WO2020010735A1 - 一种发射与接收共用网络的调谐装置及方法 - Google Patents

一种发射与接收共用网络的调谐装置及方法 Download PDF

Info

Publication number
WO2020010735A1
WO2020010735A1 PCT/CN2018/110008 CN2018110008W WO2020010735A1 WO 2020010735 A1 WO2020010735 A1 WO 2020010735A1 CN 2018110008 W CN2018110008 W CN 2018110008W WO 2020010735 A1 WO2020010735 A1 WO 2020010735A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting
receiving
capacitor array
side capacitor
balun
Prior art date
Application number
PCT/CN2018/110008
Other languages
English (en)
French (fr)
Inventor
何思远
杨寒冰
李文冠
薛广平
胡胜发
Original Assignee
安凯(广州)微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安凯(广州)微电子技术有限公司 filed Critical 安凯(广州)微电子技术有限公司
Publication of WO2020010735A1 publication Critical patent/WO2020010735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a tuning device and method for transmitting and receiving a shared network.
  • the transceiver In TDD terminal equipment, the transceiver is integrated in the same chip, and the uplink and downlink work at the same frequency. The sharing of the circuit simplifies it. Driven by the requirements of small size, low power consumption, excellent performance, and high integration, the SOC is on-chip. The birth of a system solution.
  • the switch is a high voltage MOS tube, which is generally set on the transmitting side, and the receiving side is not at all.
  • the size of the MOS tube on the receiving and transmitting sides is different, and the access method is usually different (access from the gate or drain of the MOS tube). Then, at the same frequency, the impedance seen by the receiving port and the impedance seen by the transmitting port are different. If only a set of capacitor arrays are difficult to take into account the performance of the transmission and reception at the same time to achieve the best.
  • an object of the present invention is to provide a tuning device and method for transmitting and receiving a shared network.
  • a tuning device for a transmitting and receiving shared network includes a balun, a receiving-side capacitor array, a transmitting-side capacitor array, a receiving radio-frequency front-end circuit, and a transmitting radio-frequency front-end circuit.
  • the balun is connected to the input circuit of the receiving-side capacitor array.
  • the balun is connected to an input terminal of a transmitting-side capacitor array, an output terminal of the receiving-side capacitor array is connected to an input terminal of a receiving radio-frequency front-end circuit, and an input terminal of the transmitting-side capacitor array is output to a transmitting radio-frequency front-end circuit. ⁇ ⁇ End connection.
  • the balun is composed of a single-ended inductor and a differential inductive coupling.
  • the receiving-side capacitor array includes multiple parallel receiving-side capacitor branches, and each of the receiving-side capacitor branches includes a receiving-side capacitor and a receiving-side capacitor.
  • the transmitting-side capacitor array includes multiple parallel transmitting-side capacitor branches, and each of the transmitting-side capacitor branches includes a transmitting-side capacitor and a transmitting-side capacitor.
  • the MOS tube is connected to the emitter of the MOS tube on the transmitting side.
  • a tuning method using the tuning device comprising a transmitting step and a receiving step
  • the transmitting step includes:
  • the modulated transmission signal is resonated through a resonant network composed of a transmitting radio frequency front-end circuit, a transmitting side capacitor array, and a balun differential inductor, and finally the balun differential inductor is converted to a single-ended inductor to transmit and output;
  • the receiving step includes:
  • the received RF signal is converted into a differential signal by a balun's single-ended inductor to differential inductor;
  • the differential signal is resonated through the resonant network formed by the balun's differential inductor and the receiving side capacitor array, and finally the demodulation process is completed by the receiving radio frequency front-end circuit.
  • a transmitting and receiving shared network tuning device and method are independently controlled by placing a receiving-side capacitor array and a transmitting-side capacitor array on the receiving and transmitting ends, respectively, so that when receiving and transmitting work separately in TDD mode, the input and output matching can be adjusted.
  • Capacitive array adjustment enables optimal performance in each mode, avoiding a compromise in performance between the transmit and receive paths caused by only one set of capacitor arrays, and effectively improves the quality of the received and transmitted signals.
  • FIG. 1 is a schematic block diagram of a tuning device for a transmitting and receiving shared network according to the present invention
  • FIG. 2 is a circuit schematic diagram of a balun in a tuning device for a transmitting and receiving shared network according to the present invention
  • FIG. 3 is a schematic diagram of the equivalent capacitance in a tuning device for a transmitting and receiving shared network according to the present invention
  • FIG. 4 is a schematic diagram of the principle of parasitic capacitance of the transmitting and receiving collinear lines in a tuning device for a transmitting and receiving shared network according to the present invention
  • FIG. 5 is a schematic diagram of the capacitance of a transmitting-side capacitor array seen in a tuning device of a transmitting and receiving shared network according to the present invention
  • FIG. 6 is a schematic diagram of the capacitance of a receiving-side capacitor array in a tuning device of a transmitting and receiving shared network according to the present invention
