WO2020007078A1 - 高速结构光产生装置及三维单像素成像*** - Google Patents

高速结构光产生装置及三维单像素成像*** Download PDF

Info

Publication number
WO2020007078A1
WO2020007078A1 PCT/CN2019/080840 CN2019080840W WO2020007078A1 WO 2020007078 A1 WO2020007078 A1 WO 2020007078A1 CN 2019080840 W CN2019080840 W CN 2019080840W WO 2020007078 A1 WO2020007078 A1 WO 2020007078A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
structured light
mode
imaged
composite
Prior art date
Application number
PCT/CN2019/080840
Other languages
English (en)
French (fr)
Inventor
陈宏伟
滕佳洁
郭强
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020007078A1 publication Critical patent/WO2020007078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • Embodiments of the present disclosure relate to a high-speed structured light generating device and a three-dimensional single-pixel imaging system.
  • the high-speed three-dimensional single-pixel imaging system combines the high-speed single-pixel imaging technology of “time-frequency-space” mapping and photometric stereo vision technology. Firstly, the two-dimensional light intensity distribution of the real scene is reconstructed from different detection angles through the single-pixel imaging technology Then use the photometric stereo vision technology to reconstruct the three-dimensional information of the scene from the obtained image light intensity distribution difference information.
  • a high-speed structured light generating device including: a mode-locked laser, a dispersion compensation fiber, a modulator, a single-mode fiber, and a dispersion device; the mode-locked laser, and the dispersion compensation An optical fiber connection configured to emit laser light to provide a spectrum for the dispersion compensation fiber; the dispersion compensation fiber connected to the modulator is configured to extend the spectrum in the time domain to obtain an extended spectrum; and is configured as the A modulator connected to the single-mode fiber and configured to modulate a coded signal onto the extension spectrum to obtain a composite extension spectrum; the single-mode fiber is configured to compress the composite extension spectrum in the time domain to obtain Composite compressed spectrum; configured as the dispersion device, receiving the composite compressed spectrum, configured to map the composite compressed spectrum into space to generate high-speed structured light.
  • the apparatus further includes a signal generator connected to the modulator and configured to generate the encoded signal.
  • the device further includes a collimator, which is connected to the single-mode optical fiber and is configured to adjust an incident angle of the composite compression spectrum to the dispersion device; the dispersion device, Receiving the composite compression spectrum after the incident angle is adjusted by the collimator.
  • a collimator which is connected to the single-mode optical fiber and is configured to adjust an incident angle of the composite compression spectrum to the dispersion device; the dispersion device, Receiving the composite compression spectrum after the incident angle is adjusted by the collimator.
  • the modulator includes a Mach-Zehnder modulator.
  • the mode-locked laser emits laser light at a fixed frequency.
  • the dispersion compensation fiber maps a highly repetitive frame rate pulse spectrum to the time domain to obtain a highly repetitive frame rate pulse spectrum in the time domain.
  • the encoded signal includes a randomly encoded signal.
  • the randomly encoded signal comprises a sinusoidal encoded signal.
  • the mode-locked laser is also connected to the signal generator and is configured to provide a synchronous clock signal to the signal generator.
  • the dispersion device includes: a diffraction grating or other device capable of achieving spatial dispersion.
  • a three-dimensional single-pixel imaging system including: a high-speed structured light generating device, a projection lens, a lens, an object to be imaged, and a detector;
  • the high-speed structured light generating device includes a mode-locked laser , Dispersion compensation fiber, modulator, single-mode fiber and dispersion device;
  • the mode-locked laser is connected to the dispersion compensation fiber and is configured to emit laser light to provide a spectrum for the dispersion compensation fiber;
  • the dispersion compensation fiber Connected to the modulator, configured to extend the spectrum in the time domain to obtain an extended spectrum;
  • the modulator connected to the single-mode fiber, configured to modulate a coded signal onto the extended spectrum to obtain a composite Extension spectrum;
  • the single-mode fiber is configured to compress the composite extension spectrum in the time domain to obtain a composite compression spectrum;
  • the dispersion device receives the composite compression spectrum and is configured to map the composite compression spectrum In space, high-speed structured light is generated;
  • the projection lens receives a
  • the system further includes a rotating platform on which the object to be imaged is fixed, and the projection lens projects the high-speed structured light horizontally toward the rotating platform in a direction perpendicular to the surface of the rotating platform.
  • a rotating platform; the lens is arranged in a diffuse reflection field of the rotating platform.
  • the system further includes a processor configured to generate a three-dimensional single-pixel image of the object to be imaged based on the two-dimensional light intensity information.
  • the processor uses a photometric stereo vision algorithm to generate a three-dimensional single-pixel image of the object to be imaged.
