WO2020008741A1 - Power source system - Google Patents

Power source system Download PDF

Info

Publication number
WO2020008741A1
WO2020008741A1 PCT/JP2019/020013 JP2019020013W WO2020008741A1 WO 2020008741 A1 WO2020008741 A1 WO 2020008741A1 JP 2019020013 W JP2019020013 W JP 2019020013W WO 2020008741 A1 WO2020008741 A1 WO 2020008741A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
connection
box
voltage
circuit
Prior art date
Application number
PCT/JP2019/020013
Other languages
French (fr)
Japanese (ja)
Inventor
真博 萩
章生 石原
知弘 谷口
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2020008741A1 publication Critical patent/WO2020008741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the technology disclosed in this specification relates to a power supply system.
  • a vehicle electrical device connection system described in Patent Document 1 below is known.
  • This vehicle electrical equipment connection system distributes power from a main power supply on the vehicle and supplies power to each of a plurality of power lines of a standard sub-harness of a wire harness; And an expansion system power distribution box that distributes power from the power supply and supplies power to each of the plurality of trunks of the expansion system sub-harness of the wire harness.
  • the functions of the on-vehicle main power supply, the standard power distribution box, and the expansion power distribution box are to be mounted in one battery box. Become.
  • the number of electric wires connected to the battery box increases due to the increase in functions, and there is a problem that the battery box becomes large.
  • the number of components such as fuses and relays in the battery box also increases.For example, if one component in the battery box fails, the battery box is removed from the vehicle and the failed component is removed. Need to be replaced, and there is a problem that maintainability deteriorates.
  • a power supply system disclosed in the present specification is a power supply system for operating a vehicle with electric power, wherein the vehicle is provided outside a battery box having a plurality of battery cells built therein and a plurality of battery cells.
  • Branch box, auxiliary equipment operable by electric power, and a traveling system capable of traveling by electric power the battery box is electrically connected to the plurality of battery cells, and the plurality of battery cells
  • a first connection portion capable of inputting power for charging and outputting power from the plurality of battery cells, wherein the branch box is electrically connected to the first connection portion;
  • Contact And a fourth connection unit capable of inputting power from the traveling system or outputting power to the traveling system, the second connection unit, the third connection unit, and the fourth connection unit.
  • a branch circuit for electrical connection is a branch circuit for electrical connection.
  • the branch circuit is provided in the branch box provided outside the battery box, it is mounted on the battery box and the outside compared to the conventional configuration in which the branch circuit is provided inside the battery box. It is possible to reduce the number of connecting portions for connecting the functional components (for example, accessories and a traveling system, etc.), and to reduce the size of the battery box. Further, when an electronic component such as a fuse in the branch box breaks down, only the branch box can be removed from the vehicle, and the electronic component can be replaced. This eliminates the need to remove the battery box from the vehicle for replacing electronic components such as fuses as in the related art, thereby improving maintainability.
  • the branch box includes a first branch box and a second branch box
  • the branch circuit includes a first branch circuit provided in the first branch box and a second branch box provided in the second branch box.
  • a second branch circuit, and a connection circuit provided between the first branch box and the second branch box, and electrically connecting the first branch circuit and the second branch circuit;
  • a second connection unit and the fourth connection unit are provided in the first branch box;
  • the first branch circuit electrically connects the second connection unit and the fourth connection unit;
  • a plurality of accessories are provided, a plurality of the third connection portions are provided corresponding to the number of the plurality of the accessory devices, and a plurality of the third connection portions are provided in the second branch box.
  • the second branch circuit includes a plurality of the third connections. Between it may be electrically connected to.
  • the distribution box is divided into two, a first distribution box and a second distribution box, and a fourth connection unit connected to the traveling system is provided in the first distribution box, and a third connection unit connected to accessories is provided.
  • the connection portion in the second branch box the first branch box can be classified into a traveling system and the second branch box can be classified into an equipment system.
  • the higher the voltage input to the branch box the larger the size of the bus bar and the connection portion, and accordingly, the larger the shape of the branch box.
  • the voltage used for the traveling system tends to be high for high-grade cars (luxury cars) (for example, up to about 1000 V) and low for low-grade cars (general cars) (for example, (About 500 V), the size of the first branch box is larger for a luxury car.
  • the voltage used for the equipment system is the same (for example, about 500 V at maximum) for both luxury cars and ordinary cars, and the size of the second branch box is the same for both luxury cars and ordinary cars. Therefore, the second branch box can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced.
  • connection circuit that connects the first branch circuit and the second branch circuit
  • a connection portion that connects the battery box to the second branch box becomes unnecessary, and the battery box and external functional components (for example, auxiliary devices) And the traveling system, etc.) can be further reduced.
  • the traveling system includes an electric motor that drives the vehicle, and a power control unit that has an inverter that operates the electric motor, and an operable voltage of the inverter is equal to the first connection of the battery box.
  • the voltage at the second connection portion and the voltage at the fourth connection portion are equal to the first voltage, and the voltage at the third connection portion is the first voltage.
  • a second connection circuit electrically connected to the first branch circuit; a second connection circuit electrically connected to the second branch circuit; and a second connection circuit electrically connected to the first branch circuit.
  • the first connection circuit and the second connection circuit may be electrically connected via a transformer for transforming the first voltage to the second voltage.
  • the first voltage at the first connection portion of the battery box is the same potential as the operating voltage of the inverter, a boost converter that converts the input voltage into the operating voltage of the inverter in the power control unit is not required, and the power control unit is not required.
  • the size can be reduced.
  • FIG. 2 is a schematic diagram illustrating a state in which the power supply system according to the first embodiment is applied to a vehicle.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the power supply system according to the first embodiment.
  • Diagram of connection structure between first branch box and second branch box in bolt fastening Diagram of connection structure between first branch box and second branch box by connector
  • FIG. 4 is a block diagram illustrating an electrical configuration of a power supply system according to a second embodiment.
  • the power supply system 10 is mounted on a vehicle 12 as shown in FIG. 1, and supplies electric power supplied from a battery box 14 to the outside of the battery box 14 as shown in FIG. 2. Is supplied to the auxiliary equipment 20 and the traveling system 22 via the branch circuit 18 of the branch box 16 provided in the vehicle.
  • the vehicle 12 is provided with a power supply unit 24 that supplies power from the outside.
  • the power supply unit 24 includes an AC power supply unit 26 that supplies power from a household AC (Alternating Current) power supply, and a rapid charging facility (not shown). ), And a DC (Direct @ Current) power supply unit 28 for supplying power from the DC power supply. 500 V, 400 A (150 kW) power is supplied from the DC power supply unit 28.
  • the traveling system 22 includes a motor (electric motor) 30 for driving wheels, and a PCU (Power Control Unit, power control unit) 32 for controlling the motor 30.
  • the PCU 32 includes a boost converter 34 that boosts the input DC voltage to a DC voltage V1 higher than the input DC voltage, and an inverter 37 that converts the boosted DC voltage to an AC voltage having a predetermined frequency.
  • the AC voltage output from the inverter 37 is input to the motor 30.
  • the rotation speed of the motor 30 depends on the frequency of the AC voltage, and the motor 30 can be controlled by controlling the frequency of the AC voltage.
  • the motor 30 includes a motor 30A on the FR (Front) side (the left side in FIGS. 1 and 2) and a motor 30B on the RR (Rear) side (the right side in FIGS. 1 and 2). .
  • the boost converter 34 includes a boost converter 34A on the FR side and a boost converter 34B on the RR side.
  • the inverter 37 includes an inverter 37A on the FR side and an inverter 37B on the RR side.
  • the PCU 32 is illustrated separately for the FR side and the RR side for convenience, but is assumed to be an integrated unit.
  • a plurality of battery cells (hereinafter referred to as “battery cell group 36”) connected in series are provided inside the battery box 14.
  • the battery cell group 36 includes a first battery cell group 36A and a second battery cell group 36B.
  • the first battery cell group 36A and the second battery cell group 36B are connected in series via a service plug 38. It is connected to the.
  • the service plug 38 can be inserted and removed from the outside, and by disconnecting the service plug 38 during maintenance, conduction between the first battery cell group 36A and the second battery cell group 36B can be cut off. it can.
  • the battery box 14 is provided with a first connector (first connection portion) 40 and a second connector 42 that are connected to the outside.
  • the first connector 40 and the second connector 42 have a plus terminal on the power supply side and a minus terminal on the GND (ground) side, respectively.
  • connectors other than the first connector 40 and the second connector 42 in the present embodiment third connector (second connection portion) 62, fourth connector 64, fifth connector (fourth connection portion) 66, Similarly, it is assumed that the sixth connector 76 and the seventh connector (third connector) 78) also have a plus terminal and a minus terminal.
  • the battery cell group 36 has a rated voltage of 350 V and a maximum voltage of 500 V.
  • the DC voltage V2 output from the battery cell group 36 in the state where the load is connected is set to the rated voltage of 350V.
  • an ACR Alternating Current Relay
  • SMR System Main Relay
  • the ACR 44 and the SMR 46 are switched between an ON (conductive) state and an OFF (open) state by a control signal from a control unit (not shown).
  • the ACR 44 includes a first ACR 44A, a second ACR 44B, and a third ACR 44C that is a pre-charge (pre-charge) relay.
  • the SMR 46 includes a first SMR 46A and a second SMR 46B. And a third SMR 46C, which is a relay for pre-charging.
  • the upstream sides of the first ACR 44A and the first SMR 46A are electrically connected to the downstream side of a current sensor 48 for detecting a current, respectively. Further, the upstream side of the current sensor 48 is connected to a first battery cell group 36A. Is electrically connected to the positive side. Further, the upstream sides of the second ACR 44B and the second SMR 46B are electrically connected to the minus side of the second battery cell group 36B, respectively.
  • the upstream side of the third ACR 44C and the third SMR 46C is electrically connected to the downstream side of the current limiting resistor 50 that limits the current at the time of pre-charging, and the upstream side of the current limiting resistor 50 is It is electrically connected to the negative side of the second battery cell group 36B.
  • the downstream side of the first SMR 46A is electrically connected to the plus terminal of the first connector 40, and the downstream side of the second SMR 46B is electrically connected to the minus terminal of the first connector 40.
  • the downstream side of the first ACR 44A is connected to the upstream side of the AC fuse 52 for overcurrent protection during AC charging, and the downstream side of the AC fuse 52 is electrically connected to the plus terminal of the second connector 42. Have been.
  • the downstream sides of the second ACR 44B and the third ACR 44C are electrically connected to the minus terminal of the second connector 42.
  • the second connector 42 is connected to the AC power supply unit 26 via an AC / DC converter 54 provided outside the battery box 14.
  • the AC / DC converter 54 converts an AC voltage input from the AC power supply unit 26 into a DC voltage.
  • the DC voltage converted by the AC / DC converter 54 is applied to the battery cell group 36, and the battery cell group 36 is charged.
  • pre-charging is performed in a state where the first ACR 44A and the third ACR 44C are ON and the second ACR 44B is OFF.
  • AC charging control for starting the charging by turning the second ACR 44B from OFF to ON and turning the third ACR 44C from ON to OFF is performed. Is
  • the branch circuit 18 includes a first branch circuit 18A, a second branch circuit 18B, and a connection circuit 60 that electrically connects the first branch circuit 18A and the second branch circuit 18B.
  • the branch box 16 branches the power input from the battery box 14 to the traveling system 22 and the DC power supply unit 28 (traveling / charging system) and outputs the first branch box 16A and the first branch box 16A. And a second branch box 16B for branching and outputting the power to a plurality of auxiliary devices 20 (equipment system).
  • the branch circuit 18 is provided in the branch box 16 provided outside the battery box 14, the branch circuit 18 is provided in comparison with the conventional configuration in which the branch circuit is provided inside the battery box.
  • the number of connecting portions for connecting the battery box 14 to external functional components for example, the auxiliary equipment 20 and the traveling system 22
  • the size of the battery box 14 can be reduced.
  • the first branch box 16A has a third connector 62 electrically connected to the first connector 40, a fourth connector 64 electrically connected to a sixth connector 76 of the second branch box 16B described later, And three fifth connectors 66 that are electrically connected to the PCU 32 and the DC power supply unit 28 of the traveling system 22, respectively.
  • the first branch circuit 18A is provided in the first branch box 16A, and connects between the plus terminals of the connectors (the third connector 62, the fourth connector 64, and the fifth connector 66) of the first branch box 16A. It comprises a first bus bar 68A on the plus side electrically connected to each other, and a first bus bar 68B on the minus side electrically connected between the minus terminals.
