WO2020010636A1 - 和及差模式天线及通信产品 - Google Patents

和及差模式天线及通信产品 Download PDF

Info

Publication number
WO2020010636A1
WO2020010636A1 PCT/CN2018/095709 CN2018095709W WO2020010636A1 WO 2020010636 A1 WO2020010636 A1 WO 2020010636A1 CN 2018095709 W CN2018095709 W CN 2018095709W WO 2020010636 A1 WO2020010636 A1 WO 2020010636A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
sum
radiator
difference mode
mode antenna
Prior art date
Application number
PCT/CN2018/095709
Other languages
English (en)
French (fr)
Inventor
徐航
高式昌
周海
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112021000484-0A priority Critical patent/BR112021000484A2/pt
Priority to CN201880095427.0A priority patent/CN112385083A/zh
Priority to AU2018431916A priority patent/AU2018431916A1/en
Priority to JP2021500924A priority patent/JP2021524710A/ja
Priority to US17/259,780 priority patent/US20210184357A1/en
Priority to PCT/CN2018/095709 priority patent/WO2020010636A1/zh
Priority to EP18925759.5A priority patent/EP3817140A4/en
Priority to KR1020217004021A priority patent/KR20210028709A/ko
Publication of WO2020010636A1 publication Critical patent/WO2020010636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna technology.
  • the embodiments of the present application provide a sum and difference mode antenna, which has the advantages of compact structure and omnidirectional coverage.
  • an implementation example of the present application provides a sum-and-difference mode antenna including a first radiator, a first excitation source, a second radiator, and a second excitation source.
  • the first radiator includes a first segment and a second segment. A gap is formed between the first section and the second section.
  • the first excitation source is used to feed the first radiator, and the current flow direction in the first section and the second section is in the first direction.
  • the second radiator includes a third segment, a fourth segment, and a fifth segment.
  • the fifth segment includes a feeding end and a connection end far from the feeding end, and the third segment and the fourth segment are symmetrically distributed.
  • a second excitation source is electrically connected to the power supply end to feed the second radiator, and the current in the fifth segment flows in the second direction, so
  • the current direction in the third segment is the reverse of the first direction
  • the current direction in the fourth segment is the first direction
  • an angle is formed between the second direction and the first direction.
  • the first radiator and the second radiator are oppositely disposed on opposite sides of the insulating medium.
  • the current direction of the first and second segments of the first radiator is in the first direction to form a differential mode antenna structure.
  • the current of the third and fourth segments of the second radiator is reversed, and the fifth segment is reversed.
  • the current forms the antenna antenna structure, which can cover all directions and has the advantage of compact structure.
  • first segment and the second segment both extend in the first direction, and the first and second ends opposite to each other on the first segment and the second segment
  • the third and fourth ends opposite to each other are sequentially arranged in the first direction, and the gap is formed between the third and second ends, and the third segment and the The fourth segment extends in the first direction, and the fifth segment extends in the second direction.
  • This application feeds the first and second segments through the first excitation source, so that the currents in the first and second segments are in the same direction.
  • the first excitation source is electrically connected to the second section and directly feeds the second section, so that the current in the second section flows from the third terminal to the fourth terminal.
  • the gap between the second segment and the first segment, or other coupling methods, and electromagnetic coupling are used to further excite the first segment so that the current in the first segment flows from the first end to the second end. This ensures that The currents in the first and second segments are in the same direction.
  • the first excitation source is a coaxial line feed, wherein the inner conductor of the coaxial line is electrically connected to the second segment, the outer conductor of the coaxial line is electrically connected to the first segment and grounded, and the first segment and the first The gap between the two sections is still maintained, and an electromagnetic field is formed between the outer and inner conductors.
  • This structure feeds the first and second sections at the same time, and ensures that the currents in the first and second sections are in the same direction.
  • This application adopts the arrangement of the first and second segments extending in the same direction of the first radiator, and the current directions in the first and second segments are the same, so that the first radiator and the first excitation source constitute a differential mode antenna.
  • the current distribution determines the radiation pattern of the antenna.
  • the radiation field of the first radiator is concentrated on both sides of the first radiator.
  • the second radiator and the second excitation source constitute a mode antenna through the setting of the second radiator.
  • the current directions of the third and fourth segments extending in the first direction are opposite, the radiation fields generated by the third and fourth segments cancel each other out, and the radiation pattern of the second radiator is affected by the fifth
  • the radiation field is concentrated on both sides of the fifth segment, and the fifth segment extends along the second direction, and the second direction forms an angle with the first direction. In this way, the radiation of the differential mode antenna and the mode antenna are combined.
  • the principle makes the sum and difference mode antennas of this application have the performance of omnidirectional coverage.
  • the angle range between the first direction and the second direction can be set close to 90 degrees, or it can be in a range around 90 degrees, taking 90 degrees as an example, and assuming that the first direction is horizontal, so that the second direction It is vertical, and the radiation pattern of the sum and difference mode antenna is distributed as follows: the first radiator and the second radiator are centered, and the horizontal direction is distributed upward and downward, and the vertical direction is distributed left and right, forming Omnidirectional coverage.
  • the third segment, the fourth segment, and the fifth segment are coplanar and form a reference plane.
  • the connection end and the gap The connecting ends are oppositely disposed on two sides of the insulating medium, and the connection ends face the gap.
  • the parts of the second radiator are formed on the same plane, and the position of the connection end of the fifth segment is opposite to the gap position of the first radiator, so that the first radiator and the second radiator are insulated.
  • the two opposite sides of the dielectric are oppositely arranged, so that the antenna structure provided by the present application can be compact and occupy a small space.
  • first and second segments are also coplanar, and the planes where the first and second segments are located can be set in parallel with the reference plane.
  • first, second, and The third, fourth, and fifth segments are all in the shape of strip lines, and their shapes may be rectangular long strips.
  • the first and second paragraphs are in line, the third and fourth paragraphs are in line, and the fifth paragraph is perpendicular to the third and fourth paragraphs.
  • the dimensions of the first, second, third, fourth, and fifth paragraphs in the extension direction are their lengths, and the dimensions perpendicular to their extension directions are the widths.
  • the width of the fourth segment can be set equal to the width of the fourth segment, and the width of the fifth segment can be the same as the width of the other four segments.
  • the first, second, third, fourth, and fifth paragraphs may also be set in other shapes, such as: long strips, elongated triangles, elongated trapezoids, and wavy lines.
  • the antenna length, zigzag extension, etc. are set according to the frequency range of the antenna.
  • the first segment and the third segment are oppositely disposed on both sides of the insulating medium, and the second segment and the fourth segment
  • the first segment is opposite to the third segment
  • the second segment is opposite to the fourth segment
  • the projection of the first segment on the reference plane is opposite to the third segment.
  • the projection of the second segment on the reference plane has a coincident region with the fourth segment.
  • the first segment and the second segment are symmetrically disposed on both sides of the gap.
  • the third and fourth segments are also symmetrically arranged on both sides of the gap, and the radiators of the sum and difference mode antennas provided in the present application are symmetrically distributed as a whole. Conducive to the formation of an ideal radiation pattern.
  • the length of the first segment is greater than the length of the third segment, and the extension range of the third segment is within the projection range of the first segment on the reference plane.
  • the length of the second segment is greater than the fourth segment.
  • the length of the fourth segment extends inside the projection range of the second segment on the reference plane. That is, the vertical projection area of the first segment on the reference plane is larger than the area of the third segment.
  • the second direction is perpendicular to the first direction, that is, the extension direction of the fifth segment is perpendicular to the first direction, so that the second radiator is T-shaped, and such an architectural arrangement is conducive to and
  • the overall size of the differential mode antenna is miniaturized and has a good radiation pattern.
  • the first excitation source includes a first feeder line
  • the first feeder line includes a first outer conductor and a first inner conductor
  • one end of the first outer conductor is electrically connected to the first section.
  • the second end, and the first outer conductor extends along the second direction and is grounded
  • the first inner conductor extends from a connection between the first outer conductor and the second end, and extends To and electrically connected to the third terminal.
  • the first inner conductor spans a gap between the first segment and the second segment to be electrically connected to the third end of the second segment.
  • the sum-and-difference mode antenna provided in the present application further includes a conductive body which is insulated and isolated from the first outer conductor, and one end of the conductive body is electrically connected to the third section of the second section. Between the terminal and the first inner conductor, the conductor extends in a second direction and is grounded. The conductor is arranged to form a symmetrical structure with the first feed, to ensure the overall symmetry of the sum and difference mode antennas, and to form a better radiation pattern.
  • the conductor is made of metal, and the conductor is strip-shaped and is arranged in parallel with the first outer conductor.
  • the conductor and the first outer conductor are insulated and insulated by a gap.
  • other insulating media may be provided between the two.
  • a width of a gap formed between the conductive body and the first outer conductor is less than or equal to a vertical distance between the second end and the third end.
  • the gap width between the conductor and the first outer conductor is less than or equal to the vertical distance between the second end and the third end.
  • the distance between the conductor and the first outer conductor can be set as small as possible so that they are inside. The currents of can better cancel each other out, while ensuring that the radiation patterns of the first and second segments are concentrated on both sides of the extension direction of the first radiator.
  • the sum-and-difference mode antenna further includes a connecting piece, which is perpendicular to the reference plane and is electrically connected between the feeding end of the fifth section and the second excitation source.
  • the connection piece is provided on a substrate.
  • the substrate may be a circuit board in a communication product.
  • the connection piece may be a microstrip line provided on the circuit board.
