WO2020010824A1 - 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法 - Google Patents

面向光纤拉曼温度传感***的自校准检测装置及温度解调方法 Download PDF

Info

Publication number
WO2020010824A1
WO2020010824A1 PCT/CN2019/000086 CN2019000086W WO2020010824A1 WO 2020010824 A1 WO2020010824 A1 WO 2020010824A1 CN 2019000086 W CN2019000086 W CN 2019000086W WO 2020010824 A1 WO2020010824 A1 WO 2020010824A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
stokes light
sensing
apd
temperature
Prior art date
Application number
PCT/CN2019/000086
Other languages
English (en)
French (fr)
Inventor
张明江
李健
张建忠
乔丽君
闫宝强
许扬
靳宝全
王东
王宇
王云才
Original Assignee
太原理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学 filed Critical 太原理工大学
Priority to US17/252,992 priority Critical patent/US11927491B2/en
Publication of WO2020010824A1 publication Critical patent/WO2020010824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/007Testing

Definitions

  • the invention relates to the field of temperature demodulation in a distributed optical fiber sensing system, and in particular to a self-calibrating temperature detection device and a temperature demodulation method for an optical fiber Raman sensing system.
  • Distributed optical fiber sensing technology uses the optical fiber itself as both a signal transmission medium and a sensing unit to obtain the external physical quantity distribution of the entire optical fiber link.
  • the distributed optical fiber sensing system has high measurement accuracy, long sensing distance, and good reliability, and has been widely used in health monitoring of infrastructures such as smart grids.
  • the currently commonly used temperature demodulation method is to use Stokes backscattered light as a reference channel, anti-Stokes backscattered light as a signal channel, and then use these two kinds of backscattered light Ratio of light intensity to demodulate temperature information along the fiber.
  • the present invention proposes a distributed optical fiber Raman temperature sensor System self-calibration detection device and temperature demodulation method.
  • a self-calibration detection device for an optical fiber Raman temperature sensing system includes an optical fiber Raman thermometer, a thermostatic bath, a multi-mode sensing fiber, and a multi-mode reflector.
  • the fiber-optic Raman thermometer includes a pulse laser, WDM, two APDs, two LNAs, a data acquisition card, and a computer; wherein the output end of the pulse laser is connected to the input end of the WDM; the two output ends of the WDM are respectively connected to The input of the first APD and the second APD are connected; the output of the first APD is connected to the input of the first LNA; the output of the second APD is connected to the input of the second LNA; The output end is connected to the input end of the data acquisition card; the output end of the data acquisition card is connected to the input end of the computer.
  • the input end of the multi-mode sensing fiber is connected to the common end of the WDM.
  • the middle part of the multi-mode sensing fiber is wound with a first reference fiber ring and a second reference fiber ring, and the rear part is used as the sensing fiber to be tested.
  • a reference fiber optic ring is placed in the first thermostatic bath, and a second reference fiber optic ring is placed in the second thermostatic bath; wherein the output end of the sensing optical fiber to be tested is connected to a multimode fiber optic mirror.
  • a temperature demodulation method for an optical fiber Raman temperature sensing system includes the following steps:
  • Step 1 Set up the self-calibrating temperature detection device for the fiber-optic Raman sensing system.
  • Step 2 Stokes light dispersion compensation interpolation
  • the entire Stokes light along the fiber is interpolated, thereby making the same position of the multimode sensing fiber.
  • the generated Stokes light and anti-Stokes light reach the data acquisition card at the same time.
  • ⁇ s (L) represents the light intensity value of the Stokes light generated at a certain position of the multimode sensing fiber
  • L represents the distance between the position and the front end of the multimode sensing fiber.
  • Step 3 Signal processing of backward Stokes light and anti-Stokes light
  • the data acquisition card obtained the backscattered light intensity curve of anti-Stokes light and Stokes light, and the light intensity ratio was expressed as:
  • K s and K a is associated with the end sections of fiber dispersion coefficient, V s, and V a Stokes light and anti-Stokes light frequency
  • F T of the APD of the photoelectric conversion factor, h K is the Planck constant and Boltzmann constant
  • ⁇ v is the Raman frequency shift of the fiber is 13.2 THz
  • ⁇ s and ⁇ a are the attenuation of the Stokes light and anti-Stokes light per unit length in the fiber, respectively.
  • Coefficient T represents the temperature value of the sensing fiber position l
  • l represents the distance between the position and the front end of the multimode sensing fiber.
  • the ratio of the anti-Stokes light and the Stokes light backscattered light intensity at the position of the first reference fiber ring is expressed as:
  • T c represents the temperature value of the position l c of the first reference fiber ring; l c represents the distance between the position and the front end of the multimode sensing fiber;
  • the forward Stokes light and anti-Stokes light generated in the optical fiber are reflected by the multi-mode mirror, and then reach the first APD, the first LNA and the second APD, and the second LNA respectively through WDM, and then undergo photoelectric conversion and amplification.
  • the forward scattered light intensity curve of anti-Stokes light and Stokes light is obtained after high-speed acquisition card and computer.
  • the ratio of light intensity is expressed as:
  • R a and R s are the reflectivity of the multi-mode mirror to anti-Stokes light and Stokes light, and L is the length of the entire multi-mode sensing fiber.
  • the ratio of the forward scattered light intensity of anti-Stokes light and Stokes light at the position of the first reference fiber ring is expressed as:
  • Step 5 Self-calibrating temperature demodulation method for fiber-optic Raman sensing system
  • the formula (7) can be solved to obtain the specific temperature demodulation formula along the optical fiber.
  • the formula is as follows:
  • the self-calibrated temperature detection device and temperature demodulation method for the optical fiber Raman sensing system according to the present invention have the following advantages:
  • the position information of the Stokes light is interpolated by using the position information of the scattered signal of the two-section reference fiber ring, so that the acquisition card can receive the light intensity information of the Stokes light and anti-Stokes light at the same position at the same time. Avoid the influence of fiber dispersion on temperature measurement accuracy and temperature stability.
  • the present invention uses demodulated backward and forward Raman scattered light to demodulate the temperature of the light along the line, thereby avoiding the influence of the bending of the optical fiber on the temperature measurement accuracy and temperature measurement stability during the measurement phase.
  • the present invention does not need to perform calibration processing before temperature measurement, and speeds up the more convenient industrialization process of the distributed optical fiber sensing system.
  • the invention has a reasonable design and effectively solves the problems of low temperature measurement accuracy, low temperature stability and low temperature measurement efficiency caused by the temperature demodulation method in the existing distributed optical fiber Raman temperature measurement system, and is suitable for distributed Fiber Raman temperature measurement system.
