WO2020003799A1 - ダイヤフラムバルブおよびその監視方法 - Google Patents

ダイヤフラムバルブおよびその監視方法 Download PDF

Info

Publication number
WO2020003799A1
WO2020003799A1 PCT/JP2019/019635 JP2019019635W WO2020003799A1 WO 2020003799 A1 WO2020003799 A1 WO 2020003799A1 JP 2019019635 W JP2019019635 W JP 2019019635W WO 2020003799 A1 WO2020003799 A1 WO 2020003799A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm valve
support member
flexible support
flexible
partition member
Prior art date
Application number
PCT/JP2019/019635
Other languages
English (en)
French (fr)
Inventor
裕也 鈴木
竜太郎 丹野
大飛 土口
中村 伸夫
篠原 努
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to CN201980043717.5A priority Critical patent/CN112334696A/zh
Priority to US16/972,717 priority patent/US11927280B2/en
Priority to KR1020217001143A priority patent/KR20210021036A/ko
Priority to JP2020527275A priority patent/JP7300187B2/ja
Publication of WO2020003799A1 publication Critical patent/WO2020003799A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/123Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm the seat being formed on the bottom of the fluid line
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1221Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm

Definitions

  • the present invention relates to a diaphragm valve and a method for monitoring the diaphragm valve.
  • Diaphragm valves are widely used in the biotechnology, pharmaceutical, chemical, food processing, beverage, cosmetic, and semiconductor industries. These industries require valves, valves to prevent product contamination and leakage in the workplace and surrounding environment.
  • diaphragms of diaphragm valves such as those made of rubber.
  • a flexible partition member made of a polymer such as a fluorine-based resin disposed on the liquid-contacting side is provided.
  • Patent Documents 1 and 2 disclose techniques for providing a sensor for detecting breakage of a flexible partition member on the liquid contact side.
  • this technique when the breakage of the flexible partition member on the liquid contact side is detected, there is a possibility that the fluid in the diaphragm valve has already leaked to the outside.
  • An object of the present invention is to provide a diaphragm valve which can prevent a fluid in the diaphragm valve from leaking to the outside due to the breakage of the diaphragm, and a method of monitoring the diaphragm valve.
  • the diaphragm valve of the present invention is a valve body that defines a flow path through which a fluid flows, and an opening that opens to the outside in the middle of the flow path, A flexible partition member that separates the flow path and the outside while covering the opening, and changes the cross-sectional area of the flow path, A flexible support member disposed on the back side of the front flexible partition member opposite to the flow path side, A housing fixed to the valve body via peripheral portions of the flexible partition member and the flexible support member; A sensor for detecting a state of an atmosphere in a space defined by the flexible support member and the inner surface of the housing or a change thereof.
  • the flexible partition wall member is designed to have a longer service life than the flexible support member.
  • the flexible partition member may have a configuration in which the flexible partition member is formed of a material having a different transmittance to a specific gas from a material for forming the flexible support member. Specifically, a configuration can be adopted in which the flexible partition member is formed of a material that is permeable to water vapor, and the flexible support member is formed of a material that is permeable to water vapor.
  • the sensor may have a configuration including a humidity sensor.
  • the senor may detect the concentration of the specific gas in the atmosphere or a change thereof, or the humidity of the atmosphere or the change thereof.
  • the flexible partition member is formed of a polymer, and more preferably, the flexible partition member is formed of polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the flexible support member is formed of an elastomer. More preferably, the flexible supporting member is made of natural rubber, nitrile rubber, styrene rubber, butadiene rubber, isobutylene synthetic rubber, polychloroprene rubber, butyl rubber, fluorine rubber, silicon rubber, polyurethane rubber, ethylene propylene diene rubber (EPDM). ) Is formed of a material selected from the group consisting of:
  • the diaphragm monitoring method of the present invention is a method for monitoring a flow path through which a fluid flows, a valve body that defines an opening that opens to the outside in the middle of the flow path, and the flow path and the outside while covering the opening.
  • a flexible partition member that is spaced apart and changes the cross-sectional area of the flow path; a flexible support member disposed on the back side of the front flexible partition member opposite to the flow path side; and the valve body.
  • FIG. 1 is an external perspective view of a diaphragm valve according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the diaphragm valve of FIG.
  • FIG. 2 is a longitudinal sectional view of the diaphragm valve of FIG. 1 in a state where a flow path is closed.
  • FIG. 2 is a longitudinal sectional view of the diaphragm valve of FIG. 1 in a state where a flow path is opened. The expanded sectional view explaining the state where the flexible support member was damaged.
  • 9 is a flowchart illustrating a first monitoring method in the processing circuit.
  • 9 is a flowchart illustrating a second monitoring method in the processing circuit.
  • FIG. 6 is a longitudinal sectional view of a diaphragm valve according to a second embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view within a circle A in FIG. 8.
  • FIG. 1 is an external perspective view of a flat type humidity sensor.
  • FIG. 10 is an enlarged sectional view of a main part of a diaphragm valve according to a third embodiment of the present invention.
  • FIG. 1 is an external perspective view of a diaphragm valve 1 according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the diaphragm valve 1 of FIG. 1
  • FIG. 3 is a diaphragm with a flow path closed.
  • FIG. 4 is a vertical sectional view of the diaphragm valve 1 in a state where a flow path is opened.
  • the diaphragm valve 1 includes a valve body 10, a diaphragm 20, an actuator 30, a compressor 50 connected to the actuator 30, a piston 33 for driving the compressor 50, and a housing 41 fixed to the actuator 30, which will be described later. 10 is provided.
  • the valve body 10 is made of a metal alloy, and includes a flow path 11 and an opening 12 that opens to the outside in the middle of the flow path 11. You. As shown in FIG. 3, a sealing surface 13 with which a later-described flexible partition member 21 abuts is formed in the flow path 11 of the valve body 10.
  • the diaphragm 20 has a flexible partition member 21 and a flexible support member 22.
  • the flexible partition member 21 is formed of a polymer.
  • the flexible partition member 21 is formed of, for example, polytetrafluoroethylene (PTFE) that transmits water vapor as the specific gas.
  • PTFE polytetrafluoroethylene
  • the diaphragm 20 has a bell cup shape.
  • the flexible partition member 21 has a thick portion 21a at a lower portion including a center portion at the distal end, and a thin portion 21b at an outer peripheral portion continuous with the lower portion.
  • An annular seal projection 21c is formed on the outer peripheral edge of the thin portion 21b so as to abut on a support portion 12s formed on the peripheral edge of the opening 12 of the valve body 10.
  • the outer peripheral edge of the seal projection 21c of the flexible partition member 21 further outside is guided by a concave guide portion formed on the support portion of the valve body 10.
  • a single seal protrusion 21t is formed on the liquid contact surface of the flexible partition member 21 (see FIGS. 2 and 4).
  • the seal protrusion 21t is formed.
  • the channel 11 is blocked by being pressed against the sealing surface 13.
  • a locking concave portion 21d for locking the metal connecting member 25 is formed.
  • the connecting member 25 penetrates the flexible support member 22 and is connected to the compressor 50 by a connecting portion 25a.
  • the flexible support member 22 is disposed to face the back surface of the flexible partition member 21 opposite to the liquid contact surface.
  • the flexible support member 22 serves as a cushion whose main purpose is to prevent wear and breakage of the flexible partition member 21.
  • Rubber or an elastomer is used for the flexible support member 22.
  • natural rubber, nitrile rubber, styrene rubber, butadiene rubber, isobutylene synthetic rubber, polychloroprene rubber excellent in heat resistance, cold resistance, flexibility and corrosion are used.