  • the connection piece is formed on the upper surface of the substrate and the lower surface of the substrate is grounded. Layer, the second excitation source passes through the substrate from one side of the lower surface of the substrate, and is electrically connected to the connecting piece.
  • the connection sheet may be a metal wire or a metal sheet structure.
  • the second excitation source includes a second feeder
  • the second feeder includes a second outer conductor and a second inner conductor
  • the second inner conductor protrudes from one end of the second outer conductor. And is electrically connected to the connecting piece, and the second outer conductor is grounded.
  • the second outer conductor is located on one side of the lower surface of the substrate on which the connection piece is located, the second outer conductor is grounded through an electrical connection ground layer, and the second inner conductor passes through the substrate and is electrically connected to the connection piece.
  • the insulating medium is a substrate layer of a circuit board, and the first radiator and the second radiator are microstrip line structures provided on both sides of the substrate layer.
  • the insulating medium is located at an edge position of the substrate provided with the connecting piece, and is bent relative to the substrate.
  • the surface where the insulating medium is located may be perpendicular to the substrate.
  • the substrate may be a motherboard in the communication product.
  • the sum and difference mode antenna provided in the present application is disposed on the insulating medium on the edge of the motherboard, occupying the space of the frame position of the communication product.
  • the sum and difference mode antennas have the advantage of compact size, which is beneficial to the miniaturization design of communication products.
  • the present application provides a communication product including the sum and difference mode antennas and a radio frequency module, and the first excitation source and the second excitation source are electrically connected to the radio frequency module.
  • the RF module is used to process the electromagnetic wave signals of the sum and difference mode antennas.
  • Communication products can be mobile phones, notebooks, routers, base stations and other communication equipment.
  • the communication product further includes a mounting plate provided with an upper surface and a lower surface (this mounting plate may be the same element as the substrate provided with the connection piece), and the insulating medium is formed from the mounting plate.
  • the edge is bent and extended toward one side of the upper surface, the lower surface is provided with a ground layer, the mounting plate is provided with a ground portion, the ground portion extends on the upper surface and extends through the mounting plate to In the ground layer on the lower surface, the second radiator is electrically connected to the ground portion through the fifth segment to be grounded.
  • the mounting board may be a main board in a communication product, and a radio frequency module may be disposed thereon.
  • the number of the sum and difference mode antennas is N, and they are distributed on a pair of opposite sides of the mounting board to form a 2N ⁇ 2N MIMO antenna in the communication product.
  • FIG. 1 is a schematic diagram of a communication product provided with a sum and difference mode antenna provided in the present application;
  • FIG. 2 is a schematic partial perspective view of a sum and difference mode antenna according to an embodiment of the present application
  • FIG. 3 is a schematic partial perspective view of a sum-and-difference mode antenna according to an embodiment of the present application.
  • FIG. 4 is a schematic partial perspective view of a sum and difference mode antenna provided by an embodiment of the present application, excluding an insulating medium;
  • FIG. 5 is a partial perspective view of a sum and difference mode antenna provided by an embodiment of the present application, excluding an insulating medium;
  • FIG. 6 is a schematic diagram of a sum and difference mode antenna provided in a communication product according to an embodiment of the present application.
  • FIG. 7 is a partially enlarged schematic diagram of FIG. 6; FIG.
  • FIG. 8 is a cross-sectional view of a sum-and-difference mode antenna according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of applying a sum and difference mode antenna to a communication product according to an embodiment of the present application.
  • the embodiment of the present application provides a sum-and-difference mode antenna.
  • the term “and-and-difference mode” means that the antenna includes a radiator for realizing the sum mode antenna, and also includes a radiator for realizing the difference mode antenna.
  • the combination of the and mode antennas makes the mode antennas suitable for communication products and has the advantages of compact structure and omnidirectional coverage.
  • a communication product uses a mobile phone as an example.
  • the mobile phone 1000 has a higher screen requirement.
  • the large screen mobile phone 1000 has limited space for the antenna.
  • the sum and difference mode antenna 100 provided in this application can be installed on the mobile phone.
  • the narrow space between the screen 1001 and the frame 1002 can satisfy omnidirectional coverage.
  • the frame of the mobile phone 1000 includes long and short sides.
  • the sum and difference mode antenna 100 is disposed between the mobile phone screen 1001 and the long side, and the sum and difference mode antenna 100 is located near the short side. This can prevent the user from holding the position of the sum and difference mode antenna 100 when using the mobile phone, which affects the radiation performance of the sum and difference mode antenna 100.
  • Communication products can also be communication equipment such as notebooks, routers, base stations.
  • FIG. 2 and FIG. 3 are perspective views of the sum and difference mode antennas shown from different angles, respectively, and FIG. 4 and FIG. 5 are based on FIG. 2 and FIG. ,
  • the insulating medium is omitted, and only the antenna radiators are retained, so as to conveniently view the schematic diagram of the corresponding relationship between the radiators.
  • the sum and difference mode antenna 100 provided in the implementation example of the present application includes a first radiator 10, a first excitation source 20, a second radiator 30, and a second excitation source 40.
  • the first radiator 10 and the first excitation source 20 constitute a differential mode antenna
  • the second radiator 30 and the second excitation source 40 constitute a sum mode antenna.
  • the first radiator 10 includes a first segment 11 and a second segment 12.
  • the extending directions of the first segment 11 and the second segment 12 are both in a first direction L1.
  • the first and second ends 112 and 114 and the third and fourth ends 122 and 124 opposite to each other on the second section 12 are sequentially arranged in the first direction L1, and the third ends 122 and A gap is formed between the second ends 114.
  • the first excitation source 20 is used to feed the first radiator 10, and the current direction in the first section 11 and the second section 12 is in the first direction L1, as shown in FIG. 2,
  • the directions of the marked lines with arrows inside the first section 11 and the second section 12 represent the current direction.
  • the first excitation source 20 is electrically connected to the second section 12 and the third terminal 122 and directly feeds the second section 12 so that the current of the second section 12 flows from the third terminal 122 to the fourth terminal. 124.
  • the first The first segment 11 causes the current in the first segment 11 to flow from the first end 112 to the second end 114, so that the currents in the first segment 11 and the second segment 12 are in the same direction.
  • the first excitation source 20 is a coaxial line feed, wherein the inner conductor of the coaxial line is electrically connected to the second section 12 and the outer conductor of the coaxial line is electrically connected to the first section 11 and grounded.
  • Section 11 and the second section 12 still maintain a gap setting, and an electromagnetic field is formed between the outer conductor and the inner conductor.
  • the second radiator 30 includes a third segment 31 and a fourth segment 32 each extending in a first direction L1 and a fifth segment 33 extending in a second direction L2. An angle is formed between the second direction L2 and the first direction L1.
  • the fifth segment 33 includes a feeding end 331 and a connection end 332 far from the feeding end 331.
  • the third segment 31 and the fourth segment 32 are symmetrically distributed and are electrically connected to two ends of the connection end 332. side.
  • a second excitation source 40 is electrically connected to the feeding terminal 331 to feed the second radiator 30.
  • the current in the fifth section 33 flows in the second direction L2, and from the feeding terminal 331 flows to the connection end 332.
  • the current flow direction in the third section 31 is the reverse of the first direction L1, and the fourth section
  • the current direction in 32 is in the first direction L1, and the direction of the line with an arrow inside the third section 31 and the fourth section 32 in FIG. 3 represents the current direction.
  • the first radiator 10 and the second radiator 30 are oppositely disposed on opposite sides of the insulating medium 50.
  • the insulating medium 50 may be a substrate of a circuit board, and the first radiator 10 and the second radiator 30 are formed on both sides of the front and back sides by a circuit board printing process.
  • the thickness of the insulating medium 50 is 2 mm or less.
  • the thickness refers to a dimension in a direction in which the surfaces of the first radiator 10 and the second radiator 30 are disposed perpendicular to the insulating medium.
  • the height of the insulating medium 50 is 5 mm or less, and the height described herein refers to a dimension extending in the second direction L2. It can be seen that the insulating medium 50 can be in the shape of an elongated strip, and is placed in the space between the mobile phone display and the frame.
  • the present application adopts the arrangement of the first section 11 and the second section 12 extending in the same direction of the first radiator 10 (that is, extending along the first direction L1), and the current directions in the first section 11 and the second section 12 are the same. So that the first radiator 10 and the first excitation source 20 constitute a differential mode antenna, and the current distribution determines the radiation pattern of the antenna.
  • the radiation field of the first radiator 10 is concentrated on the first radiator 10 and is perpendicular to the first direction L1.
  • the second radiator 30 and the second excitation 40 source constitute a mode antenna
  • the third section 31 extending in the first direction L1 and The current direction of the fourth segment 32 is opposite, and the radiation fields generated by the third segment 31 and the fourth segment 32 cancel each other.
  • the radiation pattern of the second radiator 30 is affected by the fifth segment 33, and the radiation field is concentrated in the fifth segment 33.
  • the fifth section 33 extends along the second direction L2, and the second direction L2 and the first direction L1 form an angle, so that the radiation of the differential mode antenna and the mode antenna are combined
  • the principle makes the sum and difference mode antenna 100 of this application have the performance of omnidirectional coverage.
  • the angle range between the first direction L1 and the second direction L2 can be set to be equal to or close to 90 degrees, or it can be within a range near 90 degrees, taking 90 degrees as an example, and assuming that the first direction L1 is horizontal , So that the second direction L2 is vertical, so that the radiation pattern of the sum-and-difference mode antenna of this application is distributed as follows: the first radiator and the second radiator are centered, and the horizontal direction is up, down, and vertical. Are distributed on the left and right, forming omnidirectional coverage.
  • the third section 31, the fourth section 32, and the fifth section 33 are coplanar, and form a reference plane S (that is, the arrow S in FIG. 3 points to (The plane is the reference plane), and in a direction perpendicular to the reference plane S, the connection end 332 faces the gap between the first section 11 and the second section 12.
  • each part of the second radiator 30 is formed on the same plane, and the position of the connection end 332 of the fifth section 33 is opposite to the gap position of the first radiator 10 to realize the first radiator 10 and