  • FIG. 7 is a schematic diagram of a transmitting-side capacitor array in a tuning device for a transmitting and receiving shared network according to the present invention.
  • FIG. 8 is a schematic diagram of a receiving-side capacitor array in a tuning device for a transmitting and receiving shared network according to the present invention.
  • a tuning device for a transmitting and receiving shared network includes a balun, a receiving-side capacitor array, a transmitting-side capacitor array, a receiving radio-frequency front-end circuit, and a transmitting radio-frequency front-end circuit.
  • the input circuit of the transmitting side capacitor array is connected to the input terminal of the transmitting side capacitor array
  • the output terminal of the receiving side capacitor array is connected to the input terminal of the receiving radio frequency front-end circuit
  • the input terminal of the transmitting side capacitor array is connected to The output end of the transmitting RF front-end circuit is connected.
  • the balun is composed of a single-ended inductor and a differential inductive coupling.
  • the balun is an unbalanced to balanced circuit, which can be equivalent to a single-ended inductor coupled with a differential inductor. Its single end is directly connected to the single-ended pin of the chip, and the differential end is connected to the chip. Its value constitutes the inductance of the resonant frequency. Sense value.
  • the receiving-side capacitor array includes a plurality of receiving-side capacitor branches connected in parallel, and each of the receiving-side capacitor branches includes a receiving-side capacitor and a receiving-side MOS tube, and the receiving-side capacitor and the receiving-side capacitor The emitter of the MOS tube is connected.
  • the transmitting-side capacitor array includes multiple transmitting-side capacitor branches connected in parallel, each of the transmitting-side capacitor branches includes a transmitting-side capacitor and a transmitting-side MOS tube, and the transmitting-side capacitor and the transmitting-side capacitor The emitter of the MOS tube is connected.
  • an LC (inductance-capacitance) resonance network is used. Its resonance frequency is
  • the inductance value is the inductance value of the passive component, and the capacitance value is determined by the equivalent capacitance value of all nodes connected in parallel with the inductor.
  • the equivalent capacitor includes a fixed capacitor and a variable capacitor.
  • the fixed capacitor includes the parasitic capacitance on the transmitting and receiving common line as shown in Fig. 4, and the capacitance seen from the port of the MOS tube by the transmitting or receiving circuit as shown in Fig. 5 and Fig. 6.
  • the variable capacitance can be obtained by The capacitance of the receiving-side capacitor array or the transmitting-side capacitor array is adjusted as shown in FIGS. 7 and 8. Therefore, the frequency of the entire resonant network can be adjusted by the capacitor array.
  • the intensity of the maximum power output from the transmitting end is about several dBm, and it needs a high power supply voltage, which is usually greater than 2V, to realize the power.
  • the receiving end receives a low-intensity input signal, and usually uses a low power supply voltage of about 1V powered by. This has led to the use of different supply voltages for the capacitor arrays at their respective ports. Therefore, only thick-grid high-voltage devices or thin-grid low-voltage devices can be selected and controlled in their respective capacitor arrays.
  • the capacitor array is equivalent to a multi-level adjustable capacitor connected in parallel through a MOS switch to control the branch. Specifically, as shown in FIG.
  • Ctrl ⁇ n: 0] can control the gates of n + 1 MOS transistors to control whether the branch is conductive or not, thereby determining the number of on-capacitance, so that the change is achieved.
  • Figure 8 shows the transmitting-side capacitor array, which is powered by a high-voltage power supply, so it is controlled by a thick-grid high-voltage device.
  • a tuning method using the tuning device of the present invention includes a transmitting step and a receiving step;
  • the transmitting step includes:
  • the modulated transmission signal is resonated through a resonant network composed of a transmitting radio frequency front-end circuit, a transmitting side capacitor array, and a balun differential inductor, and finally the balun differential inductor is converted to a single-ended inductor to transmit and output;
  • the receiving step includes:
  • the received RF signal is converted into a differential signal by a balun's single-ended inductor to differential inductor;
  • the differential signal is resonated through the resonant network formed by the balun's differential inductor and the receiving side capacitor array, and finally the demodulation process is completed by the receiving radio frequency front-end circuit.
  • the present invention independently controls the receiving-side capacitor array and the transmitting-side capacitor array at the receiving and transmitting ends, so that when receiving and transmitting work separately in TDD mode, the input and output matching can be adjusted through the capacitor array so that The performance in the mode is optimal, which avoids the performance compromise of the transmission and reception paths caused by only one set of capacitor arrays, and effectively improves the quality of the received and transmitted signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本发明公开了一种发射与接收共用网络的调谐装置及方法,装置包括巴伦、接收边电容阵列、发射边电容阵列、接收射频前端电路和发射射频前端电路,所述巴伦与接收边电容阵列的输入电路相连接,所述巴伦与发射边电容阵列的输入端相连接,所述接收边电容阵列的输出端与接收射频前端电路的输入端连接,所述发射边电容阵列的输入端与发射射频前端电路的输出端连接。本发明通过接收边电容阵列和发射边电容阵列分别置于接收和发射端独立控制,从而在TDD模式下输入输出匹配可通过电容阵列调节使得在各自模式下性能最优,避免了只有一组电容阵列所导致的发射与接收通路在性能上的折中,有效提高接收和发送的信号质量。本发明可广泛应用于通信技术领域。

