according to the first update policy, and updates the second competition window according to the second update policy.
  • step 906 and step 907 can be performed simultaneously or sequentially, and the execution order of the two steps is not limited, for example, first execute 907, then 906, etc.
  • steps 908 and 909 can be performed simultaneously It can also be executed one after the other, and the execution order of the two steps is not limited.
  • an embodiment of the present application further provides a channel access device.
  • the communication device includes:
  • a determining module 1010 configured to determine a rollback duration according to a current first competition window
  • the determining module 1010 is further configured to determine a random filling duration according to a current second competition window when a rollback duration is reached;
  • a sending module 1020 configured to send padding data on a channel with a random padding duration
  • a detection module 1030 configured to detect a state of a channel after sending the filling data
  • the sending module 1020 is further configured to send data on the channel if the state of the channel is idle.
  • the sending module 1020 is further configured to not send data on the channel if the state of the channel is busy.
  • the apparatus further includes:
  • An update module 1040 is configured to update the first contention window and / or the second contention window according to the state of the channel.
  • the update module 1040 is specifically configured to:
  • the first update strategy includes: keeping the first competition window unchanged; or
  • the update module 1040 is specifically configured to:
  • the second update strategy includes: keeping the second competition window unchanged; or,
  • the update module 1040 is specifically configured to:
  • the first contention window is modified to the first initial contention window.
  • the update module 1040 is specifically configured to:
  • the second contention window is modified to the second initial contention window.
  • the sending module 1020 is further configured to send a traditional preamble L-preamble on the channel before sending padding data of random padding duration on the channel, where the L-preamble is The value of the length indication field in the traditional signaling of SIP is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • the data packet is a physical layer protocol data unit PPDU, and a data field of the PPDU is empty.
  • the data packet is a physical layer PPDU, where the MAC header in the data field of the PPDU includes a duration field, and the value of the duration field is the length of the padding data, the short frame interval SIFS and the length of the data The sum of the three.
  • the data packet is a zero data packet NDP.
  • an embodiment of the present application further provides a communication device 1100.
  • the communication device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 is used to store program instructions
  • the processor 1110 is configured to perform the following operations according to the program instructions stored in the memory 1120:
  • the processor 1110 is further configured to perform the following operations according to the program instructions stored in the memory 1120: if the status of the channel is busy, then data is not sent on the channel through the transceiver 1130.
  • the processor 1110 is further configured to perform the following operations according to a program instruction stored in the memory:
  • the processor 1110 performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the first update strategy includes: keeping the first competition window unchanged; or
  • the processor 1110 performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the second update strategy includes: keeping the second competition window unchanged; or
  • the processor 1110 performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the first contention window is modified to a first initial contention window.
  • the processor 1110 performing the operation of updating the first contention window and / or the second contention window according to a state of the channel specifically includes:
  • the second contention window is modified to a second initial contention window.
  • the processor 1110 executes filling data on the channel with a random filling duration, the processor 1110 is further configured to perform the following operations according to the program instructions stored in the memory 1120:
  • the transceiver 1130 sends a traditional preamble L-preamble on the channel, where the value of the length indication field in the traditional signaling in the L-preamble is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • the data packet is a physical layer protocol data unit PPDU, and a data field of the PPDU is empty.
  • the data packet is a physical layer PPDU, where the MAC header in the data field of the PPDU includes a duration field, and the value of the duration field is the length of the padding data, the short frame interval SIFS and the length of the data The sum of the three.
  • the data packet is a zero data packet NDP.
  • the communication device 1100 may be a station or a chip in the station.
  • the processor 1110 includes a determining module, a detecting module, and an updating module in the second aspect;
  • the determining module is configured to determine a rollback duration according to a current first competition window; and is further configured to determine a random fill duration according to a current second competition window when a rollback duration is reached;
  • a detection module configured to detect the state of the channel after the filling data is sent
  • An update module configured to update the first contention window according to the first update policy if the status of the channel is busy; and used to update the second contention window according to the second update policy if the status of the channel is busy; It is also used to modify the first contention window to the first initial contention window if the state of the channel is idle. It is also used to modify the second contention window to the second initial contention window if the state of the channel is idle.
  • the value of is the sum of the length of the data packet carrying the L-preamble and the length of the padding data.
  • the transceiver 1130 includes a sending module in the second aspect
  • the sending module is used to send filling data of random filling duration on the channel through the transceiver 1130. It is also used to send data on the channel through the transceiver 1130 if the state of the channel is idle; If the status is busy, data is not sent on the channel through the transceiver 1130.
  • the sending module includes a baseband circuit, a radio frequency circuit, and an antenna;
  • the baseband circuit is used to generate filling data and data, and send the filling data and data to the radio frequency circuit;
  • Radio frequency circuit for performing analog conversion processing, filtering processing, amplification processing, and up-conversion processing on the filling data and data, and sending the filling data and data to the antenna;
  • An antenna is used to send filling data and data to other communication devices 1100 through radio frequency signals.