  • FIG. 1 shows a schematic diagram of a self-calibrating temperature detection device for an optical fiber Raman sensing system in the present invention.
  • 1-pulse laser 2-WDM (wavelength division multiplexer 1550nm / 1450nm / 1650nm), 3-first reference fiber ring, 4-first thermostatic bath, 5-second reference fiber ring, 6- Two thermostatic baths, 7-sensor fiber under test, 8-multimode mirror, 9-first APD (avalanche photodiode), 10-first LNA (low noise amplifier), 11-second APD (avalanche photodiode) ), 12-second LNA (low-noise amplifier), 13-high-speed data acquisition card, 14-computer.
  • APD active photodiode
  • 10-first LNA low noise amplifier
  • 11-second APD avalanche photodiode
  • 12-second LNA low-noise amplifier
  • a temperature demodulation method for an optical fiber Raman sensing system is implemented by the following self-calibrating temperature detection device.
  • the device includes a 1550nm pulsed laser, a wavelength division multiplexer (WDM), two avalanche photodiodes (APD), two low-noise amplifiers (LNA), a multimode sensing fiber (ordinary multimode fiber), a data acquisition card, A computer, two reference fiber rings, two thermostatic baths (for placing the first reference fiber ring and the second reference fiber ring), and a multimode fiber mirror.
  • WDM wavelength division multiplexer
  • APD avalanche photodiodes
  • LNA low-noise amplifiers
  • multimode sensing fiber ordinary multimode fiber
  • a computer two reference fiber rings, two thermostatic baths (for placing the first reference fiber ring and the second reference fiber ring), and a multimode fiber mirror.
  • a temperature demodulation method for optical fiber Raman sensing system is divided into the following 4 steps.
  • Step 1 Set up a self-calibrating temperature detection device for the optical fiber Raman sensing system
  • the self-calibrating temperature detection device for a fiber-optic Raman sensing system includes a fiber-optic Raman thermometer, a reference fiber ring, a constant temperature bath, a multi-mode sensing fiber, and a multi-mode mirror.
  • the fiber-optic Raman thermometer includes a pulsed laser, WDM, two APDs, two LNAs, a data acquisition card, and a computer; wherein the output of the pulsed laser 1 is connected to the input of WDM 2; WDM 2 The two output terminals are connected to the input terminals of the first APD 9 and the second APD 11 respectively; the output terminal of the first APD 9 is connected to the input terminal of the first LNA 10; the output terminal of the second APD 11 is connected to the second LNA 12 The input terminals of the first LNA 10 and the second LNA 12 are connected to the input terminal of the data acquisition card 13; the output terminal of the data acquisition card 13 is connected to the input terminal of the computer 14.
  • the input end of the multi-mode sensing fiber is connected to the common end of WDM 2.
  • the middle part of the multi-mode sensing fiber is wound with the first reference fiber ring 3 and the second reference fiber ring 5, respectively, and the rear part is used as the sensor to be tested.
  • Step 2 Stokes light dispersion compensation interpolation
  • the Stokes light is incident on the data acquisition card through the WDM, the first APD, and the first LNA, and the data acquisition card performs analog-to-digital conversion on the Stokes light, thereby obtaining the light intensity curve of the Stokes light.
  • the anti-Stokes light is incident on the data acquisition card through WDM, the second APD, and the second LNA in turn.
  • the data acquisition card performs analog-to-digital conversion on the anti-Stokes light, thereby obtaining the intensity curve of the anti-Stokes light.
  • the data acquisition card and the computer detect the position information of the Stokes light and the anti-Stokes light of the first reference fiber ring and the second reference fiber ring, and use the propagation speed of the Stokes light and anti-Stokes light in the fiber to determine the position of the Stokes light. Interpolation processing; therefore, the Stokes light and anti-Stokes light generated at the same position of the multi-mode sensing fiber reach the data acquisition card at the same time.
  • ⁇ s (L) represents the light intensity value of the Stokes light generated at a certain position of the multimode sensing fiber
  • L represents the distance between the position and the front end of the multimode sensing fiber.
  • Step 3 Signal processing of backward Stokes light and anti-Stokes light
  • the data acquisition card and computer perform data processing on the collected light intensity data of backward Stokes light and anti-Stokes light;
  • the data acquisition card can obtain the back-scattered light intensity curve of anti-Stokes light and Stokes light, and the ratio of light intensity can be expressed as:
  • K s and K a is associated with the end sections of fiber dispersion coefficient, V s, and V a Stokes light and anti-Stokes light frequency
  • K is the Planck constant and Boltzmann constant
  • ⁇ v is the Raman frequency shift of the fiber is 13.2 THz
  • ⁇ s and ⁇ a are the attenuation of the Stokes light and anti-Stokes light per unit length in the fiber, respectively.
  • Coefficient T represents the temperature value of the sensing fiber position l
  • l represents the distance between the position and the front end of the multimode sensing fiber;
  • the ratio of the anti-Stokes light and the Stokes light backscattered light intensity at the position of the first reference fiber ring can be expressed as:
  • T c represents the temperature value of the position l c of the first reference fiber ring; l c represents the distance between the position and the front end of the multimode sensing fiber;
  • the forward Stokes light and anti-Stokes light generated in the optical fiber are reflected by the multi-mode mirror, and then reach the first APD, the first LNA and the second APD, and the second LNA respectively through WDM.
  • the forward scattered light intensity curve of anti-Stokes light and Stokes light is obtained after high-speed acquisition card and computer.
  • the ratio of light intensity can be expressed as:
  • R a and R s are the reflectivity of the multi-mode mirror to anti-Stokes light and Stokes light, and L is the length of the entire multi-mode sensing fiber;
  • the ratio of the forward scattered light intensity of anti-Stokes light and Stokes light at the position of the first reference fiber ring can be expressed as:
  • Step 5 Self-calibrating temperature demodulation method for fiber-optic Raman sensing system
  • Fiber Raman thermometers demodulate the temperature data distributed along the fiber based on the forward and backward Stokes light and anti-Stokes light intensity data of the sensing fiber.
  • the formula (7) can be solved to obtain the specific temperature demodulation formula along the optical fiber.
  • the formula is as follows:
  • the pulse laser has a wavelength of 1550 nm, a pulse width of 10 ns, and a repetition frequency of 8 KHz.
  • the working wavelength of the WDM is 1550nm / 1450nm / 1663nm.
  • the APD has a bandwidth of 100 MHz and a spectral response range of 900-1700 nm.
  • the bandwidth of the LNA is 100 MHz.
  • the number of channels of the data acquisition card is 4, the sampling rate is 100 M / s, and the bandwidth is 100 MHz.
  • the multi-mode sensing fiber is a common multi-mode fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种面向光纤拉曼温度传感***的自校准检测装置及温度解调方法,其中,自校准检测装置包括光纤拉曼测温仪、恒温槽(4,6)、多模传感光纤和多模反射镜(8);光纤拉曼测温仪包括脉冲激光器(1),脉冲激光器(1)的输出端与WDM(2)的输入端连接;WDM(2)的2个输出端分别与第一APD(9)和第二APD(11)的输入端连接;第一APD(9)的输出端与第一LNA(10)的输入端连接;第二APD(11)的输出端与第二LNA(12)的输入端连接;第一LNA(10)和第二LNA(12)的输出端与数据采集卡(13)的输入端连接;数据采集卡(13)的输出端与计算机(14)的输入端连接。本温度解调方法能够解决现有分布式光纤拉曼测温***中的温度解调方法导致***的测温精度低、测温稳定性较低和测温效率低的问题。