  • the fifth connector 66 includes a fifth connector 66A electrically connected to the DC power supply unit 28, a fifth connector 66B electrically connected to the boost converter 34A on the FR side of the PCU 32, and a booster on the RR side of the PCU 32.
  • the fifth connector 66C is electrically connected to the converter 34B.
  • a first DC charging relay 70 and two fuses 72 are attached to the first bus bar 68A on the plus side, and a second DC charging relay 74 is attached to the first bus bar 68B on the minus side.
  • the plus terminal of the third connector 62 and the plus terminal of the fifth connector 66A are electrically connected via the first DC charging relay 70, and the minus terminal of the third connector 62 and the The fifth connector 66A is electrically connected to the minus terminal of the connector 66A via a second DC charging relay 74.
  • the positive terminal of the third connector 62 and the positive terminal of the fifth connector 66B, and the positive terminal of the third connector 62 and the positive terminal of the fifth connector 66C are electrically connected via the fuse 72, respectively. Connected.
  • the first branch box 16A can be taken out of the vehicle 12 and the fuse 72 can be replaced. For this reason, the maintainability is improved as compared with the conventional configuration in which the fuse 72 is provided in the battery box, and when the fuse 72 is blown, the battery box is taken out of the vehicle and replaced.
  • the first DC charging relay 70 and the second DC charging relay 74 are either in an ON (conductive) state or an OFF (open) state according to a control signal from a control unit (not shown). Is switched to the state.
  • the first DC charging relay 70, the second DC charging relay 74, the first SMR 46A, and the third SMR 46C are turned on, and the second SMR 46B Is pre-charged in the OFF state.
  • the DC charge control for starting the charging by turning the second SMR 46B from OFF to ON and turning the third SMR 46C from ON to OFF is performed. Is
  • the second branch box 16B includes a sixth connector 76 that is electrically connected to the fourth connector 64 of the first branch box 16A, and six connectors (of the auxiliary devices 20) that are electrically connected to the auxiliary devices 20. (Same number as the number of the seventh connectors 78).
  • the second branch circuit 18B is provided in the second branch box 16B, and electrically connects the plus terminals of the connectors (the sixth connector 76 and the seventh connector 78) of the second branch box 16B to each other. And a second bus bar 80B on the minus side that electrically connects the minus terminals to each other.
  • the same number (six) of fuses 72 as the number of the seventh connectors 78 are attached to the second bus bar 80A on the plus side, and the plus terminals of the sixth connector 76 and the plus terminals of the six seventh connectors 78 are provided. Are electrically connected via a fuse 72.
  • connection circuit 60 electrically connects the plus terminal of the fourth connector 64 with the plus terminal of the sixth connector 76, and connects the minus terminal of the fourth connector 64 with the minus terminal of the sixth connector 76.
  • the connection circuit 60 electrically connects the plus terminal of the fourth connector 64 with the plus terminal of the sixth connector 76, and connects the minus terminal of the fourth connector 64 with the minus terminal of the sixth connector 76.
  • the first bus bar 68A on the plus side and the second bus bar 80A on the plus side are electrically connected
  • the first bus bar 68B on the minus side and the second bus bar 80B on the minus side are electrically connected.
  • connection circuit 60 for example, as shown in FIG. 3, the fourth connector 64 and the sixth connector 76 may be electrically connected by bolting.
  • the fourth connector 64 and the sixth connector 76 may be electrically connected by a harness 86A constituted by a connector 82 and a wire group 84.
  • the fourth connector 64 and a connector on the harness side connected to the fourth connector 64 are not shown, but have the same configuration as the sixth connector 76 side.
  • a spring connection type connector 88 connected to a counterpart terminal (not shown) by a spring contact (not shown), and a group of electric wires laterally protruded from the spring connection type connector 88 in the horizontal direction.
  • the fourth connector 64 and the sixth connector 76 may be electrically connected to each other by the harness 86 ⁇ / b> B configured by the connector 84.
  • the fourth connector 64 and a harness-side connector connected to the fourth connector 64 are not shown, but have the same configuration as that of the sixth connector 76.
  • two of the seven seventh connectors 78 include a compressor (an example of the auxiliary equipment 20) 90 of an air conditioner and a DC / DC converter for the auxiliary equipment (auxiliary equipment).
  • Examples of class 20) 92 are respectively connected.
  • the accessory DC / DC converter 92 is a converter that converts the input DC voltage V2 (350 V) into a DC voltage of 12 V and outputs the DC voltage.
  • the accessory DC / DC converter 92 The output of 92 is connected to 12V accessories that operate at a DC voltage of 12V.
  • Other examples of the auxiliary devices 20 connected to the seventh connector 78 include an air conditioner, a water heater, a non-contact charger, an AC 100V outlet, a solar charger, and the like.
  • the first SMR 46A and the second SMR 46B are in the ON state.
  • the DC voltage V2 of the battery cell group 36 is applied to the first branch circuit 18A via the first connector 40 of the battery box 14 and the third connector 62 of the second branch box 16B, and further connected to the connection circuit 60. Is applied to the second branch circuit 18B.
  • the DC voltage V2 applied to the first branch circuit 18A is supplied with power to the traveling system 22 via the fifth connector 66B and the fifth connector 66C.
  • the DC voltage V2 is input to the FR-side boost converter 34A and the RR-side boost converter 34B of the PCU 32, and is boosted to the DC voltage V1.
  • the boosted DC voltage V1 is input to the FR-side inverter 37A and the RR-side inverter 37B, respectively.
  • the DC voltage V2 applied to the second branch circuit 18B is input to the accessories 20 via the seventh connector 78, and power is supplied to the accessories 20.
  • the branch circuit 18 is provided in the branch box 16 provided outside the battery box 14, the branch circuit is provided inside the battery box as in the related art.
  • the number of connecting parts for connecting the battery box 14 and functional components (for example, the auxiliary equipment 20 and the traveling system 22) mounted outside the battery box 14 can be reduced as compared with the configuration in which Can be Further, when an electronic component such as the fuse 72 in the branch box breaks down, only the branch box 16 can be removed from the vehicle 12, and the electronic component can be replaced. This eliminates the need to remove the battery box 14 from the vehicle 12 for replacing electronic components such as the fuse 72 as in the related art, thereby improving maintainability.
  • the branch box 16 is divided into two, a first branch box 16A and a second branch box 16B, and a fifth connector (fourth connection portion) connected to the traveling system 22 is connected to the first branch box 16A.
  • the seventh connector (third connecting portion) 78 connected to the auxiliary equipment 20 is provided in the second branch box 16B, so that the first branch box 16A is used as a traveling system and the second branch box 16B is used as an equipment system. Can be classified.
  • the higher the voltage input to the branch box 16 the larger the size of the bus bar and the connection portion, and accordingly, the larger the shape of the branch box 16.
  • the voltage used for the traveling system 22 tends to be high for a high-grade vehicle (luxury vehicle) (for example, about 1000 V at the maximum) and low for a low-grade vehicle (general vehicle) (for example,
  • the maximum size of the first branch box 16A is larger for a luxury car.
  • the voltage used for the equipment system is the same (for example, about 500 V at maximum) for both luxury cars and ordinary cars, and the size of the second branch box 16B is the same for both luxury cars and ordinary cars. Therefore, the second branch box 16B can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced.
  • connection circuit 60 that connects the first branch circuit 18A and the second branch circuit 18B, a connection portion that connects the battery box 14 to the second branch box 16B becomes unnecessary, and the battery box 14 and external functions It is possible to further reduce the number of connecting parts for connecting parts (for example, the auxiliary equipment 20 and the traveling system 22).
  • the power supply system 10A of the present embodiment is a system used for a so-called luxury car, and uses a battery box 14A having a higher voltage than the battery box 14 of the first embodiment.
  • the connection circuit 60A of the present embodiment includes a first connection circuit 94 electrically connected to the first branch circuit 18C, and a second connection circuit 96 electrically connected to the second branch circuit 18B. Further, a DC / DC converter (transformer) 98 is provided between the first connection circuit 94 and the second connection circuit 96.
  • the battery cell group 36E including the first battery cell group 36C and the second battery cell group 36D has a rated voltage of 800V and a maximum voltage of 1000V.
  • the DC voltage (first voltage) V3 output from the battery cell group 36E in the state where the load is connected is set to the rated voltage of 800V.
  • the PCU 32A of the present embodiment does not include the boost converter 34 of the first embodiment, and the DC voltage V3 is directly input to the inverter 37A on the FR side and the inverter 37B on the RR side. Therefore, the PCU 32A of the present embodiment is not provided with the boost converter 34, and thus can be made smaller than the PCU 32 of the first embodiment. 1000 V, 400 A (350 kW) power is supplied from the DC power supply unit 28A.
  • the DC / DC converter 98 converts the 800 V DC voltage V3 input from the first branch circuit 18C side into a 350 V DC voltage (second voltage) V4, and outputs the same to the second branch circuit 18B side. Since the DC voltage V3 (800 V) applied to the first branch circuit 18C is higher than the DC voltage V2 (350V) applied to the first branch circuit 18A in the first embodiment, the first bus bar on the positive side of the first branch circuit 18C is used. 68C and the first bus bar 68D on the minus side are made of a thicker plate than the first bus bar 68A on the plus side and the first bus bar 68B on the minus side in the first embodiment.
  • the first branch box 16C has a larger physical size than the first branch box 16A in the first embodiment.
  • the DC / DC converter 98 applies the DC voltage V4 (350V) having the same potential as the DC voltage V2 (350V) in the first embodiment to the second branch circuit 18B of the second branch box 16B.
  • the second branch box 16B can be the same as that of the first embodiment. Therefore, the second branch box 16B of the equipment system can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced.
  • connection between the DC / DC converter 98 and the first branch box 16C and the second branch box 16B is connected in the same manner as the method shown in FIGS. 3 to 5 of the first embodiment.
  • the other points are the same as in the first embodiment, and therefore, the same reference numerals are assigned to the first embodiment, and the description will be omitted.
  • the PCU The step-up converter 34 for converting the input voltage into the operating voltage of the inverter 37 in the power control unit 32 becomes unnecessary, and the PCU (power control unit) 32 can be downsized.
  • the technology disclosed in this specification is not limited to the embodiments described above and illustrated in the drawings, and includes, for example, the following various aspects.
  • the first branch box 16A of the traveling system has a maximum of 500V
  • the second branch box 16B of the equipment system has a maximum of 500V.
  • the configuration is such that the maximum voltage of the second branch box 16B of the equipment system is 500 V
  • the voltage of the first branch box 16A and the second branch box 16B may be higher or lower than the voltage of the above embodiment.
  • the electrical connection between the battery box 14 and the branch box 16 is performed by connecting the first connector 40 of the battery box 14 and the third connector 62 of the first branch box 16A.
  • the battery box 14 and the second branch box 16B may be electrically connected.
  • the vehicle 12 is configured to have the power supply unit 24.
  • the power supply systems 10 and 10A may be applied to a hybrid vehicle having no power supply unit 24.
  • the branch box 16 is configured from the first branch box 16A and the second branch box 16B.
  • the branch box 16 is configured from the first branch box 16C and the second branch box 16B.
  • the configuration may be such that the number of branch boxes is one.
  • circuit 20 power supply system 12: vehicles 14, 14A: battery box 16: branch boxes 16A, 16C: first branch box 16B: second branch box 18: branch circuits 18A, 18C: first branch circuit 18B: second branch.
  • Circuit 20 auxiliary equipment 22: traveling system 30: motor (electric motor) 32: PCU (power control unit) 36: Battery cell group (plural battery cells) 37: Inverter 40: 1st connector (1st connection part) 60, 60A: connecting circuit 62: third connector (second connecting portion) 66: Fifth connector (fourth connection part) 78: seventh connector (third connection part) 94: first connection circuit 96: second connection circuit 98: DC / DC converter (transformer) V3: voltage (first voltage) V4: voltage (second voltage)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This power source system 10 is a power source system 10 for causing a vehicle 12 to operate by electric power, wherein the vehicle 12 is provided with a battery box 14 in which a cell group (plurality of cells) 36 is housed therein, a branch box 16 provided outside the battery box 14, accessories 20 capable of operating by electric power, and a travel system 22 capable of travel by electric power, the battery box 14 has a first connector (first connection part) 40 which is electrically connected to the cell group (plurality of cells) and is capable of inputting electric power for charging the cell group (plurality of cells) 36 and outputting electric power from the cell group (plurality of cells) 36, and the branch box 16 is provided with a third connector (second connection part) 62 electrically connected to the first connector (first connection part) 40, seventh connectors (third connection parts) 78 which are electrically connected to the accessories 20 and are capable of inputting electric power from the accessories 20 or outputting electric power to the accessories 20, fifth connectors (fourth connection parts) 66 which are electrically connected to the travel system 22 and are capable of inputting electric power from the travel system 22 or outputting electric power to the travel system 22, and a branch circuit 18 for electrically connecting the a third connector (second connection part) 62, the seventh connectors (third connection parts) 78, and the fifth connectors (fourth connection parts) 66.