  • Butyl rubber, fluorine rubber, silicon rubber, polyurethane rubber, ethylene propylene diene rubber (EPDM), etc. can be used.
  • the flexible support member 22 is formed using EPDM which does not transmit water vapor as the specific gas. are doing.
  • An annular convex portion 22c is formed on the outer peripheral edge of the flexible support member 22, and fits into a concave groove of an annular member 42 fixed to a lower end portion of a housing 41 described later.
  • the actuator 30 is provided on a casing 31 having a bottomed cylindrical shape, an upper support plate 32 provided on a ceiling portion of the casing 31, and an inner peripheral surface 31 f of the casing 31 movably provided in the casing 31 via a seal member SL2.
  • the piston 33, the lower support plate 34 supported by the piston 33, and the piston 33 provided at the center of the casing 31 and connected to the piston 33 and penetrating through the lower plate 40 of the casing toward the valve body 10 side. It has an extending stem 35, a housing 41 fixed to the lower surface of the lower plate 40, and a compressor 50 fixed to the lower end of the stem 35.
  • Two coil springs 38 and 39 are provided between the upper support plate 32 and the piston 33 and the lower support plate 34, and constantly bias the piston 33 toward the lower plate 40.
  • a plurality of ventilation holes 32a are formed in the upper support plate 32, and communicate the inside of the casing 31 with the outside.
  • a guide member 36 and a fixing member 37 are provided on the outer periphery of the upper end of the stem 35, and the space between the guide member 36 and the stem 35 is sealed by a seal member SL1.
  • the outer peripheral surface of the casing 31 is provided with an air port 43 for supplying compressed air CA to a space between the piston 33 and the lower plate 40 of the casing 31 or discharging air from the space.
  • the housing 41 is fixed to the lower plate 40 of the actuator 30, and forms a housing space SP for housing the compressor 50 together with the flexible support member 22 of the diaphragm 20.
  • a humidity sensor 100 described later is provided on an inner wall in the housing space SP of the housing 41, and a circuit box 110 containing a processing circuit electrically connected to the humidity sensor 100 is fixed to an outer wall of the housing 41.
  • An annular member 42 is integrally fixed to the lower end of the housing 41. The annular member 42 is fastened to the support portion 12s of the valve body 10 by the clamper 80 via the flexible partition member 21 and the flexible support member 22.
  • the clamper 80 has a pair of semicircular members 81, a bolt BT that penetrates a connection hole 81a provided in each semicircular member 81, and a nut NT screwed with the bolt BT. Is converted into a force for pressing the annular member 42 against the support portion 12s of the valve body 10.
  • the compressor 50 is made of a metal alloy, and has a pressing portion 51 that is in direct contact with the flexible support member 22 and is connected to the connection member 25.
  • the pressing force acting on the flexible partition member 21 from the pressing portion 51 of the compressor 50 via the flexible support member 22 is released, and the flow path 11 of the valve body 10 is opened.
  • the stem 35 moves upward, it can be seen that the thin portion 21b of the flexible partition member 21 is bent, as shown in FIG.
  • the flexible support member 22 is also bent corresponding to the bent thin portion 21b of the flexible partition member 21.
  • the bent portion 22b of the flexible support member 22 is also a portion pressed by the pressing surface 51f of the pressing portion 51 of the compressor 50.
  • the bending portion 22b of the flexible support member 22 repeats the application of the pressing force from the pressing surface 51f of the pressing portion 51 of the compressor 50 and the bending after the release of the pressing force with the opening and closing operation of the diaphragm valve 1. Therefore, among the constituent members of the diaphragm 20, the bent portion 22b of the flexible support member 22 is placed under the most severe condition against wear and breakage.
  • the bent portion 22b of the flexible support member 22 is placed under the most severe conditions for wear and breakage, and the design stage of the flexible partition member 21 and the flexible support member 22 is performed.
  • the bent portion 22b of the flexible support member 22 is designed to be broken first. That is, the flexible support member 22 is designed in advance so that the service life thereof is shorter than that of the flexible partition member 21.
  • the design for setting such a service life period takes into consideration the shapes, dimensions, materials, applied loads, materials of the compressor 50, use conditions, various experiments, and the like of the flexible partition member 21 and the flexible support member 22. This is easily possible.
  • the humidity sensor 100 detects the humidity in the housing space SP of the housing 41 or a change thereof, and outputs the detected signal to the processing circuit in the circuit box 110 as an electric signal.
  • the processing circuit in the circuit box 110 is composed of hardware such as a processor, an input / output circuit, a communication circuit memory, and required software.
  • a first monitoring method of the diaphragm valve 1 will be described with reference to FIGS.
  • a part of the water of the aqueous solution As evaporates to form steam.
  • a part of the water vapor passes through the PTFE forming the flexible partition member 21, but the EPDM forming the flexible support member 22 does not transmit the water vapor, so that the humidity in the housing space SP of the housing 41 is large. Does not fluctuate.
  • the abrasion and deterioration of the bent portion 22b of the flexible support member 22 progresses, and as shown in FIG. A portion BK occurs.
  • the damaged portion BK occurs, the water vapor VP, which has been prevented from entering the accommodation space SP by the EPDM forming the flexible support member 22, enters the accommodation space SP through the damaged portion BK of the flexible support member 22. .
  • the humidity in the housing space SP of the housing 41 suddenly increases.
  • the abnormality of the diaphragm valve 1 is detected by detecting a humidity change in the accommodation space SP caused by the damaged portion BK of the flexible support member 22.
  • the processing circuit in the circuit box 110 detects the humidity at predetermined sampling time intervals based on the electric signal from the humidity sensor 100 (Step S1).
  • the detected humidity data is stored in the memory (Step S2).
  • the processing circuit performs an abnormality detection process using the recorded data.
  • an abnormality is determined from a change in humidity data in the housing space SP of the housing 41 stored in the memory. Accuracy can be increased. Any process can be adopted as long as it is a process for accurately detecting a change in humidity in the accommodation space SP.
  • the processing circuit determines whether or not there is an abnormality (step S4), and if not, repeats the processing of steps S1 to S3. If it is determined that there is an abnormality, an alarm is output (step S5).
  • an alarm signal is output as a wireless signal from the diaphragm valve 1 and received by a monitoring device including a personal computer or the like.
  • an abnormality is determined from a change in humidity data detected by the humidity sensor 100 when the fluid flowing through the diaphragm valve 1 is switched between the aqueous solution As and the high-temperature steam.
  • the humidity sensor 100 detects higher humidity than the outside air as described above, but when the size of the damaged portion BK is constant, the humidity becomes Converge to a certain steady-state value. This is because the accommodation space SP partially releases moisture to the outside air through the breathing hole.
  • the high-temperature water vapor has a higher vapor pressure than the aqueous solution. rises.
  • the humidity in the storage space SP keeps a substantially constant value regardless of the switching of the fluid. By detecting this difference, the presence or absence and size of the damaged portion BK can be detected.
  • a measurement start signal is sent to the circuit box 110, and the circuit box 110 detects the humidity with the humidity sensor 100 and starts an operation of storing humidity data in the memory at a predetermined sampling interval (step S11).
  • the fluid flowing through the diaphragm valve 1 is switched from the aqueous solution to the high-temperature steam (step S12).
  • the detection is terminated (step S13).