  • the second radiator 30 is oppositely disposed on two opposite sides of the insulating medium 50, which can ensure that the antenna provided by the present application has a compact structure and takes up a small space.
  • the first radiator 10 is also formed on a plane, that is, the first section 11 and the second section 12 are also coplanar, and the plane where the first section 11 and the second section 12 are located may be disposed in parallel with the reference plane S.
  • the first section 11, the second section 12, the third section 31, the fourth section 32, and the fifth section 33 are all strip lines, and their shapes may be strips.
  • the first section 11 and the second section 12 are in line, the third section 31 and the fourth section 32 are in line, and the fifth section 33 is perpendicular to the third section 31 and the fourth section 32.
  • the dimensions of the first paragraph 11, the second paragraph 12, the third paragraph 31, the fourth paragraph 32, and the fifth paragraph 33 are the lengths thereof, and the dimensions perpendicular to their extension directions are the widths.
  • the width of the second segment 12, the third segment 31, and the fourth segment 32 can be set to be equal, and the width of the fifth segment 33 can be greater than the width of the other four segments.
  • the width of the fifth segment 33 can be the same as the width of the other four segments.
  • the first section 11, the second section 12, the third section 31, the fourth section 32, and the fifth section 33 may also be set in other shapes, such as: a strip shape, an elongated triangle, and an elongated trapezoid.
  • this application does not limit the shape of the segments on the first radiator 10 and the second radiator 30, as long as the direction of the current in them is within the first segment 11 and the second segment 12
  • the current direction is the first direction L1
  • the current direction in the third section 31 is the reverse of the first direction
  • the current direction in the fourth section 32 is the first direction L1
  • the current direction in the fifth section 33 is the second direction.
  • the first segment 11 in combination with FIG. 3 and FIG. 4 and FIG. 5, in a direction perpendicular to the reference plane S, the first segment 11 is directly opposite the third segment 31 and the second segment 12 is directly opposite the fourth segment 32, the projection of the first segment 11 on the reference plane and the third segment 31 have coincident regions, and the projection of the second segment 12 on the reference plane S and the fourth segment 32 have coincident regions.
  • the first section 11 and the second section 12 are symmetrically disposed on both sides of the gap.
  • the third section 31 and the fourth section 32 are also symmetrically disposed on both sides of the gap.
  • the structure of the radiators of the sum and difference mode antennas provided in the present application is symmetrically distributed as a whole, which is beneficial to forming an ideal radiation pattern.
  • the length of the first segment 11 is greater than the length of the third segment 31.
  • the extension range of the third segment 31 is located inside the projection range of the first segment 11 on the reference plane.
  • the length of the second segment 12 is longer than that of the fourth segment 32.
  • the extension range of the fourth segment 32 is located inside the projection range of the second segment 12 on the reference plane. That is, the vertical projection area of the first segment 11 on the reference plane is larger than the area of the third segment 31, and the vertical projection area of the second segment 12 on the reference plane is larger than the area of the fourth segment 32.
  • the second direction L2 is perpendicular to the first direction L1, that is, the extending direction of the fifth section 33 is perpendicular to the first direction L1, so that the second radiator 30 is T-shaped, such a structure
  • the arrangement facilitates the miniaturization design of the overall size of the sum and difference mode antenna 100, and has a better radiation pattern.
  • the first excitation source 20 includes a first feed line 21, the first feed line 21 is a radio frequency coaxial line, and the first feed line 21 includes a first outer conductor 212.
  • a first inner conductor 214 one end of the first outer conductor 212 is electrically connected to the second end 114 of the first section 11, and the first outer conductor 212 extends along the second direction L2 and Grounded, the first inner conductor 214 extends from the connection between the first outer conductor 212 and the second end 114, and extends to and is electrically connected to the third end 122.
  • the first inner conductor 214 crosses a gap between the first section 11 and the second section 12 to be electrically connected to the third end 122 of the second section 12.
  • the sum-and-difference mode antenna provided in the present application further includes a conductive body 60 which is insulated from the first outer conductor 212 and is configured to be formed with the first outer conductor 212 of the first feeder 21.
  • a conductive body 60 which is insulated from the first outer conductor 212 and is configured to be formed with the first outer conductor 212 of the first feeder 21.
  • the current in the conductor 60 and the current in the first outer conductor 212 flow in opposite directions.
  • One end of the conductive body 60 is electrically connected between the third end 122 of the second section 12 and the first inner conductor 214.
  • the conductive body 60 extends along the second direction L2 and is grounded.
  • the conductor 60 is made of a metal material, and the conductor 60 is in a strip shape and is arranged in parallel with the first outer conductor 212. As shown in FIGS. 2 and 4, a gap 61 is passed between the conductor 60 and the first outer conductor 212. Insulation isolation. Of course, other insulation media can also be set between the two to ensure that they will not contact.
  • a width of the gap 61 formed between the conductive body 60 and the first outer conductor 212 is less than or equal to a vertical distance between the second end 114 and the third end 122. The width of the gap 61 is less than or equal to the vertical distance between the second end 114 and the third end 122.
  • the distance between the conductor 60 and the first outer conductor 212 can be set as small as possible.
  • the current flows in the first outer conductor 212 are opposite. In this way, the currents inside them can better cancel each other out, while ensuring that the radiation patterns of the first section 11 and the second section 12 are concentrated in two directions in which the first radiator 10 extends. side.
  • the sum-and-difference mode antenna further includes a connecting piece 70 that is perpendicular to the reference plane and is electrically connected to the power feeding end 331 of the fifth section 33 and the second section 33. Between excitation sources 40.
  • connection sheet 70 is disposed on the substrate 101.
  • the substrate 101 may be a circuit board in a communication product, and the connection sheet 70 may be a microstrip line provided on the circuit board.
  • 70 is formed on the upper surface of the substrate 101.
  • the lower surface of the substrate 101 is a ground layer 102, and the second excitation source 40 passes through the substrate 101 from one side of the lower surface of the substrate 101 and is electrically connected to Connection piece 70.
  • a ground portion 80 is further provided on the upper surface of the substrate 101, and the ground portion 80 extends on the upper surface and extends through the substrate 101 to the ground layer 102 on the lower surface.
  • the second radiator 30 is electrically connected to the ground portion 80 through the fifth section 33 to be grounded.
  • the grounding portion 80 is a metal structure symmetrically distributed on both sides of the connecting piece 70. In one embodiment, the grounding portion 80 and the connecting piece 70 form a cross-shaped structure.
  • the second excitation source 40 includes a second feeder 41
  • the second feeder 41 includes a second outer conductor 412 and a second inner conductor 414
  • the second inner conductor 414 It protrudes from one end of the second outer conductor 412, passes through the substrate 101, and is electrically connected to the connecting piece 70.
  • a through hole is provided in the substrate 101 for the second inner conductor 414 to pass through the substrate 101 .
  • the second outer conductor 412 is grounded.
  • the second outer conductor 412 is located on one side of the lower surface of the substrate 101 where the connection piece is located, and the second outer conductor 412 is grounded through the electrical connection ground layer 102.
  • the insulating medium 50 is a base material layer of a circuit board, and the materials of the insulating medium 50 and the substrate 101 may be the same.
  • the first radiator 10 and the second radiator 30 are microstrip line structures disposed on both sides of the insulating medium 50.
  • the insulating medium 50 is located at an edge position of the substrate 101 provided with the connecting piece 70 and is bent relative to the substrate 101.
  • the surface where the insulating medium 50 is located may be perpendicular to the substrate 101.
  • the substrate 101 may be a main board in a communication product.
  • the sum and difference mode antenna provided in the present application is disposed on an insulating medium on the edge of the main board, occupying the space of the frame position of the communication product.
  • the sum and difference mode antennas have the advantage of compact size, which is beneficial to the miniaturization design of communication products.
  • the sum and difference mode antenna provided by one embodiment of the present application is applied to a mobile phone, and its reflection coefficient is below -10dB and the coupling coefficient is below -20dB.
  • a range of reflection coefficient and coupling coefficient is acceptable. , That is, the sum and difference mode antennas can maintain good radiation performance.
  • the first radiator 10 and the first excitation source 20 constitute a differential mode antenna, and the current of the differential mode antenna is concentrated on the first radiator 10 extending in the first direction L1.
  • the second radiator 30 and the second excitation 40 source constitute a mode antenna, and the current of the mode antenna is concentrated on the fifth section 33 of the second radiator 30 extending in the second direction L2.
  • the radiation patterns of the difference antenna and the mode antenna are complementary in space, that is, the direction with the largest radiation value of the mode antenna is the mode radiation.
  • the direction with the smallest value can achieve omnidirectional coverage of the electromagnetic wave signal.
  • the communication product provided in this application includes the sum and difference mode antennas and a radio frequency module, and the first excitation source and the second excitation source are electrically connected to the radio frequency module.
  • the communication product further includes a mounting plate provided with an upper surface and a lower surface (this mounting plate may be the same component as the aforementioned substrate 101 provided with the connecting piece 70, or the mounting plate is a bracket carrying the substrate 101 ),
  • the insulating medium 50 is bent and extended from an edge of the mounting plate toward one side of the upper surface, the lower surface is provided with a ground layer, the mounting plate is provided with a ground portion 80, and the ground portion 80 is The upper surface extends through the mounting plate to the ground layer of the lower surface, and the second radiator 30 is electrically connected to the ground portion 80 through the fifth section 33 to ground.
  • the grounding portion 80 is a metal structure symmetrically distributed on both sides of the connecting piece 70. In one embodiment, the grounding portion 80 and the connecting piece 70 form a cross-shaped structure.
  • the number of the sum and difference mode antennas is N, and they are distributed on a pair of opposite sides of the mounting board to form 2N ⁇ in the communication product.
  • 2N MIMO antenna The number of the sum and difference mode antennas in FIG. 9 is four, and an 8 ⁇ 8 MIMO antenna is formed in the communication product.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请涉及一种和及差模式天线,包括第一、第二辐射体及第一、第二激励源,第一辐射体包括第一段和第二段,第一段和第二段之间形成间隙,第一激励源用于为第一辐射体馈电,使得第一段和第二段内的电流流向均在第一方向上。第二辐射体包括第三段、第四段及第五段。第三段和第四段对称分布在第五段的连接端两侧,第二激励源电连接第五段的馈电端,为第二辐射体馈电,使得第五段内的电流流向在第二方向,及第三段内的电流方向为第一方向的反向,第四段内的电流方向为第一方向,第一方向和第二方向之间形成夹角。第一辐射体和第二辐射体设置在绝缘介质相背的两面。本申请具有结构紧凑且天线信号全向覆盖的优势。