Description

電源システムPower system
 本明細書によって開示される技術は、電源システムに関する。 技術 The technology disclosed in this specification relates to a power supply system.
 従来の電源システムの一例として、下記特許文献1に記載の車両用電装機器接続システムが知られている。この車両用電装機器接続システムは、車両上主電源からの電源電力を分配し、ワイヤハーネスの標準系サブハーネスの複数の電源線それぞれに電力を供給する標準系電源分配ボックスと、車両上主電源からの電源電力を分配し、ワイヤハーネスの拡張系サブハーネスの複数の幹線それぞれに電力を供給する拡張系電源分配ボックスと、を備える。 As one example of a conventional power supply system, a vehicle electrical device connection system described in Patent Document 1 below is known. This vehicle electrical equipment connection system distributes power from a main power supply on the vehicle and supplies power to each of a plurality of power lines of a standard sub-harness of a wire harness; And an expansion system power distribution box that distributes power from the power supply and supplies power to each of the plurality of trunks of the expansion system sub-harness of the wire harness.
特開2016-13754号公報JP 2016-13754 A
 上記電装機器接続システムを電気自動車に適用する場合、一般的に、車両上主電源、標準系電源分配ボックス、及び拡張系電源分配ボックスの各機能は、一つのバッテリーボックス内に搭載されることとなる。これにより、機能の増加により、バッテリーボックスに接続される電線の数も増加し、バッテリーボックスが大型化するという問題がある。また、機能が増加することにより、バッテリーボックス内のヒューズやリレー等の部品も増加することとなるが、例えば、バッテリーボックス内の部品が一つ故障すると、バッテリーボックスを車両から取り出して故障した部品を交換する必要があり、メンテナンス性が悪化するという問題がある。 When the above-described electrical equipment connection system is applied to an electric vehicle, generally, the functions of the on-vehicle main power supply, the standard power distribution box, and the expansion power distribution box are to be mounted in one battery box. Become. As a result, the number of electric wires connected to the battery box increases due to the increase in functions, and there is a problem that the battery box becomes large. In addition, as the function increases, the number of components such as fuses and relays in the battery box also increases.For example, if one component in the battery box fails, the battery box is removed from the vehicle and the failed component is removed. Need to be replaced, and there is a problem that maintainability deteriorates.
 本明細書で開示される電源システムは、電力により車両を動作させるための電源システムであって、前記車両は、内部に複数の電池セルが内蔵されるバッテリーボックスと、前記バッテリーボックスの外部に設けられる分岐ボックスと、電力によって作動可能な補機類と、電力によって走行可能な走行系統と、を備え、前記バッテリーボックスは、前記複数の電池セルと電気的に接続され、前記複数の電池セルを充電するための電力の入力、及び、前記複数の電池セルからの電力の出力が可能な第1接続部を有し、前記分岐ボックスは、前記第1接続部と電気的に接続される第2接続部と、前記補機類と電気的に接続され、前記補機類からの電力の入力、又は、前記補機類への電力の出力が可能な第3接続部と、前記走行系統と電気的に接続され、前記走行系統からの電力の入力、又は、前記走行系統への電力の出力が可能な第4接続部と、前記第2接続部、前記第3接続部、及び、前記第4接続部を電気的に接続する分岐回路と、を備える。 A power supply system disclosed in the present specification is a power supply system for operating a vehicle with electric power, wherein the vehicle is provided outside a battery box having a plurality of battery cells built therein and a plurality of battery cells. Branch box, auxiliary equipment operable by electric power, and a traveling system capable of traveling by electric power, the battery box is electrically connected to the plurality of battery cells, and the plurality of battery cells A first connection portion capable of inputting power for charging and outputting power from the plurality of battery cells, wherein the branch box is electrically connected to the first connection portion; A connection portion, a third connection portion electrically connected to the auxiliary devices and capable of inputting power from the auxiliary devices or outputting power to the auxiliary devices; Contact And a fourth connection unit capable of inputting power from the traveling system or outputting power to the traveling system, the second connection unit, the third connection unit, and the fourth connection unit. And a branch circuit for electrical connection.
 分岐回路はバッテリーボックスの外部に設けられる分岐ボックス内に設けられているため、従来のように、バッテリーボックスの内部に分岐回路が設けられている構成と比較して、バッテリーボックスとその外部に搭載される機能部品(例えば補機類及び走行系統等)とを接続する接続部の数を減らすことができ、バッテリーボックスを小型化することができる。また、分岐ボックス内のヒューズ等の電子部品が故障した際に、分岐ボックスのみを車両から取り外し、電子部品の交換作業を行うことができる。これにより、従来のように、ヒューズ等の電子部品の交換のため、バッテリーボックスを車両から取り外す必要がないことから、メンテナンス性を向上させることができる。 Since the branch circuit is provided in the branch box provided outside the battery box, it is mounted on the battery box and the outside compared to the conventional configuration in which the branch circuit is provided inside the battery box. It is possible to reduce the number of connecting portions for connecting the functional components (for example, accessories and a traveling system, etc.), and to reduce the size of the battery box. Further, when an electronic component such as a fuse in the branch box breaks down, only the branch box can be removed from the vehicle, and the electronic component can be replaced. This eliminates the need to remove the battery box from the vehicle for replacing electronic components such as fuses as in the related art, thereby improving maintainability.
 また、前記分岐ボックスは、第1分岐ボックスと、第2分岐ボックスとから構成され、前記分岐回路は、前記第1分岐ボックスに設けられる第1分岐回路と、前記第2分岐ボックスに設けられる第2分岐回路と、前記第1分岐ボックスと前記第2分岐ボックスとの間に設けられ、前記第1分岐回路と前記第2分岐回路とを電気的に接続する連結回路とから構成され、前記第2接続部、及び、前記第4接続部は、前記第1分岐ボックスに設けられ、前記第1分岐回路は、前記第2接続部、及び、前記第4接続部を電気的に接続し、前記補機類は、複数設けられ、前記第3接続部は、複数の前記補機類の数に対応して複数設けられており、複数の前記第3接続部は、前記第2分岐ボックスに設けられ、前記第2分岐回路は、複数の前記第3接続部の間を電気的に接続する構成としても良い。 The branch box includes a first branch box and a second branch box, and the branch circuit includes a first branch circuit provided in the first branch box and a second branch box provided in the second branch box. A second branch circuit, and a connection circuit provided between the first branch box and the second branch box, and electrically connecting the first branch circuit and the second branch circuit; A second connection unit and the fourth connection unit are provided in the first branch box; the first branch circuit electrically connects the second connection unit and the fourth connection unit; A plurality of accessories are provided, a plurality of the third connection portions are provided corresponding to the number of the plurality of the accessory devices, and a plurality of the third connection portions are provided in the second branch box. And the second branch circuit includes a plurality of the third connections. Between it may be electrically connected to.
 分岐ボックスを、第1分岐ボックス、及び、第2分岐ボックスの2つに分け、さらに、走行系統に接続される第4接続部を第1分岐ボックスに設け、補機類に接続される第3接続部を第2分岐ボックスに設けることで、第1分岐ボックスを走行系、第2分岐ボックスを装備系に分類することができる。ここで、一般的に、分岐ボックスに入力される電圧が高い程、バスバーや接続部のサイズが大きくなり、それに伴い、分岐ボックスの形状も大きくなる。このとき、走行系統に用いられる電圧は、グレードの高い車(高級車)は高い傾向にあり(例えば、最大1000V程度)、グレードの低い車(一般車)は低い傾向にあることから(例えば最大500V程度)、第1分岐ボックスのサイズは高級車の方が大きくなる。一方、装備系に用いられる電圧は、高級車も一般車も同じ(例えば、最大500V程度)電圧であり、高級車も一般車も第2分岐ボックスのサイズは同じとなる。従って、第2分岐ボックスを異なる車両グレード(高級車及び一般車)間で共通化することができ、部品点数を削減することができる。また、第1分岐回路と第2分岐回路とを連結する連結回路を設けることで、バッテリーボックスから第2分岐ボックスに接続する接続部が不要となり、バッテリーボックスと外部の機能部品(例えば補機類及び走行系統等)とを接続する接続部の数をさらに減らすことができる。 The distribution box is divided into two, a first distribution box and a second distribution box, and a fourth connection unit connected to the traveling system is provided in the first distribution box, and a third connection unit connected to accessories is provided. By providing the connection portion in the second branch box, the first branch box can be classified into a traveling system and the second branch box can be classified into an equipment system. Here, in general, the higher the voltage input to the branch box, the larger the size of the bus bar and the connection portion, and accordingly, the larger the shape of the branch box. At this time, the voltage used for the traveling system tends to be high for high-grade cars (luxury cars) (for example, up to about 1000 V) and low for low-grade cars (general cars) (for example, (About 500 V), the size of the first branch box is larger for a luxury car. On the other hand, the voltage used for the equipment system is the same (for example, about 500 V at maximum) for both luxury cars and ordinary cars, and the size of the second branch box is the same for both luxury cars and ordinary cars. Therefore, the second branch box can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced. In addition, by providing a connection circuit that connects the first branch circuit and the second branch circuit, a connection portion that connects the battery box to the second branch box becomes unnecessary, and the battery box and external functional components (for example, auxiliary devices) And the traveling system, etc.) can be further reduced.
 また、前記走行系統は、前記車両を走行させる電気モータと、前記電気モータを作動させるインバータを有するパワーコントロールユニットと、を備え、前記インバータの作動可能な電圧は、前記バッテリーボックスの前記第1接続部における電圧である第1電圧とされ、前記第2接続部、及び、前記第4接続部における電圧は、前記第1電圧と同電位とされ、前記第3接続部における電圧は、前記第1電圧と異なる第2電圧とされ、前記連結回路は、前記第1分岐回路に電気的に接続される第1連結回路と、前記第2分岐回路に電気的に接続される第2連結回路と、から構成され、前記第1連結回路と前記第2連結回路とは、前記第1電圧を前記第2電圧に変圧させる変圧装置を介して電気的に接続されている構成としても良い。 Further, the traveling system includes an electric motor that drives the vehicle, and a power control unit that has an inverter that operates the electric motor, and an operable voltage of the inverter is equal to the first connection of the battery box. The voltage at the second connection portion and the voltage at the fourth connection portion are equal to the first voltage, and the voltage at the third connection portion is the first voltage. A second connection circuit electrically connected to the first branch circuit; a second connection circuit electrically connected to the second branch circuit; and a second connection circuit electrically connected to the first branch circuit. And the first connection circuit and the second connection circuit may be electrically connected via a transformer for transforming the first voltage to the second voltage.
 バッテリーボックスの第1接続部における第1電圧は、インバータの作動電圧と同電位であるため、パワーコントロールユニット内で入力電圧をインバータの作動電圧に変換する昇圧コンバータ)が不要となり、パワーコントロールユニットを小型化することができる。 Since the first voltage at the first connection portion of the battery box is the same potential as the operating voltage of the inverter, a boost converter that converts the input voltage into the operating voltage of the inverter in the power control unit is not required, and the power control unit is not required. The size can be reduced.
 本明細書に開示される電源システムによれば、バッテリーボックスを小型化するとともにメンテナンス性の優れた電源システムを提供することができる。 According to the power supply system disclosed in the present specification, it is possible to provide a power supply system having a small battery box and excellent maintainability.
実施形態1に係る電源システムを車両に適用した状態を示す模式図FIG. 2 is a schematic diagram illustrating a state in which the power supply system according to the first embodiment is applied to a vehicle. 実施形態1に係る電源システムの電気的構成を示すブロック図FIG. 2 is a block diagram illustrating an electrical configuration of the power supply system according to the first embodiment. ボルト締結における第1分岐ボックスと第2分岐ボックスとの接続構造の図Diagram of connection structure between first branch box and second branch box in bolt fastening コネクタによる第1分岐ボックスと第2分岐ボックスとの接続構造の図Diagram of connection structure between first branch box and second branch box by connector バネ接続式コネクタによる第1分岐ボックスと第2分岐ボックスとの接続構造の図Diagram of connection structure between first branch box and second branch box by spring connection type connector 実施形態2に係る電源システムの電気的構成を示すブロック図FIG. 4 is a block diagram illustrating an electrical configuration of a power supply system according to a second embodiment.