Description

面向光纤拉曼温度传感***的自校准检测装置及温度解调方法 技术领域
本发明涉及分布式光纤传感***中的温度解调领域,具体是一种面向光纤拉曼传感***的自校准温度检测装置及温度解调方法。
背景技术
分布式光纤传感技术是利用光纤自身既作为信号传输介质又作为传感单元,从而获取整个光纤链路的外部物理量分布情况。分布式光纤传感***测量精度高,传感距离长,并且具有较好的可靠性,现已广泛应用于智能电网等基础设施的健康监测。
在分布式光纤拉曼测温***中,目前常用的温度解调方法是利用Stokes后向散射光作为参考通道,利用anti-Stokes后向散射光作为信号通道,然后利用这两种后向散射光的光强比值来解调光纤沿线的温度信息。然而实践表明,现有温度解调方法由于自身原理所限,存在如下问题:其一、由于Stokes光和anti-Stokes光的波长不同,其在光纤中的传播速度存在差异,因此同一位置散射回来的Stokes光和anti-Stokes光到达数据采集卡的时间不同,导致数据采集卡在同一时间采集到的Stokes光和anti-Stokes光并不是来自同一位置,由此导致信号错位,从而导致***的测温精度低和测温稳定性较低;其二、在现有温度解调方法中,必须在测温前将整条待测光纤置于恒温下进行定标处理(倘若更换待测光纤、调整激光器功率或更换任意***器件,则必须重新进行定标处理),由此导致操作繁琐,从而导致***的测温效率低;其三、由于拉曼信号较弱,***采用高增益的APD作为接收拉曼信号的器件,但是APD的增益随温度的变化影响较大,由于现有解调方法为考虑APD增益对测温结果的影响, 最后导致***的测温精度测温稳定性较低;其四、拉曼测温***在面向工程应用过程中,传感光纤的铺设会导致光纤出现较大程度的弯曲或变形,这种现象也会极大的影响***的测温精度和稳定性。
基于此,有必要发明一种全新的温度解调方法,以解决现有分布式光纤传感***中由于光纤色散、APD光电响应不一致、光纤突变损耗及***前期定标的过程,导致***的测温精度低、测温稳定性较低及前期需要定标处理的问题。
发明内容
为了解决现有分布式光纤拉曼传感***由于光纤色散、APD温漂及光纤突变弯曲等现象导致***测温性能急剧下降的问题,本发明提出了一种面向分布式光纤拉曼温度传感***的自校准检测装置及温度解调方法。
本发明是采用如下技术方案实现的:
一种面向光纤拉曼温度传感***的自校准检测装置,包括光纤拉曼测温仪、恒温槽、多模传感光纤和多模反射镜。
所述光纤拉曼测温仪包括脉冲激光器、WDM、2个APD、2个LNA、数据采集卡、计算机;其中,脉冲激光器的输出端与WDM的输入端连接;WDM的2个输出端分别与第一APD和第二APD的输入端连接;第一APD的输出端与第一LNA的输入端连接;第二APD的输出端与第二LNA的输入端连接;第一LNA和第二LNA的输出端与数据采集卡的输入端连接;数据采集卡的输出端与计算机的输入端连接。
多模传感光纤的输入端与WDM的公共端连接,其中多模传感光纤的中间部分分别绕制有第一参考光纤环和第二参考光纤环,后部作为待测传感光纤;第一参考光纤环放置于第一恒温槽中,第二参考光纤环放置于第二恒温槽中;其中,待测传感光纤的输出端连接多模光纤反射镜。
一种面向光纤拉曼温度传感***的温度解调方法,包括如下步骤:
步骤一:搭建上述的面向光纤拉曼传感***的自校准温度检测装置。
步骤二:Stokes光色散补偿插值处理
将第一恒温槽的温度值设置为T c;将第二恒温槽的温度值设置为T 2;然后,启动光纤拉曼测温仪,脉冲激光器发出的激光脉冲经WDM入射到第一参考光纤环、第二参考光纤环、待测传感光纤和多模反射镜;激光脉冲在多模传感光纤中传播时发生自发拉曼散射,由此使得多模传感光纤的各个位置均产生的Stokes光和anti-Stokes光;其中在光纤中产生的后向Stokes光和anti-Stokes光经WDM首先分别到达第一APD、第一LNA和第二APD、第二LNA进行光电转换和放大,最后进入高速采集卡和计算机进行数据采集得到光纤沿线的Stokes光和anti-Stokes光的位置和光强信息。
根据第一参考光纤环和第二参考光纤环的Stokes光和anti-Stokes光的光强曲线中的位置,对光纤沿线全部的Stokes光进行插值处理,由此使得多模传感光纤的同一位置产生的Stokes光和anti-Stokes光到达数据采集卡的时间相同。
插值处理的具体步骤如下:
采集卡检测的第一参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s1和L a1,第二参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s2和L a2,并令
Figure PCTCN2019000086-appb-000001
其中,φ s(L)表示多模传感光纤的某一位置产生的Stokes光的光强值;L表示该位置与多模传感光纤的前端之间的距离。
步骤三:后向Stokes光和anti-Stokes光的信号处理
数据采集卡得到anti-Stokes光和Stokes光的后向散射光强曲线,其光强比 值表示为:
Figure PCTCN2019000086-appb-000002