Description

和及差模式天线及通信产品 技术领域
本申请涉及通信技术领域,特别涉及一种天线技术。
背景技术
随着移动通信技术的发展,通信产品趋向小尺寸多功能的设置,其内部空间有限。以手机为例,随着屏幕越来越大,给天线的空间也就随之减少。然而,小体积的天线的辐射方向图难于实现全向覆盖。因此对结构紧凑且全向覆盖的天线有更紧迫的需求。
发明内容
本申请实施例提供一种和及差模式天线,具有结构紧凑且全向覆盖的优势。
一方面,本申请实施例子提供一种和及差模式天线,包括第一辐射体、第一激励源、第二辐射体和第二激励源,第一辐射体包括第一段和第二段,所述第一段和所述第二段之间形成间隙。第一激励源用于为所述第一辐射体馈电,所述第一段和所述第二段内的电流流向均在第一方向上。第二辐射体包括的第三段、第四段及第五段,所述第五段包括馈电端和远离所述馈电端的连接端,所述第三段和所述第四段对称分布且电连接在所述连接端的两侧;第二激励源电连接至所述馈电端,为所述第二辐射体馈电,所述第五段内的电流流向在第二方向上,所述第三段内的电流流向为所述第一方向的反向,所述第四段内的电流流向为所述第一方向,所述第二方向和所述第一方向之间形成夹角;所述第一辐射体和所述第二辐射体相对设置在绝缘介质的相背的两面。
本申请通过第一辐射体的第一段和第二段的电流流向均在第一方向上,形成差模天线架构,第二辐射体的第三段和第四段电流反向,第五段电流在第二方向上,形成和模天线架构,能够全向覆盖,具有结构紧凑的优势。
一种实施方式中,所述第一段和所述第二段均在所述第一方向上延伸,所述第一段上的相对设置的第一端和第二端及所述第二段上的相对设置的第三端和第四端在所述第一方向上依次排布,且所述第三端和所述第二端之间形成所述间隙,所述第三段和所述第四段均在所述第一方向上延伸,所述第五段在所述第二方向上延伸。
本申请通过第一激励源为第一段和第二段馈电,使得第一段和第二段内的电流同向。一种实施方式中,第一激励源为电连接至第二段,直接为第二段馈电,使得第二段的电流从第三端流向第四端。同时,通过第二段和第一段之间的间隙,或者其它的耦合方式,通过电磁耦合,进一步激励第一段,使得第一段的电流从第一端流向第二端,这样,保证了第一段和第二段内的电流同向。另一种实施方式中,第一激励源为同轴线馈电,其中同轴线的内导体电连接第二段,同轴线的外导体电连接第一段且接地,第一段和第二段之间仍然保持间隙设置,外导体和内导体之间形成电磁场,通过这样的架构同时为第一段和第二段馈电,且保证第一段和第二段的电流同向。
本申请通过第一辐射体同向延伸的第一段和第二段的设置,且第一段和第二段内的电流方向相同,使得第一辐射体和第一激励源构成差模天线,其电流分布决定了天线的辐射 方向图,第一辐射体辐射场集中在第一辐射体的两侧;同时,通过第二辐射体的设置,第二辐射体和第二激励源构成和模天线,第二辐射体中,沿第一方向延伸的第三段和第四段的电流方向相反,第三段和第四段产生的辐射场相互抵消,第二辐射体的辐射方向图受第五段影响,其辐射场集中在第五段的两侧,第五段是沿第二方向延伸的,且第二方向和第一方向形成夹角,这样,结合差模天线与和模天线的辐射原理,就使得本申请的和及差模式天线具有全方向覆盖的性能。
第一方向和第二方向之间的夹角范围可以接近90度设置,也可以在90度附近的某个范围内,以90度为例,且假设第一方向为水平方向,这样第二方向为竖直方向,和及差模式天线的辐射方向图分布为:以第一辐射体和第二辐射体为中心,在水平方向的上、下,竖直方向的左、右均有分布,形成全方向覆盖。
一种实施方式中,所述第三段、所述第四段和所述第五段共面,且形成参考面,在垂直于所述参考面的方向上,所述连接端和所述间隙相对设置在所述绝缘介质的两侧,所述连接端正对所述间隙。本实施方式中,第二辐射体的各部分形成在同一平面上,且通过第五段的连接端的位置与第一辐射体的间隙位置正对,实现第一辐射体和第二辐射体在绝缘介质相背的两面相对设置,这样可以保证本申请提供的天线结构紧凑,所占空间小。
具体而言,第一段和第二段亦共面,第一段和第二段所在的平面与所述参考面可以平行设置,一种具体实施方式中,第一段、第二段、第三段、第四段和第五段均呈带状线形状,它们的形状可以为矩形长条状。第一段和第二段共线,第三段和第四段共线,第五段垂直于第三段和第四段。第一段、第二段、第三段、第四段和第五段的延伸方向的尺寸为其长度,垂直于它们的延伸方向的尺寸为宽度,第一段、第二段、第三段和第四段的宽度可以设置为相等,第五段的宽度可以大于其它四段的宽度,当然第五段的宽度也可以与其它四段宽度相同。其它实施方式中,第一段、第二段、第三段、第四段和第五段也可以设置为其它形状,例如:长条形、细长的三角形、细长的梯形、呈波浪线状延伸、呈锯齿状延伸等,具体依据天线的频率范围需求来设置它们的电长度。
一种实施方式中,在垂直于所述参考面的方向上,所述第一段和所述第三段相对设置在所述绝缘介质的两侧,所述第二段和所述第四段相对设置在所述绝缘介质的两侧,所述第一段正对所述第三段,所述第二段正对所述第四段,第一段在参考面上的投影与第三段具有重合区域,第二段在参考面上的投影与第四段具有重合区域。
具体而言,所述第一段和所述第二段对称设置在所述间隙的两侧。第三段和第四段亦对称设置在间隙的两侧,本申请提供的和及差模式天线的辐射体整体呈对称分布的结构。有利于形成理想的辐射方向图。
一种具体的实施方式中,第一段的长度大于第三段的长度,第三段的延伸范围在第一段在参考面上的投影范围内,同样,第二段的长度大于第四段的长度,第四段的延伸范围位于第二段在参考面上的投影范围的内部。即,所述第一段在所述参考面上的垂直投影面积大于所述第三段的面积。
一种实施方式中,所述第二方向垂直于所述第一方向,也就是第五段的延伸方向垂直于第一方向,这样第二辐射体呈T形,这样的架构布置有利于和及差模式天线整体尺寸的小型化设计,且具较好的辐射方向图。
一种实施方式中,所述第一激励源包括第一馈线,所述第一馈线包括第一外导体和第一内导体,所述第一外导体的一端电连接所述第一段的所述第二端,且所述第一外导体沿着所述第二方向延伸且接地,所述第一内导体从所述第一外导体与所述第二端连接处延伸而出,并延伸至且电连接至所述第三端。具体而言,第一内导体跨越第一段和第二段之间的间隙,以与第二段的第三端电连接。
一种实施方式中,本申请提供的和及差模式天线还包括与所述第一外导体绝缘隔离设置的导电体,所述导电体的一端电连接在所述第二段的所述第三端和所述第一内导体之间,所述导电体沿第二方向延伸且接地。导电体的设置是为了与第一馈电形成对称的结构,以保证和及差模式天线的整体对称,形成较好的辐射方向图。
具体而言,导电体为金属材质,导电体呈条状且与第一外导体平行设置,导电体和第一外导体之间通过缝隙绝缘隔离,当然二者之间也可以设置其它绝缘介质,以确保它们之间不会接触。一种实施方式中,所述导电体和所述第一外导体之间形成的缝隙的宽度小于等于所述第二端和所述第三端之间的垂直距离。导电体和第一外导体之间缝隙宽度小于等于第二端和第三端之间垂直距离的设置,可以尽量满足导电体和第一外导体之间的距离设置的足够小,以使它们内部的电流可以更好地相互抵消,同时保证第一段和第二段的辐射方向图集中在第一辐射体延伸方向的两侧。
一种实施方式中,所述和及差模式天线还包括连接片,所述连接片垂直于所述参考面且电连接在所述第五段的馈电端和所述第二激励源之间。具体而言,连接片设置在基板上,基板可以为通信产品内的电路板,连接片可以为设置在电路板上的微带线,连接片形成在基板的上表面,基板的下表面为接地层,第二激励源从基板下表面的一侧穿过基板,并电连接至连接片。其它实施方式中,连接片也可以为金属导线或金属片的结构。