  • the processor uses a photometric stereo vision algorithm to generate a three-dimensional single-pixel image of the object to be imaged, including: constructing an overdetermined matrix through a photometric stereo vision system; A surface normal vector of the object to be imaged generates a three-dimensional single-pixel image of the object to be imaged.
  • the surface normal vector of the object to be imaged includes: using a least squares algorithm to solve the optimal solution obtained by the over-determined matrix.
  • the number of the lenses is several, and they are evenly arranged in the diffuse reflection field of the rotating platform.
  • FIG. 1 is a schematic structural diagram of a high-speed structured light generating device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a high-speed structured light generating device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a three-dimensional single-pixel imaging system according to an embodiment of the present disclosure.
  • 3D imaging technologies include stereo vision-based, structured light-based, and time-of-flight 3D imaging technologies.
  • the imaging speed of 3D cameras based on stereo vision is mainly limited by the frame rate (on the order of ms) of CCD and CMOS and complex 3D reconstruction algorithms, because the restoration of depth information may require a large amount of image information to be inter-image data. Match and train.
  • the imaging speed of structured light-based cameras is mainly limited by the modulation rate (kHz) of the DMD and the frame rate of the CCD and CMOS. Time-based 3D cameras may require point-by-point scanning, so speed is also limited.
  • Embodiments of the present disclosure provide a high-speed structured light generating device and a three-dimensional single-pixel imaging system.
  • the three-dimensional single-pixel imaging technology mainly includes two technical indicators, one is the speed of the imaging speed, and the industry acknowledges that the faster the imaging speed, the better, so that a large amount of image information can be effectively obtained; the second is the quality of the imaging, that is, the imaging image Resolution, sharpness, etc .; this disclosure mainly discusses the first technical indicator, namely imaging speed.
  • structured light must be introduced first during the imaging process, and effective image information can only be obtained if appropriate structured light is provided. Therefore, one of the possible factors affecting the imaging speed is the speed at which structured light is formed.
  • the present disclosure first proposes a high-speed structured light generating device so as to be configured in a corresponding three-dimensional single-pixel imaging system.
  • a high-speed structured light generating device including: a mode-locked laser, a dispersion compensation fiber, a modulator, a single-mode fiber, and a dispersion device; the mode-locked laser, and the dispersion compensation fiber Connected, configured to emit laser light, to provide spectrum for the dispersion compensation fiber; the dispersion compensation fiber, connected to the modulator, configured to extend the spectrum in the time domain to obtain an extended spectrum; configured to the modulation And a single-mode optical fiber connected to the single-mode optical fiber and configured to modulate an encoded signal onto the extended spectrum to obtain a composite extended spectrum; the single-mode optical fiber is configured to compress the composite extended spectrum in the time domain to obtain a composite The compressed spectrum is configured as the dispersion device and receives the composite compressed spectrum and is configured to implement a one-to-one mapping of the composite compressed spectrum in space to generate high-speed structured light.
  • FIG. 1 is a schematic structural diagram of a high-speed structured light generating device according to another embodiment of the present disclosure.
  • the high-speed structured light generating device includes:
  • the Mach-Zehnder modulator is only an example of the modulator, and the present disclosure may also employ other modulators having the same or similar functions.
  • the mode-locked laser 101 is connected to the dispersion compensation fiber 102 and is configured to emit laser light.
  • the mode-locked laser 101 emits laser light at a fixed frequency, such as a frequency of 50 MHz, to provide a spectrum for the dispersion compensation fiber 102.
  • the dispersion compensation fiber 102 is connected to the Mach-Zehnder modulator 103 and is configured to extend the spectrum in the time domain to obtain an extended spectrum; the dispersion compensation fiber 102 maps the frequency domain high repetition frame pulse spectrum to the time domain to obtain the time domain High-repetition frame rate pulsed spectrum.
  • the signal generator 107 is connected to the Mach-Zehnder modulator 103 and is configured to generate a coded signal.
  • the coded signal includes a random coded signal or a sinusoidal coded signal.
  • the Mach-Zehnder modulator 103 is connected to the single-mode optical fiber 104 and is configured to modulate the coded signal onto the extension spectrum to obtain a composite extension spectrum.
  • the single-mode fiber 104 is connected to the collimator 105 and is configured to compress the composite extension spectrum in the time domain to obtain a composite compression spectrum.
  • the collimator 105 is connected to the single-mode optical fiber 104 and is configured to adjust an incident angle of the composite compression spectrum to the dispersion device 106.
  • the dispersion device 106 receives the composite compression spectrum after the incident angle is adjusted by the collimator 105, and is configured to realize a one-to-one mapping of the composite compression spectrum in space to generate high-speed structured light.
  • the mode-locked laser 101 is also connected to the signal generator 107 and is configured to provide a synchronous clock signal to the signal generator 107.