Description

一种发射与接收共用网络的调谐装置及方法 技术领域
本发明涉及通信技术领域,尤其涉及一种发射与接收共用网络的调谐装置及方法。
背景技术
在TDD终端设备中,收发机集成于同一芯片中,上下行工作于同一频率,电路的共用使之简单化,受到体积小、功耗低、性能优、集成度高等要求的驱动下使得SOC片上***方案的诞生。
目前,在TDD模式芯片发射与接收共有输入输出网络中,只有一组电容阵列,因为要考虑发射电路应用的高电源电压,其开关选择高压MOS管,一般设置于发射边,而接收边的则并没有。接收与发射边的MOS管的尺寸不同,通常接入方式不同(从MOS管的栅极或漏极接入)。那么,在同一频率下接收端口所看进去的阻抗和发射端口看进去的阻抗不同,如果仅靠一组电容阵列很难兼顾发射与接收的性能同时达到最优。
发明内容
为了解决上述技术问题,本发明的目的是提供一种发射与接收共用网络的调谐装置及方法。
本发明所采取的技术方案是:
一种发射与接收共用网络的调谐装置,包括巴伦、接收边电容阵列、发射边电容阵列、接收射频前端电路和发射射频前端电路,所述巴伦与接收边电容阵列的输入电路相连接,所述巴伦与发射边电容阵列的输入端相连接,所述接 收边电容阵列的输出端与接收射频前端电路的输入端连接,所述发射边电容阵列的输入端与发射射频前端电路的输出端连接。
作为所述的一种发射与接收共用网络的调谐装置的进一步改进,所述巴伦由单端电感和差分电感耦合构成。
作为所述的一种发射与接收共用网络的调谐装置的进一步改进,所述接收边电容阵列包括多路并联的接收边电容支路,各所述接收边电容支路包括接收边电容和接收边MOS管,所述接收边电容与接收边MOS管的发射极连接。
作为所述的一种发射与接收共用网络的调谐装置的进一步改进,所述发射边电容阵列包括多路并联的发射边电容支路,各所述发射边电容支路包括发射边电容和发射边MOS管,所述发射边电容与发射边MOS管的发射极连接。
本发明所采用的另一个技术方案是:
一种利用所述的调谐装置的调谐方法,包括发射步骤和接收步骤;
所述发射步骤包括:
关闭接收边电容阵列,
将调制过的发射信号经发射射频前端电路和发射边电容阵列及巴伦的差分电感所组成的谐振网络相谐振,最后通过巴伦的差分电感转单端电感发射输出;
所述接收步骤包括:
关闭发射边电容阵列,
接收射频信号通过巴伦的单端电感转差分电感转成差分信号;
将差分信号通过巴伦的差分电感和接收边电容阵列所组成的谐振网络相谐振,最后通过接收射频前端电路完成解调处理。
本发明的有益效果是:
本发明一种发射与接收共用网络的调谐装置及方法通过接收边电容阵列和发射边电容阵列分别置于接收和发射端独立控制,从而在TDD模式下接收和发射分别工作时,输入输出匹配可通过电容阵列调节使得在各自模式下性能最优,避免了只有一组电容阵列所导致的发射与接收通路在性能上的折中,有效提高接收和发送的信号质量。
附图说明
图1是本发明一种发射与接收共用网络的调谐装置的原理方框图;
图2是本发明一种发射与接收共用网络的调谐装置中巴伦的电路原理图;
图3是本发明一种发射与接收共用网络的调谐装置中等效电容的原理示意图;
图4是本发明一种发射与接收共用网络的调谐装置中发射与接收共线物理上的寄生电容的原理示意图;
图5是本发明一种发射与接收共用网络的调谐装置中发射边电容阵列自身看进去的电容的原理示意图;
图6是本发明一种发射与接收共用网络的调谐装置中接收边电容阵列自身看进去的电容的原理示意图;
图7是本发明一种发射与接收共用网络的调谐装置中发射边电容阵列的原理示意图;