  • the transceiver 1130 is an input / output interface, a pin, or an interface circuit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种信道接入的方法及装置,涉及无线通信技术领域,该方法包括:站点根据当前的第一竞争窗口,确定回退时长,当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长,在信道上发送时长为所述随机填充时长的填充数据,当所述填充数据发送完毕后,检测所述信道的状态,如果所述信道的状态为空闲状态,则在所述信道上发送数据。本申请采用两层退避机制,可以降低信道冲突的概率。

Description

一种信道接入的方法及装置
本申请要求于2018年07月12日提交中国专利局、申请号为201810764316.6、申请名称为“一种信道接入的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信道接入的方法及装置。
背景技术
802.11协议是由美国电气和电子工程师协会(the institute of electrical and electronics engineers,IEEE)制定的无线通信协议,主要用于无线接入点与终端之间以及终端与终端之间的无线通信。
在802.11协议中,一个接入点(access point,AP)与若干个站点(station,STA)组成一个基本服务集(basic service set,BSS)。如果BSS中的多个站点同时向接入点发送数据时,会造成信道冲突,从而影响无线通信。
因此,如何避免信道冲突成为一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种信道接入的方法及装置,可以降低信道冲突的概率。
第一方面,提供了一种信道接入的方法,所述方法包括:
站点根据当前的第一竞争窗口,确定回退时长;
当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
在信道上发送时长为所述随机填充时长的填充数据;
当所述填充数据发送完毕后,检测所述信道的状态;
如果所述信道的状态为空闲状态,则在所述信道上发送数据。
本申请实施例提供的一种信道接入的方法,首先,站点根据当前的第一竞争窗口,确定回退时长。然后,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长,并在信道上发送时长为随机填充时长的填充数据。之后,当填充数据发送完毕后,站点检测信道的状态。如果信道的状态为空闲状态,站点在信道上发送数据。这样,该站点通过回退时长降低与其他站点发生信道冲突的概率后,进一步通过发送时长为随机填充时长的填充数据,并在填充数据发送完毕后,对信道的状态进行检测,从而降低与其他站点发生信道冲突的概率。
在一种可能的实现方式中,所述方法还包括:
如果所述信道的状态为繁忙状态,则不在所述信道上发送所述数据。
在一种可能的实现方式中,所述方法还包括:
根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
在一种可能的实现方式中,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;
其中,所述第一更新策略包括:保持所述第一竞争窗口不变;或者,
将所述第一竞争窗口乘以第一系数;或者,
将所述第一竞争窗口加上常数。
本申请实施例提供的一种信道接入的方法,如果站点检测到所述信道的状态为繁忙状态,则站点根据第一更新策略,更新所述第一竞争窗口。这样,后续站点根据更新后的第一竞争窗口,确定出的回退时长会变长,从而降低与其他站点发生信道冲突的概率。
在一种可能的实现方式中,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;
其中,所述第二更新策略包括:保持所述第二竞争窗口不变;或者,
将所述第二竞争窗口乘以第二系数。
本申请实施例提供的一种信道接入的方法,如果站点检测到所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口。这样,后续站点根据更新后的第二竞争窗口,确定出的随机填充时长会变长,从而降低与其他站点发生信道冲突的概率。
在一种可能的实现方式中,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。
本申请实施例提供的一种信道接入的方法,如果站点检测到所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。这样,后续站点根据更新后的第一竞争窗口,确定出的随机填充时长会变短,从而提高信道的利用率。
在一种可能的实现方式中,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。
本申请实施例提供的一种信道接入的方法,如果站点检测到所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗口。这样,后续站点根据更新后的第二竞争窗口,确定出的随机填充时长会变短,从而提高信道的利用率。
在一种可能的实现方式中,在所述信道上发送时长为所述随机填充时长的填充数据之前,所述方法还包括:
在所述信道上发送传统前导L-preamble,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
本申请实施例提供的一种信道接入的方法,站点在信道上发送时长为随机填充时长的填充数据之前,在信道上发送L-preamble。这样,其他站点接收到L-preamble后,可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
在一种可能的实现方式中,所述数据包为物理层协议数据单元PPDU,所述PPDU的数据字段为空。
本申请实施例提供的一种信道接入的方法,站点在信道上发送时长为随机填充时长的填充数据之前,在信道上发送PPDU。这样,其他站点接收到PPDU后,可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
在一种可能的实现方式中,所述数据包为物理层PPDU,所述PPDU的数据字段中的MAC头包括持续时长字段,所述持续时长字段的值为所述填充数据的长度,短帧间隔SIFS与所述数据的长度三者之和。例如,数据字段中的MAC帧为CTS-to-self帧,其MAC头中包括持续时长字段。
本申请实施例提供的一种信道接入的方法,数据包为物理层PPDU。其中,PPDU的数据字段中的MAC头包括持续时长字段,持续时长字段的值为填充数据的长度,SIFS与数据的长度三者之和。这样,其他站点接收到PPDU后,可以判定信道的状态为繁忙状态,并放弃在该持续时长字段的值对应的时长内在该信道上发送数据。
在一种可能的实现方式中,所述数据包为零数据包NDP。
本申请实施例提供的一种信道接入的方法,数据包为零数据包NDP。这样,其他站点接收到NDP后,可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
第二方面,提供了一种信道接入的装置,所述装置包括:
确定模块,用于根据当前的第一竞争窗口,确定回退时长;
所述确定模块,还用于当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
发送模块,用于在信道上发送时长为所述随机填充时长的填充数据;
检测模块,用于当所述填充数据发送完毕后,检测所述信道的状态;
所述发送模块,还用于如果所述信道的状态为空闲状态,则在所述信道上发送数据。
在一种可能的实现方式中,所述发送模块,还用于如果所述信道的状态为繁忙状态,则不在所述信道上发送所述数据。
在一种可能的实现方式中,所述装置还包括:
更新模块,用于根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
在一种可能的实现方式中,其特征在于,所述发送模块,还用于在所述信道上发送时长为所述随机填充时长的填充数据之前,在所述信道上发送传统前导L-preamble,其中,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
第三方面,提供一种通信装置,所述通信装置包括:处理器、存储器和收发器;
其中,所述存储器,用于存储程序指令;
所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:
根据当前的第一竞争窗口,确定回退时长;
当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
通过所述收发器在信道上发送时长为所述随机填充时长的填充数据;
当所述填充数据发送完毕后,检测所述信道的状态;
如果所述信道的状态为空闲状态,则通过所述收发器在所述信道上发送数据。
在一种可能的实现方式中,所述处理器还用于根据所述存储器中存储的程序指令执行以下操作:如果所述信道的状态为繁忙状态,则不通过所述收发器在所述信道上发送所述数据。