  • the timing of ending the detection is, for example, until a predetermined time has elapsed from the start of the detection in step S11.
  • the processing circuit determines the abnormality based on the detected humidity data (step S14).
  • step S15 the absolute value
  • an alarm is output (step S16). After it is determined in step S15 that there is no abnormality or after an alarm is output in step S16, the processing circuit shifts to a standby state, which is a power saving state (step S17), and ends the processing.
  • This process of switching the fluid to high-temperature steam is a process that is usually performed regularly for the purpose of high-temperature sterilization mainly in a valve for sanitary use, and does not require an additional process for detecting abnormality of the valve.
  • the second monitoring method differs from the first monitoring method in that it is not necessary to constantly acquire data. Therefore, power consumption in the circuit box 110 can be reduced. In particular, when the circuit box 110 operates with a built-in battery for wireless communication, the frequency of battery replacement can be reduced.
  • the flexible support member 22 is designed in advance so as to be damaged before the flexible partition member 21, and the atmosphere in the housing space SP of the housing 41 due to the damage of the flexible support member 22.
  • the flexible support member 22 By detecting an abnormality from the humidity fluctuation, it is possible to prevent the liquid flowing through the flow passage 11 of the diaphragm valve 1 from leaking to the outside due to the breakage of the flexible partition member 21.
  • FIG. 8 shows a longitudinal sectional view of a diaphragm valve 2 according to a second embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the diaphragm valve 2 has a flat humidity sensor 101 in the accommodation space SP.
  • FIG. 9 is an enlarged cross-sectional view and
  • FIG. 10 is a perspective view of the flat-type humidity sensor 101.
  • the flat type humidity sensor 101 has an upper electrode 101B and a lower electrode 101C sandwiching a moisture-sensitive layer 101A (dielectric portion) having a hygroscopic property, and has a parallel plate structure.
  • the moisture-sensitive layer 101A is made of a material that is highly hydrophilic and changes impedance with moisture absorption, and is made of, for example, a cellulose-based film or polyimide.
  • the lower electrode 101C is formed of, for example, a conductive material as a thin film having many small holes or a thin film having a porous structure.
  • the upper electrode 101B is made of a metal thin film and a resist for insulatingly coating the metal thin film, and is fixed to the lower plate 40 above the accommodation space SP.
  • the planar humidity sensor 101 includes a disc-shaped moisture sensitive part 101 a having a flat plate shape, and a connection part 101 w for connecting the moisture sensitive part 101 a to the circuit box 110.
  • the moisture-sensitive portion 101a has a hole 101h in the center thereof through which the stem 35 penetrates, and covers the entire upper portion of the diaphragm 20 after disposing the stem 35 immediately above the center of the diaphragm 20 in the accommodation space SP.
  • connection part 101w is an elongated rectangular flat plate extending from the outer periphery of the moisture sensing part 101a, and one end thereof is inserted into a connector (not shown) in the circuit box 110 and connected.
  • the moisture sensing part 101a and the connection part 101w may be formed integrally.
  • the moisture-sensitive layer 101A of the moisture-sensitive portion 101a absorbs moisture, the impedance between the upper electrode 101B and the lower electrode 101C changes, and the impedance is measured by the circuit of the circuit box 110 to reduce the humidity. Can be detected. Further, when the moisture-sensitive layer 101A is wet with liquid water, the impedance between the upper electrode 101B and the lower electrode 101C is extremely reduced. By comparing the measured impedance with a predetermined threshold value, it is possible to perform wetness detection for determining whether or not a part of the planar humidity sensor 101 is wetted by liquid water. Thereby, it can be detected that the diaphragm 20 is damaged and the aqueous solution As flowing through the diaphragm valve 1 leaks into the accommodation space SP.
  • FIG. 11 is an enlarged sectional view of a main part of a diaphragm valve according to a third embodiment of the present invention. Note that the same components as those in the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
  • the diaphragm valve according to the present embodiment has a humidity sensor 102 along a pressing surface (lower surface) 51f of the compressor 50.
  • FIG. 11 is a diagram in which the periphery of the compressor 50 is cut out to emphasize the thickness of the humidity sensor 102 so that the structure of the humidity sensor 102 can be easily understood.
  • the humidity sensor 102 has an upper electrode 102B and a lower electrode 102C formed on both sides of a moisture-sensitive layer 102A (dielectric portion) having a hygroscopic property, and has a parallel plate structure.
  • the moisture-sensitive layer 102A is made of a material that is highly hydrophilic and changes impedance with moisture absorption, and is, for example, a cellulose-based film or a thin film made of polyimide.
  • the lower electrode 102C is, for example, a thin film having many small holes or a thin film having a porous structure, and is formed of a conductive material. This allows the moisture-sensitive layer 102A to absorb and release moisture from the air in the storage space SP.
  • the upper electrode 102B is a conductive thin film formed on the surface of the compressor 50, but the compressor 50 itself made of metal may be used as the upper electrode 102B.
  • the upper electrode 102B and the lower electrode 102C are electrically connected to the circuit of the circuit box 110 by wirings 102w1 and 102w2, respectively.
  • the moisture-sensitive layer 102A absorbs moisture, and the impedance between the upper electrode 102B and the lower electrode 102C changes.
  • the humidity in the circuit box 110 can be detected by measuring the impedance between the upper electrode 102B and the lower electrode 102C.
  • the impedance between the upper electrode 102B and the lower electrode 102C is extremely reduced. By comparing the measured impedance with a predetermined threshold value, it is possible to perform wetness detection for determining whether or not a part of the planar humidity sensor 102 is wetted by liquid water.
  • the humidity sensor 102 is disposed in the immediate vicinity of the diaphragm 20 and so as to cover the upper surface of the diaphragm 20, it is possible to immediately detect the leak regardless of the place where the diaphragm 20 is damaged.
  • a humidity sensor was used as the sensor, the specific gas was water vapor, the flexible partition member 21 was formed of water vapor permeable PTFE, and the flexible support member 22 was formed of water vapor impermeable EPDM.
  • the present invention is not limited to this.
  • the flexible partition member and the flexible support member are formed of materials having different transmittances for the specific gas.
  • a sensor capable of detecting the concentration of the specific gas or its change is installed in the housing space SP. By adopting such a configuration, it is possible to prevent the liquid from leaking outside.
  • the liquid is a low-boiling organic solvent such as ethanol.
  • the humidity sensor 100 is installed in the accommodation space SP, but may be installed outside the accommodation space SP as long as the humidity or humidity change in the accommodation space SP can be detected.
  • the diaphragm valve having the sealing surface along the flow path is exemplified, but the present invention is applicable to a so-called wear type diaphragm valve.
  • Diaphragm valve 10 Valve body 11: Flow path 12: Opening 12 s: Support part 13: Seal surface 20: Diaphragm 21: Flexible partition member 21 a: Thick part 21 b: Thin part 21 c: Seal projection 21 d : Locking recess 21t: seal protrusion 22: flexible support member 22b: bent portion 22c: annular convex portion 25: connecting member 25a: connecting portion 30: actuator 31: casing 31f: inner peripheral surface 32: upper support plate 32a: Vent hole 33: Piston 34: Lower support plate 35: Stem 36: Guide member 37: Fixing member 38: Coil spring 39: Coil spring 40: Lower plate 41: Housing 42: Ring member 43: Air port 50: Compressor 51: Pressing portion 51f: pressing surface 80: clamper 81: semicircular portion Material 81a: Connection hole 100: Humidity sensor 101: Planar humidity sensor 102: Humidity sensor 110: Circuit box As: Aqueous solution BK: Damaged part BT: Bolt CA: Compressed air