 <実施形態1>
 図1から図5を参照して本実施形態を説明する。本実施形態に係る電源システム10は、図1に示すように、車両12に搭載されるものであって、図2に示すように、バッテリーボックス14から供給される電力を、バッテリーボックス14の外部に設けられた分岐ボックス16の分岐回路18を介して、補機類20、及び、走行系統22にそれぞれ供給するシステムである。
<First embodiment>
This embodiment will be described with reference to FIGS. The power supply system 10 according to the present embodiment is mounted on a vehicle 12 as shown in FIG. 1, and supplies electric power supplied from a battery box 14 to the outside of the battery box 14 as shown in FIG. 2. Is supplied to the auxiliary equipment 20 and the traveling system 22 via the branch circuit 18 of the branch box 16 provided in the vehicle.
 車両12には、外部から給電を行う給電部24が設けられており、給電部24は、家庭用のAC(Alternating Current)電源から給電を行うAC給電部26と、急速充電設備(図示せず)から給電を行うDC(Direct Current)給電部28と、から構成されている。DC給電部28からは、500V、400A(150kW)の電力が供給される。 The vehicle 12 is provided with a power supply unit 24 that supplies power from the outside. The power supply unit 24 includes an AC power supply unit 26 that supplies power from a household AC (Alternating Current) power supply, and a rapid charging facility (not shown). ), And a DC (Direct @ Current) power supply unit 28 for supplying power from the DC power supply. 500 V, 400 A (150 kW) power is supplied from the DC power supply unit 28.
 走行系統22は、車輪を駆動させるモータ(電気モータ)30と、モータ30を制御するPCU(Power Control Unit、パワーコントロールユニット)32と、を備えている。PCU32は、入力されたDC電圧を、入力されたDC電圧よりも高いDC電圧V1に昇圧する昇圧コンバータ34と、昇圧されたDC電圧を所定の周波数のAC電圧に変換するインバータ37と、を備えており、インバータ37から出力されたAC電圧は、モータ30に入力される。モータ30の回転速度は、AC電圧の周波数に依存しており、AC電圧の周波数を制御することで、モータ30を制御することができる。 The traveling system 22 includes a motor (electric motor) 30 for driving wheels, and a PCU (Power Control Unit, power control unit) 32 for controlling the motor 30. The PCU 32 includes a boost converter 34 that boosts the input DC voltage to a DC voltage V1 higher than the input DC voltage, and an inverter 37 that converts the boosted DC voltage to an AC voltage having a predetermined frequency. The AC voltage output from the inverter 37 is input to the motor 30. The rotation speed of the motor 30 depends on the frequency of the AC voltage, and the motor 30 can be controlled by controlling the frequency of the AC voltage.
 モータ30は、FR(Front:フロント)側(図1及び図2の左側)のモータ30Aと、RR(Rear:リア)側(図1及び図2の右側)のモータ30Bとから構成されている。また、昇圧コンバータ34は、FR側の昇圧コンバータ34Aと、RR側の昇圧コンバータ34Bとから構成されている。また、インバータ37は、FR側のインバータ37Aと、RR側のインバータ37Bとから構成されている。なお、図2においては、PCU32は、便宜上、FR側とRR側とに分けて図示されているが、一体のユニットであるものとする。 The motor 30 includes a motor 30A on the FR (Front) side (the left side in FIGS. 1 and 2) and a motor 30B on the RR (Rear) side (the right side in FIGS. 1 and 2). . The boost converter 34 includes a boost converter 34A on the FR side and a boost converter 34B on the RR side. The inverter 37 includes an inverter 37A on the FR side and an inverter 37B on the RR side. In FIG. 2, the PCU 32 is illustrated separately for the FR side and the RR side for convenience, but is assumed to be an integrated unit.
 バッテリーボックス14の内部には、直列に接続された複数の電池セル(以降、「電池セル群36」とする)が設けられている。電池セル群36は、第1電池セル群36Aと、第2電池セル群36Bとから構成されており、第1電池セル群36Aと第2電池セル群36Bとは、サービスプラグ38を介して直列に接続されている。サービスプラグ38は、外部から抜き差しすることが可能となっており、メンテナンス時にサービスプラグ38を抜くことで、第1電池セル群36Aと第2電池セル群36Bとの間の導通を遮断することができる。 A plurality of battery cells (hereinafter referred to as “battery cell group 36”) connected in series are provided inside the battery box 14. The battery cell group 36 includes a first battery cell group 36A and a second battery cell group 36B. The first battery cell group 36A and the second battery cell group 36B are connected in series via a service plug 38. It is connected to the. The service plug 38 can be inserted and removed from the outside, and by disconnecting the service plug 38 during maintenance, conduction between the first battery cell group 36A and the second battery cell group 36B can be cut off. it can.
 バッテリーボックス14には、外部と接続される第1コネクタ(第1接続部)40及び第2コネクタ42が設けられている。第1コネクタ40及び第2コネクタ42には、電源側のプラス端子と、GND(Ground)側のマイナス端子とがそれぞれ備えられている。なお、本実施形態における第1コネクタ40及び第2コネクタ42以外のコネクタ(後述する、第3コネクタ(第2接続部)62、第4コネクタ64、第5コネクタ(第4接続部)66、第6コネクタ76、及び、第7コネクタ(第3接続部)78)においても、同様に、プラス端子及びマイナス端子が備えられているものとする。 The battery box 14 is provided with a first connector (first connection portion) 40 and a second connector 42 that are connected to the outside. The first connector 40 and the second connector 42 have a plus terminal on the power supply side and a minus terminal on the GND (ground) side, respectively. Note that connectors other than the first connector 40 and the second connector 42 in the present embodiment (third connector (second connection portion) 62, fourth connector 64, fifth connector (fourth connection portion) 66, Similarly, it is assumed that the sixth connector 76 and the seventh connector (third connector) 78) also have a plus terminal and a minus terminal.
 電池セル群36は、定格電圧が350Vとされ、最大電圧が500Vとされる。本実施形態では、負荷を繋いだ状態における、電池セル群36から出力されるDC電圧V2は、定格電圧の350Vとする。 定 格 The battery cell group 36 has a rated voltage of 350 V and a maximum voltage of 500 V. In the present embodiment, the DC voltage V2 output from the battery cell group 36 in the state where the load is connected is set to the rated voltage of 350V.
 バッテリーボックス14の内部には、家庭用のAC電源からの充電時に用いられるリレーであるACR(Alternating Current Relay)44、及び、システムメインリレーであるSMR(System Main Relay)46が設けられている。ACR44及びSMR46は、図示しない制御部からの制御信号によって、ON(導通)の状態、又は、OFF(開放)の状態のいずれか一方の状態に切替えられる。 Inside the battery box 14, there are provided an ACR (Alternating Current Relay) 44, which is a relay used when charging from a household AC power supply, and an SMR (System Main Relay) 46, which is a system main relay. The ACR 44 and the SMR 46 are switched between an ON (conductive) state and an OFF (open) state by a control signal from a control unit (not shown).
 ACR44は、第1のACR44Aと、第2のACR44Bと、事前充電(プリチャージ)用のリレーである第3のACR44Cとから構成されており、SMR46は、第1のSMR46Aと、第2のSMR46Bと、事前充電用のリレーである第3のSMR46Cとから構成されている。 The ACR 44 includes a first ACR 44A, a second ACR 44B, and a third ACR 44C that is a pre-charge (pre-charge) relay. The SMR 46 includes a first SMR 46A and a second SMR 46B. And a third SMR 46C, which is a relay for pre-charging.
 第1のACR44A及び第1のSMR46Aの上流側は、電流を検知する電流センサ48の下流側にそれぞれ電気的に接続されており、さらに、電流センサ48の上流側は、第1電池セル群36Aのプラス側に電気的に接続されている。また、第2のACR44B及び第2のSMR46Bの上流側は、第2電池セル群36Bのマイナス側にそれぞれ電気的に接続されている。 The upstream sides of the first ACR 44A and the first SMR 46A are electrically connected to the downstream side of a current sensor 48 for detecting a current, respectively. Further, the upstream side of the current sensor 48 is connected to a first battery cell group 36A. Is electrically connected to the positive side. Further, the upstream sides of the second ACR 44B and the second SMR 46B are electrically connected to the minus side of the second battery cell group 36B, respectively.
 第3のACR44C及び第3のSMR46Cの上流側は、事前充電時における電流を制限する電流制限抵抗50の下流側にそれぞれ電気的に接続されており、さらに、電流制限抵抗50の上流側は、第2電池セル群36Bのマイナス側に電気的に接続されている。 The upstream side of the third ACR 44C and the third SMR 46C is electrically connected to the downstream side of the current limiting resistor 50 that limits the current at the time of pre-charging, and the upstream side of the current limiting resistor 50 is It is electrically connected to the negative side of the second battery cell group 36B.
 第1のSMR46Aの下流側は、第1コネクタ40のプラス端子に電気的に接続されており、第2のSMR46Bの下流側は、第1コネクタ40のマイナス端子に電気的に接続されている。 下流 The downstream side of the first SMR 46A is electrically connected to the plus terminal of the first connector 40, and the downstream side of the second SMR 46B is electrically connected to the minus terminal of the first connector 40.
 第1のACR44Aの下流側は、AC充電時における過電流保護用のACヒューズ52の上流側に接続され、さらに、ACヒューズ52の下流側は、第2コネクタ42のプラス端子に電気的に接続されている。また、第2のACR44B及び第3のACR44Cの下流側は、第2コネクタ42のマイナス端子に電気的に接続されている。 The downstream side of the first ACR 44A is connected to the upstream side of the AC fuse 52 for overcurrent protection during AC charging, and the downstream side of the AC fuse 52 is electrically connected to the plus terminal of the second connector 42. Have been. The downstream sides of the second ACR 44B and the third ACR 44C are electrically connected to the minus terminal of the second connector 42.
 第2コネクタ42は、バッテリーボックス14の外部に設けられたAC/DCコンバータ54を介して、AC給電部26に接続されている。AC/DCコンバータ54は、AC給電部26から入力されたAC電圧をDC電圧に変換する。AC/DCコンバータ54により変換されたDC電圧は、電池セル群36に印加され、電池セル群36は充電される。このとき、先ず、第1のACR44A及び第3のACR44CがON、並びに、第2のACR44BがOFFの状態で事前充電を行う。次に、電流センサ48で検知された電流が一定以下になった場合に、第2のACR44BをOFFからON、及び、第3のACR44CをONからOFFにし、充電を開始するAC充電制御が行われる。 The second connector 42 is connected to the AC power supply unit 26 via an AC / DC converter 54 provided outside the battery box 14. The AC / DC converter 54 converts an AC voltage input from the AC power supply unit 26 into a DC voltage. The DC voltage converted by the AC / DC converter 54 is applied to the battery cell group 36, and the battery cell group 36 is charged. At this time, first, pre-charging is performed in a state where the first ACR 44A and the third ACR 44C are ON and the second ACR 44B is OFF. Next, when the current detected by the current sensor 48 becomes equal to or less than a predetermined value, AC charging control for starting the charging by turning the second ACR 44B from OFF to ON and turning the third ACR 44C from ON to OFF is performed. Is
 分岐回路18は、第1分岐回路18Aと、第2分岐回路18Bと、第1分岐回路18A及び第2分岐回路18Bを電気的に接続する連結回路60と、から構成されている。 The branch circuit 18 includes a first branch circuit 18A, a second branch circuit 18B, and a connection circuit 60 that electrically connects the first branch circuit 18A and the second branch circuit 18B.
 分岐ボックス16は、バッテリーボックス14から入力された電力を走行系統22及びDC給電部28(走行・充電系)に分岐して出力する第1分岐ボックス16Aと、第1分岐ボックス16Aから入力された電力を複数の補機類20(装備系)に分岐して出力する第2分岐ボックス16Bとから構成されている。このように、分岐回路18はバッテリーボックス14の外部に設けられる分岐ボックス16内に設けられているため、従来のように、バッテリーボックスの内部に分岐回路が設けられている構成と比較して、バッテリーボックス14と外部の機能部品(例えば補機類20及び走行系統22等)とを接続する接続部の数を減らすことができ、バッテリーボックス14を小型化することができる。 The branch box 16 branches the power input from the battery box 14 to the traveling system 22 and the DC power supply unit 28 (traveling / charging system) and outputs the first branch box 16A and the first branch box 16A. And a second branch box 16B for branching and outputting the power to a plurality of auxiliary devices 20 (equipment system). As described above, since the branch circuit 18 is provided in the branch box 16 provided outside the battery box 14, the branch circuit 18 is provided in comparison with the conventional configuration in which the branch circuit is provided inside the battery box. The number of connecting portions for connecting the battery box 14 to external functional components (for example, the auxiliary equipment 20 and the traveling system 22) can be reduced, and the size of the battery box 14 can be reduced.
 第1分岐ボックス16Aには、第1コネクタ40と電気的に接続される第3コネクタ62と、第2分岐ボックス16Bの後述する第6コネクタ76と電気的に接続される第4コネクタ64と、走行系統22のPCU32及びDC給電部28にそれぞれ電気的に接続される3つの第5コネクタ66と、が設けられている。 The first branch box 16A has a third connector 62 electrically connected to the first connector 40, a fourth connector 64 electrically connected to a sixth connector 76 of the second branch box 16B described later, And three fifth connectors 66 that are electrically connected to the PCU 32 and the DC power supply unit 28 of the traveling system 22, respectively.