式中,K s和K a为与光纤散射端截面有关的系数,V s和V a为斯托克斯光和反斯托克斯光的频率,F T为APD的光电转换因子,h、K分别为普朗克常数和玻尔兹曼常数,Δv为光纤的拉曼频移量为13.2THz,α s、α a分别为入Stokes光和anti-Stokes光在光纤中单位长度下的衰减系数;T表示待测传感光纤位置l的温度值;l表示该位置与多模传感光纤的前端之间的距离。
其中,第一参考光纤环位置的anti-Stokes光和Stokes光后向散射光强比值表示为:
Figure PCTCN2019000086-appb-000003
式中,T c表示第一参考光纤环位置l c的温度值;l c表示该位置与多模传感光纤的前端之间的距离;
公式(1)和(2)的比值为:
Figure PCTCN2019000086-appb-000004
步骤四、前向Stokes光和anti-Stokes光的信号处理
接着在光纤中产生的前向Stokes光和anti-Stokes光被多模反射镜反射后经WDM分别再次到达第一APD、第一LNA和第二APD、第二LNA也进行光电转换和放大,进入高速采集卡和计算机后得到anti-Stokes光和Stokes光的前向散射光强曲线,其光强比值表示为:
Figure PCTCN2019000086-appb-000005
式中,R a和R s为多模反射镜对anti-Stokes光和Stokes光的反射率,L为整个多模传感光纤的长度。
其中,第一参考光纤环位置的anti-Stokes光和Stokes光前向散射光强比值表示为:
Figure PCTCN2019000086-appb-000006
公式(4)和(5)的比值为:
Figure PCTCN2019000086-appb-000007
步骤五、面向光纤拉曼传感***的自校准温度解调方法
将公式(3)和(6)化解后得
Figure PCTCN2019000086-appb-000008
化解公式(7)可得具体的光纤沿线温度解调公式,公式如下:
Figure PCTCN2019000086-appb-000009
与现有分布式光纤传感***相比,本发明所述的面向光纤拉曼传感***的自校准温度检测装置及温度解调方法具有如下优点:
第一、本发明利用双段参考光纤环散射信号的位置信息对Stokes光的位置进行插值处理,使其采集卡可以在同一时间接收到同一位置的Stokes光和anti-Stokes光的光强信息,避免光纤色散对测温精度和测温稳定性的影响。
第二、本发明创造性的利用后向和前向拉曼散射光对光线沿线的温度进行解调,避免了测量阶段光纤弯曲对测温精度和测温稳定性的影响。
第三、本发明无需在温度测量前进行定标处理,加快了分布式光纤传感***更加便捷的面向工业化的进程。
本发明设计合理,有效解决了现有分布式光纤拉曼测温***中的温度解调方法导致***的测温精度低、测温稳定性较低和测温效率低的问题,适用于分布式光纤拉曼测温***。
附图说明
图1表示本发明中面向光纤拉曼传感***的自校准温度检测装置示意图。
图中:1-脉冲激光器,2-WDM(波分复用器1550nm/1450nm/1650nm),3-第一参考光纤环,4-第一恒温槽,5-第二参考光纤环,6-第二恒温槽,7-待测传感光纤,8-多模反射镜,9-第一APD(雪崩光电二极管),10-第一LNA(低噪放大器),11-第二APD(雪崩光电二极管),12-第二LNA(低噪放大器),13-高速数据采集卡,14-计算机。
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
一种面向光纤拉曼传感***的温度解调方法由以下自校准温度检测装置来实现。该装置包括1550nm脉冲激光器、波分复用器(WDM)、2个雪崩光电二极管(APD)、2个低噪放大器(LNA)、多模传感光纤(普通多模光纤)、数据采集卡、计算机、2段参考光纤环、2个恒温槽(用于放置第一参考光纤 环和第二参考光纤环)和1个多模光纤反射镜。
一种面向光纤拉曼传感***的温度解调方法分为以下4个步骤。
步骤一、搭建面向光纤拉曼传感***的自校准温度检测装置;
面向光纤拉曼传感***的自校准温度检测装置包括光纤拉曼测温仪、参考光纤环、恒温槽、多模传感光纤和多模反射镜。
如图1所示,光纤拉曼测温仪包括脉冲激光器、WDM、2个APD、2个LNA、数据采集卡、计算机;其中,脉冲激光器1的输出端与WDM 2的输入端连接;WDM 2的2个输出端分别与第一APD 9和第二APD 11的输入端连接;第一APD 9的输出端与第一LNA 10的输入端连接;第二APD 11的输出端与第二LNA 12的输入端连接;第一LNA 10和第二LNA 12的输出端与数据采集卡13的输入端连接;数据采集卡13的输出端与计算机14的输入端连接。
多模传感光纤的输入端与WDM 2的公共端连接,其中多模传感光纤的中间部分分别绕制有第一参考光纤环3和第二参考光纤环5,后部作为待测传感光纤7;第一参考光纤环3放置于第一恒温槽4中,第二参考光纤环5放置于第二恒温槽6中;其中,第一参考光纤环3的输出端与第二参考光纤环5的入射端连接,第二参考光纤环5的输出端与待测传感光纤7的入射端连接,待测传感光纤7的输出端连接多模光纤反射镜8。