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

ダイヤフラムの破損によるダイヤフラムバルブ内の流体が外部に漏出するのを未然に回避できるダイヤフラムバルブを提供する。流体が流通する流路(11)と、当該流路の途中で外部に開口する開口部(12)とを画定するバルブボディ(10)と、開口部(12)を覆いつつ流路(11)と外部とを隔て、かつ、流路(11)の断面積を変更する可撓性隔壁部材(21)と、可撓性隔壁部材(21)の流路側とは反対の裏面側に配置された可撓性支持部材(22)と、バルブボディ(10)に可撓性隔壁部材(21)および可撓性支持部材(22)の周縁部を介して固定されるハウジング(41)と、可撓性支持部材(22)およびハウジング(41)の内面が画定する空間内の雰囲気の状態またはその変化を検出する湿度センサ(100)とを有する。

Description

ダイヤフラムバルブおよびその監視方法
 本発明は、ダイヤフラムバルブおよびその監視方法に関する。
 ダイヤフラムバルブは、バイオ工学、製薬、化学、食品加工、飲料、化粧品、及び半導体業界で多用されている。これらの業界は、バルブ、作業場、及び周辺環境内において製品汚染や漏洩を防ぐバルブを必要とする。
 ダイヤフラムバルブのダイヤフラムはゴム製等各種存在する。ダイヤフラムに要求される変形量や耐腐食性やバルブを流通する流体の汚染を防ぐ等の観点から、接液側に配置されるフッ素系樹脂等のポリマー製の可撓性隔壁部材と、この可撓性隔壁部材の接液側とは反対の裏面側に配置される緩衝(クッション)を主目的とするエラストマー製の可撓性支持部材とで構成されるいわゆるツーピースタイプのダイヤフラムが知られている(例えば、特許文献1,2参照)。
 ツーピースタイプのダイヤフラムは、清浄度や耐久性の点では、ゴム製のダイヤフラムより優れている。
特表2013-500455号公報 特開平08-303617号公報
 特許文献1,2は、接液側の可撓性隔壁部材の破損を検出するセンサを設ける技術を開示している。
 しかしながら、この技術では、接液側の可撓性隔壁部材の破損を検知したときには、ダイヤフラムバルブ内の流体が外部に既に漏出してしまっている可能性がある。
 本発明の目的の一つは、ダイヤフラムの破損によるダイヤフラムバルブ内の流体が外部に漏出するのを未然に回避できるダイヤフラムバルブおよびこのダイヤフラムバルブの監視方法を提供することにある。
本発明のダイヤフラムバルブは、流体が流通する流路と、当該流路の途中で外部に開口する開口部とを画定するバルブボディと、
 前記開口部を覆いつつ前記流路と外部とを隔て、かつ、前記流路の断面積を変更する可撓性隔壁部材と、
 前可撓性隔壁部材の前記流路側とは反対の裏面側に配置された可撓性支持部材と、
 前記バルブボディに前記可撓性隔壁部材および可撓性支持部材の周縁部を介して固定されるハウジングと、
 前記可撓性支持部材および前記ハウジングの内面が画定する空間内の雰囲気の状態またはその変化を検出するセンサと、を有する。
 好適には、前記可撓性隔壁部材は、前記可撓性支持部材よりも耐用期間が長くなるように設計されている。
 前記可撓性隔壁部材は、前記可撓性支持部材の形成材料とは、特定のガスに対する透過率が異なる材料で形成されている、構成を採用できる。
 特定的には、前記可撓性隔壁部材は、水蒸気を透過する材料で形成され、前記可撓性支持部材は水蒸気を透過しない材料で形成されている、構成を採用できる。
 この場合に、前記センサは、湿度センサを含む、構成を採用できる。
 代替的には、前記センサは、前記雰囲気中の特定ガスの濃度またはその変化、もしくは、前記雰囲気中の湿度又はその変化を検出する、ことも可能である。
 好適には、前記可撓性隔壁部材は、ポリマーで形成され、さらに好適には、前記可撓性隔壁部材は、ポリテトラフルオロエチレン(PTFE)で形成されている。
 好適には、前記可撓性支持部材は、エラストマーで形成されている。さらに好適には、前記可撓性支持部材は、天然ゴム、ニトリルゴム、スチレンゴム、ブタジエンゴム、イソブチレン合成ゴム、ポリクロロプレンゴム、ブチルゴム、フッ素ゴム、シリコンゴム、ポリウレタンゴム、エチレンプロピレンジエンゴム(EPDM)からなるグループから選択された材料で形成されている。
 本発明のダイヤフラムの監視方法は、流体が流通する流路と、当該流路の途中で外部に開口する開口部とを画定するバルブボディと、前記開口部を覆いつつ前記流路と外部とを隔て、かつ、前記流路の断面積を変更する可撓性隔壁部材と、前可撓性隔壁部材の前記流路側とは反対の裏面側に配置された可撓性支持部材と、前記バルブボディに前記可撓性隔壁部材および可撓性支持部材の周縁部を介して固定されるハウジングと、を有するダイヤフラムバルブの監視方法であって、
 前記可撓性支持部材および前記ハウジングの内面が画定する空間内の雰囲気の状態またはその変化を検出すること、
 前記検出結果に基づいて異常を判断すること、を有する。
 本発明によれば、ダイヤフラムの破損によるダイヤフラムバルブ内の流体の外部漏出を未然に防ぐことができる。
本発明の第一の実施形態に係るダイヤフラムバルブの外観斜視図。 図1のダイヤフラムバルブの分解斜視図。 流路が閉鎖された状態の、図1のダイヤフラムバルブの縦断面図。 流路が開放された状態の、図1のダイヤフラムバルブの縦断面図。 可撓性支持部材が破損した状態を説明する拡大断面図。 処理回路における第一の監視方法を示すフローチャート。 処理回路における第二の監視方法を示すフローチャート。 本発明の第二の実施形態に係るダイヤフラムバルブの縦断面図。 図8の円A内の拡大断面図。 平面型湿度センサの外観斜視図。 本発明の第三の実施形態に係るダイヤフラムバルブの要部の拡大断面図。
 以下、本開示の実施形態について図面を参照して説明する。説明において同様の要素には同一の符号を付して、重複する説明を適宜省略する。
 図1は本発明の第一の実施形態に係るダイヤフラムバルブ1の外観斜視図であり、図2は図1のダイヤフラムバルブ1の分解斜視図、図3は流路が閉鎖された状態にあるダイヤフラムバルブ1の縦断面図、図4は流路が開放された状態にあるダイヤフラムバルブ1の縦断面図である。
 ダイヤフラムバルブ1は、バルブボディ10と、ダイヤフラム20と、アクチュエータ30と、アクチュエータ30に連結されたコンプレッサ50と、コンプレッサ50を駆動するピストン33と、アクチュエータ30に固定された後述するハウジング41をバルブボディ10に固定するクランパ80とを備えている。
 バルブボディ10は、金属合金製であり、流路11と、この流路11の途中で外部に開口する開口部12とを備えており、流路11の両端部に図示しない管がそれぞれ接続される。図3に示すように、バルブボディ10の流路11内には、後述する可撓性隔壁部材21が当接するシール面13が形成されている。
 ダイヤフラム20は、可撓性隔壁部材21と可撓性支持部材22とを有する。
 可撓性隔壁部材21は、ポリマーで形成されている。本実施形態では、可撓性隔壁部材21は、特定ガスとして水蒸気を透過する、例えば、ポリテトラフルオロエチレン(PTFE)で形成されている。
 図2や図3に示すように、ダイヤフラム20はベルカップ形状を有する。可撓性隔壁部材21は、先端中心部を含む下側部分が厚肉部21aとなっており、これと連続して外周側部分が薄肉部21bとなっている。薄肉部21bの外周縁部は、バルブボディ10の開口部12の周縁部に形成された支持部12sと当接するように円環状のシール突起21cが形成されている。可撓性隔壁部材21のシール突起21cのさらに外側の外周縁部は、バルブボディ10の支持部に形成された凹状のガイド部によりガイドされる。可撓性隔壁部材21の接液面には、一本のシール突起21tが形成され(図2,4参照)、可撓性隔壁部材21が流路11を閉鎖する際に、シール突起21tがシール面13に押し付けられることにより、流路11を遮断する。可撓性隔壁部材21の接液面とは反対側の裏面側の中心部には、金属製の連結部材25が係止する係止凹部21dが形成されている。連結部材25は、可撓性支持部材22を貫通し、その連結部25aによりコンプレッサ50に連結されている。
 可撓性支持部材22は、可撓性隔壁部材21の接液面とは反対側の裏面に対向して配置されている。可撓性支持部材22は可撓性隔壁部材21の摩耗、破損を防ぐことを主目的とするクッションとしての役割を果たす。可撓性支持部材22にはゴムやエラストマーが用いられ、例えば、耐熱性、耐寒性、屈曲性及び腐食性に優れた天然ゴム、ニトリルゴム、スチレンゴム、ブタジエンゴム、イソブチレン合成ゴム、ポリクロロプレンゴム、ブチルゴム、フッ素ゴム、シリコンゴム、ポリウレタンゴム、エチレンプロピレンジエンゴム(EPDM)等を用いることができ、本実施形態では、特定ガスとして水蒸気を透過しないEPDMを用いて可撓性支持部材22を形成している。
 可撓性支持部材22の外周縁部には、環状凸部22cが形成され、これが後述するハウジング41の下端部に固定された円環部材42の凹溝に嵌っている。