在一种可能的实现方式中,所述处理器还用于根据所述存储器中存储的程序指令执行以下操作:
根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
在一种可能的实现方式中,所述处理器执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;
其中,所述第一更新策略包括:保持所述第一竞争窗口不变;或者,
将所述第一竞争窗口乘以第一系数;或者,
将所述第一竞争窗口加上常数。
在一种可能的实现方式中,所述处理器执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;
其中,所述第二更新策略包括:保持所述第二竞争窗口不变;或者,
将所述第二竞争窗口乘以第二系数。
在一种可能的实现方式中,所述处理器执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。
在一种可能的实现方式中,所述处理器执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。
在一种可能的实现方式中,其特征在于,所述处理器执行所述在所述信道上发送时长为所述随机填充时长的填充数据之前,所述处理器还用于根据所述存储器中存储的程序指令执行以下操作:通过所述收发器在所述信道上发送传统前导L-preamble,其中,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
在一种可能的实现方式中,所述数据包为物理层协议数据单元PPDU,其中,所述PPDU的数据字段为空。
在一种可能的实现方式中,所述数据包为物理层PPDU,其中,所述PPDU的数据字段中的MAC头包括持续时长字段,所述持续时长字段的值为所述填充数据的长度,短帧间隔SIFS与所述数据的长度三者之和。
在一种可能的实现方式中,所述数据包为零数据包NDP。
在一种可能的实现方式中,所述通信装置可以是站点,也可以是所述站点内的芯片。
在一种可能的实现方式中,所述处理器包括所述第二方面中的所述确定模块、检测模块和更新模块;
其中,所述确定模块,用于根据当前的第一竞争窗口,确定回退时长;还用于当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
所述检测模块,用于当所述填充数据发送完毕后,检测所述信道的状态;
所述更新模块,用于如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;还用于如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;还用于如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。还用于如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。还用于通过所述收发器在所述信道上发送时长为所述随机填充时长的填充数据之前,通过所述收发器在所述信道上发送传统前导L-preamble,其中,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
第四方面,提供了一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使所述计算机执行第一方面所述的方法。
本申请实施例提供的一种信道接入的方法,首先,站点根据当前的第一竞争窗口,确定回退时长。然后,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长,并在信道上发送时长为随机填充时长的填充数据。之后,当填充数据发送完毕后,站点检测信道的状态。如果信道的状态为空闲状态,站点在信道上发送数据。这样,该站点通过回退时长降低与其他站点发生信道冲突的概率后,进一步通过发送时长为随机填充时长的填充数据,并在填充数据发送完毕后,对信道的状态进行检测,从而通过两层退避机制降低与其他站点发生信道冲突的概率。
附图说明
图1为本申请实施例提供的通信网络的***架构图;
图2为本申请实施例提供的信道冲突的示意图;
图3为本申请实施例提供的一种信道接入的方法的流程图;
图4为本申请实施例提供的一种信道接入的方法的示意图;
图5为本申请实施例提供的一种信道接入的方法的示例一的流程图;
图6为本申请实施例提供的一种信道接入的方法的示意图;
图7为本申请实施例提供的一种信道接入的方法的示意图;
图8为本申请实施例提供的一种信道接入的方法的示意图;
图9为本申请实施例提供的一种信道接入的方法的示例二的流程图;
图10为本申请实施例提供的一种信道接入的装置的结构示意图;
图11本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
图1为本发明实施例提供的通信网络的***架构图。如图1所示,该***包括多个BSS, 其中,每个BSS中均包括一个AP和多个STA。其中,AP,是通信***中将STA接入到无线网络的设备,又可以称为无线接入网(radio access network,RAN)节点(或设备)、基站等。目前,一些AP的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或Wi-Fi接入点,以及其他能够在无线环境中工作的接口设备。STA,是一种具有无线连接功能,能够向用户提供语音和/或数据连通性的设备,又可以称之为终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。目前,一些STA的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载设备等。本申请实施例中的站点可以是上述的AP,还可以是上述的STA。
竞争窗口:在IEEE 802.11协议中,当传输介质从繁忙状态转移到空闲状态时,多个STA可能会同时开始发送数据,为了降低信道碰撞的概率,STA在准备传输数据之前,会随机生成一个回退值,并推迟回退值个时序时长(即回退时长),再进行传输。竞争窗口限制了回退值的生成区间,具体的,随机生成的回退值是一个在[0,竞争窗口]区间中产生的均匀分布的随机整数。
目前,IEEE 802.11协议可以包括IEEE 802.11p协议、IEEE 802.11下一代车联网通信(next generation vehicle to everything,NGV)协议以及IEEE 1609标准。其中,IEEE 802.11p是一个主要用于车载通信的协议,主要用于定义车辆与车辆之间、以及车辆与路边基础设施之间的信息和数据交换方式。在IEEE 802.11p中,信道被划分为控制信道(control channel,CCH)和服务信道(service channel,SCH)。其中,CCH负责传输安全相关的信息和控制信息等;SCH负责传输非安全相关的信息。时间被分为若干时序,在每个时序的开始STA可以选择任意一个信道(比如CCH或SCH)进行数据传输。另外,在IEEE 802.11p中,广播(broadcast)和多播(multicast)占数据传输的大部分。IEEE 802.11NGV协议是基于IEEE 802.11p的下一代车联网通信协议,主要用于改进各种传输性能(比如减少信息传输延时、增加传输速率、加强信道利用率等)。IEEE 1609标准是以IEEE 802.11p通讯协议为基础的高层标准。IEEE 802.11p和IEEE 1609标准定义了专用短距离通讯(dedicated short range communications,DSRC)的车载通信。
在密集分布的802.11网络中,当多个STA需要在某一信道上发送数据,且多个STA在该信道上的媒体访问控制协议数据单元(medium access control protocol data unit,MPDU)传输队列都不为空的时,多个STA会在该信道上同时发送数据,从而导致信道碰撞的发生。目前,IEEE 802.11ax中的STA采用分布式协调功能(distributed coordination function,DCF)来减少信道碰撞。每个STA在发送数据之前,根据预先存储的竞争窗口(contention window, CW)执行随机回退(back-off)处理。这样,STA可以降低与其他STA同时发送数据所产生信道碰撞的概率。后续,STA检测到确认(acknowledgement,ACK)超时,STA还可以将CW加倍,以进一步降低与其他STA同时发送数据所产生信道碰撞的概率。然而,在密集分布的802.11网络中,由于STA的数量较多,STA发生信道碰撞的概率还是很大。