步骤二、Stokes光色散补偿插值处理
将第一恒温槽的温度值设置为T c;将第二恒温槽的温度值设置为T 2;然后,启动光纤拉曼测温仪,脉冲激光器发出的激光脉冲经WDM入射到第一参考光纤环、第二参考光纤环、待测传感光纤和多模反射镜;激光脉冲在多模传感光纤中传播时发生自发拉曼散射,由此使得多模传感光纤的各个位置均产生的Stokes光和anti-Stokes光。
其中,Stokes光依次经WDM、第一APD、第一LNA入射到数据采集卡,数据采集卡对Stokes光进行模数转换,由此得到Stokes光的光强曲线。
anti-Stokes光依次经WDM、第二APD、第二LNA入射到数据采集卡,数据采集卡对anti-Stokes光进行模数转换,由此得到anti-Stokes光的光强曲线。
数据采集卡和计算机检测出第一参考光纤环和第二参考光纤环的Stokes光和anti-Stokes光的位置信息,利用Stokes光和anti-Stokes光在光纤中的传播速度对Stokes光的位置进行插值处理;由此使得多模传感光纤的同一位置产生的Stokes光和anti-Stokes光到达数据采集卡的时间相同。
插值处理的具体步骤如下:
数据采集卡检测的第一参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s1和L a1,第二参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s2和L a2,并令
Figure PCTCN2019000086-appb-000010
其中,φ s(L)表示多模传感光纤的某一位置产生的Stokes光的光强值;L表示该位置与多模传感光纤的前端之间的距离。
步骤三、后向Stokes光和anti-Stokes光的信号处理
数据采集卡和计算机对采集得到后向Stokes光和anti-Stokes光的光强数据进行数据处理;
数据采集卡得到anti-Stokes光和Stokes光的后向散射光强曲线,其光强比值可表示为:
Figure PCTCN2019000086-appb-000011
式中,K s和K a为与光纤散射端截面有关的系数,V s和V a为斯托克斯光和反斯托克斯光的频率,F T为APD的光电转换因子,h、K分别为普朗克常数和 玻尔兹曼常数,Δv为光纤的拉曼频移量为13.2THz,α s、α a分别为入Stokes光和anti-Stokes光在光纤中单位长度下的衰减系数;T表示待测传感光纤位置l的温度值;l表示该位置与多模传感光纤的前端之间的距离;
其中,第一参考光纤环位置的anti-Stokes光和Stokes光后向散射光强比值可表示为:
Figure PCTCN2019000086-appb-000012
式中,T c表示第一参考光纤环位置l c的温度值;l c表示该位置与多模传感光纤的前端之间的距离;
公式(1)和(2)的比值为:
Figure PCTCN2019000086-appb-000013
步骤四、前向Stokes光和anti-Stokes光的信号处理
接着在光纤中产生的前向Stokes光和anti-Stokes光被多模反射镜反射后经WDM分别再次到达第一APD、第一LNA和第二APD、第二LNA也进行光电转换和放大,进入高速采集卡和计算机后得到anti-Stokes光和Stokes光的前向散射光强曲线,其光强比值可表示为:
Figure PCTCN2019000086-appb-000014
式中,R a和R s为多模反射镜对anti-Stokes光和Stokes光的反射率,L为整个多模传感光纤的长度;
其中,第一参考光纤环位置的anti-Stokes光和Stokes光前向散射光强比值可表示为:
Figure PCTCN2019000086-appb-000015
公式(4)和(5)的比值为:
Figure PCTCN2019000086-appb-000016
步骤五、面向光纤拉曼传感***的自校准温度解调方法
光纤拉曼测温仪根据传感光纤的前向和后向Stokes光和anti-Stokes光的光强数据解调沿光纤分布的温度数据。
将公式(3)和(6)化解后得
Figure PCTCN2019000086-appb-000017
化解公式(7)可得具体的光纤沿线温度解调公式,公式如下:
Figure PCTCN2019000086-appb-000018
具体实施时,所述脉冲激光器的波长为1550nm、脉宽为10ns、重复频率为8KHz。所述WDM的工作波长为1550nm/1450nm/1663nm。所述APD的带宽为100MHz、光谱响应范围为900~1700nm。所述LNA的带宽为100MHz。所述数据采集卡的通道数为4、采样率为100M/s、带宽为100MHz。所述多模传感光纤为普通多模光纤。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照本发明实施例进行了详细的说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明的技术方案的精神和范围,均应涵盖本发明的权利要求保护范围中。