 アクチュエータ30は、有底円筒状のケーシング31と、ケーシング31の天井部分に設けられた上側支持プレート32と、ケーシング31の内周面31fにシール部材SL2を介してケーシング31内を移動自在に設けられたピストン33と、ピストン33に支持された下側支持プレート34と、ケーシング31の中心部に設けられピストン33と連結されるとともにケーシングの下部プレート40を貫通してバルブボディ10側に向けて延在するステム35と、下部プレート40の下面側に固定されたハウジング41と、ステム35の下端部に固定されたコンプレッサ50と、を有する。
 上側支持プレート32とピストン33および下側支持プレート34との間には、2つのコイルばね38,39が設けられ、ピストン33を下部プレート40に向けて常時付勢している。上側支持プレート32には、複数の通気孔32aが形成され、ケーシング31内部と外部とを連通している。
 ステム35の上端部の外周には、ガイド部材36および固定部材37が設けられており、ガイド部材36とステム35との間はシール部材SL1によりシールされている。
 ケーシング31の外周面には、ケーシング31のピストン33と下部プレート40との間の空間に圧縮エアCAを供給し、あるいは、当該空間からエアを排出するためのエアポート43が設けられている。
 ハウジング41は、アクチュエータ30の下部プレート40に固定されており、ダイヤフラム20の可撓性支持部材22とともにコンプレッサ50を収容する収容空間SPを形成している。ハウジング41の収容空間SP内の内壁には、後述する湿度センサ100が設けられており、ハウジング41の外壁には、湿度センサ100と電気的に接続された処理回路を内蔵する回路ボックス110が固定されている。
 ハウジング41の下端部には、円環部材42が一体固定されている。円環部材42は、バルブボディ10の支持部12sに可撓性隔壁部材21および可撓性支持部材22を介して、クランパ80により締結される。
 クランパ80は、一対の半円形部材81と、各半円形部材81に設けられた連結孔部81aを貫通するボルトBTと、ボルトBTと螺合するナットNTとを有し、ボルトBTとナットNTの締結力を、円環部材42をバルブボディ10の支持部12sに押し付ける力に変換する。
 コンプレッサ50は、金属合金製であり、可撓性支持部材22に直接接触するとともに連結部材25と連結される押圧部51を有する。押圧部51の押圧面51fと可撓性支持部材22との接触状態は、コンプレッサ50の上下動により変化する。
 ここで、上記のダイヤフラムバルブ1の基本動作について説明する。
 図3に示す状態では、コイルばね38,39がピストン33を下方に向けて付勢し、コンプレッサ50の押圧部51は可撓性支持部材22を介して可撓性隔壁部材21をバルブボディ10のシール面13に押し付け、バルブボディ10の流路11が閉鎖された状態にある。
 この状態から、図4に示すように、エアポート43を通じて圧縮エアCAをケーシング31内に供給すると、圧縮エアCAの圧力によりピストン33がコイルばね38,39の付勢力に抗して上方向に移動する。これに伴い、ステム35も上方向に移動する。これにより、コンプレッサ50の押圧部51から可撓性支持部材22を介して可撓性隔壁部材21に作用する押圧力が解放され、バルブボディ10の流路11が開放される。
 ステム35が上方向に移動すると、図4に示すように、可撓性隔壁部材21の薄肉部21bが屈曲するのが分かる。可撓性隔壁部材21の屈曲する薄肉部21bに対応して可撓性支持部材22も屈曲する。可撓性支持部材22の屈曲部22bは、図3から分かるように、コンプレッサ50の押圧部51の押圧面51fにより押圧される部分でもある。可撓性支持部材22の屈曲部22bは、ダイヤフラムバルブ1の開閉動作に伴い、コンプレッサ50の押圧部51の押圧面51fからの押圧力の印加およびこの押圧力の解放後の屈曲が繰り返される。したがって、ダイヤフラム20の構成部材のうち、可撓性支持部材22の屈曲部22bが摩耗や破損に対して最も厳しい条件下に置かれる。
 本実施形態では、可撓性支持部材22の屈曲部22bが摩耗や破損に対して最も厳しい条件下に置かれることに着目し、可撓性隔壁部材21および可撓性支持部材22の設計段階において、可撓性支持部材22の屈曲部22bが最初に破損するように設計している。すなわち、可撓性支持部材22の耐用期間が可撓性隔壁部材21よりも短くなるように予め設計している。このような耐用期間の設定する設計は、可撓性隔壁部材21および可撓性支持部材22の形状、寸法、材料、印加される負荷、コンプレッサ50の材料、使用条件、各種の実験等を考慮することで容易に可能である。
 湿度センサ100は、ハウジング41の収容空間SP内の湿度又はその変化を検出し、電気信号として回路ボックス110内の処理回路に出力する。湿度センサ100としては周知のものを採用できる。
 回路ボックス110内の処理回路は、図示しないが、プロセッサ、入出力回路、通信回路メモリ等のハードウエアと所要のソフトウエアで構成される。
 次に、図5および図6を参照して、本実施形態に係るダイヤフラムバルブ1の第一の監視方法について説明する。
 例えば、水溶液Asが流通するダイヤフラムバルブ1の流路11においては、水溶液Asの一部の水が気化して水蒸気が形成される。この水蒸気の一部は、可撓性隔壁部材21を形成するPTFEを透過するが、可撓性支持部材22を形成するEPDMは水蒸気を透過しないので、ハウジング41の収容空間SP内の湿度は大きくは変動しない。
 ダイヤフラムバルブ1の開閉動作を繰り返すと、上記した可撓性支持部材22の屈曲部22bの摩耗劣化が進み、図5に示すように、最初に、可撓性支持部材22の屈曲部22bに破損部BKが発生する。
 破損部BKが発生すると、可撓性支持部材22を形成するEPDMにより収容空間SPへの侵入が食い止められていた水蒸気VPは、可撓性支持部材22の破損部BKを通じて収容空間SPに侵入する。この結果、ハウジング41の収容空間SP内の湿度は急に上昇する。
 本実施形態では、この可撓性支持部材22の破損部BKにより生じる収容空間SP内の湿度変動を検知することにより、ダイヤフラムバルブ1の異常を検出する。
 具体的には、図6に示すように、回路ボックス110内の処理回路は、所定のサンプリング時間間隔で、湿度センサ100からの電気信号に基づいて湿度を検出している(ステップS1)。検出された湿度データは、メモリに記憶される(ステップS2)。
 処理回路では、記録されたデータを用いて異常検出処理を実行する。
 異常判断処理(ステップS3)では、メモリに記憶されたハウジング41の収容空間SP内の湿度データの変動から異常を判断するが、平均化処理や外部環境の湿度情報を参照するなどして、検出精度を高めることができる。収容空間SP内の湿度の変動を精度よく検出するための処理であれば、あらゆる処理を採用できる。
 処理回路では、異常かどうかを判断し(ステップS4)、異常でない場合は、上記ステップS1~S3の処理を繰り返す。異常と判断した場合には、アラームを出力する(ステップS5)。例えば、ダイヤフラムバルブ1からアラーム信号を無線信号で出力し、パーソナルコンピュータ等で構成される監視装置でこれを受信する。
 次に、第二の監視方法を、図5および図7を参照して説明する。
 第二の監視方法では、ダイヤフラムバルブ1を流通させる流体を水溶液Asと高温の水蒸気との間で切り替えた際の、湿度センサ100で検出した湿度データの変化から、異常を判断する。図5のように可撓性支持部材22に破損部BKが存在する場合、上述の通り湿度センサ100は外気よりも高い湿度を検出するものの、破損部BKの大きさが一定の場合その湿度はある定常値に収束する。これは、収容空間SPが外気に対して呼吸孔を通じて水分を一部放出していることに起因する。ここで、流体を水溶液から高温の水蒸気に切り替えると、高温の水蒸気は水溶液よりも蒸気圧が高いため、破損部BKを通じて収容空間SPに送り込まれる水分量が増加し、湿度センサ100の検出する湿度が上昇する。一方、破損部BKが存在しない場合は、収容空間SP内の湿度は流体の切り替えに関わらずほぼ一定の値を保つ。この違いを検出することで、破損部BKの有無やその大きさを検出できる。
 具体的な手順について図7を参照して説明する。
 まず、回路ボックス110へ測定開始の信号が送られ、回路ボックス110は湿度センサ100で湿度を検出して、所定のサンプリング間隔で湿度データをメモリに記憶する動作を開始する(ステップS11)。
 次に、ダイヤフラムバルブ1に流す流体を水溶液から高温の水蒸気へと切り替える(ステップS12)。そして、流体が十分に切り替わるまで検出を続けた後、検出を終了する(ステップS13)。検出を終了するタイミングは、例えばステップS11の検出開始から所定の時間が経過するまでとする。