一种实施方式中,所述第二激励源包括第二馈线,所述第二馈线包括第二外导体和第二内导体,所述第二内导体自所述第二外导体的一端伸出且电连接至所述连接片,所述第二外导体接地。具体而言,第二外导***于连接片所在基板的下表面的一侧,第二外导体通过电连接接地层接地,第二内导体穿过基板,并电连接至连接片。
一种实施方式中,所述绝缘介质为电路板的基材层,所述第一辐射体和所述第二辐射体为设置在所述基材层正反两面的微带线结构。具体而言,绝缘介质位于设有连接片的基板的边缘位置,且相对基板弯折,绝缘介质所在的面可以与基板垂直。具体应用在通信产品内时,基板可以为通信产品内的主板,这样本申请提供的和及差模式天线设置在主板边缘的绝缘介质上,占用通信产品边框位置的空间,而且,本申请提供的和及差模式天线具有体积紧凑优势,有利于通信产品的小型化设计。
另一方面,本申请提供一种通信产品,包括所述的和及差模式天线及射频模块,所述第一激励源和所述第二激励源电连接至所述射频模块。射频模块用于处理和及差模式天线的电磁波信号。通信产品可以为手机、笔记本、路由器、基站等通信设备。
一种实施方式中,所述通信产品还包括设有上表面和下表面的安装板(此安装板与前述设置连接片的基板可以为相同的元件),所述绝缘介质自所述安装板的边缘朝向所述上表面的一侧弯折延伸,所述下表面设有接地层,所述安装板设接地部,所述接地部在所述上表面延伸且穿过所述安装板延伸至所述下表面的所述接地层,所述第二辐射体通过所述 第五段电连接至所述接地部接地。安装板可以为通信产品内的主板,射频模块可以设置在其上。
一种实施方式中,所述和及差模式天线的数量为N个,且分布在所述安装板一对相对设置的侧边,以在所述通信产品内形成2N×2N的MIMO天线。
附图说明
图1是本申请提供的设有和及差模式天线的通信产品的示意图;
图2是本申请一种实施方式提供的和及差模式天线的部分立体示意图;
图3是本申请一种实施方式提供的和及差模式天线的部分立体示意图;
图4是本申请一种实施方式提供的和及差模式天线的部分立体示意图,不包括绝缘介质;
图5是本申请一种实施方式提供的和及差模式天线的部分立体示意图,不包括绝缘介质;
图6本申请一种实施方式提供的和及差模式天线应用在通信产品内的示意图;
图7是图6的部分放大示意图;
图8是本申请一种实施方式提供的和及差模式天线的剖面图;
图9是本申请一种实施方式提供的和及差模式天线应用在通信产品中的示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
本申请实施例提供一种和及差模式天线,“和及差模式”指的是天线中即包括用于实现和模天线的辐射体,也包括实现差模天线的辐射体,通过和模天线和差模天线的结合,使得和及差模式天线应用在通信产品中,具有结构紧凑且全向覆盖的优势。如图1所示,通信产品以手机为例,手机1000屏占比要求越来越高,大屏幕的手机1000留给天线的空间有限,本申请提供的和及差模式天线100可以设置在手机屏幕1001和边框1002之间的狭窄空间内,且能够满足全向覆盖。具体而言,手机1000的边框包括长边和短边,一种实施方式中,和及差模式天线100设置在手机屏幕1001和长边之间,且和及差模式天线100靠近短边的位置设置,这样可以避免使用者在使用手机的时候,手握在和及差模式天线100的位置,影响和及差模式天线100的辐射性能。通信产品还可以为笔记本、路由器、基站等通信设备。
请参阅图2、图3及图4和图5,图2和图3为分别从不同的角度展示的和及差模式天线的立体图,图4和图5为在图2和图3的基础上,省略了绝缘介质,只保留天线辐射体,以方便查看各辐射体对应关系的示意图。
本申请实施例子提供的和及差模式天线100包括第一辐射体10、第一激励源20、第二辐射体30和第二激励源40。第一辐射体10和第一激励源20构成差模天线,第二辐射体30和第二激励源40构成和模天线。
如图2所示,第一辐射体10包括第一段11和第二段12,第一段11和第二段12的延伸方向均为第一方向L1,所述第一段11上的相对设置的第一端112和第二端114及所述第二段12上的相对设置的第三端122和第四端124在第一方向L1上依次排布,且所述第 三端122和所述第二端114之间形成间隙。第一激励源20用于为所述第一辐射体10馈电,所述第一段11和所述第二段12内的电流流向在所述第一方向L1上,如图2所示,第一段11和第二段12内部带有箭头的标示线的方向代表电流方向。一种实施方式中,第一激励源20为电连接至第二段12和第三端122,直接为第二段12馈电,使得第二段12的电流从第三端122流向第四端124。同时,通过第二段12和第一段11之间的间隙(即所述第三端122和所述第二端114之间形成间隙),或者其它的耦合方式,通过电磁耦合,进一步激励第一段11,使得第一段11的电流从第一端112流向第二端114,这样,保证了第一段11和第二段12内的电流同向。另一种实施方式中,第一激励源20为同轴线馈电,其中同轴线的内导体电连接第二段12,同轴线的外导体电连接第一段11且接地,第一段11和第二段12之间仍然保持间隙设置,外导体和内导体之间形成电磁场,通过这样的架构同时为第一段11和第二段12馈电,且保证第一段11和第二段12的电流同向。
如图3所示,第二辐射体30包括延伸方向均为第一方向L1的第三段31、第四段32,及延伸方向为第二方向L2的第五段33。所述第二方向L2和所述第一方向L1之间形成夹角。所述第五段33包括馈电端331和远离所述馈电端331的连接端332,所述第三段31和所述第四段32对称分布且电连接在所述连接端332的两侧。第二激励源40电连接至所述馈电端331,为所述第二辐射体30馈电,所述第五段33内的电流流向在所述第二方向L2上,且从馈电端331流向连接端332,图3中第五段33内部带有箭头的标示线的方向代表电流方向,所述第三段31内的电流流向为第一方向L1的反向,所述第四段32内的电流流向在所述第一方向L1上,图3中第三段31和第四段32内部带有箭头的标示线的方向代表电流方向。
如图2和图3所示,所述第一辐射体10和所述第二辐射体30相对设置在绝缘介质50的相背的两面。绝缘介质50可以为电路板基材,将第一辐射体10和第二辐射体30通过电路板印刷工艺形成在其正反两面,一种实施方式中,绝缘介质50的厚度为2mm或更小,这里所述的厚度指的是垂直于绝缘介质设置第一辐射体10和第二辐射体30表面的方向上的尺寸。绝缘介质50的高度为5mm或更小,这里所述的高度指的是第二方向L2上延伸的尺寸。可见,绝缘介质50可以呈细长条状,放置在手机显示屏和边框之间的空隙处。
本申请通过第一辐射体10的同向延伸(即沿着第一方向L1延伸)的第一段11和第二段12的设置,且第一段11和第二段12内的电流方向相同,使得第一辐射体10和第一激励源20构成差模天线,其电流分布决定了天线的辐射方向图,第一辐射体10辐射场集中在第一辐射体10上垂直于第一方向L1的两侧;同时,通过第二辐射体30的设置,第二辐射体30和第二激励40源构成和模天线,第二辐射体30中,沿第一方向L1延伸的第三段31和第四段32的电流方向相反,第三段31和第四段32产生的辐射场相互抵消,第二辐射体30的辐射方向图受第五段33影响,其辐射场集中在第五段33上垂直于第二方向L2的两侧,第五段33是沿第二方向L2延伸的,且第二方向L2和第一方向L1形成夹角,这样,结合差模天线与和模天线的辐射原理,就使得本申请的和及差模式天线100具有全方向覆盖的性能。
第一方向L1和第二方向L2之间的夹角范围可以等于或者接近90度设置,也可以在90度附近的某个范围内,以90度为例,且假设第一方向L1为水平方向,这样第二方向L2 为竖直方向,这样本申请和及差模式天线的辐射方向图分布为:以第一辐射体和第二辐射体为中心,在水平方向的上、下,竖直方向的左、右均有分布,形成全方向覆盖。