  • FIG. 2 is a schematic structural diagram of a high-speed structured light generating device according to an embodiment of the present disclosure, including:
  • the diffraction grating 206 receives the composite compression spectrum after the incident angle is adjusted by the collimator 205, and is configured to realize a one-to-one mapping of the composite compression spectrum in space to generate high-speed structured light.
  • the connections and functions of other components are the same as in the previous embodiment, and are not repeated here.
  • Another embodiment of the present disclosure introduces a three-dimensional single-pixel imaging system on the basis of all the foregoing embodiments. It can be expected that the above-mentioned high-speed structured light generating device is used in the configuration of the three-dimensional single-pixel imaging system, which can form a high-speed three-dimensional single-pixel imaging system.
  • the three-dimensional single-pixel imaging system may adopt the high-speed structured light generating devices of all the foregoing embodiments, respectively.
  • a three-dimensional single-pixel imaging system includes a high-speed structured light generating device, a projection lens, a lens, an object to be imaged, and a detector.
  • the high-speed structured light generating device includes a mode-locked laser, a dispersion compensation fiber, a modulator, a single-mode fiber, and a dispersion device; the mode-locked laser, which is connected to the dispersion compensation fiber, is configured to emit laser light, which is the dispersion
  • the compensation fiber provides the spectrum; the dispersion compensation fiber is connected to the modulator and is configured to extend the spectrum in the time domain to obtain an extended spectrum; the modulator is connected to the single-mode fiber and is configured to encode the The signal is modulated onto the extension spectrum to obtain a composite extension spectrum; the single-mode fiber is configured to compress the composite extension spectrum in the time domain to obtain a composite compression spectrum; the dispersion device receives the composite compression spectrum Is configured to map the composite compressed spectrum in space to produce high-speed structured light.
  • the projection lens receives the high-speed structured light generated by the high-speed structured light generating device, and is configured to direct the high-speed structured light toward the object to be imaged.
  • the object to be imaged is disposed within a transmission range of the projection lens and is configured as an imaged original target.
  • the lens is disposed in a diffuse reflection field of the projection lens, and is configured to collect light intensity information diffusely reflected to the space.
  • the detector is disposed at an output end of the lens, and is configured to receive light intensity information transmitted by the lens and convert the light intensity information into two-dimensional light intensity information.
  • FIG. 3 is a schematic structural diagram of a three-dimensional single-pixel imaging system in another embodiment of the present disclosure.
  • the system includes:
  • the high-speed structured light generating device 301 is the same as the high-speed structured light generating device in all of the foregoing embodiments. It also includes a projection lens 302, a rotation platform 303 (, a lens 305, a lens 307, an object to be imaged 304, a detector 306, and a detector 308.
  • the rotation platform 303 may be a high-speed rotation platform.
  • the projection lens 302 receives high-speed structured light
  • the high-speed structured light generated by the generating device 301 is configured to shoot the high-speed structured light horizontally toward the high-speed rotary platform 303 in a direction perpendicular to the surface of the high-speed rotary platform 303.
  • An object to be imaged 304 is attached to the high-speed rotation platform 303 and is configured to implement a movement, such as a longitudinal movement, of the object to be imaged 304.
  • the object to be imaged 304 is disposed within a transmission range of the transmission lens.
  • stationary or moving in front of the projection lens 302 is configured to provide an imaged original target.
  • the lens 305 and the lens 307 are disposed in the diffuse reflection field of the high-speed rotating platform 303, and are configured to collect light intensity information diffusely reflected into the space.
  • the number of lenses may be one or several. When the number of lenses is two or more, they can be uniformly arranged in the diffuse reflection field of the high-speed rotating platform.
  • the detector 306 and the detector 308 are respectively disposed at the exit ends of the lens 305 and the lens 307, and are configured to receive the light intensity information transmitted by the lens 305 and the lens 307 and convert it into two-dimensional light intensity information.
  • using a photometric stereo vision algorithm to generate a three-dimensional single-pixel image of the object to be imaged may include: constructing an over-determined matrix through a photometric stereo vision system, and using a least square algorithm to solve the super-resolution Determine a matrix to obtain a surface normal vector of the object to be imaged, and generate a three-dimensional single-pixel image of the object to be imaged.
  • the surface normal vector of the object to be imaged includes: using a least squares algorithm to solve the optimal solution obtained by the over-determined matrix.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种高速结构光产生装置,包括:锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件。本公开实施例还提供了一种三维单像素成像***,包括:上述的高速结构光产生装置、投射透镜、透镜、待成像物体及探测器。本公开可以产生高速结构光并进行高速度的三维单像素成像。