 検出された湿度データを元に、処理回路でその異常を判断する(ステップS14)。具体的には、時間変化する湿度データM(t)に対して、x(t)=A+B・H(t-T)という関数でA,B,Tを変数としてカーブフィッティングを行う。ここで、H(t)は単位ステップ関数である。カーブフィッティングにより得られたBの値の絶対値|B|が流体切り替えに伴う湿度変化であると推測でき、この湿度変化|B|が所定の値Bthより大きい場合に異常と判断される。
 異常判断の結果に基づき(ステップS15)、異常と判断した場合には、アラームを出力する(ステップS16)。ステップS15で異常なしと判断された後もしくはステップS16でアラーム出力した後、処理回路は省電力状態である待機状態に移行し(ステップS17)、処理を終了する。
 この高温水蒸気へと流体を切り替えるプロセスは、主にサニタリー用途のバルブにおいて高温殺菌を目的として通常定期的に行われるプロセスであり、バルブの異常検出のための追加プロセスを設ける必要がない。
 また、第二の監視方法ではデータを常に取得し続ける必要がない点で第一の監視方法と異なる。このため、回路ボックス110における消費電力を低減できる。特に、無線通信のために回路ボックス110が内蔵の電池で動作する場合、電池の交換頻度を低減できる。
 本実施形態では、可撓性隔壁部材21よりも先に可撓性支持部材22が破損するように予め設計しておき、可撓性支持部材22の破損によってハウジング41の収容空間SP内の雰囲気の湿度変動から異常を検出することで、可撓性隔壁部材21にも破損が生じてダイヤフラムバルブ1の流路11を流通する液体が外部に漏出するのを未然に防ぐことができる。
第二実施形態
 図8に、本発明の第二の実施形態に係るダイヤフラムバルブ2の縦断面図を示す。なお、第一の実施例と同様の部品については、同じ番号を付して説明を省略する。
 ダイヤフラムバルブ2は、収容空間SP中に平面型湿度センサ101を有する。
 平面型湿度センサ101について、拡大断面図を図9に、斜視図を図10に示す。平面型湿度センサ101は、吸湿性を持つ感湿層101A(誘電体部)を挟んで、上部電極101Bと下部電極101Cが形成されており、平行平板構造を成している。感湿層101Aは親水性の高く吸湿に伴ってインピーダンスが変化する材料から構成され、例えばセルロース系のフィルムやポリイミドによって作られる。下部電極101Cは、例えば、小さい孔を多数持つ薄膜や多孔質構造を持つ薄膜として導電性物質で形成されている。これにより、感湿層101Aが収容空間SPの空気に対して水分を吸収・放出することできる。上部電極101Bは金属薄膜と、金属薄膜を絶縁コートするレジストからなり、収容空間SPの上部で下部プレート40に固定されている。
 平面型湿度センサ101は、図10に示すように、円盤型の平板形状の感湿部101aと、感湿部101aを回路ボックス110に接続するための接続部101wを含む。
 感湿部101aは、中央部にステム35が貫通するための孔101hを有しており、収容空間SP内においてダイヤフラム20の中心の直上にステム35を配した上でダイヤフラム20の上部全体を覆う事ができるため、ダイヤフラム20の全域のどこで亀裂が発生した場合であっても後述の濡れ検知を確実に行うことができる。接続部101wは感湿部101aの外周から伸びる細長い長方形平板であり、回路ボックス110内の図示せぬコネクタにその一端が差し込まれて接続される。感湿部101aと接続部101wは一体で形成されていても良い。
 収容空間SPの湿度が上昇すると、感湿部101aの感湿層101Aが吸湿し、上部電極101Bと下部電極101Cの間のインピーダンスが変化し、回路ボックス110の回路によりインピーダンス測定を行って湿度を検知することができる。
 また、感湿層101Aが液体の水によって濡れた場合、上部電極101Bと下部電極101Cの間のインピーダンスが極端に低下する。測定されたインピーダンスを所定の閾値と比較することで、平面型湿度センサ101の一部に液体の水による濡れがあるか判定する濡れ検知を行うことができる。これにより、ダイヤフラム20に破損が生じて、ダイヤフラムバルブ1を流通する水溶液Asが収容空間SPに漏れ出した事を検知できる。
第三実施形態
 図11に、本発明の第三の実施例であるダイヤフラムバルブの要部の拡大断面図を示す。なお、上述した各実施形態と同様の部品については、同じ番号を付して説明を省略する。
 本実施形態に係るダイヤフラムバルブは、そのコンプレッサ50の押圧面(下面)51fに沿うように、湿度センサ102を持つ。図11は湿度センサ102の構造がわかりやすいように、コンプレッサ50の周辺を切り出して、湿度センサ102の厚みを強調した図である。
 湿度センサ102は、吸湿性を持つ感湿層102A(誘電体部)を挟んで、上部電極102Bと下部電極102Cが形成されており、平行平板構造を成している。感湿層102Aは親水性の高く吸湿に伴ってインピーダンスが変化する材料から構成され、例えばセルロース系のフィルムやポリイミドによって作られる薄膜である。下部電極102Cは、例えば、小さい孔を多数持つ薄膜や多孔質構造を持つ薄膜であり、導電性物質で形成されている。これにより、感湿層102Aが収容空間SPの空気に対して水分を吸収・放出することできる。上部電極102Bはコンプレッサ50の表面に形成された導電性の薄膜であるが、金属で形成されるコンプレッサ50自身を上部電極102Bとして用いても良い。
 上部電極102Bと下部電極102Cはそれぞれ回路ボックス110の回路に配線102w1,102w2により電気的に接続されている。
 収容空間SPの湿度が上昇すると、感湿層102Aが吸湿し、上部電極102Bと下部電極102Cの間のインピーダンスが変化する。回路ボックス110の回路により、上部電極102Bと下部電極102Cの間のインピーダンスを測定することにより、湿度を検知することができる。
 また、感湿層102Aが液体の水によって濡れた場合、上部電極102Bと下部電極102Cの間のインピーダンスが極端に低下する。測定されたインピーダンスを所定の閾値と比較することで、平面型湿度センサ102の一部に液体の水による濡れがあるか判定する濡れ検知を行うことができる。これにより、ダイヤフラム20に破損が生じて、ダイヤフラムバルブ1を流通する水溶液Asが収容空間SPに漏れ出した事を検知できる。
 湿度センサ102はダイヤフラム20の直近に、かつダイヤフラム20の上面を覆うように配置されるため、ダイヤフラム20の破損の場所に関わらず、即座に漏れを検知できる。
 上記実施形態では、センサとして湿度センサを用い、特定ガスを水蒸気とし、可撓性隔壁部材21を水蒸気透過性のPTFEで形成し、可撓性支持部材22を水蒸気不透過性のEPDMで形成したが、本発明はこれに限定されない。
 例えば、ダイヤフラムバルブ1を流通する液体が特定ガスを発生させる場合、可撓性隔壁部材と可撓性支持部材とを、特定のガスに対する透過率が異なる材料で形成する。そして、湿度センサに代えて、特定ガスの濃度またはその変化を検出可能なセンサを収容空間SP内に設置する。このような構成を採用すれば、液体が外部に漏出するのを未然に防ぐことが可能となる。液体は、例えばエタノールなどの低沸点の有機溶媒である。
 上記実施形態では、湿度センサ100を収容空間SP内に設置したが、収容空間SP内の湿度又は湿度変化が検出できるのであれば、収容空間SP外に設置することも可能である。
 上記実施形態では、流路に沿ったシール面を備えたダイヤフラムバルブを例示したが、いわゆるウエアタイプのダイヤフラムバルブにも本発明は適用可能である。
 以上、本発明を実施形態に基づき説明したが、本発明は実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもない。
 したがって、そのような要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。
1,2   :ダイヤフラムバルブ
10  :バルブボディ
11  :流路
12  :開口部
12s :支持部
13  :シール面
20  :ダイヤフラム
21  :可撓性隔壁部材
21a :厚肉部
21b :薄肉部
21c :シール突起
21d :係止凹部
21t :シール突起
22  :可撓性支持部材
22b :屈曲部
22c :環状凸部
25  :連結部材
25a :連結部
30  :アクチュエータ
31  :ケーシング
31f :内周面
32  :上側支持プレート
32a :通気孔
33  :ピストン
34  :下側支持プレート
35  :ステム
36  :ガイド部材
37  :固定部材
38  :コイルばね
39  :コイルばね
40  :下部プレート
41  :ハウジング
42  :円環部材
43  :エアポート
50  :コンプレッサ
51  :押圧部
51f :押圧面
80  :クランパ
81  :半円形部材
81a  :連結孔部
100 :湿度センサ
101 :平面型湿度センサ
102 :湿度センサ
110 :回路ボックス
As  :水溶液
BK  :破損部
BT  :ボルト
CA  :圧縮エア
NT  :ナット
SL1 :シール部材
SL2 :シール部材
SP  :収容空間
VP  :水蒸気