在802.11p协议中,STA以时序为单位进行信道切换(即在时序的开始时,STA选择一个信道进行数据传输)。当多个STA在同一时间切换到同一信道,且当多个STA在该信道的MPDU传输队列都不为空时,多个STA会在该信道上同时发送数据,从而导致信道碰撞的发生。如图1、图2所示,STA1、STA2、STA3和STA4同时在时序2切换至CCH,则STA1、STA2、STA3和STA4会在时序2的开始同时在CCH信道上发送MPDU传输队列中的数据,从而导致信道碰撞的发生。IEEE 802.11p中STA同样采用DCF来减少信道碰撞。在信道切换的时序开始时刻之前,每个STA根据预先存储的CW执行随机回退处理,以减少多个STA同时进行数据传输产生信道碰撞的概率。然而,基于802.11p和IEEE 802.11 NGV场景,大部分数据传输集中在广播和多播,由于广播和多播没有ACK机制,因此,无法根据ACK超时估测信道竞争程度,并对CW进行更新(即CW是固定值)。这样,虽然采用了DCF来减少信道碰撞的概率,但在802.11p和IEEE 802.11 NGV场景的广播/多播传输中,多个STA发生信道碰撞的概率还是很大,STA频繁发生信道碰撞会降低STA传输速率和信道的利用率。另外,对于广播/多播传输而言,由于没有ACK机制,固定CW不能体现当前信道的竞争程度,也不能随着竞争程度对CW进行调整。因此,如果预先存储的CW过小,会导致大量信道碰撞,而如果预先存储的CW过大,会导致较低的信道利用率。
为解决上述问题,本申请实施例提供的一种信道接入的方法,首先,站点根据当前的第一竞争窗口,确定回退时长。然后,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长,并在信道上发送时长为随机填充时长的填充数据。之后,当填充数据发送完毕后,站点检测信道的状态。如果信道的状态为空闲状态,则站点在信道上发送数据并将第一竞争窗口修改为第一初始竞争窗口以及将第二竞争窗口修改为第二初始竞争窗口。如果信道的状态为繁忙状态,则站点不在信道上发送数据,并根据第一更新策略,更新第一竞争窗口以及根据第二更新策略,更新第二竞争窗口。这样,站点可以在接入信道时,通过两层退避机制,避免与其他站点发生信道冲突,并根据信道的竞争程度对竞争窗口进行更新。
下面将结合具体实施方式,对本申请实施例提供的一种信道接入的方法进行详细的说明,如图3所示,具体步骤如下:
步骤301,站点根据当前的第一竞争窗口,确定回退时长。
在实施中,站点中可以预先存储有第一竞争窗口,该第一竞争窗口可以由技术人员根据经验进行设置,站点可以根据信道的状态更新第一竞争窗口。其中,站点根据信道的状态更新第一竞争窗口的具体处理过程后续会进行详细说明。
当站点需要在某一信道上发送数据时,站点基于第一竞争窗口,可以随机确定一个小于或等于第一竞争窗口的第一正整数(即回退时长)。
以在图1所示的场景举例来说,在图4中,站点1根据当前的第一竞争窗口,确定回 退时长为3;站点2根据当前的第一竞争窗口,确定回退时长为3;站点3根据当前的第一竞争窗口,确定回退时长为3;站点4根据当前的第一竞争窗口,确定回退时长为4。
步骤302,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长。
在实施中,站点可以预先存储有第二竞争窗口,该第二竞争窗口可以由技术人员根据经验进行设置,站点可以根据信道的状态更新第二竞争窗口。其中,站点根据信道的状态更新第二竞争窗口的具体处理过程后续会进行详细说明。站点中还可以预先存储有单位时隙时长,该单位时隙时长可以由技术人员根据经验进行设置,还可以是协议约定,或者是由接入点AP事先告知给的站点,本申请实施例不具体限定。其中,该单位时隙时长可以大于或等于站点收发状态切换时长与站点检测信道的状态的时长之和。其中,站点收发状态切换时长为站点从发送数据的状态切换至接收数据的状态所需的时长,或者,站点从接收数据的状态切换至发送数据的状态所需的时长。站点检测信道的状态的时长为站点通过检测算法确定信道的状态所需的时长。例如,站点进行信道空闲评估(clear channel assessment,CCA)检测的时长。
当站点确定回退时长后,可以启动第一计时器。其中,第一计时器可以根据预设的计时策略(比如升序或降序)进行计时。当第一计时器从0递增达到该回退时长,站点可以随机确定一个小于或等于第二竞争窗口的第二正整数。或者当第一计时器从该回退时长递减达到0时,站点基于第二竞争窗口,可以随机确定一个小于或等于第二竞争窗口的第二正整数。然后,将第二正整数乘以单位时隙时长,得到随机填充时长。
以图1所示的场景为例,在图4中,站点1根据当前的第二竞争窗口,确定随机填充时长为2个单位时隙时长;站点2根据当前的第二竞争窗口,确定随机填充时长为2个单位时隙时长;站点3根据当前的第二竞争窗口,确定随机填充时长为3个单位时隙时长;站点4根据当前的第二竞争窗口,确定随机填充时长为1个单位时隙时长。
步骤303,站点在信道上发送时长为随机填充时长的填充数据。
在实施中,站点确定随机填充时长后,可以在信道上发送时长为随机填充时长的填充数据。以图1所示的场景为例,在图4中,站点1发送2个单位时隙时长的填充数据,站点2发送2个单位时隙时长的填充数据,站点3发送3个单位时隙时长的填充数据;站点4发送1个单位时隙时长的填充数据。
步骤304,当填充数据发送完毕后,站点检测信道的状态。
在实施中,当填充数据发送完毕后,站点可以进一步检测信道的状态。其中,站点可以选择空闲信道评估(clear channel assessment,CCA)算法来检测信道的状态,也可以采用其他算法来检测信道的状态,本申请实施例不作限定。
步骤305,如果站点检测到信道的状态为空闲状态,则站点在信道上发送数据。
在实施中,如果站点检测到信道的状态为空闲状态,则说明当前不存在其他站点在该信道上发送数据,相应的,该站点可以在该信道上发送数据。
需要说明的是,站点在发送数据时,可以在等待短帧间隔(short interframespace,SIFS)时长后,在该信道上发送数据。
以图1所示的场景为例,在图4中,当站点3的填充数据发送完毕后,站点3可以进一步检测信道的状态。此时,其他站点未在该信道中发送数据,因此,站点3检测到信道的状态为空闲状态,则站点3可以等待SIFS时长后,在信道上发送数据。
可选的,如果站点检测到信道的状态为繁忙状态,则站点不在信道上发送数据。
在实施中,如果站点检测到信道的状态为繁忙状态,则说明当前存在其他站点在该信道上发送数据,站点可以放弃在该信道上发送数据。
以图1所示的场景为例,在图4中,当站点4的填充数据发送完毕后,站点4可以进一步检测信道的状态。此时,站点3在该信道中发送填充数据,因此,站点4检测到信道的状态为繁忙状态,则不在信道上发送数据。
可选的,本申请实施例还提供了一种根据信道的状态更新第一竞争窗口的方法。具体处理过程为根据信道的状态,对第一竞争窗口和/或第二竞争窗口进行更新。
在实施中,站点检测到信道的状态后,可以根据信道的状态,对第一竞争窗口和/或第二竞争窗口进行更新。其中,站点检测到信道状态为空闲状态时,可以仅对第一竞争窗口进行更新,也可以仅对第二竞争窗口进行更新,还可以既更新第一竞争窗口,也更新第二竞争窗口更新。相应的,站点检测到信道状态为繁忙状态时,可以仅对第一竞争窗口进行更新,也可以仅对第二竞争窗口进行更新,还可以既更新第一竞争窗口,又更新第二竞争窗口。本申请实施例不作限定。站点根据信道的状态,对第一竞争窗口和第二竞争窗口进行更新的具体处理过程如下:
情况一,如果信道的状态为繁忙状态,则根据第一更新策略,更新第一竞争窗口;
其中,第一更新策略包括:保持第一竞争窗口不变;或者,
将第一竞争窗口乘以第一系数;或者,
将第一竞争窗口加上常数。
在实施中,站点中可以预先存储有第一更新策略,第一更新策略还可以由接入点指示给该站点,第一更新策略还可以由协议进行约定,该第一更新策略还可以由技术人员根据经验进行设置。
如果站点检测到信息的状态为繁忙,则说明当前信道的竞争程度较高,站点可以根据第一更新策略,更新第一竞争窗口。其中,第一更新策略包括:保持第一竞争窗口不变;或者,将第一竞争窗口乘以第一系数;或者,将第一竞争窗口加上常数。这样,后续站点根据更新后的第一竞争窗口,确定出的回退时长会变长,从而降低与其他站点发生信道冲突的概率。例如,当前第一竞争窗口为50,第一系数为2。如果站点检测到信道的状态为繁忙状态,则站点可以将第一竞争窗口乘以第一系数,相应的,第一竞争窗口为100。
需要说明的是,站点还可以采用其他方式或更新策略对第一竞争窗口进行更新,本申请实施例不作限定。
情况二,根据信道的状态,对第一竞争窗口和/或第二竞争窗口进行更新,包括:
如果信道的状态为繁忙状态,则根据第二更新策略,更新第二竞争窗口;
其中,第二更新策略包括:保持第二竞争窗口不变;或者,
将第二竞争窗口乘以第二系数。
在实施中,站点中可以预先存储有第二更新策略,第二更新策略还可以由接入点指示给该站点,第二更新策略还可以由协议进行约定,该第二更新策略还可以由技术人员根据经验进行设置。
如果站点检测到信息的状态为繁忙,则说明当前信道的竞争程度较高,站点可以根据 第二更新策略,更新第二竞争窗口。其中,第二更新策略包括:保持第二竞争窗口不变;或者,将第二竞争窗口乘以第二系数。这样,后续站点根据更新后的第二竞争窗口,确定出的随机填充时长会变长,从而降低与其他站点发生信道冲突的概率。例如,当前第二竞争窗口为100,第二系数为1.5。如果站点检测到信道的状态为繁忙状态,则站点可以将第二竞争窗口乘以第二系数,相应的,第二竞争窗口为150。
需要说明的是,站点还可以采用其他方式或更新策略对第二竞争窗口进行更新,本申请实施例不作限定。
情况三,如果信道的状态为空闲状态,则将第一竞争窗口修改为第一初始竞争窗口。