Description

高速结构光产生装置及三维单像素成像***
本申请要求2018年7月3日递交的,申请号为201810717199.8的中国发明专利申请的优先权。在此全文引用作为本申请的一部分。
技术领域
本公开实施例涉及一种高速结构光产生装置及三维单像素成像***。
背景技术
高速三维单像素成像***结合了“时-频-空”映射的高速单像素成像技术和光度立体视觉技术,首先通过单像素成像技术实现从不同探测角度重构现实场景的二维光强分布,然后利用光度立体视觉技术从获取的图像光强分布差异信息中重构出场景的三维信息。
发明内容
根据本公开的至少一个实施例,提供了一种高速结构光产生装置,包括:锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;被配置为所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延展光谱上,得到复合延展光谱;所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;被配置为所述色散器件,接收经所述复合压缩光谱,被配置为将复合压缩光谱映射到空间中,产生高速结构光。
例如,所述的装置还包括信号发生器,所述信号发生器与所述调制器连接,被配置为产生所述编码信号。
例如,所述的装置,还包括准直器,所述准直器与所述单模光纤连接,被配置为调整所述复合压缩光谱射入所述色散器件的入射角;所述色散器件,接收经所述准直器调整入射角后的所述复合压缩光谱。
例如,所述调制器包括马赫增德尔调制器。
例如,所述锁模激光器以固定的频率发射激光。
例如,所述色散补偿光纤将高重复帧率脉冲光谱映射到时域,得到时域的高重复帧率脉冲光谱。
例如,所述编码信号包括随机编码信号。
例如,其中所述随机编码信号包括正弦编码信号。
例如,所述锁模激光器,还与所述信号发生器连接,被配置为向所述信号发生器提供同步时钟信号。
例如,所述色散器件包括:衍射光栅或其他可以实现空间色散的器件。
根据本公开的至少一个实施例,提供了一种三维单像素成像***,包括:高速结构光产生装置、投射透镜、透镜、待成像物体及探测器;所述高速结构光产生装置包括锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延展光谱上,得到复合延展光谱;所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;所述色 散器件,接收经所述复合压缩光谱,被配置为将所述复合压缩光谱映射在空间中,产生高速结构光;所述投射透镜,接收所述高速结构光产生装置产生的高速结构光,被配置为将所述高速结构光射向所述待成像物体;所述待成像物体,设置在所述投射透镜的透射范围内,被配置为成像的原始目标;所述透镜,设置在所述投射透镜的漫反射场内,被配置为汇聚漫反射到空间的光强信息;所述探测器,设置在所述透镜出射端,用于接收所述透镜传递的光强信息并转化为二维光强信息。
例如,所述的***还包括旋转平台,所述待成像物体固定在所述旋转平台上,所述投射透镜将所述高速结构光以垂直于所述旋转平台表面的方向,水平射向所述旋转平台;所述透镜,设置在所述旋转平台的漫反射场内。
例如,所述的***还包括处理器,被配置为根据所述二维光强信息,生成所述待成像物体的三维单像素图像。
例如,所述处理器采用光度立体视觉算法,生成所述待成像物体的三维单像素图像。
例如,所述处理器采用光度立体视觉算法,生成所述待成像物体的三维单像素图像,包括:通过光度立体视觉***,构建超定矩阵,利用最小二乘算法求解所述超定矩阵,获取所述待成像物体的表面法向量,生成所述待成像物体的三维单像素图像。
例如,所述待成像物体的表面法向量包括:采用最小二乘算法求解所述超定矩阵获取的最优解。