如图3所示,一种实施方式中,所述第三段31、所述第四段32和所述第五段33共面,且形成参考面S(即图3中标号S箭头所指向的面为参考面),在垂直于所述参考面S的方向上,所述连接端332正对第一段11和第二段12之间的间隙。本实施方式中,第二辐射体30的各部分形成在同一平面上,且通过第五段33的连接端332的位置与第一辐射体10的间隙位置正对,实现第一辐射体10和第二辐射体30在绝缘介质50相背的两面相对设置,这样可以保证本申请提供的天线结构紧凑,所占空间小。
第一辐射体10也形成在一个平面上,即第一段11和第二段12亦共面,第一段11和第二段12所在的平面与所述参考面S可以平行设置。一种具体实施方式中,第一段11、第二段12、第三段31、第四段32和第五段33均呈带状线,它们的形状可以为条状。第一段11和第二段12共线,第三段31和第四段32共线,第五段33垂直于第三段31和第四段32。第一段11、第二段12、第三段31、第四段32和第五段33的延伸方向的尺寸为其长度,垂直于它们的延伸方向的尺寸为宽度,第一段11、第二段12、第三段31和第四段32的宽度可以设置为相等,第五段33的宽度可以大于其它四段的宽度,当然第五段33的宽度也可以与其它四段宽度相同。其它实施方式中,第一段11、第二段12、第三段31、第四段32和第五段33也可以设置为其它形状,例如:条形、细长的三角形、细长的梯形、呈波浪线状延伸、呈锯齿状延伸等,满足各段的延伸趋势(即总的延伸趋势为:如前所述的第一方向延伸或第二方向延伸),具体依据天线的频率范围需求来设置它们的电长度,本申请不对第一辐射体10和第二辐射体30上的各段的形状做限定,只要能保证它们里面的电流方向为第一段11和第二段12内的电流方向为第一方向L1,第三段31内的电流方向为第一方向的反向,第四段32内的电流方向为第一方向L1,第五段33内的电流方向为第二方向,即可满足本申请实现全向覆盖的目的。
一种实施方式中,结合图3及图4和图5所示,在垂直于所述参考面S的方向上,所述第一段11正对所述第三段31,所述第二段12正对所述第四段32,第一段11在参考面上的投影与第三段31具有重合区域,第二段12在参考面S上的投影与第四段32具有重合区域。
具体而言,所述第一段11和所述第二段12对称设置在所述间隙的两侧。第三段31和第四段32亦对称设置在间隙的两侧,本申请提供的和及差模式天线的辐射体整体呈对称分布的结构,有利于形成理想的辐射方向图。
第一段11的长度大于第三段31的长度,第三段31的延伸范围位于第一段11在参考面上的投影范围的内部,同样,第二段12的长度大于第四段32的长度,第四段32的延伸范围位于第二段12在参考面上的投影范围的内部。即,所述第一段11在所述参考面上的垂直投影面积大于所述第三段31的面积,第二段12在参考面上的垂直投影面积大于第四段32的面积。
一种实施方式中,所述第二方向L2垂直于所述第一方向L1,也就是第五段33的延伸方向垂直于第一方向L1,这样第二辐射体30呈T形,这样的架构布置有利于和及差模式天线100整体尺寸的小型化设计,且具较好的辐射方向图。
一种实施方式中,如图2和图4所示,所述第一激励源20包括第一馈线21,第一馈线21为射频同轴线,所述第一馈线21包括第一外导体212和第一内导体214,所述第一外导体212的一端电连接所述第一段11的所述第二端114,且所述第一外导体212沿着所述第二方向L2延伸且接地,所述第一内导体214从所述第一外导体212与所述第二端114连接处延伸而出,并延伸至且电连接至所述第三端122。具体而言,第一内导体214跨越第一段11和第二段12之间的间隙,以与第二段12的第三端122电连接。
一种实施方式中,本申请提供的和及差模式天线还包括与所述第一外导体212绝缘隔离设置的导电体60,导电体60用于与第一馈线21的第一外导体212形成对称结构,导电体60内的电流和第一外导体212内的电流流向相反。所述导电体60的一端电连接在所述第二段12的所述第三端122和所述第一内导体214之间,所述导电体60沿第二方向L2延伸且接地。
具体而言,导电体60为金属材质,导电体60呈条状且与第一外导体212平行设置,如图2和图4所示,导电体60和第一外导体212之间通过缝隙61绝缘隔离,当然二者之间也可以设置其它绝缘介质,以确保它们之间不会接触。一种实施方式中,所述导电体60和所述第一外导体212之间形成的缝隙61的宽度小于等于所述第二端114和所述第三端122之间的垂直距离。缝隙61宽度小于等于第二端114和第三端122之间垂直距离的设置,可以尽量满足导电体60和第一外导体212之间的距离设置的足够小,由于导电体60内的电流和第一外导体212内的电流流向相反,这样,它们内部的电流可以更好地相互抵消,同时保证第一段11和第二段12的辐射方向图集中在第一辐射体10延伸方向的两侧。
一种实施方式中,所述和及差模式天线还包括连接片70,所述连接片70垂直于所述参考面且电连接在所述第五段33的馈电端331和所述第二激励源40之间。
如图3和图8所示,具体而言,连接片70设置在基板101上,基板101可以为通信产品内的电路板,连接片70可以为设置在电路板上的微带线,连接片70形成在基板101的上表面,如图6和图7所示,基板101的下表面为接地层102,第二激励源40从基板101下表面的一侧穿过基板101,并电连接至连接片70。如图3和图5所示,基板101上表面还设接地部80,所述接地部80在所述上表面延伸且穿过所述基板101延伸至所述下表面的所述接地层102,所述第二辐射体30通过所述第五段33电连接至所述接地部80接地。接地部80为对称分布在连接片70两侧的金属结构,一种实施方式中,接地部80和连接片70构成十字形结构。
同时参阅图8,一种实施方式中,所述第二激励源40包括第二馈线41,所述第二馈线41包括第二外导体412和第二内导体414,所述第二内导体414自所述第二外导体412的一端伸出、且穿过基板101,并电连接至所述连接片70,具体而言,基板101上设通孔,供第二内导体414穿过基板101。所述第二外导体412接地。具体而言,第二外导体412位于连接片所在基板101的下表面的一侧,第二外导体412通过电连接接地层102接地。
一种实施方式中,所述绝缘介质50为电路板的基材层,绝缘介质50与基板101的材质可以为相同的。所述第一辐射体10和所述第二辐射体30为设置在所述绝缘介质50正反两面的微带线结构。具体而言,绝缘介质50位于设有连接片70的基板101的边缘位置,且相对基板101弯折,绝缘介质50所在的面可以与基板101垂直。具体应用在通信产品内 时,基板101可以为通信产品内的主板,这样本申请提供的和及差模式天线设置在主板边缘的绝缘介质上,占用通信产品边框位置的空间,而且,本申请提供的和及差模式天线具有体积紧凑优势,有利于通信产品的小型化设计。
本申请一种实施方式提供的和及差模式天线应用在手机中,其反射系数在-10dB以下,耦合系数在-20dB以下,对于手机而言,这样的反射系数和耦合系数范围是可以被接受的,也就是说,和及差模式天线可以保持良好的辐射性能。
本申请提供的和及差模式天线,第一辐射体10和第一激励源20构成差模天线,差模天线的电流集中在第一方向L1延伸的第一辐射体10上。第二辐射体30和第二激励40源构成和模天线,和模天线的电流集中在第二方向L2延伸的第二辐射体30的第五段33上。假设第一方向L1为水平方向,第二方向L2为垂直方向,可以看到差和天线与和模天线的辐射方向图在空间上互补,即和模天线辐射值最大的方向是差模天线辐射值最小的方向,可以实现电磁波信号的全向覆盖。