Claims (3)

  1. 一种面向光纤拉曼温度传感***的自校准检测装置,其特征在于:包括光纤拉曼测温仪、恒温槽、多模传感光纤和多模反射镜;
    所述光纤拉曼测温仪包括脉冲激光器、WDM、2个APD、2个LNA、数据采集卡、计算机;其中,脉冲激光器(1)的输出端与WDM(2)的输入端连接;WDM(2)的2个输出端分别与第一APD(9)和第二APD(11)的输入端连接;第一APD(9)的输出端与第一LNA(10)的输入端连接;第二APD(11)的输出端与第二LNA(12)的输入端连接;第一LNA(10)和第二LNA(12)的输出端与数据采集卡(13)的输入端连接;数据采集卡(13)的输出端与计算机(14)的输入端连接;
    多模传感光纤的输入端与WDM(2)的公共端连接,其中多模传感光纤的中间部分分别绕制有第一参考光纤环(3)和第二参考光纤环(5),后部作为待测传感光纤(7);第一参考光纤环(3)放置于第一恒温槽(4)中,第二参考光纤环(5)放置于第二恒温槽(6)中;其中,待测传感光纤(7)的输出端连接多模光纤反射镜(8)。
  2. 一种面向光纤拉曼温度传感***的温度解调方法,其特征在于:包括如下步骤:
    步骤一:搭建权利要求1所述的面向光纤拉曼传感***的自校准温度检测装置;
    步骤二:Stokes光色散补偿插值处理
    将第一恒温槽的温度值设置为T c;将第二恒温槽的温度值设置为T 2;然后,启动光纤拉曼测温仪,脉冲激光器发出的激光脉冲经WDM入射到第一参考光纤环、第二参考光纤环、待测传感光纤和多模反射镜;激光脉冲在多模传感光 纤中传播时发生自发拉曼散射,由此使得多模传感光纤的各个位置均产生的Stokes光和anti-Stokes光;其中在光纤中产生的后向Stokes光和anti-Stokes光经WDM首先分别到达第一APD、第一LNA和第二APD、第二LNA进行光电转换和放大,最后进入高速采集卡和计算机进行数据采集得到光纤沿线的Stokes光和anti-Stokes光的位置和光强信息;
    根据第一参考光纤环和第二参考光纤环的Stokes光和anti-Stokes光的光强曲线中的位置,对光纤沿线全部的Stokes光进行插值处理,由此使得多模传感光纤的同一位置产生的Stokes光和anti-Stokes光到达数据采集卡的时间相同;
    插值处理的具体步骤如下:
    采集卡检测的第一参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s1和L a1,第二参考光纤环位置处的Stokes光和anti-Stokes光的位置为L s2和L a2,并令
    Figure PCTCN2019000086-appb-100001
    其中,φ s(L)表示多模传感光纤的某一位置产生的Stokes光的光强值;L表示该位置与多模传感光纤的前端之间的距离;
    步骤三:后向Stokes光和anti-Stokes光的信号处理
    采集卡得到anti-Stokes光和Stokes光的后向散射光强曲线,其光强比值表示为:
    Figure PCTCN2019000086-appb-100002
    式中,K s和K a为与光纤散射端截面有关的系数,V s和V a为斯托克斯光和反斯托克斯光的频率,F T为APD的光电转换因子,h、K分别为普朗克常数和玻尔兹曼常数,Δv为光纤的拉曼频移量为13.2THz,α s、α a分别为入Stokes光和anti-Stokes光在光纤中单位长度下的衰减系数;T表示待测传感光纤位置l 的温度值;l表示该位置与多模传感光纤的前端之间的距离;
    其中,第一参考光纤环位置的anti-Stokes光和Stokes光后向散射光强比值表示为:
    Figure PCTCN2019000086-appb-100003
    式中,T c表示第一参考光纤环位置l c的温度值;l c表示该位置与多模传感光纤的前端之间的距离;
    公式(1)和(2)的比值为:
    Figure PCTCN2019000086-appb-100004
    步骤四、前向Stokes光和anti-Stokes光的信号处理
    接着在光纤中产生的前向Stokes光和anti-Stokes光被多模反射镜反射后经WDM分别再次到达第一APD、第一LNA和第二APD、第二LNA也进行光电转换和放大,进入高速采集卡和计算机后得到anti-Stokes光和Stokes光的前向散射光强曲线,其光强比值表示为:
    Figure PCTCN2019000086-appb-100005
    式中,R a和R s为多模反射镜对anti-Stokes光和Stokes光的反射率,L为整个多模传感光纤的长度;
    其中,第一参考光纤环位置的anti-Stokes光和Stokes光前向散射光强比值表示为:
    Figure PCTCN2019000086-appb-100006
    公式(4)和(5)的比值为:
    Figure PCTCN2019000086-appb-100007
    步骤五、面向光纤拉曼传感***的自校准温度解调方法
    将公式(3)和(6)化解后得
    Figure PCTCN2019000086-appb-100008
    化解公式(7)可得具体的光纤沿线温度解调公式,公式如下:
    Figure PCTCN2019000086-appb-100009
  3. 根据权利要求1所述的面向光纤拉曼温度传感***的自校准检测装置的温度解调方法,其特征在于:所述脉冲激光器的波长为1550nm、脉宽为10ns、重复频率为8KHz;所述WDM的工作波长为1550nm/1450nm/1663nm;所述APD的带宽为100MHz、光谱响应范围为900~1700nm;所述LNA的带宽为100MHz;所述数据采集卡的通道数为4、采样率为100M/s、带宽为100MHz;所述多模传感光纤为普通多模光纤。
PCT/CN2019/000086 2018-07-09 2019-05-05 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法 WO2020010824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/252,992 US11927491B2 (en) 2018-07-09 2019-05-05 Self-calibration detection device and temperature demodulation method oriented to fiber Raman temperature sensing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810747173.8 2018-07-09
CN201810747173.8A CN108458814B (zh) 2018-07-09 2018-07-09 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法