在实施中,站点中可以预先存储有第一初始竞争窗口,该第一初始竞争窗口可以由技术人员根据经验进行设置。其中,第一初始竞争窗口可以为第一竞争窗口的初始值。如果站点检测到信道的状态为空闲状态,则说明当前信道的竞争程度较低,站点可以将第一竞争窗口修改为第一初始竞争窗口。这样,后续站点根据更新后的第一竞争窗口,确定出的随机填充时长会变短,从而提高信道的利用率。例如,当前第一竞争窗口为50,第一初始窗口为20。如果站点检测到信道的状态为空闲状态,则站点可以将第一竞争窗口修改为20。
情况四,如果信道的状态为空闲状态,则将第二竞争窗口修改为第二初始竞争窗。
在实施中,站点中可以预先存储有第二初始竞争窗口,该第二初始竞争窗口可以由技术人员根据经验进行设置。其中,第二初始竞争窗口可以为第二竞争窗口的初始值。如果站点检测到信道的状态为空闲状态,则说明当前信道的竞争程度较低,站点可以将第二竞争窗口修改为第二初始竞争窗口。这样,后续站点根据更新后的第二竞争窗口,确定出的随机填充时长会变短,从而提高信道的利用率。例如,当前第二竞争窗口为100,第二初始窗口为50。如果站点检测到信道的状态为空闲状态,则站点可以将第二竞争窗口修改为50。
在实施中,第一初始竞争窗口和第二初始竞争窗口可以存储于站点中,还可以由接入点指示给该站点,还可以由协议进行约定,还可以由技术人员根据经验进行设置,本申请实施例并不具体限定。
本申请实施例提供的一种信道接入的方法,首先,站点根据当前的第一竞争窗口,确定回退时长。然后,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长,并在信道上发送时长为随机填充时长的填充数据。之后,当填充数据发送完毕后,站点检测信道的状态。如果信道的状态为空闲状态,站点在信道上发送数据。这样,该站点通过回退时长降低与其他站点发生信道冲突的概率后,进一步通过发送时长为随机填充时长的填充数据,并在填充数据发送完毕后,对信道的状态进行检测,从而进一步降低与其他站点发生信道冲突的概率。
图5为本申请实施例提供的一种信道接入的方法的示例,如图5所示一,具体步骤如下:
步骤501,站点根据当前的第一竞争窗口,确定回退时长。
步骤502,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长。
步骤503,站点在信道上发送时长为随机填充时长的填充数据。
步骤504,当填充数据发送完毕后,站点检测信道的状态。
如果信道的状态为空闲状态,则站点执行步骤505至步骤506;如果信道的状态为繁忙状态,则站点执行步骤507至步骤508。
步骤505,站点在信道上发送数据。
步骤506,站点将第一竞争窗口修改为第一初始竞争窗口,并将第二竞争窗口修改为第二初始竞争窗口。
步骤507,站点不在信道上发送数据。
步骤508,站点根据第一更新策略,更新第一竞争窗口,并根据第二更新策略,更新第二竞争窗口。
步骤501至步骤508的处理过程详见上述本申请的实施例的处理过程。另外,步骤505和506可以同时执行。也可以先后执行,比如可以先执行步骤505,再执行步骤506;还可以先执行步骤506,再执行步骤505。本申请实施例不限定。
可选的,站点在信道上发送时长为随机填充时长的填充数据之前,还可以在信道上发送L-preamble,其中,L-preamble中的传统信令字段中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
在实施中,站点在发送填充数据之前,站点还可以在信道上仅发送传统前导(legacypreamble,L-preamble),其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。这样,当其他站点接收到该L-preamble后,可以对该L-preamble进行解析,得到该L-preamble中携带的传统信令。然后,其他站点可以根据传统信令中的长度指示字段的值判定信道上会发送长度为长度指示字段的值的携带L-preamble的数据包和填充数据。因此,其他站点可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
例如,如图6所示,站点1、站点2、站点3和站点4分别在发送填充数据之前,还可以在信道上发送L-preamble。其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
可选的,站点在信道上发送的携带L-preamble的数据包可以是多种多样的,本申请实施例提供了几种可行的方式,具体如下:
方式一,数据包为物理层PPDU,其中,PPDU的数据字段为空。
在实施中,如图4所示,站点在信道上发送的携带L-preamble的数据包可以为物理层协议数据单元(protocol data unit,PPDU)。其中,PPDU的数据字段为空。这样,当其他站点接收到该PPDU后,可以对该PPDU进行解析,得到该L-preamble中携带的传统信令。然后,其他站点可以根据传统信令中的长度指示字段的值判定信道上会发送长度为长度指示字段的值的携带L-preamble的数据包和填充数据。因此,其他站点可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
方式二,数据包为物理层PPDU,其中,PPDU的数据字段中的媒体访问控制(medium access control,MAC)头包括持续时长字段,持续时长字段的值为填充数据的长度,短帧间隔SIFS与数据的长度三者之和。
在实施中,站点在信道上发送的携带L-preamble的数据包可以为物理层PPDU。其中,PPDU的数据字段中的MAC头包括持续时长字段,持续时长字段的值为填充数据的长度, 短帧间隔(short interframespace,SIFS)与数据的长度三者之和。PPDU可以的数据字段携带自我允许发送帧(clear to send to self,CTS to self),也可以为其他类型的帧,本申请实施例不作限定。这样,当其他站点接收到该PPDU后,可以对该PPDU进行解析,得到该PPDU的数据字段中的MAC头中携带的持续时长字段。然后,其他站点可以根据持续时长字段的值判定信道上会发送长度为持续时长字段的值的填充数据、短帧间隔和数据。因此,其他站点可以判定信道的状态为繁忙状态,并放弃在该持续时长字段的值对应的时长内在该信道上发送数据。例如,本申请实施例以PPDU中数据字段携带的MAC帧为CTS to self为例进行介绍。如图7所示,站点1、站点2、站点3和站点4分别在发送填充数据之前,还可以在信道上发送CTS to self。其中,CTS to self中可以携带有数据字段中的MAC头包括持续时长字段,持续时长字段的值为填充数据的长度,短帧间隔SIFS与数据的长度三者之和。可以理解的,该PPDU的数据字段还可以是其他帧类型,例如,控制帧,管理帧等。
方式三,数据包为零数据包NDP。
在实施中,站点在信道上发送的携带L-preamble的数据包可以为零数据包(null data package,NDP)。这样,当其他站点接收到该NDP后,可以对该NDP进行解析,得到该L-preamble中携带的传统信令。然后,其他站点可以根据传统信令中的长度指示字段的值判定信道上会发送长度为长度指示字段的值的携带L-preamble的数据包和填充数据。因此,其他站点可以判定信道的状态为繁忙状态,并放弃在该长度指示字段的值对应的时长内在该信道上发送数据。
例如,如图8所示,站点1、站点2、站点3和站点4分别在发送填充数据之前,还可以在信道上发送NDP。其中,NDP的L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
图9为本申请实施例提供的一种信道接入的方法的示例二,如图5所示,具体步骤如下:
步骤901,站点根据当前的第一竞争窗口,确定回退时长。
步骤902,当达到回退时长时,站点根据当前的第二竞争窗口,确定随机填充时长。
步骤903,站点在信道上发送L-preamble。
其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。。
步骤904,站点在信道上发送时长为随机填充时长的填充数据。
步骤905,当填充数据发送完毕后,站点检测信道的状态。
如果信道的状态为空闲状态,则站点执行步骤906至步骤907;如果信道的状态为繁忙状态,则站点执行步骤908至步骤909。
步骤906,站点在信道上发送数据。
步骤907,站点将第一竞争窗口修改为第一初始竞争窗口,并将第二竞争窗口修改为第二初始竞争窗口。
步骤908,站点不在信道上发送数据。
步骤909,站点根据第一更新策略,更新第一竞争窗口,并根据第二更新策略,更新第二竞争窗口。
步骤901至步骤909的处理过程详见上述本申请的实施例的处理过程。
可以理解的,步骤906和步骤907可以同时执行,也可以先后执行,两个步骤的执行顺序不限,比如,先执行907,再执行906等;同样的,步骤908和步骤909可以同时执行,也可以先后执行,两个步骤的执行顺序不限。
基于相同的技术构思,如图10所示,本申请实施例还提供了一种信道接入的装置,该通信装置包括:
确定模块1010,用于根据当前的第一竞争窗口,确定回退时长;
确定模块1010,还用于当达到回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