 第1分岐回路18Aは、第1分岐ボックス16A内に設けられており、第1分岐ボックス16Aのコネクタ(第3コネクタ62、第4コネクタ64、及び、第5コネクタ66)の、プラス端子間を互いに電気的に接続するプラス側の第1バスバー68Aと、マイナス端子間を互いに電気的に接続するマイナス側の第1バスバー68Bとから構成されている。 The first branch circuit 18A is provided in the first branch box 16A, and connects between the plus terminals of the connectors (the third connector 62, the fourth connector 64, and the fifth connector 66) of the first branch box 16A. It comprises a first bus bar 68A on the plus side electrically connected to each other, and a first bus bar 68B on the minus side electrically connected between the minus terminals.
 第5コネクタ66は、DC給電部28と電気的に接続される第5コネクタ66Aと、PCU32のFR側の昇圧コンバータ34Aと電気的に接続される第5コネクタ66Bと、PCU32のRR側の昇圧コンバータ34Bと電気的に接続される第5コネクタ66Cとから構成されている。 The fifth connector 66 includes a fifth connector 66A electrically connected to the DC power supply unit 28, a fifth connector 66B electrically connected to the boost converter 34A on the FR side of the PCU 32, and a booster on the RR side of the PCU 32. The fifth connector 66C is electrically connected to the converter 34B.
 プラス側の第1バスバー68Aには、第1のDC充電用リレー70、及び、2つのヒューズ72が取付けられており、マイナス側の第1バスバー68Bには、第2のDC充電用リレー74が取付けられている。第3コネクタ62のプラス端子と、第5コネクタ66Aのプラス端子との間は、第1のDC充電用リレー70を介して電気的に接続されており、第3コネクタ62のマイナス端子と、第5コネクタ66Aのマイナス端子との間は、第2のDC充電用リレー74を介して電気的に接続されている。また、第3コネクタ62のプラス端子と第5コネクタ66Bのプラス端子との間、及び、第3コネクタ62のプラス端子と第5コネクタ66Cのプラス端子との間は、ヒューズ72を介してそれぞれ電気的に接続されている。仮に、ヒューズ72が切れた際は、第1分岐ボックス16Aを車両12から取り出し、ヒューズ72の交換作業を行うことができる。このため、従来のように、ヒューズ72がバッテリーボックス内に設けられ、ヒューズ72が切れた際に、バッテリーボックスごと車両から取り出して交換する構成と比較して、メンテナンス性が向上される。 A first DC charging relay 70 and two fuses 72 are attached to the first bus bar 68A on the plus side, and a second DC charging relay 74 is attached to the first bus bar 68B on the minus side. Installed. The plus terminal of the third connector 62 and the plus terminal of the fifth connector 66A are electrically connected via the first DC charging relay 70, and the minus terminal of the third connector 62 and the The fifth connector 66A is electrically connected to the minus terminal of the connector 66A via a second DC charging relay 74. The positive terminal of the third connector 62 and the positive terminal of the fifth connector 66B, and the positive terminal of the third connector 62 and the positive terminal of the fifth connector 66C are electrically connected via the fuse 72, respectively. Connected. If the fuse 72 is blown, the first branch box 16A can be taken out of the vehicle 12 and the fuse 72 can be replaced. For this reason, the maintainability is improved as compared with the conventional configuration in which the fuse 72 is provided in the battery box, and when the fuse 72 is blown, the battery box is taken out of the vehicle and replaced.
 第1のDC充電用リレー70、及び、第2のDC充電用リレー74は、図示しない制御部からの制御信号によって、ON(導通)の状態、又は、OFF(開放)の状態のいずれか一方の状態に切替えられる。DC給電部28から給電を行う際は、先ず、第1のDC充電用リレー70、第2のDC充電用リレー74、第1のSMR46A、及び第3のSMR46CがON、並びに、第2のSMR46BがOFFの状態で事前充電を行う。次に、電流センサ48で検知された電流が一定以下になった場合に、第2のSMR46BをOFFからON、及び、第3のSMR46CをONからOFFにし、充電を開始するDC充電制御が行われる。 The first DC charging relay 70 and the second DC charging relay 74 are either in an ON (conductive) state or an OFF (open) state according to a control signal from a control unit (not shown). Is switched to the state. When power is supplied from the DC power supply unit 28, first, the first DC charging relay 70, the second DC charging relay 74, the first SMR 46A, and the third SMR 46C are turned on, and the second SMR 46B Is pre-charged in the OFF state. Next, when the current detected by the current sensor 48 becomes equal to or less than a predetermined value, the DC charge control for starting the charging by turning the second SMR 46B from OFF to ON and turning the third SMR 46C from ON to OFF is performed. Is
 第2分岐ボックス16Bには、第1分岐ボックス16Aの第4コネクタ64と電気的に接続される第6コネクタ76と、補機類20と電気的に接続される6つ(補機類20の数と同数)の第7コネクタ78と、が設けられている。 The second branch box 16B includes a sixth connector 76 that is electrically connected to the fourth connector 64 of the first branch box 16A, and six connectors (of the auxiliary devices 20) that are electrically connected to the auxiliary devices 20. (Same number as the number of the seventh connectors 78).
 第2分岐回路18Bは、第2分岐ボックス16B内に設けられており、第2分岐ボックス16Bのコネクタ(第6コネクタ76、及び、第7コネクタ78)の、プラス端子間を互いに電気的に接続するプラス側の第2バスバー80Aと、マイナス端子間を互いに電気的に接続するマイナス側の第2バスバー80Bとから構成されている。 The second branch circuit 18B is provided in the second branch box 16B, and electrically connects the plus terminals of the connectors (the sixth connector 76 and the seventh connector 78) of the second branch box 16B to each other. And a second bus bar 80B on the minus side that electrically connects the minus terminals to each other.
 プラス側の第2バスバー80Aには、第7コネクタ78の数と同数(6つ)のヒューズ72が取付けられており、第6コネクタ76のプラス端子と、6つの第7コネクタ78のプラス端子との間は、ヒューズ72を介してそれぞれ電気的に接続されている。 The same number (six) of fuses 72 as the number of the seventh connectors 78 are attached to the second bus bar 80A on the plus side, and the plus terminals of the sixth connector 76 and the plus terminals of the six seventh connectors 78 are provided. Are electrically connected via a fuse 72.
 連結回路60は、第4コネクタ64のプラス端子と、第6コネクタ76のプラス端子との間を電気的に接続し、第4コネクタ64のマイナス端子と、第6コネクタ76のマイナス端子との間を電気的に接続する。これにより、プラス側の第1バスバー68Aとプラス側の第2バスバー80Aとは電気的に接続され、また、マイナス側の第1バスバー68Bとマイナス側の第2バスバー80Bとは電気的に接続される。このような連結回路60を設けることで、バッテリーボックス14から第2分岐ボックス16Bに接続する接続部が不要となり、バッテリーボックス14と外部の機能部品とを接続する接続部の数をさらに減らすことができる。 The connection circuit 60 electrically connects the plus terminal of the fourth connector 64 with the plus terminal of the sixth connector 76, and connects the minus terminal of the fourth connector 64 with the minus terminal of the sixth connector 76. Are electrically connected. Thus, the first bus bar 68A on the plus side and the second bus bar 80A on the plus side are electrically connected, and the first bus bar 68B on the minus side and the second bus bar 80B on the minus side are electrically connected. You. By providing such a connection circuit 60, a connection portion connecting the battery box 14 to the second branch box 16B becomes unnecessary, and the number of connection portions connecting the battery box 14 and external functional components can be further reduced. it can.
 連結回路60の一例として、例えば、図3に示すように、ボルト締結によって、第4コネクタ64と第6コネクタ76とを電気的に接続する構成としても良い。 (3) As an example of the connection circuit 60, for example, as shown in FIG. 3, the fourth connector 64 and the sixth connector 76 may be electrically connected by bolting.
 また、図4に示すように、コネクタ82と電線群84とによって構成されたハーネス86Aによって、第4コネクタ64と第6コネクタ76とを電気的に接続する構成としても良い。なお、図4においては、第4コネクタ64、及び、第4コネクタ64と接続されるハーネス側のコネクタは図示されていないが、第6コネクタ76側と同様の構成となっている。 As shown in FIG. 4, the fourth connector 64 and the sixth connector 76 may be electrically connected by a harness 86A constituted by a connector 82 and a wire group 84. In FIG. 4, the fourth connector 64 and a connector on the harness side connected to the fourth connector 64 are not shown, but have the same configuration as the sixth connector 76 side.
 また、図5に示すように、バネ接点(図示せず)によって相手側端子(図示せず)と接続するバネ接続式コネクタ88と、バネ接続式コネクタ88から水平方向に横出しされた電線群84とによって構成されたハーネス86Bによって、第4コネクタ64と第6コネクタ76とを電気的に接続する構成としても良い。なお、図5においては、第4コネクタ64、及び、第4コネクタ64と接続されるハーネス側のコネクタは図示されていないが、第6コネクタ76側と同様の構成となっている。 As shown in FIG. 5, a spring connection type connector 88 connected to a counterpart terminal (not shown) by a spring contact (not shown), and a group of electric wires laterally protruded from the spring connection type connector 88 in the horizontal direction. The fourth connector 64 and the sixth connector 76 may be electrically connected to each other by the harness 86 </ b> B configured by the connector 84. In FIG. 5, the fourth connector 64 and a harness-side connector connected to the fourth connector 64 are not shown, but have the same configuration as that of the sixth connector 76.
 図2に示すように、6つの第7コネクタ78のうち、2つの第7コネクタ78には、エアコンのコンプレッサー(補機類20の一例)90、及び、補機用DC/DCコンバータ(補機類20の一例)92がそれぞれ接続されている。ここで、補機用DC/DCコンバータ92は、入力されたDC電圧V2(350V)を、12VのDC電圧に変換して出力するコンバータであって、図示しないものの、補機用DC/DCコンバータ92の出力側には、12VのDC電圧で作動する12V用補機類に接続される。その他の第7コネクタ78に接続される補機類20の一例として、エアコン、水加熱ヒーター、非接触充電器、AC100Vのコンセント、ソーラー充電器等が挙げられる。 As shown in FIG. 2, two of the seven seventh connectors 78 include a compressor (an example of the auxiliary equipment 20) 90 of an air conditioner and a DC / DC converter for the auxiliary equipment (auxiliary equipment). Examples of class 20) 92 are respectively connected. Here, the accessory DC / DC converter 92 is a converter that converts the input DC voltage V2 (350 V) into a DC voltage of 12 V and outputs the DC voltage. Although not shown, the accessory DC / DC converter 92 The output of 92 is connected to 12V accessories that operate at a DC voltage of 12V. Other examples of the auxiliary devices 20 connected to the seventh connector 78 include an air conditioner, a water heater, a non-contact charger, an AC 100V outlet, a solar charger, and the like.
 車両12の走行系統22及び補機類20の作動時は、第1のSMR46A及び第2のSMR46BがONの状態となる。これにより、電池セル群36のDC電圧V2は、バッテリーボックス14の第1コネクタ40及び第2分岐ボックス16Bの第3コネクタ62を介して、第1分岐回路18Aに印加され、さらに、連結回路60を介して、第2分岐回路18Bに印加される。 When the traveling system 22 and the accessories 20 of the vehicle 12 are operating, the first SMR 46A and the second SMR 46B are in the ON state. Thus, the DC voltage V2 of the battery cell group 36 is applied to the first branch circuit 18A via the first connector 40 of the battery box 14 and the third connector 62 of the second branch box 16B, and further connected to the connection circuit 60. Is applied to the second branch circuit 18B.
 第1分岐回路18Aに印加されたDC電圧V2は、第5コネクタ66B、及び、第5コネクタ66Cを介して、走行系統22に電力が供給される。このとき、DC電圧V2は、PCU32のFR側昇圧コンバータ34A、及び、RR側昇圧コンバータ34Bにそれぞれ入力され、DC電圧V1に昇圧される。さらに、昇圧されたDC電圧V1は、FR側インバータ37A、及び、RR側インバータ37Bにそれぞれ入力される。第2分岐回路18Bに印加されたDC電圧V2は、第7コネクタ78を介して、補機類20に入力され、補機類20に電力が供給される。 (4) The DC voltage V2 applied to the first branch circuit 18A is supplied with power to the traveling system 22 via the fifth connector 66B and the fifth connector 66C. At this time, the DC voltage V2 is input to the FR-side boost converter 34A and the RR-side boost converter 34B of the PCU 32, and is boosted to the DC voltage V1. Further, the boosted DC voltage V1 is input to the FR-side inverter 37A and the RR-side inverter 37B, respectively. The DC voltage V2 applied to the second branch circuit 18B is input to the accessories 20 via the seventh connector 78, and power is supplied to the accessories 20.
 以上のように本実施形態によれば、分岐回路18はバッテリーボックス14の外部に設けられる分岐ボックス16内に設けられているため、従来のように、バッテリーボックスの内部に分岐回路が設けられている構成と比較して、バッテリーボックス14とその外部に搭載される機能部品(例えば補機類20及び走行系統22等)とを接続する接続部の数を減らすことができ、バッテリーボックス14を小型化することができる。また、分岐ボックス内のヒューズ72等の電子部品が故障した際に、分岐ボックス16のみを車両12から取り外し、電子部品の交換作業を行うことができる。これにより、従来のように、ヒューズ72等の電子部品の交換のため、バッテリーボックス14を車両12から取り外す必要がないことから、メンテナンス性を向上させることができる。 As described above, according to the present embodiment, since the branch circuit 18 is provided in the branch box 16 provided outside the battery box 14, the branch circuit is provided inside the battery box as in the related art. The number of connecting parts for connecting the battery box 14 and functional components (for example, the auxiliary equipment 20 and the traveling system 22) mounted outside the battery box 14 can be reduced as compared with the configuration in which Can be Further, when an electronic component such as the fuse 72 in the branch box breaks down, only the branch box 16 can be removed from the vehicle 12, and the electronic component can be replaced. This eliminates the need to remove the battery box 14 from the vehicle 12 for replacing electronic components such as the fuse 72 as in the related art, thereby improving maintainability.