例如,所述透镜的数量为若干个,均匀设置在所述旋转平台的漫反射场内。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个实施例中高速结构光产生装置结构示意图;
图2是本公开一个实施例中高速结构光产生装置结构示意图;
图3是本公开一个实施例中三维单像素成像***结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
一般来说,3D成像技术包括,基于立体视觉、基于结构光和基于时间飞行的3D成像技术。其中基于立体视觉的3D相机的成像速度主要受限于CCD和CMOS的帧率(ms量级)以及复杂的3D重构算法,因为深度信息的恢复可能需要对大量的图像信息进行图像数据间的匹配和训练。基于结构光的相机的成像速度主要受限于DMD的调制速率(kHz)以及CCD和CMOS的帧率。基于时间飞行的3D相机可能需要进行逐点扫描,因此速度也受限。
本公开实施例提供了一种高速结构光产生装置及三维单像素成像***。在三维单像素成像技术中主要包含两项技术指标,一是成像速度的快慢,业内公认的是成像速度越快越好,这样可以有效获取大量的图像信息;二是成像的质量,即成像图像的分辨率及清晰度等;本公开主要讨论第一个技术指 标,即成像速度。众所周知,在三维单像素成像***中,成像过程中首先要有引入结构光,只有具备了合适的结构光才能获取有效的图像信息。因此,影响成像速度的可能因素之一就是结构光形成的速度快慢,越快的结构光形成速度可能导致越快的成像速度,反之亦然。由此可知,想要加快三维单像素成像***的成像速度,可以改进其结构光产生***,获得能够高速产生结构光的结构光产生装置,并将该装置运用于三维单像素成像***中,就可以有效提升三维单像素成像***的成像速度。本公开首先提出了一种高速结构光产生装置,以便应被配置为相应的三维单像素成像***中。
根据本公开的一个实施例,提供了一种高速结构光产生装置,包括:锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;被配置为所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延展光谱上,得到复合延展光谱;所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;被配置为所述色散器件,接收经所述复合压缩光谱,被配置为实现复合压缩光谱在空间中的一一映射,产生高速结构光。
参见图1,图1是本公开另一个实施例的高速结构光产生装置结构示意图,在该实施例中,高速结构光产生装置包括:
锁模激光器101、色散补偿光纤102、信号发生器107、马赫增德尔调制器103、单模光纤104、准直器105及色散器件106。其中马赫增德尔调制器仅仅是调制器的示例,本公开还可以采用其他具有相同或类似功能的调制器。锁模激光器101,与色散补偿光纤102连接,被配置为发射激光。
例如,锁模激光器101以固定的频率发射激光,例如50MHz的频率发射 激光,为色散补偿光纤102提供光谱。
色散补偿光纤102,与马赫增德尔调制器103连接,被配置为在时域延展所述光谱得到延展光谱;色散补偿光纤102将频域的高重复帧率脉冲光谱映射到时域,得到时域的高重复帧率脉冲光谱。
信号发生器107,与马赫增德尔调制器103连接,被配置为产生编码信号。例如,所述编码信号包括:随机编码信号或正弦编码信号。
马赫增德尔调制器103,与单模光纤104连接,被配置为将所述编码信号调制到所述延展光谱上,得到复合延展光谱。
单模光纤104,与准直器105连接,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱。
准直器105,与单模光纤104连接,被配置为调整所述复合压缩光谱射入色散器件106的入射角。
色散器件106,接收经准直器105调整入射角后的复合压缩光谱,被配置为实现复合压缩光谱在空间中的一一映射,产生高速结构光。