 

Claims (16)

  1.  流体が流通する流路と、当該流路の途中で外部に開口する開口部とを画定するバルブボディと、
     前記開口部を覆いつつ前記流路と外部とを隔て、かつ、前記流路の断面積を変更する可撓性隔壁部材と、
     前記可撓性隔壁部材の前記流路側とは反対の裏面側に配置された可撓性支持部材と、
     前記バルブボディに前記可撓性隔壁部材および可撓性支持部材の周縁部を介して固定されるハウジングと、
     前記可撓性支持部材および前記ハウジングの内面が画定する空間内の雰囲気の状態またはその変化を検出するセンサと、を有するダイヤフラムバルブ。
  2.  前記可撓性隔壁部材は、前記可撓性支持部材よりも耐用期間が長くなるように設計されている、請求項1に記載のダイヤフラムバルブ。
  3.  前記可撓性隔壁部材は、前記可撓性支持部材の形成材料とは、特定のガスに対する透過率が異なる材料で形成されている、請求項1または2に記載のダイヤフラムバルブ。
  4.  前記可撓性隔壁部材は、水蒸気を透過する材料で形成され、前記可撓性支持部材は水蒸気を透過しない材料で形成されている、請求項1または2に記載のダイヤフラムバルブ。
  5.  前記センサは、前記雰囲気中の特定ガスの濃度またはその変化、もしくは、前記雰囲気中の湿度又はその変化を検出する、請求項1ないし4のいずれかに記載のダイヤフラムバルブ。
  6.  前記センサは、湿度センサを含む、請求項1ないし5のいずれかに記載のダイヤフラムバルブ。
  7.  前記湿度センサは、中央に孔を有する平板状である、請求項1ないし6のいずれかに記載のダイヤフラムバルブ。
  8.  前記湿度センサは、前記可撓性支持部材とコンプレッサとの間に配置される、請求項1ないし6に記載のダイヤフラムバルブ。
  9.  前記湿度センサは、コンプレッサ表面に配置される、請求項8に記載のダイヤフラムバルブ。
  10.  前記可撓性隔壁部材は、ポリマーで形成されている、請求項1ないし9のいずれかに記載のダイヤフラムバルブ。
  11.  前記可撓性隔壁部材は、ポリテトラフルオロエチレン(PTFE)で形成されている、請求項10に記載のダイヤフラムバルブ。
  12.  前記可撓性支持部材は、エラストマーで形成されている、請求項1ないし11のいずれかに記載のダイヤフラムバルブ。
  13.  前記可撓性支持部材は、天然ゴム、ニトリルゴム、スチレンゴム、ブタジエンゴム、イソブチレン合成ゴム、ポリクロロプレンゴム、ブチルゴム、フッ素ゴム、シリコンゴム、ポリウレタンゴム、エチレンプロピレンジエンゴム(EPDM)からなるグループから選択された材料で形成されている、請求項12に記載のダイヤフラムバルブ。
  14.  流体が流通する流路と、当該流路の途中で外部に開口する開口部とを画定するバルブボディと、前記開口部を覆いつつ前記流路と外部とを隔て、かつ、前記流路の断面積を変更する可撓性隔壁部材と、前可撓性隔壁部材の前記流路側とは反対の裏面側に配置された可撓性支持部材と、前記バルブボディに前記可撓性隔壁部材および可撓性支持部材の周縁部を介して固定されるハウジングと、を有するダイヤフラムバルブの監視方法であって、
     前記可撓性支持部材および前記ハウジングの内面が画定する空間内の雰囲気の状態またはその変化を検出すること、
     前記検出結果に基づいて異常を判断すること、を有するダイヤフラムバルブの監視方法。
  15.  前記検出の開始から終了までの間に、前記ダイヤフラムバルブに流通させる流体を切り替える、請求項14に記載のダイヤフラムバルブの監視方法。
  16.  前記ダイヤフラムバルブに流通させる流体を切り替え、
     当該切り替え後に、空間内の雰囲気の状態またはその変化を検出し、
     所定条件を満たしたところで前記検出を終了する、請求項14又は15に記載のダイヤフラムバルブの監視方法。
     

     
PCT/JP2019/019635 2018-06-30 2019-05-17 ダイヤフラムバルブおよびその監視方法 WO2020003799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980043717.5A CN112334696A (zh) 2018-06-30 2019-05-17 隔膜阀以及其监视方法
US16/972,717 US11927280B2 (en) 2018-06-30 2019-05-17 Diaphragm valve and monitoring method thereof with improved leak detection
KR1020217001143A KR20210021036A (ko) 2018-06-30 2019-05-17 다이어프램 밸브 및 그 감시 방법
JP2020527275A JP7300187B2 (ja) 2018-06-30 2019-05-17 ダイヤフラムバルブおよびその監視方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018125652 2018-06-30
JP2018-125652 2018-06-30