 また、分岐ボックス16を、第1分岐ボックス16A、及び、第2分岐ボックス16Bの2つに分け、さらに、走行系統22に接続される第5コネクタ(第4接続部)を第1分岐ボックス16Aに設け、補機類20に接続される第7コネクタ(第3接続部)78を第2分岐ボックス16Bに設けることで、第1分岐ボックス16Aを走行系、第2分岐ボックス16Bを装備系に分類することができる。ここで、一般的に、分岐ボックス16に入力される電圧が高い程、バスバーや接続部のサイズが大きくなり、それに伴い、分岐ボックス16の形状も大きくなる。このとき、走行系統22に用いられる電圧は、グレードの高い車(高級車)は高い傾向にあり(例えば、最大1000V程度)、グレードの低い車(一般車)は低い傾向にあることから(例えば最大500V程度)、第1分岐ボックス16Aのサイズは高級車の方が大きくなる。一方、装備系に用いられる電圧は、高級車も一般車も同じ(例えば、最大500V程度)電圧であり、高級車も一般車も第2分岐ボックス16Bのサイズは同じとなる。従って、第2分岐ボックス16Bを異なる車両グレード(高級車及び一般車)間で共通化することができ、部品点数を削減することができる。また、第1分岐回路18Aと第2分岐回路18Bとを連結する連結回路60を設けることで、バッテリーボックス14から第2分岐ボックス16Bに接続する接続部が不要となり、バッテリーボックス14と外部の機能部品(例えば補機類20及び走行系統22等)とを接続する接続部の数をさらに減らすことができる。 Further, the branch box 16 is divided into two, a first branch box 16A and a second branch box 16B, and a fifth connector (fourth connection portion) connected to the traveling system 22 is connected to the first branch box 16A. And the seventh connector (third connecting portion) 78 connected to the auxiliary equipment 20 is provided in the second branch box 16B, so that the first branch box 16A is used as a traveling system and the second branch box 16B is used as an equipment system. Can be classified. Here, in general, the higher the voltage input to the branch box 16, the larger the size of the bus bar and the connection portion, and accordingly, the larger the shape of the branch box 16. At this time, the voltage used for the traveling system 22 tends to be high for a high-grade vehicle (luxury vehicle) (for example, about 1000 V at the maximum) and low for a low-grade vehicle (general vehicle) (for example, The maximum size of the first branch box 16A is larger for a luxury car. On the other hand, the voltage used for the equipment system is the same (for example, about 500 V at maximum) for both luxury cars and ordinary cars, and the size of the second branch box 16B is the same for both luxury cars and ordinary cars. Therefore, the second branch box 16B can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced. In addition, by providing the connection circuit 60 that connects the first branch circuit 18A and the second branch circuit 18B, a connection portion that connects the battery box 14 to the second branch box 16B becomes unnecessary, and the battery box 14 and external functions It is possible to further reduce the number of connecting parts for connecting parts (for example, the auxiliary equipment 20 and the traveling system 22).
 <実施形態2>
 図6を参照して本実施形態を説明する。
 本実施形態の電源システム10Aは、所謂、高級車に用いられるシステムであって、実施形態1のバッテリーボックス14よりも高い電圧のバッテリーボックス14Aが用いられる。また、本実施形態の連結回路60Aは、第1分岐回路18Cと電気的に接続される第1連結回路94と、第2分岐回路18Bと電気的に接続される第2連結回路96とから構成されており、さらに、第1連結回路94と第2連結回路96との間に、DC/DCコンバータ(変圧装置)98が設けられている。
<Embodiment 2>
This embodiment will be described with reference to FIG.
The power supply system 10A of the present embodiment is a system used for a so-called luxury car, and uses a battery box 14A having a higher voltage than the battery box 14 of the first embodiment. Further, the connection circuit 60A of the present embodiment includes a first connection circuit 94 electrically connected to the first branch circuit 18C, and a second connection circuit 96 electrically connected to the second branch circuit 18B. Further, a DC / DC converter (transformer) 98 is provided between the first connection circuit 94 and the second connection circuit 96.
 第1電池セル群36C及び第2電池セル群36Dからなる電池セル群36Eは、定格電圧が800Vとされ、最大電圧が1000Vとされる。本実施形態では、負荷を繋いだ状態における、電池セル群36Eから出力されるDC電圧(第1電圧)V3は、定格電圧の800Vとする。また、本実施形態のPCU32Aには、実施形態1のおける昇圧コンバータ34が設けられておらず、DC電圧V3が直接、FR側のインバータ37A、及び、RR側のインバータ37Bに入力される。従って、本実施形態のPCU32Aは、昇圧コンバータ34が設けられていないことから、実施形態1のPCU32よりも小型化を図ることができる。DC給電部28Aからは、1000V、400A(350kW)の電力が供給される。 The battery cell group 36E including the first battery cell group 36C and the second battery cell group 36D has a rated voltage of 800V and a maximum voltage of 1000V. In the present embodiment, the DC voltage (first voltage) V3 output from the battery cell group 36E in the state where the load is connected is set to the rated voltage of 800V. Further, the PCU 32A of the present embodiment does not include the boost converter 34 of the first embodiment, and the DC voltage V3 is directly input to the inverter 37A on the FR side and the inverter 37B on the RR side. Therefore, the PCU 32A of the present embodiment is not provided with the boost converter 34, and thus can be made smaller than the PCU 32 of the first embodiment. 1000 V, 400 A (350 kW) power is supplied from the DC power supply unit 28A.
 DC/DCコンバータ98は、第1分岐回路18C側から入力される800VのDC電圧V3を、350VのDC電圧(第2電圧)V4に変換し、第2分岐回路18B側に出力する。第1分岐回路18CにかかるDC電圧V3(800V)は、実施形態1における第1分岐回路18AにかかるDC電圧V2(350V)よりも高いことから、第1分岐回路18Cのプラス側の第1バスバー68C及びマイナス側の第1バスバー68Dは、実施形態1におけるプラス側の第1バスバー68A及びマイナス側の第1バスバー68Bよりも、厚い板材から構成されている。これにより、第1分岐ボックス16Cは、実施形態1における第1分岐ボックス16Aよりも体格が大きくなる。一方、第2分岐ボックス16Bの第2分岐回路18Bには、DC/DCコンバータ98によって、実施形態1におけるDC電圧V2(350V)と同電位であるDC電圧V4(350V)が印加されることから、第2分岐ボックス16Bは、実施形態1と同じものを用いることができる。従って、装備系の第2分岐ボックス16Bは、異なる車両グレード(高級車及び一般車)間で共通化することができるため、部品点数を削減することができる。 The DC / DC converter 98 converts the 800 V DC voltage V3 input from the first branch circuit 18C side into a 350 V DC voltage (second voltage) V4, and outputs the same to the second branch circuit 18B side. Since the DC voltage V3 (800 V) applied to the first branch circuit 18C is higher than the DC voltage V2 (350V) applied to the first branch circuit 18A in the first embodiment, the first bus bar on the positive side of the first branch circuit 18C is used. 68C and the first bus bar 68D on the minus side are made of a thicker plate than the first bus bar 68A on the plus side and the first bus bar 68B on the minus side in the first embodiment. Thus, the first branch box 16C has a larger physical size than the first branch box 16A in the first embodiment. On the other hand, the DC / DC converter 98 applies the DC voltage V4 (350V) having the same potential as the DC voltage V2 (350V) in the first embodiment to the second branch circuit 18B of the second branch box 16B. , The second branch box 16B can be the same as that of the first embodiment. Therefore, the second branch box 16B of the equipment system can be shared between different vehicle grades (luxury car and general car), and the number of parts can be reduced.
 DC/DCコンバータ98と、第1分岐ボックス16C、及び、第2分岐ボックス16Bとの間の接続は、実施形態1の図3から図5に図示する方法と同様の方法で接続される。その他の点は、実施形態1と共通のため、実施形態1と同符号を付して説明を省略する。 The connection between the DC / DC converter 98 and the first branch box 16C and the second branch box 16B is connected in the same manner as the method shown in FIGS. 3 to 5 of the first embodiment. The other points are the same as in the first embodiment, and therefore, the same reference numerals are assigned to the first embodiment, and the description will be omitted.
 以上のように本実施形態によれば、バッテリーボックス14の第1コネクタ(第1接続部)40における電圧(第1電圧)V3は、をインバータ37の作動電圧と同電位であるため、PCU(パワーコントロールユニット)32内で入力電圧をインバータ37の作動電圧に変換する昇圧コンバータ34)が不要となり、PCU(パワーコントロールユニット)32を小型化することができる。 As described above, according to the present embodiment, since the voltage (first voltage) V3 at the first connector (first connection portion) 40 of the battery box 14 is the same as the operating voltage of the inverter 37, the PCU ( The step-up converter 34) for converting the input voltage into the operating voltage of the inverter 37 in the power control unit 32 becomes unnecessary, and the PCU (power control unit) 32 can be downsized.
 <他の実施形態>
 本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)実施形態1では、走行系の第1分岐ボックス16Aは最大500V、装備系の第2分岐ボックス16Bは最大500Vとし、実施形態2では、走行系の第1分岐ボックス16Aは最大1000V、装備系の第2分岐ボックス16Bは最大500Vである構成としたが、第1分岐ボックス16A及び第2分岐ボックス16Bの電圧は、上記実施形態の電圧よりも高くても良いし、低くても良い。
(2)実施形態1では、バッテリーボックス14と分岐ボックス16との間の電気的な接続は、バッテリーボックス14の第1コネクタ40と第1分岐ボックス16Aの第3コネクタ62とを接続することで行われていたが、バッテリーボックス14と第2分岐ボックス16Bとを電気的に接続する構成としても良い。
(3)上記実施形態では、車両12は、給電部24を有する構成としていたが、例えば、給電部24を有さないハイブリッド車に電源システム10、10Aを適用しても良い。
(4)実施形態1では、分岐ボックス16は、第1分岐ボックス16A及び第2分岐ボックス16Bから構成され、実施形態2では、分岐ボックス16は、第1分岐ボックス16C及び第2分岐ボックス16Bから構成されることとしたが、分岐ボックスは、1つである構成としても良い。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described above and illustrated in the drawings, and includes, for example, the following various aspects.
(1) In the first embodiment, the first branch box 16A of the traveling system has a maximum of 500V, and the second branch box 16B of the equipment system has a maximum of 500V. Although the configuration is such that the maximum voltage of the second branch box 16B of the equipment system is 500 V, the voltage of the first branch box 16A and the second branch box 16B may be higher or lower than the voltage of the above embodiment. .
(2) In the first embodiment, the electrical connection between the battery box 14 and the branch box 16 is performed by connecting the first connector 40 of the battery box 14 and the third connector 62 of the first branch box 16A. However, the battery box 14 and the second branch box 16B may be electrically connected.
(3) In the above embodiment, the vehicle 12 is configured to have the power supply unit 24. However, for example, the power supply systems 10 and 10A may be applied to a hybrid vehicle having no power supply unit 24.
(4) In the first embodiment, the branch box 16 is configured from the first branch box 16A and the second branch box 16B. In the second embodiment, the branch box 16 is configured from the first branch box 16C and the second branch box 16B. However, the configuration may be such that the number of branch boxes is one.
10,10A:電源システム
12:車両
14,14A:バッテリーボックス
16:分岐ボックス
16A,16C:第1分岐ボックス
16B:第2分岐ボックス
18:分岐回路
18A,18C:第1分岐回路
18B:第2分岐回路
20:補機類
22:走行系統
30:モータ(電気モータ)
32:PCU(パワーコントロールユニット)
36:電池セル群(複数の電池セル)
37:インバータ
40:第1コネクタ(第1接続部)
60,60A:連結回路
62:第3コネクタ(第2接続部)
66:第5コネクタ(第4接続部)
78:第7コネクタ(第3接続部)
94:第1連結回路
96:第2連結回路
98:DC/DCコンバータ(変圧装置)
V3:電圧(第1電圧)
V4:電圧(第2電圧)
10, 10A: power supply system 12: vehicles 14, 14A: battery box 16: branch boxes 16A, 16C: first branch box 16B: second branch box 18: branch circuits 18A, 18C: first branch circuit 18B: second branch. Circuit 20: auxiliary equipment 22: traveling system 30: motor (electric motor)
32: PCU (power control unit)
36: Battery cell group (plural battery cells)
37: Inverter 40: 1st connector (1st connection part)
60, 60A: connecting circuit 62: third connector (second connecting portion)
66: Fifth connector (fourth connection part)
78: seventh connector (third connection part)
94: first connection circuit 96: second connection circuit 98: DC / DC converter (transformer)
V3: voltage (first voltage)
V4: voltage (second voltage)