锁模激光器101,还与信号发生器107连接,被配置为向信号发生器107提供同步时钟信号。
本公开另一实施例在前述所有实施例的基础上,对色散器件做了进一步的描述。色散器件的种类多种多样,具体采用哪种色散器件,也成为技术人员需要考虑的问题。本公开实施例为技术人员提供了一种色散器件的具体参考,即衍射光栅,在此基础上形成另一种高速结构光产生装置。参见图2,图2是本公开实施例中高速结构光产生装置结构示意图,包括:
锁模激光器201、色散补偿光纤202、信号发生器207、马赫增德尔调制 器203、单模光纤204、准直器205及衍射光栅206。
衍射光栅206,接收经准直器205调整入射角后的复合压缩光谱,被配置为实现复合压缩光谱在空间中的一一映射,产生高速结构光。其他部件的连接与功能与前述实施例中相同,在此不再赘述。
本公开又一实施例在前述所有实施例的基础上,引入了一种三维单像素成像***。可以预料的是,该三维单像素成像***的构成中使用到了上述高速结构光产生装置,能够形成一种高速度的三维单像素成像***。例如,该三维单像素成像***可以分别采用了前述所有实施例的高速结构光产生装置。
根据本公开的一个实施例,三维单像素成像***包括高速结构光产生装置、投射透镜、透镜、待成像物体及探测器。
所述高速结构光产生装置包括锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延展光谱上,得到复合延展光谱;所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;所述色散器件,接收经所述复合压缩光谱,被配置为将复合压缩光谱映射在空间中,产生高速结构光。
所述投射透镜,接收所述高速结构光产生装置产生的高速结构光,被配置为将所述高速结构光射向所述待成像物体。
所述待成像物体,设置在所述投射透镜的透射范围内,被配置为成像的原始目标。
所述透镜,设置在所述投射透镜的漫反射场内,被配置为汇聚漫反射到 空间的光强信息。
所述探测器,设置在所述透镜出射端,用于接收所述透镜传递的光强信息并转化为二维光强信息。
参见图3,图3是本公开另一实施例中三维单像素成像***结构示意图。该***包括:
高速结构光产生装置301分别与前述所有实施例中的高速结构光产生装置相同。还包括投射透镜302、旋转平台303(、透镜305、透镜307、待成像物体304、探测器306及探测器308。例如,旋转平台303可以是一个高速旋转平台。投射透镜302,接收高速结构光产生装置301产生的高速结构光,被配置为将所述高速结构光以垂直于高速旋转平台303表面的方向,水平射向高速旋转平台303。
高速旋转平台303上附着待成像物体304,被配置为实现待成像物体304的运动,例如纵向运动。
待成像物体304,设置在所述透射透镜的透射范围内。例如,在投射透镜302前静止或移动,被配置为提供成像的原始目标。
透镜305及透镜307,设置在高速旋转平台303的漫反射场内,被配置为汇聚漫反射到空间的光强信息。
例如,透镜的数量可以为一个或若干个。当透镜个数大于等于两个时,可以均匀布置在所述高速旋转平台的漫反射场内。
探测器306及探测器308,分别设置在透镜305及透镜307的出射端,被配置为接收透镜305及透镜307传递的光强信息并转化为二维光强信息。
根据所述二维光强信息,采用光度立体视觉算法,生成所述待成像物体 的三维单像素图像,可以包括:通过光度立体视觉***,构建超定矩阵,利用最小二乘算法求解所述超定矩阵,获取所述待成像物体的表面法向量,生成所述待成像物体的三维单像素图像。所述待成像物体的表面法向量,包括:采用最小二乘算法求解所述超定矩阵获取的最优解。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (17)