图8是本发明一种发射与接收共用网络的调谐装置中接收边电容阵列的原理示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
参考图1,本发明一种发射与接收共用网络的调谐装置,包括巴伦、接收边电容阵列、发射边电容阵列、接收射频前端电路和发射射频前端电路,所述巴伦与接收边电容阵列的输入电路相连接,所述巴伦与发射边电容阵列的输入端相连接,所述接收边电容阵列的输出端与接收射频前端电路的输入端连接,所述发射边电容阵列的输入端与发射射频前端电路的输出端连接。
参考图2,进一步作为优选的实施方式,所述巴伦由单端电感和差分电感耦合构成。所述巴伦作为非平衡转平衡电路,可以等效成单端电感与差分电感相耦合,其单端直接接入芯片单端管脚,差分端连接芯片内部,其值构成了谐振频率的电感感值。
进一步作为优选的实施方式,所述接收边电容阵列包括多路并联的接收边电容支路,各所述接收边电容支路包括接收边电容和接收边MOS管,所述接收边电容与接收边MOS管的发射极连接。
进一步作为优选的实施方式,所述发射边电容阵列包括多路并联的发射边电容支路,各所述发射边电容支路包括发射边电容和发射边MOS管,所述发射边电容与发射边MOS管的发射极连接。
本发明实施例中,LC(电感-电容)谐振网络。其谐振频率为
Figure PCTCN2018110008-appb-000001
其由电感感值与电容容值的乘积决定。
电感感值,即为无源元件的感值,而电容容值则由所有与电感相并联节点的等效电容容值所决定。
参考图3,等效电容包括了固定电容和可变电容。其中固定电容包括了如图4所示的发射与接收共线上的寄生电容,以及如图5和图6所示的发射或接收电路从MOS管本身端口看进去的电容,可变电容可通过如图7和图8所示的接收 边电容阵列或发射边电容阵列的电容来调整。因此整个谐振网络的频率可以通过电容阵列来调整。
本实施例中,发射端输出的最大功率的强度在几个dBm左右,需要电源电压通常大于2V的高电源电压供电来实现,而接收端接收强度小的输入信号,通常采用低电源1V左右电压供电。这就导致了电容阵列在各自端口下采用不同的电源电压。所以在各自的电容阵列中只能分别采用厚栅高压器件或薄栅低压器件加以选择控制。电容阵列等效于多档可调电容并联通过MOS管开关该支路导通加以控制。具体地,如图7所示,Ctrl<n:0>可分别控制n+1路MOS管的栅极以控制该支路是否导通从而确定了导通电容的个数,这样就达到了改变电容的目的。图8为发射边电容阵列,其采用高压电源供电,故而采用厚栅高压器件控制。
本发明一种利用所述的调谐装置的调谐方法,包括发射步骤和接收步骤;
所述发射步骤包括:
关闭接收边电容阵列,
将调制过的发射信号经发射射频前端电路和发射边电容阵列及巴伦的差分电感所组成的谐振网络相谐振,最后通过巴伦的差分电感转单端电感发射输出;
所述接收步骤包括:
关闭发射边电容阵列,
接收射频信号通过巴伦的单端电感转差分电感转成差分信号;
将差分信号通过巴伦的差分电感和接收边电容阵列所组成的谐振网络相谐振,最后通过接收射频前端电路完成解调处理。
从上述内容可知,本发明通过接收边电容阵列和发射边电容阵列分别置于 接收和发射端独立控制,从而在TDD模式下接收和发射分别工作时,输入输出匹配可通过电容阵列调节使得在各自模式下性能最优,避免了只有一组电容阵列所导致的发射与接收通路在性能上的折中,有效提高接收和发送的信号质量。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