发送模块1020,用于在信道上发送时长为随机填充时长的填充数据;
检测模块1030,用于当填充数据发送完毕后,检测信道的状态;
发送模块1020,还用于如果信道的状态为空闲状态,则在信道上发送数据。
在一种可能的实现方式中,发送模块1020,还用于如果信道的状态为繁忙状态,则不在信道上发送数据。
在一种可能的实现方式中,如图10示,装置还包括:
更新模块1040,用于根据信道的状态,对第一竞争窗口和/或第二竞争窗口进行更新。
在一种可能的实现方式中,更新模块1040,具体用于:
如果信道的状态为繁忙状态,则根据第一更新策略,更新第一竞争窗口;
其中,第一更新策略包括:保持第一竞争窗口不变;或者,
将第一竞争窗口乘以第一系数;或者,
将第一竞争窗口加上常数。
在一种可能的实现方式中,更新模块1040,具体用于:
如果信道的状态为繁忙状态,则根据第二更新策略,更新第二竞争窗口;
其中,第二更新策略包括:保持第二竞争窗口不变;或者,
将第二竞争窗口乘以第二系数。
在一种可能的实现方式中,更新模块1040,具体用于:
如果信道的状态为空闲状态,则将第一竞争窗口修改为第一初始竞争窗口。
在一种可能的实现方式中,更新模块1040,具体用于:
如果信道的状态为空闲状态,则将第二竞争窗口修改为第二初始竞争窗。
在一种可能的实现方式中,其特征在于,发送模块1020,还用于在信道上发送时长为随机填充时长的填充数据之前,在信道上发送传统前导L-preamble,其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
在一种可能的实现方式中,数据包为物理层协议数据单元PPDU,其中,PPDU的数据字段为空。
在一种可能的实现方式中,数据包为物理层PPDU,其中,PPDU的数据字段中的MAC头包括持续时长字段,持续时长字段的值为填充数据的长度,短帧间隔SIFS与数据的长度三者之和。
在一种可能的实现方式中,数据包为零数据包NDP。
基于相同的技术构思,如图11所示,本申请实施例还提供了一种通信装置1100,该通信装置1100包括:处理器1110、存储器1120和收发器1130;
其中,存储器1120,用于存储程序指令;
处理器1110,用于根据存储器1120中存储的程序指令执行以下操作:
根据当前的第一竞争窗口,确定回退时长;
当达到回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
通过收发器1130在信道上发送时长为随机填充时长的填充数据;
当填充数据发送完毕后,检测信道的状态;
如果信道的状态为空闲状态,则通过收发器1130在信道上发送数据。
在一种可能的实现方式中,处理器1110还用于根据存储器1120中存储的程序指令执行以下操作:如果信道的状态为繁忙状态,则不通过收发器1130在信道上发送数据。
在一种可能的实现方式中,所述处理器1110还用于根据所述存储器中存储的程序指令执行以下操作:
根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
在一种可能的实现方式中,所述处理器1110执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;
其中,所述第一更新策略包括:保持所述第一竞争窗口不变;或者,
将所述第一竞争窗口乘以第一系数;或者,
将所述第一竞争窗口加上常数。
在一种可能的实现方式中,所述处理器1110执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;
其中,所述第二更新策略包括:保持所述第二竞争窗口不变;或者,
将所述第二竞争窗口乘以第二系数。
在一种可能的实现方式中,所述处理器1110执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。
在一种可能的实现方式中,所述处理器1110执行所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新的操作,具体包括:
如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。
在一种可能的实现方式中,其特征在于,处理器1110执行在信道上发送时长为随机填充时长的填充数据之前,处理器1110还用于根据存储器1120中存储的程序指令执行以下操作:通过收发器1130在信道上发送传统前导L-preamble,其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
在一种可能的实现方式中,数据包为物理层协议数据单元PPDU,其中,PPDU的数据字段为空。
在一种可能的实现方式中,数据包为物理层PPDU,其中,PPDU的数据字段中的MAC头包括持续时长字段,持续时长字段的值为填充数据的长度,短帧间隔SIFS与数据的长度三者之和。
在一种可能的实现方式中,数据包为零数据包NDP。
在一种可能的实现方式中,该通信装置1100可以是站点,也可以是站点内的芯片。
在一种可能的实现方式中,处理器1110包括第二方面中的确定模块、检测模块和更新模块;
其中,确定模块,用于根据当前的第一竞争窗口,确定回退时长;还用于当达到回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
检测模块,用于当填充数据发送完毕后,检测信道的状态;
更新模块,用于如果信道的状态为繁忙状态,则根据第一更新策略,更新第一竞争窗口;还用于如果信道的状态为繁忙状态,则根据第二更新策略,更新第二竞争窗口;还用于如果信道的状态为空闲状态,则将第一竞争窗口修改为第一初始竞争窗口。还用于如果信道的状态为空闲状态,则将第二竞争窗口修改为第二初始竞争窗。还用于通过收发器1130在信道上发送时长为随机填充时长的填充数据之前,通过收发器1130在信道上发送传统前导L-preamble,其中,L-preamble中的传统信令中的长度指示字段的值为携带L-preamble的数据包的长度与填充数据的长度之和。
在一种可能的实现方式中,收发器1130包括第二方面中的发送模块;
发送模块,用于通过收发器1130在信道上发送时长为随机填充时长的填充数据;还用于如果信道的状态为空闲状态,则通过收发器1130在信道上发送数据;还用于如果信道的状态为繁忙状态,则不通过收发器1130在信道上发送数据。
在一种可能的实现方式中,发送模块包括基带电路,射频电路和天线;
其中,基带电路,用于生成填充数据和数据,并将填充数据和数据发送给射频电路;
射频电路,用于对填充数据和数据进行模拟转换处理、滤波处理、放大处理和上变频处理,并将填充数据和数据发送给天线;
天线,用于将填充数据和数据通过射频信号发送给其他通信装置1100。
在一种可能的实现方式中,收发器1130为输入/输出接口、管脚或接口电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储 介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (26)

  1. 一种信道接入的方法,其特征在于,所述方法包括:
    站点根据当前的第一竞争窗口,确定回退时长;
    当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
    在信道上发送时长为所述随机填充时长的填充数据;
    当所述填充数据发送完毕后,检测所述信道的状态;
    如果所述信道的状态为空闲状态,则在所述信道上发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果所述信道的状态为繁忙状态,则不在所述信道上发送所述数据。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
    如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;
    其中,所述第一更新策略包括:保持所述第一竞争窗口不变;或者,
    将所述第一竞争窗口乘以第一系数;或者,
    将所述第一竞争窗口加上常数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
    如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;
    其中,所述第二更新策略包括:保持所述第二竞争窗口不变;或者,
    将所述第二竞争窗口乘以第二系数。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
    如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。
  7. 根据权利要求3或6所述的方法,其特征在于,所述根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新,包括:
    如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在所述信道上发送时长为所述随机填充时长的填充数据之前,所述方法还包括:
    在所述信道上发送传统前导L-preamble,其中,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
  9. 根据权利要求8所述的方法,其特征在于,所述数据包为物理层协议数据单元PPDU,其中,所述PPDU的数据字段为空。
  10. 根据权利要求8所述的方法,其特征在于,所述数据包为物理层PPDU,其中,所述PPDU的数据字段中的媒体访问控制MAC头包括持续时长字段,所述持续时长字段的值为所述填充数据的长度,短帧间隔SIFS与所述数据的长度三者之和。
  11. 根据权利要求8所述的方法,其特征在于,所述数据包为零数据包NDP。
  12. 一种信道接入的装置,其特征在于,所述装置包括:
    确定模块,用于根据当前的第一竞争窗口,确定回退时长;
    所述确定模块,还用于当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
    发送模块,用于在信道上发送时长为所述随机填充时长的填充数据;
    检测模块,用于当所述填充数据发送完毕后,检测所述信道的状态;
    所述发送模块,还用于如果所述信道的状态为空闲状态,则在所述信道上发送数据。
  13. 根据权利要求12所述的装置,其特征在于,所述发送模块,还用于如果所述信道的状态为繁忙状态,则不在所述信道上发送所述数据。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    更新模块,用于根据所述信道的状态,对所述第一竞争窗口和/或第二竞争窗口进行更新。
  15. 根据权利要求14所述的装置,其特征在于,所述更新模块,具体用于:
    如果所述信道的状态为繁忙状态,则根据第一更新策略,更新所述第一竞争窗口;
    其中,所述第一更新策略包括:保持所述第一竞争窗口不变;或者,
    将所述第一竞争窗口乘以第一系数;或者,
    将所述第一竞争窗口加上常数。
  16. 根据权利要求14或15所述的装置,其特征在于,所述更新模块,具体用于:
    如果所述信道的状态为繁忙状态,则根据第二更新策略,更新所述第二竞争窗口;
    其中,所述第二更新策略包括:保持所述第二竞争窗口不变;或者,
    将所述第二竞争窗口乘以第二系数。
  17. 根据权利要求14所述的装置,其特征在于,所述更新模块,具体用于:
    如果所述信道的状态为空闲状态,则将所述第一竞争窗口修改为第一初始竞争窗口。
  18. 根据权利要求14或17所述的装置,其特征在于,所述更新模块,具体用于:
    如果所述信道的状态为空闲状态,则将所述第二竞争窗口修改为第二初始竞争窗。
  19. 根据权利要求12至18中任一项所述的装置,其特征在于,所述发送模块,还用于在所述信道上发送时长为所述随机填充时长的填充数据之前,在所述信道上发送传统前导L-preamble,其中,所述L-preamble中的传统信令中的长度指示字段的值为携带所述L-preamble的数据包的长度与所述填充数据的长度之和。
  20. 根据权利要求19所述的装置,其特征在于,所述数据包为物理层协议数据单元PPDU,其中,所述PPDU的数据字段为空。
  21. 根据权利要求19所述的装置,其特征在于,所述数据包为物理层PPDU,其中,所述PPDU的数据字段中的媒体访问控制MAC头包括持续时长字段,所述持续时长字段的值为所述填充数据的长度,短帧间隔SIFS与所述数据的长度三者之和。
  22. 根据权利要求19所述的装置,其特征在于,所述数据包为零数据包NDP。
  23. 一种通信装置,包括:处理器、存储器和收发器;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:
    根据当前的第一竞争窗口,确定回退时长;
    当达到所述回退时长时,根据当前的第二竞争窗口,确定随机填充时长;
    通过所述收发器在信道上发送时长为所述随机填充时长的填充数据;
    当所述填充数据发送完毕后,检测所述信道的状态;
    如果所述信道的状态为空闲状态,则通过所述收发器在所述信道上发送数据。
  24. 一种计算机可读存储介质,用于存储指令,当所述指令在计算机上运行时,使所述计算机执行权利要求1至11中任一项所述的方法。
  25. 一种计算机程序产品,所述计算机程序产品包括一个或多个计算机指令,当所述计算机指令在计算机上运行时,使所述计算机执行权利要求1至11中任一项所述的方法。
  26. 一种装置,用于实现权利要求1至11中任一项所述的方法。
PCT/CN2019/091921 2018-07-12 2019-06-19 一种信道接入的方法及装置 WO2020010991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/146,990 US20210136817A1 (en) 2018-07-12 2021-01-12 Channel Access Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810764316.6 2018-07-12
CN201810764316.6A CN110719649B (zh) 2018-07-12 2018-07-12 一种信道接入的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/146,990 Continuation US20210136817A1 (en) 2018-07-12 2021-01-12 Channel Access Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020010991A1 true WO2020010991A1 (zh) 2020-01-16

Family

ID=69142253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091921 WO2020010991A1 (zh) 2018-07-12 2019-06-19 一种信道接入的方法及装置

Country Status (3)

Country Link
US (1) US20210136817A1 (zh)
CN (1) CN110719649B (zh)
WO (1) WO2020010991A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189854A (zh) * 2021-04-07 2022-10-14 华为技术有限公司 信息指示方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415082A (zh) * 2013-08-09 2013-11-27 北京邮电大学 车载无线通信信道接入方法、基站单元和车载移动终端
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序
CN104581979A (zh) * 2014-12-23 2015-04-29 江苏中兴微通信息科技有限公司 一种基于公平竞争的rts碰撞解决方法
CN104640230A (zh) * 2013-11-06 2015-05-20 株式会社Ntt都科摩 一种用户设备接入方法及用户设备
US20170311225A1 (en) * 2016-04-20 2017-10-26 Qualcomm Incorporated Resource access priority for synchronous transmissions

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965942B1 (en) * 2001-01-12 2005-11-15 3Com Corporation Method and system for improving throughput over wireless local area networks with a dynamic contention window
US9674825B2 (en) * 2013-07-17 2017-06-06 Qualcomm Incorporated LTE channel access over unlicensed bands
US9609666B2 (en) * 2014-03-03 2017-03-28 Futurewei Technologies, Inc. System and method for reserving a channel for coexistence of U-LTE and Wi-Fi
US9860921B2 (en) * 2014-05-30 2018-01-02 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data based on aggressive spatial reuse
US10531433B2 (en) * 2014-10-29 2020-01-07 Qualcomm Incorporated Methods and apparatus for multiple user uplink access