本申请提供的通信产品包括所述和及差模式天线及射频模块,所述第一激励源和所述第二激励源电连接至所述射频模块。
一种实施方式中,所述通信产品还包括设有上表面和下表面的安装板(此安装板与前述设置连接片70的基板101可以为相同的元件,或者安装板为承载基板101的支架),所述绝缘介质50自所述安装板的边缘朝向所述上表面的一侧弯折延伸,所述下表面设有接地层,所述安装板设接地部80,所述接地部80在所述上表面延伸且穿过所述安装板延伸至所述下表面的所述接地层,所述第二辐射体30通过所述第五段33电连接至所述接地部80接地。接地部80为对称分布在连接片70两侧的金属结构,一种实施方式中,接地部80和连接片70构成十字形结构。
如图9所示,一种实施方式中,所述和及差模式天线的数量为N个,且分布在所述安装板一对相对设置的侧边,以在所述通信产品内形成2N×2N的MIMO天线。图9中和及差模式天线数量为4个,在通信产品内形成8×8的MIMO天线。
以上对本申请实施例所提供的一种和及差模式天线进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种和及差模式天线,其特征在于,包括:
    第一辐射体,包括第一段和第二段,所述第一段和所述第二段之间形成间隙;
    第一激励源,用于为所述第一辐射体馈电,所述第一段和所述第二段内的电流流向均在第一方向上;
    第二辐射体,包括的第三段、第四段及第五段,所述第五段包括馈电端和远离所述馈电端的连接端,所述第三段和所述第四段对称分布且电连接在所述连接端的两侧;
    第二激励源,电连接至所述馈电端,为所述第二辐射体馈电,所述第五段内的电流流向在第二方向上,所述第三段内的电流流向为所述第一方向的反向,所述第四段内的电流流向为所述第一方向,所述第二方向和所述第一方向之间形成夹角;
    所述第一辐射体和所述第二辐射体相对设置在绝缘介质的相背的两面。
  2. 如权利要求1所述的和及差模式天线,其特征在于,所述第一段和所述第二段均在所述第一方向上延伸,所述第一段上的相对设置的第一端和第二端及所述第二段上的相对设置的第三端和第四端在所述第一方向上依次排布,且所述第三端和所述第二端之间形成所述间隙,所述第三段和所述第四段均在所述第一方向上延伸,所述第五段在所述第二方向上延伸。
  3. 如权利要求2所述的和及差模式天线,其特征在于,所述第三段、所述第四段和所述第五段共面,且形成参考面,在垂直于所述参考面的方向上,所述连接端和所述间隙相对设置在所述绝缘介质的两侧。
  4. 如权利要求3所述的和及差模式天线,其特征在于,在垂直于所述参考面的方向上,所述间隙正对所述连接端。
  5. 如权利要求3所述的和及差模式天线,其特征在于,在垂直于所述参考面的方向上,所述第一段和所述第三段相对设置在所述绝缘介质的两侧,所述第二段和所述第四段相对设置在所述绝缘介质的两侧。
  6. 如权利要求3至5任一项所述的和及差模式天线,其特征在于,所述第一段和所述第二段对称设置在所述间隙的两侧。
  7. 如权利要求3-6任一项所述的和及差模式天线,其特征在于,所述第一段在所述参考面上的垂直投影面积大于所述第三段的面积。
  8. 如权利要求1-7任一项所述的和及差模式天线,其特征在于,所述第二方向垂直于所述第一方向。
  9. 如权利要求2-6任一项所述的和及差模式天线,其特征在于,所述第一激励源包括第一馈线,所述第一馈线包括第一外导体和第一内导体,所述第一外导体的一端电连接所述第一段的所述第二端,且所述第一外导体沿着所述第二方向延伸且接地,所述第一内导体从所述第一外导体与所述第二端连接处延伸而出,并延伸至且电连接至所述第三端。
  10. 如权利要求9所述的和及差模式天线,其特征在于,还包括与所述第一外导体绝缘隔离设置的导电体,所述导电体的一端电连接在所述第二段的所述第三端和所述第一内导体之间,所述导电体沿所述第二方向延伸且接地。
  11. 如权利要求10所述的和及差模式天线,其特征在于,所述导电体和所述外导体平行,且二者之间形成缝隙,所述缝隙的宽度小于等于所述第二端和所述第三端之间的垂直距离。
  12. 如权利要求3-11任一项所述的和及差模式天线,其特征在于,所述和及差模式天线还包括连接片,所述连接片垂直于所述参考面且电连接在所述第五段的馈电端和所述第二激励源之间。
  13. 如权利要求12所述的和及差模式天线,其特征在于,所述第二激励源包括第二馈线,所述第二馈线包括第二外导体和第二内导体,所述第二内导体自所述第二外导体的一端伸出且电连接至所述连接片,所述第二外导体接地。
  14. 如权利要求1-13任一项所述的和及差模式天线,其特征在于,所述绝缘介质为电路板的基材层,所述第一辐射体和所述第二辐射体为设置在所述基材层正反两面的微带线结构。
  15. 一种通信产品,其特征在于,包括如权利要求1-14任一项所述的和及差模式天线及射频模块,所述第一激励源和所述第二激励源电连接至所述射频模块。
  16. 如权利要求15所述的通信产品,其特征在于,所述通信产品还包括安装板,所述安装板包括上表面和下表面,所述绝缘介质自所述安装板的边缘朝向所述上表面的一侧弯折延伸。
  17. 如所述权利要求14所述的通信产品,其特征在于,所述下表面设有接地层,所述安装板设接地部,所述接地部在所述上表面延伸且穿过所述安装板延伸至所述下表面的所述接地层。
  18. 如权利要求15-17任一项所述的通信产品,其特征在于,所述和及差模式天线的数量为N个,且分布在所述安装板一对相对设置的侧边,以在所述通信产品内形成2N×2N的MIMO天线。
PCT/CN2018/095709 2018-07-13 2018-07-13 和及差模式天线及通信产品 WO2020010636A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112021000484-0A BR112021000484A2 (pt) 2018-07-13 2018-07-13 Antena de modo de soma e diferença e produto de comunicações
CN201880095427.0A CN112385083A (zh) 2018-07-13 2018-07-13 和及差模式天线及通信产品
AU2018431916A AU2018431916A1 (en) 2018-07-13 2018-07-13 Sum and difference mode antenna and communication product
JP2021500924A JP2021524710A (ja) 2018-07-13 2018-07-13 和および差モードアンテナ並びに通信製品
US17/259,780 US20210184357A1 (en) 2018-07-13 2018-07-13 Sum and difference mode antenna and communications product
PCT/CN2018/095709 WO2020010636A1 (zh) 2018-07-13 2018-07-13 和及差模式天线及通信产品
EP18925759.5A EP3817140A4 (en) 2018-07-13 2018-07-13 ANTENNA IN SUM AND DIFFERENCE MODE AND COMMUNICATION PRODUCT
KR1020217004021A KR20210028709A (ko) 2018-07-13 2018-07-13 합 및 차 모드 안테나 및 통신 제품