  1. 一种发射与接收共用网络的调谐装置,其特征在于:包括巴伦、接收边电容阵列、发射边电容阵列、接收射频前端电路和发射射频前端电路,所述巴伦与接收边电容阵列的输入电路相连接,所述巴伦与发射边电容阵列的输入端相连接,所述接收边电容阵列的输出端与接收射频前端电路的输入端连接,所述发射边电容阵列的输入端与发射射频前端电路的输出端连接。
  2. 根据权利要求1所述的一种发射与接收共用网络的调谐装置,其特征在于:所述巴伦由单端电感和差分电感耦合构成。
  3. 根据权利要求1所述的一种发射与接收共用网络的调谐装置,其特征在于:所述接收边电容阵列包括多路并联的接收边电容支路,各所述接收边电容支路包括接收边电容和接收边MOS管,所述接收边电容与接收边MOS管的发射极连接。
  4. 根据权利要求1所述的一种发射与接收共用网络的调谐装置,其特征在于:所述发射边电容阵列包括多路并联的发射边电容支路,各所述发射边电容支路包括发射边电容和发射边MOS管,所述发射边电容与发射边MOS管的发射极连接。
  5. 一种利用权利要求1所述的调谐装置的调谐方法,其特征在于,包括发射步骤和接收步骤;
    所述发射步骤包括:
    关闭接收边电容阵列,
    将调制过的发射信号经发射射频前端电路和发射边电容阵列及巴伦的差分电感所组成的谐振网络相谐振,最后通过巴伦的差分电感转单端电感发射输出;
    所述接收步骤包括:
    关闭发射边电容阵列,
    接收射频信号通过巴伦的单端电感转差分电感转成差分信号;
    将差分信号通过巴伦的差分电感和接收边电容阵列所组成的谐振网络相谐振,最后通过接收射频前端电路完成解调处理。
PCT/CN2018/110008 2018-07-13 2018-10-12 一种发射与接收共用网络的调谐装置及方法 WO2020010735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810770088.3 2018-07-13
CN201810770088.3A CN109120301A (zh) 2018-07-13 2018-07-13 一种发射与接收共用网络的调谐装置及方法

Publications (1)

Publication Number Publication Date
WO2020010735A1 true WO2020010735A1 (zh) 2020-01-16