US9504038B2 (en) * 2014-12-25 2016-11-22 Intel Corporation Apparatus, method and system of communicating a wide-bandwidth data frame
US10448420B2 (en) * 2015-04-10 2019-10-15 Electronics And Telecommunications Research Institute Method and apparatus for allocating uplink resources
WO2016167623A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
WO2016190631A1 (ko) * 2015-05-22 2016-12-01 엘지전자 주식회사 무선 통신 시스템에서 채널 센싱 및 그에 따른 전송을 위한 방법 및 이를 위한 장치
GB2540450B (en) * 2015-07-08 2018-03-28 Canon Kk Improved contention mechanism for access to random resource units in an 802.11 channel
GB2540213B (en) * 2015-07-10 2018-02-28 Canon Kk Trigger frames adapted to packet-based policies in an 802.11 network
CN106559882B (zh) * 2015-09-25 2021-12-10 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
US10182456B2 (en) * 2015-10-15 2019-01-15 Qualcomm Incorporated Collision detection in a shared radio frequency spectrum band
US10194427B2 (en) * 2015-11-02 2019-01-29 Qualcomm Incorporated Methods and apparatus for multiple user uplink
CN107027161B (zh) * 2016-01-29 2020-09-18 华为技术有限公司 一种无线局域网中数据传输的方法、接入点和站点
US10813089B2 (en) * 2016-09-20 2020-10-20 Apple Inc. Roll-call channel access
GB2555455B (en) * 2016-10-28 2020-02-26 Canon Kk QoS management for multi-user EDCA transmission mode in 802.11ax networks
WO2018094279A2 (en) * 2016-11-17 2018-05-24 Zte Corporation Slotted ofdma based channel access
KR102423374B1 (ko) * 2017-09-14 2022-07-21 삼성전자주식회사 무선 통신 시스템에서 예약 신호를 송신하기 위한 장치 및 방법
EP3738247A1 (en) * 2018-01-10 2020-11-18 IDAC Holdings, Inc. Data transmissions and harq-ack associated with an unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序
CN103415082A (zh) * 2013-08-09 2013-11-27 北京邮电大学 车载无线通信信道接入方法、基站单元和车载移动终端
CN104640230A (zh) * 2013-11-06 2015-05-20 株式会社Ntt都科摩 一种用户设备接入方法及用户设备
CN104581979A (zh) * 2014-12-23 2015-04-29 江苏中兴微通信息科技有限公司 一种基于公平竞争的rts碰撞解决方法
US20170311225A1 (en) * 2016-04-20 2017-10-26 Qualcomm Incorporated Resource access priority for synchronous transmissions

Also Published As

Publication number Publication date
CN110719649A (zh) 2020-01-21
CN110719649B (zh) 2023-02-10
US20210136817A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP7309030B2 (ja) マルチリンク通信方法及び装置
EP4149198A1 (en) Wireless communication method using multiple links, and wireless communication terminal using same
US20230379999A1 (en) Wireless communication method using multi-link, and wireless communication terminal using same
EP2993857A1 (en) Method and device for data transmission
WO2020191588A1 (zh) 信道检测方法、装置及存储介质
US9883530B2 (en) Radio frame receiving method and device
US11937294B2 (en) Communication method, apparatus, computer-readable medium and electronic device
EP4192179A1 (en) Wireless communication method using multiple links, and wireless communication terminal using same
US11956812B2 (en) Method and device for processing network allocation vector
US20240049304A1 (en) Wireless communication method using multi-link, and wireless communication terminal using same
US9584433B2 (en) Data transmission method and apparatus
JP7485847B2 (ja) リンクエラーリカバリ方法及び装置
WO2021184919A1 (zh) 时延性能评估方法、装置和存储介质
WO2020010991A1 (zh) 一种信道接入的方法及装置
KR20170062719A (ko) 고효율 무선랜에서 상향링크 다중 사용자 전송을 지원하기 위한 채널 액세스 방법 및 장치
KR20230116722A (ko) Emlsr 동작을 지원하는 무선랜에서 저지연 통신을 위한 방법 및 장치
JP2018523355A (ja) 効率的なランダムスケジューリング型チャネルアクセス
EP4258799A1 (en) Method and device for low latency communication in communication system supporting multiple links
WO2017215350A1 (zh) 一种退避方法和装置
WO2017114033A1 (zh) 一种传输机会确定方法及接入点
WO2023232032A1 (zh) 一种信道接入方法及装置
WO2017036258A1 (zh) 竞争接入方法、竞争接入装置、站点及竞争接入***
EP4376478A1 (en) Method and apparatus for nstr communication in communication system supporting multiple links
WO2023134581A1 (zh) 信道竞争方法及装置
EP4262270A1 (en) Method and device for receiving downlink traffic in communication system supporting multiple links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834535

Country of ref document: EP

Kind code of ref document: A1