  1. 一种高速结构光产生装置,包括:
    锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;
    所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;
    所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;
    被配置为所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延展光谱上,得到复合延展光谱;
    所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;
    被配置为所述色散器件,接收经所述复合压缩光谱,被配置为将复合压缩光谱映射到空间中,产生高速结构光。
  2. 根据权利要求1所述的装置,还包括信号发生器,所述信号发生器与所述调制器连接,被配置为产生所述编码信号。
  3. 根据权利要求1或2所述的装置,还包括准直器,所述准直器与所述单模光纤连接,被配置为调整所述复合压缩光谱射入所述色散器件的入射角;所述色散器件,接收经所述准直器调整入射角后的所述复合压缩光谱。
  4. 根据权利要求1-3任一所述的装置,其中,所述调制器包括马赫增德尔调制器。
  5. 根据权利要求1-4任一所述的装置,其中,所述锁模激光器以固定的频率发射激光。
  6. 根据权利要求1-5任一所述的装置,其中,所述色散补偿光纤将高重复帧率脉冲光谱映射到时域,得到时域的高重复帧率脉冲光谱。
  7. 根据权利要求1-6任一所述的装置,其中,所述编码信号包括随机编码信号。
  8. 根据权利要求7所述的装置,其中所述随机编码信号包括正弦编码信号。
  9. 根据权利要求2-8任一所述的装置,其中,所述锁模激光器,还与所述信号发生器连接,被配置为向所述信号发生器提供同步时钟信号。
  10. 根据权利要求1-9任一所述的方法,其中,所述色散器件包括:衍射光栅或其他可以实现空间色散的器件。
  11. 一种三维单像素成像***,包括:
    高速结构光产生装置、投射透镜、透镜、待成像物体及探测器;
    所述高速结构光产生装置包括锁模激光器、色散补偿光纤、调制器、单模光纤及色散器件;
    所述锁模激光器,与所述色散补偿光纤连接,被配置为发射激光,为所述色散补偿光纤提供光谱;
    所述色散补偿光纤,与所述调制器连接,被配置为在时域延展所述光谱得到延展光谱;
    所述调制器,与所述单模光纤连接,被配置为将编码信号调制到所述延 展光谱上,得到复合延展光谱;
    所述单模光纤,被配置为在时域压缩所述复合延展光谱,得到复合压缩光谱;
    所述色散器件,接收经所述复合压缩光谱,被配置为将所述复合压缩光谱映射在空间中,产生高速结构光;
    所述投射透镜,接收所述高速结构光产生装置产生的高速结构光,被配置为将所述高速结构光射向所述待成像物体;
    所述待成像物体,设置在所述投射透镜的透射范围内,被配置为成像的原始目标;
    所述透镜,设置在所述投射透镜的漫反射场内,被配置为汇聚漫反射到空间的光强信息;
    所述探测器,设置在所述透镜出射端,用于接收所述透镜传递的光强信息并转化为二维光强信息。
  12. 根据权利要求11所述的***,还包括旋转平台,所述待成像物体固定在所述旋转平台上,所述投射透镜将所述高速结构光以垂直于所述旋转平台表面的方向,水平射向所述旋转平台;所述透镜,设置在所述旋转平台的漫反射场内。
  13. 根据权利要求11或12所述的***,还包括处理器,被配置为根据所述二维光强信息,生成所述待成像物体的三维单像素图像。
  14. 根据权利要求13所述的***,其中,所述处理器采用光度立体视觉算法,生成所述待成像物体的三维单像素图像。
  15. 根据权利要求14所述的***,其中,所述处理器采用光度立体视觉算法,生成所述待成像物体的三维单像素图像,包括:通过光度立体视觉***,构建超定矩阵,利用最小二乘算法求解所述超定矩阵,获取所述待成像物体的表面法向量,生成所述待成像物体的三维单像素图像。
  16. 根据权利要求15所述的***,其中,所述待成像物体的表面法向量包括:采用最小二乘算法求解所述超定矩阵获取的最优解。
  17. 根据权利要求11-16任一所述的***,其中,所述透镜的数量为若干个,均匀设置在所述旋转平台的漫反射场内。
PCT/CN2019/080840 2018-07-03 2019-04-01 高速结构光产生装置及三维单像素成像*** WO2020007078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810717199.8 2018-07-03
CN201810717199.8A CN108895982B (zh) 2018-07-03 2018-07-03 高速结构光产生装置及三维单像素成像***