Claims (3)

  1.  電力により車両を動作させるための電源システムであって、
     前記車両は、
     内部に複数の電池セルが内蔵されるバッテリーボックスと、
     前記バッテリーボックスの外部に設けられる分岐ボックスと、
     電力によって作動可能な補機類と、
     電力によって走行可能な走行系統と、を備え、
     前記バッテリーボックスは、前記複数の電池セルと電気的に接続され、前記複数の電池セルを充電するための電力の入力、及び、前記複数の電池セルからの電力の出力が可能な第1接続部を有し、
     前記分岐ボックスは、
     前記第1接続部と電気的に接続される第2接続部と、
     前記補機類と電気的に接続され、前記補機類からの電力の入力、又は、前記補機類への電力の出力が可能な第3接続部と、
     前記走行系統と電気的に接続され、前記走行系統からの電力の入力、又は、前記走行系統への電力の出力が可能な第4接続部と、
     前記第2接続部、前記第3接続部、及び、前記第4接続部を電気的に接続する分岐回路と、を備える電源システム。
    A power supply system for operating a vehicle with electric power,
    The vehicle is
    A battery box with multiple battery cells inside,
    A branch box provided outside the battery box,
    Auxiliary equipment that can be operated by electric power,
    A traveling system capable of traveling by electric power,
    A first connection unit that is electrically connected to the plurality of battery cells and that is capable of inputting power for charging the plurality of battery cells and outputting power from the plurality of battery cells; Has,
    The branch box,
    A second connection portion electrically connected to the first connection portion;
    A third connection unit that is electrically connected to the auxiliary devices and that can input power from the auxiliary devices or output power to the auxiliary devices;
    A fourth connection unit electrically connected to the traveling system and capable of inputting power from the traveling system or outputting power to the traveling system;
    A power supply system including: a branch circuit that electrically connects the second connection unit, the third connection unit, and the fourth connection unit.
  2.  前記分岐ボックスは、第1分岐ボックスと、第2分岐ボックスとから構成され、
     前記分岐回路は、前記第1分岐ボックスに設けられる第1分岐回路と、前記第2分岐ボックスに設けられる第2分岐回路と、前記第1分岐ボックスと前記第2分岐ボックスとの間に設けられ、前記第1分岐回路と前記第2分岐回路とを電気的に接続する連結回路とから構成され、
     前記第2接続部、及び、前記第4接続部は、前記第1分岐ボックスに設けられ、前記第1分岐回路は、前記第2接続部、及び、前記第4接続部を電気的に接続し、
     前記補機類は、複数設けられ、前記第3接続部は、複数の前記補機類の数に対応して複数設けられており、
     複数の前記第3接続部は、前記第2分岐ボックスに設けられ、前記第2分岐回路は、複数の前記第3接続部の間を電気的に接続する請求項1に記載の電源システム。
    The branch box includes a first branch box and a second branch box,
    The branch circuit is provided between a first branch circuit provided in the first branch box, a second branch circuit provided in the second branch box, and the first branch box and the second branch box. , A connection circuit for electrically connecting the first branch circuit and the second branch circuit,
    The second connection part and the fourth connection part are provided in the first branch box, and the first branch circuit electrically connects the second connection part and the fourth connection part. ,
    A plurality of the auxiliary devices are provided, and a plurality of the third connection portions are provided corresponding to the number of the plurality of the auxiliary devices,
    The power supply system according to claim 1, wherein the plurality of third connection units are provided in the second branch box, and the second branch circuit electrically connects the plurality of third connection units.
  3.  前記走行系統は、前記車両を走行させる電気モータと、前記電気モータを作動させるインバータを有するパワーコントロールユニットと、を備え、
     前記インバータの作動可能な電圧は、前記バッテリーボックスの前記第1接続部における電圧である第1電圧とされ、前記第2接続部、及び、前記第4接続部における電圧は、前記第1電圧と同電位とされ、
     前記第3接続部における電圧は、前記第1電圧と異なる第2電圧とされ、
     前記連結回路は、前記第1分岐回路に電気的に接続される第1連結回路と、前記第2分岐回路に電気的に接続される第2連結回路と、から構成され、
     前記第1連結回路と前記第2連結回路とは、前記第1電圧を前記第2電圧に変圧させる変圧装置を介して電気的に接続されている請求項2に記載の電源システム。
    The traveling system includes an electric motor that drives the vehicle, and a power control unit that includes an inverter that operates the electric motor,
    The operable voltage of the inverter is a first voltage that is a voltage at the first connection portion of the battery box, and the voltages at the second connection portion and the fourth connection portion are the first voltage and the first voltage. The same potential,
    The voltage at the third connection portion is a second voltage different from the first voltage,
    The connection circuit includes a first connection circuit electrically connected to the first branch circuit, and a second connection circuit electrically connected to the second branch circuit.
    The power supply system according to claim 2, wherein the first connection circuit and the second connection circuit are electrically connected via a transformer that transforms the first voltage to the second voltage.
PCT/JP2019/020013 2018-07-05 2019-05-21 Power source system WO2020008741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128095 2018-07-05
JP2018128095A JP7003854B2 (en) 2018-07-05 2018-07-05 Power system