Family

ID=64862783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110008 WO2020010735A1 (zh) 2018-07-13 2018-10-12 一种发射与接收共用网络的调谐装置及方法

Country Status (2)

Country Link
CN (1) CN109120301A (zh)
WO (1) WO2020010735A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572167B (zh) * 2019-09-09 2021-07-20 广州粒子微电子有限公司 射频前端发射电路、射频前端接收电路和射频前端电路
CN110995310B (zh) * 2019-12-25 2021-09-17 上海晶曦微电子科技有限公司 一种射频前端电路及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102175A1 (en) * 2002-11-27 2004-05-27 Broadcom Corporation A, California Corporation Radio frequency integrated circuit electo-static discharge circuit
CN102130703A (zh) * 2010-01-14 2011-07-20 瑞昱半导体股份有限公司 信号传收电路
CN103155431A (zh) * 2010-08-26 2013-06-12 维斯普瑞公司 可调无线电前端及方法
CN105262496A (zh) * 2014-07-14 2016-01-20 联想(北京)有限公司 一种射频收发机、电子设备及调整工作频段的方法
CN108019199A (zh) * 2016-10-31 2018-05-11 北京环鼎科技有限责任公司 一种用于阵列感应的发射电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454654B (zh) * 2013-09-11 2015-03-18 中国电子科技集团公司第五十四研究所 一种用于卫星导航射频前端的可配置的匹配网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102175A1 (en) * 2002-11-27 2004-05-27 Broadcom Corporation A, California Corporation Radio frequency integrated circuit electo-static discharge circuit
CN102130703A (zh) * 2010-01-14 2011-07-20 瑞昱半导体股份有限公司 信号传收电路
CN103155431A (zh) * 2010-08-26 2013-06-12 维斯普瑞公司 可调无线电前端及方法
CN105262496A (zh) * 2014-07-14 2016-01-20 联想(北京)有限公司 一种射频收发机、电子设备及调整工作频段的方法
CN108019199A (zh) * 2016-10-31 2018-05-11 北京环鼎科技有限责任公司 一种用于阵列感应的发射电路

Also Published As

Publication number Publication date
CN109120301A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2021253597A1 (zh) 功放输出匹配电路、射频前端模组和无线装置
CN108063627B (zh) 射频收发开关
TWI404348B (zh) 無線通訊收發機
CN107017913B (zh) 一种射频收发电路
CN103368601B (zh) 无线通信收发机前端
US11750167B2 (en) Apparatus for radio-frequency matching networks and associated methods
US8873339B2 (en) Method and apparatus for a clock and signal distribution network for a 60 GHz transmitter system
KR102557851B1 (ko) 멀티-대역 밀리미터파 5g 통신을 위한 송신 및 수신 스위치 및 브로드밴드 전력 증폭기 매칭 네트워크
WO2020010735A1 (zh) 一种发射与接收共用网络的调谐装置及方法
US20050107043A1 (en) Integration of diversity switch in combination with a T/R switch for a radio transceiver on a single chip
CN102263572B (zh) 无线通信收发机
CN103236821B (zh) 一种基于可调负阻结构的多模多通道混频器
JP4642570B2 (ja) 高周波スイッチ回路、無線機器及び信号経路切り替え器
WO2020133514A1 (zh) 一种多频段射频前端器件,多频段接收机及多频段发射机
CN104079275A (zh) 一种射频开关组件
US10511336B2 (en) Method and system for multi-band transceiver front-end architecture with reduced switch insertion loss
CN109067373A (zh) 一种射频放大器电路
CN101908881A (zh) 定向耦合器及包含该定向耦合器的射频功率放大器
CN102281081B (zh) 无线通信收发机
CN105099479A (zh) 多模智能终端接收机的射频前端电路
CN101951232A (zh) 射频功率放大器
US11522502B2 (en) Wideband radio-frequency transceiver front-end and operation method thereof
EP3772184B1 (en) A tunable matching network for a transceiver
CN106911358A (zh) 一种无线收发***
CN112653439A (zh) 一种多频带的单刀双掷开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926062

Country of ref document: EP

Kind code of ref document: A1