Publications (1)

Publication Number Publication Date
WO2020007078A1 true WO2020007078A1 (zh) 2020-01-09

Family

ID=64348076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080840 WO2020007078A1 (zh) 2018-07-03 2019-04-01 高速结构光产生装置及三维单像素成像***

Country Status (2)

Country Link
CN (1) CN108895982B (zh)
WO (1) WO2020007078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441035A (zh) * 2021-12-31 2022-05-06 复旦大学 基于高速可调多色led光源的多光谱成像方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895982B (zh) * 2018-07-03 2019-10-18 清华大学 高速结构光产生装置及三维单像素成像***
CN109905583B (zh) * 2019-03-27 2020-07-07 清华大学 多角度照明超高速成像装置
CN113048907B (zh) * 2021-02-08 2022-04-22 浙江大学 一种基于宏像素分割的单像素多光谱成像方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676130A (zh) * 2013-12-18 2014-03-26 清华大学 显微成像***及方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像***
CN107228625A (zh) * 2017-06-01 2017-10-03 深度创新科技(深圳)有限公司 三维重建方法、装置及设备
CN107272218A (zh) * 2017-05-26 2017-10-20 清华大学 高速结构光成像***
CN107677216A (zh) * 2017-09-06 2018-02-09 西安交通大学 一种基于光度立体视觉的多个磨粒三维形貌同步获取方法
CN108895982A (zh) * 2018-07-03 2018-11-27 清华大学 高速结构光产生装置及三维单像素成像***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676130A (zh) * 2013-12-18 2014-03-26 清华大学 显微成像***及方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像***
CN107272218A (zh) * 2017-05-26 2017-10-20 清华大学 高速结构光成像***
CN107228625A (zh) * 2017-06-01 2017-10-03 深度创新科技(深圳)有限公司 三维重建方法、装置及设备
CN107677216A (zh) * 2017-09-06 2018-02-09 西安交通大学 一种基于光度立体视觉的多个磨粒三维形貌同步获取方法
CN108895982A (zh) * 2018-07-03 2018-11-27 清华大学 高速结构光产生装置及三维单像素成像***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG, TIANHUA ET AL.: "FPGA-based high-speed real-time line-scan imager via Fourier spectrum acquisition", CLEO: APPLICATIONS AND TECHNOLOGY 2018, 18 May 2018 (2018-05-18), XP033380392 *
GUO, QIANG ET AL.: "High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns", IEEE PHORONICS JOURNAL, 31 December 2017 (2017-12-31), pages 1 - 12, XP011638760 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441035A (zh) * 2021-12-31 2022-05-06 复旦大学 基于高速可调多色led光源的多光谱成像方法及装置

Also Published As

Publication number Publication date
CN108895982A (zh) 2018-11-27
CN108895982B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020007078A1 (zh) 高速结构光产生装置及三维单像素成像***
US10897610B2 (en) System and method of three-dimensional imaging
US11900624B2 (en) Digital fringe projection and multi-spectral polarization imaging for rapid 3D reconstruction
US11563911B2 (en) Method and system for time-of-flight imaging with high lateral resolution
US10986328B2 (en) Device, method and system for generating dynamic projection patterns in a camera
AU2019282766B2 (en) Device, method and system for generating dynamic projection patterns in a confocal camera
CN104267407B (zh) 基于压缩采样的主动成像方法和***
JP3695188B2 (ja) 形状計測装置および形状計測方法
CN111649691A (zh) 基于单像素探测器的数字条纹投影三维成像***及方法
CN112710253B (zh) 三维扫描仪和三维扫描方法
US11369269B2 (en) Short-wave infrared and 3D topographic imager
Li et al. Mega-pixel time-of-flight imager with ghz modulation frequencies
KR20180119428A (ko) 위상광학 이미지 획득 장치 및 방법
JPH0947432A (ja) 口腔組織観察装置
JP2001153612A (ja) 3次元撮像装置及び方法並びに干渉光生成装置
JP2001108420A (ja) 形状計測装置および形状計測方法
WO2019155401A1 (en) Projected texture pattern for intra-oral 3d imaging
Chen et al. A light modulation/demodulation method for real-time 3d imaging
Stroud et al. Ultrahigh-speed spatial pattern projection using a nonlinear optical time lens for fast single-pixel imaging
JP2004101377A (ja) 3次元形状計測装置
Gong et al. Improving 4-D shape measurement by using projector defocusing
Li et al. Generating sinusoidal fringe by defocusing: potentials for unprecedentedly high-speed 3-D shape measurement using a DLP projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830076

Country of ref document: EP

Kind code of ref document: A1