Publications (1)

Publication Number Publication Date
WO2020008741A1 true WO2020008741A1 (en) 2020-01-09

Family

ID=69059583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020013 WO2020008741A1 (en) 2018-07-05 2019-05-21 Power source system

Country Status (2)

Country Link
JP (1) JP7003854B2 (en)
WO (1) WO2020008741A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504655A (en) * 1994-06-10 1996-04-02 Westinghouse Electric Corp. Electric vehicle power distribution module
JP2010036594A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Hybrid automobile
US9718420B1 (en) * 2017-02-15 2017-08-01 Bordrin Motor Corporation, Inc. Integrated power electronic device for electric vehicles
US20170292982A1 (en) * 2016-04-11 2017-10-12 Lear Corporation Hvil signal generator and detector with loop diagnostics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504655A (en) * 1994-06-10 1996-04-02 Westinghouse Electric Corp. Electric vehicle power distribution module
JP2010036594A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Hybrid automobile
US20170292982A1 (en) * 2016-04-11 2017-10-12 Lear Corporation Hvil signal generator and detector with loop diagnostics
US9718420B1 (en) * 2017-02-15 2017-08-01 Bordrin Motor Corporation, Inc. Integrated power electronic device for electric vehicles

Also Published As

Publication number Publication date
JP7003854B2 (en) 2022-01-21
JP2020010461A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2020008742A1 (en) Power supply system
KR102419697B1 (en) A storage battery charging device for a vehicle, a method of operating an onboard storage battery charging device, a high voltage vehicle electrical system, and use of the storage battery charging device
US9783037B2 (en) Vehicle
US9834102B2 (en) In-vehicle power supply device
US11349321B2 (en) Power source system and electric vehicle
US6674180B2 (en) Power supply for a hybrid electric vehicle
CN107206887B (en) Electric or hybrid vehicle with a plurality of drive units arranged in separate parts of the vehicle
US7880326B2 (en) Integrated power module for hybrid and fuel cell vehicles
US20160229293A1 (en) Electrically driven vehicle
US20190255967A1 (en) Battery Arrangement for a Motor Vehicle
US6340848B1 (en) On-vehicle distribution box and distribution system
JP2005297860A (en) Power supply device for vehicle
CN114365375A (en) Multi-voltage storage system for an at least partially electrically driven vehicle
WO2020008741A1 (en) Power source system
US20220297556A1 (en) Power distribution device
US11325550B2 (en) Electric power distribution apparatus
KR20220108334A (en) Single-phase/three-phase compatible device and method of electric vehicle-mounted charger
US20240253489A1 (en) Electric drive system for a vehicle, and method for operating an electric drive system
CN216153720U (en) Power supply structure for automobile and automobile
JP2019122182A (en) Power conversion system
US20210328312A1 (en) Electric energy system with fuel cells
JP2021158723A (en) Power supply system
JP2023009547A (en) On-vehicle power source supply system
CN112039136A (en) Vehicle drive device
CN118473031A (en) Generating bias power and providing bias power to an isolated power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831446

Country of ref document: EP

Kind code of ref document: A1