Publications (1)

Publication Number Publication Date
WO2020010824A1 true WO2020010824A1 (zh) 2020-01-16

Family

ID=63216373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000086 WO2020010824A1 (zh) 2018-07-09 2019-05-05 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法

Country Status (3)

Country Link
US (1) US11927491B2 (zh)
CN (1) CN108458814B (zh)
WO (1) WO2020010824A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896136A (zh) * 2020-06-29 2020-11-06 太原理工大学 厘米量级空间分辨率的双参量分布式光纤传感装置及方法
CN115664524A (zh) * 2022-10-25 2023-01-31 中国电子科技集团公司第三十八研究所 一种基于分布式拉曼测温的稳相射频光传输方法及***
RU2796913C1 (ru) * 2022-11-23 2023-05-29 Акционерное общество "Геоптикс" Способ автоматической калибровки волоконного измерителя распределённой температуры
US11927491B2 (en) 2018-07-09 2024-03-12 Taiyuan University Of Technology Self-calibration detection device and temperature demodulation method oriented to fiber Raman temperature sensing system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196118A (zh) * 2019-06-19 2019-09-03 陕西煤业化工技术研究院有限责任公司 一种动态温度定标自校准装置及方法
CN110887579A (zh) * 2019-11-08 2020-03-17 华中科技大学 一种基于分布式光纤拉曼测温***的动态温度解调方法
CN111006787B (zh) * 2019-11-22 2020-12-29 太原理工大学 基于差分温度补偿的分布式光纤拉曼双端温度解调方法
CN111638025B (zh) * 2020-05-19 2022-02-25 太原理工大学 面向隧道渗漏水监测的分布式光纤拉曼传感装置及方法
CN113566859B (zh) * 2021-06-24 2024-04-12 太原理工大学 可实现超长传感距离的拉曼分布式光纤传感装置
CN113654683B (zh) * 2021-08-16 2023-12-05 许昌许继软件技术有限公司 一种分布式光纤测温***校准方法及装置
CN115585910B (zh) * 2022-09-21 2023-07-14 桐乡泰爱斯环保能源有限公司 一种面向分布式光纤测温***的温度校准***的校准方法
CN115876351B (zh) * 2022-11-30 2023-09-15 无锡布里渊电子科技有限公司 基于拉曼光频域与光时域技术的光纤传感扫描雷达***
CN116907677B (zh) * 2023-09-15 2023-11-21 山东省科学院激光研究所 用于混凝土结构的分布式光纤温度传感***及其测量方法
CN117848540A (zh) * 2023-12-26 2024-04-09 深圳大学 分布式光纤温度传感的自校准恒温装置及解调方法和***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819073A (zh) * 2010-05-11 2010-09-01 中国计量学院 采用序列脉冲编码解码的分布式光纤拉曼温度传感器
CN103217232A (zh) * 2013-03-27 2013-07-24 深圳供电局有限公司 一种探测光缆衰减参数的自动校准方法及装置
CN103364107A (zh) * 2013-07-31 2013-10-23 北京航空航天大学 一种衰减自补偿的光纤拉曼电缆温度监测与报警***
CN104344913A (zh) * 2014-10-09 2015-02-11 国家电网公司 一种基于光纤光栅传感的温度测量***及方法
CN105043586A (zh) * 2015-05-28 2015-11-11 华中科技大学 一种基于少模光纤的拉曼分布式测温***和测温方法
EP2944933A1 (en) * 2014-05-13 2015-11-18 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
CN106404217A (zh) * 2016-11-17 2017-02-15 太原理工大学 一种基于分布式光纤拉曼测温的新型温度解调方法
CN107843357A (zh) * 2017-11-02 2018-03-27 太原理工大学 基于拉曼散射的分布式光纤温度及应变检测方法
CN108458814A (zh) * 2018-07-09 2018-08-28 太原理工大学 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2350587A2 (en) * 2008-09-27 2011-08-03 Sensortran, Inc. Auto-correcting or self-calibrating dts temperature sensing sytems and methods
CN101852657A (zh) * 2010-06-08 2010-10-06 浙江大学 一种增强型光纤拉曼分布式传感方法及传感设备
CN201909810U (zh) * 2010-11-29 2011-07-27 浙江工业大学 电子式电流互感器光纤温度补偿器
KR101489279B1 (ko) * 2013-06-27 2015-02-04 주식회사 라이콤 자기 자동이득제어 분산형 라만증폭기의 자동이득제어방법
CN203298900U (zh) * 2013-07-01 2013-11-20 杭州欧忆光电科技有限公司 一种可现场自动温度校准的分布式光纤温度传感***
US10119868B2 (en) * 2014-09-17 2018-11-06 Halliburton Energy Services, Inc. High speed distributed temperature sensing with auto correction
CN105806508B (zh) * 2014-12-31 2018-09-04 深圳先进技术研究院 一种自校准光纤温度传感***
CN104596670B (zh) * 2015-02-05 2017-07-11 吉林大学 一种解决分布式光纤拉曼温度传感***温度漂移的方法
CN106323500B (zh) * 2015-07-08 2019-11-19 中国电力科学研究院 一种实现温度自校准的光纤拉曼测温***及其校准方法
CN106813805B (zh) * 2017-02-22 2019-05-17 太原理工大学 面向拉曼测温仪的智能温度预警方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819073A (zh) * 2010-05-11 2010-09-01 中国计量学院 采用序列脉冲编码解码的分布式光纤拉曼温度传感器
CN103217232A (zh) * 2013-03-27 2013-07-24 深圳供电局有限公司 一种探测光缆衰减参数的自动校准方法及装置
CN103364107A (zh) * 2013-07-31 2013-10-23 北京航空航天大学 一种衰减自补偿的光纤拉曼电缆温度监测与报警***
EP2944933A1 (en) * 2014-05-13 2015-11-18 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
CN104344913A (zh) * 2014-10-09 2015-02-11 国家电网公司 一种基于光纤光栅传感的温度测量***及方法
CN105043586A (zh) * 2015-05-28 2015-11-11 华中科技大学 一种基于少模光纤的拉曼分布式测温***和测温方法
CN106404217A (zh) * 2016-11-17 2017-02-15 太原理工大学 一种基于分布式光纤拉曼测温的新型温度解调方法
CN107843357A (zh) * 2017-11-02 2018-03-27 太原理工大学 基于拉曼散射的分布式光纤温度及应变检测方法
CN108458814A (zh) * 2018-07-09 2018-08-28 太原理工大学 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927491B2 (en) 2018-07-09 2024-03-12 Taiyuan University Of Technology Self-calibration detection device and temperature demodulation method oriented to fiber Raman temperature sensing system
CN111896136A (zh) * 2020-06-29 2020-11-06 太原理工大学 厘米量级空间分辨率的双参量分布式光纤传感装置及方法
CN115664524A (zh) * 2022-10-25 2023-01-31 中国电子科技集团公司第三十八研究所 一种基于分布式拉曼测温的稳相射频光传输方法及***
RU2796913C1 (ru) * 2022-11-23 2023-05-29 Акционерное общество "Геоптикс" Способ автоматической калибровки волоконного измерителя распределённой температуры