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095709 WO2020010636A1 (zh) 2018-07-13 2018-07-13 和及差模式天线及通信产品

Publications (1)

Publication Number Publication Date
WO2020010636A1 true WO2020010636A1 (zh) 2020-01-16

Family

ID=69142095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095709 WO2020010636A1 (zh) 2018-07-13 2018-07-13 和及差模式天线及通信产品

Country Status (8)

Country Link
US (1) US20210184357A1 (zh)
EP (1) EP3817140A4 (zh)
JP (1) JP2021524710A (zh)
KR (1) KR20210028709A (zh)
CN (1) CN112385083A (zh)
AU (1) AU2018431916A1 (zh)
BR (1) BR112021000484A2 (zh)
WO (1) WO2020010636A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4111536A1 (en) * 2020-04-06 2023-01-04 Huawei Technologies Co., Ltd. Dual mode antenna arrangement
CN114824749B (zh) * 2021-01-22 2023-07-18 华为技术有限公司 一种电子设备
KR20240013301A (ko) 2022-07-22 2024-01-30 서울시립대학교 산학협력단 대각 아이리스(Iris) 결합을 이용한 기판 집적형 도파관(SIW, Substrate Integrated Waveguide)형 합차 모드 비교기 및 유전체 공진기 안테나

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919568Y (zh) * 2006-01-26 2007-07-04 友劲科技股份有限公司 适用于无线网络装置上的平板天线
WO2009030038A1 (en) * 2007-09-04 2009-03-12 Sierra Wireless, Inc. Antenna configurations for compact device wireless communication
CN102683853A (zh) * 2012-04-28 2012-09-19 深圳光启创新技术有限公司 参差驻波合成对偶极振子天线
CN102804503A (zh) * 2010-06-10 2012-11-28 松下电器产业株式会社 天线装置以及显示装置
CN103703611A (zh) * 2011-05-23 2014-04-02 诺基亚公司 用于无线通信的装置和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011659A1 (ja) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. 複合アンテナ装置
US7724201B2 (en) * 2008-02-15 2010-05-25 Sierra Wireless, Inc. Compact diversity antenna system
CN204011719U (zh) * 2014-08-19 2014-12-10 启碁科技股份有限公司 无线通信装置
GB2529885B (en) * 2014-09-05 2017-10-04 Smart Antenna Tech Ltd Multiple antenna system arranged in the periphery of a device casing
EP3189560B1 (en) * 2014-09-05 2019-07-03 Smart Antenna Technologies Ltd Reconfigurable multi-band antenna with four to ten ports
CN105720382B (zh) * 2014-12-05 2021-08-17 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
GB201505910D0 (en) * 2015-04-07 2015-05-20 Smart Antenna Technologies Ltd Reconfigurable 4-port multi-band multi-function antenna with a grounded dipole antenna component
GB2542257B (en) * 2015-07-24 2019-09-11 Smart Antenna Tech Limited Reconfigurable antenna for incorporation in the hinge of a laptop computer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919568Y (zh) * 2006-01-26 2007-07-04 友劲科技股份有限公司 适用于无线网络装置上的平板天线
WO2009030038A1 (en) * 2007-09-04 2009-03-12 Sierra Wireless, Inc. Antenna configurations for compact device wireless communication
CN102804503A (zh) * 2010-06-10 2012-11-28 松下电器产业株式会社 天线装置以及显示装置
CN103703611A (zh) * 2011-05-23 2014-04-02 诺基亚公司 用于无线通信的装置和方法
CN102683853A (zh) * 2012-04-28 2012-09-19 深圳光启创新技术有限公司 参差驻波合成对偶极振子天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817140A4 *

Also Published As

Publication number Publication date
AU2018431916A1 (en) 2021-02-11
JP2021524710A (ja) 2021-09-13
KR20210028709A (ko) 2021-03-12
EP3817140A1 (en) 2021-05-05
BR112021000484A2 (pt) 2021-04-06
US20210184357A1 (en) 2021-06-17
EP3817140A4 (en) 2021-06-30
CN112385083A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
JP4305282B2 (ja) アンテナ装置
EP2642595B1 (en) Antenna device, electronic apparatus, and wireless communication method
US8125390B2 (en) Small-size wide band antenna and radio communication device
US11923626B2 (en) Antenna apparatus and mobile terminal
TW529203B (en) Planar antenna device having slit
TWI469441B (zh) 立體天線
WO2020010636A1 (zh) 和及差模式天线及通信产品
JP6323455B2 (ja) アンテナ装置
JPH05259724A (ja) プリントアンテナ
CN111600116A (zh) 基站天线振子及天线
JP2011130411A (ja) 変形折返しダイポールアンテナ及びそのインピーダンス調整方法、アンテナ装置
TWI756778B (zh) 天線結構及具有該天線結構之無線通訊裝置
US6765537B1 (en) Dual uncoupled mode box antenna
JP4054270B2 (ja) デュアルバンドスロットボウタイアンテナ、及び、その構成方法
CN106058442B (zh) 一种天线
CN114725678A (zh) 天线模组和电子设备
JP2008060762A (ja) アンテナの給電構造
TW201438347A (zh) 單極天線
TWI528631B (zh) 平面倒f型天線
JP2013016879A (ja) アンテナ
TWI492455B (zh) 天線與具有其之電子裝置
CN214203959U (zh) 串接式天线结构
CN201741806U (zh) 一种用于射频前端***的ltcc电小集成天线
JP3788797B2 (ja) アンテナ
TW201431185A (zh) 無線通訊裝置的雙頻天線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000484

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018925759

Country of ref document: EP

Effective date: 20210126

ENP Entry into the national phase

Ref document number: 20217004021

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018431916

Country of ref document: AU

Date of ref document: 20180713

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021000484

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210112