Publications (1)

Publication Number Publication Date
WO2020003799A1 true WO2020003799A1 (ja) 2020-01-02

Family

ID=68984789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019635 WO2020003799A1 (ja) 2018-06-30 2019-05-17 ダイヤフラムバルブおよびその監視方法

Country Status (6)

Country Link
US (1) US11927280B2 (ja)
JP (1) JP7300187B2 (ja)
KR (1) KR20210021036A (ja)
CN (1) CN112334696A (ja)
TW (1) TWI701405B (ja)
WO (1) WO2020003799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851711A1 (de) * 2020-01-20 2021-07-21 SISTO Armaturen S.A. Verfahren zur ueberwachung von membranventilen
EP4098913A1 (de) 2021-06-01 2022-12-07 Gregor Gaida Membranventil tiefsitz
WO2023016626A1 (en) * 2021-08-09 2023-02-16 Carten Controls Limited Interchangeable multiport pinch valve assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236846B1 (en) * 2019-07-11 2022-02-01 Facebook Technologies, Llc Fluidic control: using exhaust as a control mechanism
US20230058255A1 (en) * 2020-01-14 2023-02-23 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Diaphragm and diaphragm valve
KR102597315B1 (ko) 2021-05-31 2023-11-02 주식회사 프로발 밸브 상태 자가진단 밸브 시스템
CN115234697B (zh) * 2022-08-11 2023-10-13 苏州协昌环保科技股份有限公司 电磁脉冲阀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128902A (en) * 1981-02-02 1982-08-10 Chino Works Ltd Moisture sensitive element
JPH02309079A (ja) * 1989-05-24 1990-12-25 Ueno Hiroshi アセプティック流体制御弁
JPH06101774A (ja) * 1992-09-18 1994-04-12 Fujitsu Ltd ダイヤフラムバルブ
JPH08285090A (ja) * 1995-04-10 1996-11-01 Horie Metal Co Ltd 密栓装置
JP2001317658A (ja) * 2000-05-10 2001-11-16 Toyo Stainless Kogyo Kk ダイアフラム弁の漏洩検知センサー
JP2004019792A (ja) * 2002-06-17 2004-01-22 Advance Denki Kogyo Kk ダイヤフラム弁の透過ガス排出構造
JP2004176828A (ja) * 2002-11-27 2004-06-24 Smc Corp 流量調整弁
JP2013500455A (ja) * 2009-07-27 2013-01-07 メルク・シャープ・エンド・ドーム・コーポレイション 改良したシール性及び漏れ検出を有するダイヤフラムバルブ
WO2014196313A1 (ja) * 2013-06-04 2014-12-11 株式会社フジキン ダイヤフラム弁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29507639U1 (de) 1995-05-09 1995-07-06 Arca Regler GmbH, 47918 Tönisvorst Ventil
US6508266B2 (en) * 2000-03-31 2003-01-21 Toyo Stainless Steel Industries Co., Ltd. Diaphragm valve
JP2002168176A (ja) 2000-12-04 2002-06-14 Tacmina Corp ダイヤフラム、該ダイヤフラムを備えた流体制御装置及びダイヤフラムの破損検出方法
KR20130049523A (ko) 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
JP2013117241A (ja) * 2011-12-01 2013-06-13 Haruo Kamino ダイヤフラム弁、ダイヤフラム弁のダイヤフラム破損検出方法およびプロセス制御システム
JP5710569B2 (ja) 2012-09-27 2015-04-30 株式会社フジキン ダイヤフラム弁

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128902A (en) * 1981-02-02 1982-08-10 Chino Works Ltd Moisture sensitive element
JPH02309079A (ja) * 1989-05-24 1990-12-25 Ueno Hiroshi アセプティック流体制御弁
JPH06101774A (ja) * 1992-09-18 1994-04-12 Fujitsu Ltd ダイヤフラムバルブ
JPH08285090A (ja) * 1995-04-10 1996-11-01 Horie Metal Co Ltd 密栓装置
JP2001317658A (ja) * 2000-05-10 2001-11-16 Toyo Stainless Kogyo Kk ダイアフラム弁の漏洩検知センサー
JP2004019792A (ja) * 2002-06-17 2004-01-22 Advance Denki Kogyo Kk ダイヤフラム弁の透過ガス排出構造
JP2004176828A (ja) * 2002-11-27 2004-06-24 Smc Corp 流量調整弁
JP2013500455A (ja) * 2009-07-27 2013-01-07 メルク・シャープ・エンド・ドーム・コーポレイション 改良したシール性及び漏れ検出を有するダイヤフラムバルブ
WO2014196313A1 (ja) * 2013-06-04 2014-12-11 株式会社フジキン ダイヤフラム弁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851711A1 (de) * 2020-01-20 2021-07-21 SISTO Armaturen S.A. Verfahren zur ueberwachung von membranventilen
EP4098913A1 (de) 2021-06-01 2022-12-07 Gregor Gaida Membranventil tiefsitz
WO2023016626A1 (en) * 2021-08-09 2023-02-16 Carten Controls Limited Interchangeable multiport pinch valve assembly

Also Published As

Publication number Publication date
US11927280B2 (en) 2024-03-12
TWI701405B (zh) 2020-08-11
TW202006278A (zh) 2020-02-01
JPWO2020003799A1 (ja) 2021-08-02
US20210262576A1 (en) 2021-08-26
JP7300187B2 (ja) 2023-06-29
CN112334696A (zh) 2021-02-05
KR20210021036A (ko) 2021-02-24

Similar Documents

Publication Publication Date Title
WO2020003799A1 (ja) ダイヤフラムバルブおよびその監視方法
US11427992B2 (en) System for monitoring backflow preventer condition
JP4765746B2 (ja) 遮断弁装置及びこれを組み込んだ質量流量制御装置
TWI687658B (zh) 流體控制器的異常檢測裝置、異常檢測系統、異常檢測方法及流體控制器
US10030789B2 (en) Diaphragm valve
KR102441617B1 (ko) 유체 제어 기기, 유체 제어 기기의 이상 검지 방법, 이상 검지 장치, 및 이상 검지 시스템
KR102402579B1 (ko) 유체 제어 기기의 동작 분석 시스템, 방법, 및 컴퓨터 프로그램
KR20150012201A (ko) 진공 밸브의 외부 시일 구조
JP2004176828A (ja) 流量調整弁
US11703127B2 (en) Seal assembly and method for monitoring a seal assembly
JP7179377B2 (ja) 流体制御機器
JP7265251B2 (ja) 流体制御機器の動作分析システム、流体制御機器の動作分析方法、及びコンピュータプログラム
KR20190120252A (ko) 유체 제어 기기
US7331239B1 (en) Self calibrating dual diaphragm pressure sensor
WO2019004071A1 (ja) 流体駆動弁
JP2006162491A (ja) 圧力センサ
KR20180094531A (ko) 연료 압력 스위치
JP2017211026A (ja) ドレントラップの診断装置およびドレントラップ
KR101199748B1 (ko) 다이아프램 성능시험 장치
JP2005345300A (ja) 圧力測定器
US20220333360A1 (en) System for monitoring backflow preventer condition
KR20220043207A (ko) 유체 제어 기기의 동작 정보 수집 시스템, 유체 제어 기기, 유체 제어 기기의 동작 정보 수집 방법, 및 컴퓨터 프로그램
JP4860590B2 (ja) 圧力調整器異常検出装置および圧力調整器異常検出方法
JPS6313974A (ja) 弁の開閉部のシ−ル構造
JPH0684315U (ja) 液面レベルセンサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001143

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19825369

Country of ref document: EP

Kind code of ref document: A1