Also Published As

Publication number Publication date
US11927491B2 (en) 2024-03-12
US20210116311A1 (en) 2021-04-22
CN108458814B (zh) 2019-10-08
CN108458814A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2020010824A1 (zh) 面向光纤拉曼温度传感***的自校准检测装置及温度解调方法
WO2020034558A1 (zh) 一种面向分布式光纤拉曼传感器的高精度温度解调方法
CN109029769A (zh) 基于分布式光纤拉曼传感技术的高精度温度解调方法
CN106404217B (zh) 一种基于分布式光纤拉曼测温的温度解调方法
US8785859B2 (en) Distributed optical fiber sensor based on Raman and Brillouin scattering
CN107843357B (zh) 基于拉曼散射的分布式光纤温度及应变检测方法
CN101943615B (zh) 基于拉曼光反射的测温方法
CN105953941A (zh) 一种基于拉曼散射的分布式光纤测温方法及装置
CN104596670A (zh) 一种解决分布式光纤拉曼温度传感***温度漂移的方法
CN110307920B (zh) 基于噪声调制的光纤温度、应力传感***及测量方法
CN104864979A (zh) 一种分布式拉曼光纤测温***测量误差的修正方法
CN102680137B (zh) 一种可级联分布式光纤拉曼测温***
CN109029770B (zh) 基于环路解调的分布式光纤拉曼温度及应变解调方法
CN111006786A (zh) 基于分布式光纤拉曼传感***的双路高精度温度解调方法
CN105115621A (zh) 一种双端注入环形结构的拉曼传感测温***及方法
CN111307324B (zh) 一种在拉曼分布式光纤测温***中补偿apd温漂的方法
RU2458325C1 (ru) Способ измерения температурного распределения и устройство для его осуществления
CN114674463A (zh) 一种分布式光纤温度传感校准单元、传感装置及检测方法
CN111006787B (zh) 基于差分温度补偿的分布式光纤拉曼双端温度解调方法
CN107727122B (zh) 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN108692830A (zh) 一种分布式光纤测温***
CN112880865B (zh) 超长距离的高空间分辨率拉曼光纤双参量传感***和方法
CN112697303B (zh) 面向智能电网的分布式光纤传感***和检测方法
CN202631153U (zh) 带有自动补偿功能的单端口分布式光纤温度传感器
CN208420210U (zh) 一种分布式光纤测温***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833498

Country of ref document: EP

Kind code of ref document: A1