WO2020003529A1 - Air conditioning system, air conditioning method, and program - Google Patents

Air conditioning system, air conditioning method, and program Download PDF

Info

Publication number
WO2020003529A1
WO2020003529A1 PCT/JP2018/024920 JP2018024920W WO2020003529A1 WO 2020003529 A1 WO2020003529 A1 WO 2020003529A1 JP 2018024920 W JP2018024920 W JP 2018024920W WO 2020003529 A1 WO2020003529 A1 WO 2020003529A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
indoor
heat exchange
control unit
Prior art date
Application number
PCT/JP2018/024920
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 森
内藤 宏治
浦田 和幹
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2020527158A priority Critical patent/JP6971400B2/en
Priority to PCT/JP2018/024920 priority patent/WO2020003529A1/en
Publication of WO2020003529A1 publication Critical patent/WO2020003529A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof

Definitions

  • the present invention relates to an air conditioning system and the like.
  • Patent Literature 1 describes an air conditioner in which a temperature and humidity sensor is provided in an indoor unit.
  • Patent Document 1 it is possible to perform highly comfortable air conditioning based on the detection value of the temperature and humidity sensor.
  • the manufacturing cost is increased because the sensor elements for detecting the temperature and the humidity are provided. Considering such a situation, if a configuration is adopted in which only the temperature of the indoor air is detected without detecting the humidity of the indoor air, the comfort of the air conditioning may be reduced.
  • an object of the present invention is to provide an air-conditioning system or the like having high comfort and low manufacturing cost.
  • the present invention provides a method for controlling the temperature of air flowing to an indoor heat exchanger when the amount of heat exchanged on the air side is smaller than the amount of heat exchanged on the refrigerant side.
  • the controller estimates the humidity of the air heading to the indoor heat exchanger based on the temperature of the refrigerant, the refrigerant-side heat exchange amount, and the air-side heat exchange amount, and performs air conditioning control based on the humidity.
  • FIG. 1 is a schematic configuration diagram including an air conditioning system according to an embodiment of the present invention.
  • 1 is a configuration diagram including an air conditioner of an air conditioning system according to an embodiment of the present invention.
  • It is a functional block diagram of an air-conditioning management device of an air-conditioning system concerning an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a refrigerant-side heat exchange amount Q ref and an air-side heat exchange amount Q air when heat exchange of air in an indoor heat exchanger is only a sensible heat load in the air conditioning system according to the embodiment of the present invention.
  • It is a flowchart which shows the process of the control part with which the air-conditioning management apparatus of the air-conditioning system concerning embodiment of this invention is provided.
  • FIG. 4 is an air line diagram relating to temperature and humidity of air on the suction side and the air outlet side of the indoor heat exchanger in the air conditioning system according to the embodiment of the present invention. It is a schematic structure figure containing an air-conditioning system concerning a modification of the present invention.
  • FIG. 1 is a schematic configuration diagram including an air conditioning system W according to the embodiment.
  • the illustration of the pipe J is simplified, and the pipe that guides the refrigerant from the outdoor unit Uo to the four indoor units Ui and the pipe that guides the refrigerant from the four indoor units Ui to the outdoor unit Uo are common. This is shown by a solid line (pipe J).
  • the air conditioning system W is a system for performing air conditioning, and includes an air conditioner 100 and an air conditioning management device 200.
  • the air-conditioning management device 200 may include a plurality of servers.
  • the mobile terminal 300 illustrated in FIG. 1 is a terminal such as a smartphone, a tablet, and a mobile phone owned by a user of the air conditioner 100, and can communicate with the air conditioning management device 200 via the network N. ing.
  • the air conditioner 100 is a device that performs air conditioning such as a cooling operation and a heating operation.
  • FIG. 1 illustrates, as an example, a multi-type air conditioner 100 in which an outdoor unit Uo of a top blowing type and four indoor units Ui of a ceiling embedded type are connected via a pipe J. .
  • the outdoor unit Uo is connected to the indoor unit Ui via the communication line M, and is also connected to the air conditioning management device 200 via the communication line M.
  • FIG. 2 is a configuration diagram including the refrigerant circuit F of the air conditioner 100.
  • FIG. 2 two of the four indoor units Ui (see FIG. 1) are illustrated, and illustration of the remaining two units is omitted.
  • FIG. 2 the flow of air in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is indicated by outline arrows.
  • the air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, an outdoor expansion valve 14, and a four-way valve 15 as devices provided in the outdoor unit Uo.
  • the compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant.
  • a compressor 11 for example, a scroll compressor or a rotary compressor is used.
  • the outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13.
  • One end g1 of the outdoor heat exchanger 12 is connected to the suction side or the discharge side of the compressor 11 by switching the four-way valve 15, and the other end g2 is connected to the liquid side pipe J1.
  • the outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12.
  • the outdoor fan 13 includes an outdoor fan motor 13a as a driving source, and is arranged near the outdoor heat exchanger 12.
  • the outdoor expansion valve 14 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 and reduces the pressure of the refrigerant when the outdoor heat exchanger 12 functions as an evaporator. It is provided in.
  • the four-way valve 15 is a valve that switches the flow path of the refrigerant according to the operation mode during air conditioning.
  • the air conditioner 100 includes an indoor heat exchanger 16, an indoor fan 17, an air filter 18, and an indoor expansion valve 19 as devices provided in the indoor unit Ui.
  • the indoor heat exchanger 16 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 17. It is.
  • One end h1 of the indoor heat exchanger 16 is connected to the gas side pipe J2, and the other end h2 is connected to the liquid side pipe J3.
  • the indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16.
  • the indoor fan 17 has an indoor fan motor 17a as a driving source, and is arranged near the indoor heat exchanger 16.
  • the air filter 18 is a filter that collects dust from air flowing toward the indoor heat exchanger 16 as the indoor fan 17 is driven, and is arranged near the indoor heat exchanger 16 (air suction side).
  • the indoor expansion valve 19 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 16 and reduces the pressure of the refrigerant when the indoor heat exchanger 16 functions as an evaporator. It is provided in.
  • the other indoor units Ui have the same configuration.
  • the liquid-side connection part K1 connects the plurality of liquid-side pipes J3 connected one-to-one to each indoor unit Ui, and the liquid-side pipes J1 connected to the other end g2 of the outdoor heat exchanger 12. It is.
  • the gas side connection part K2 connects a plurality of gas side pipes J2 connected one-to-one to each indoor unit Ui, and a gas side pipe J4 connected to the four-way valve 15 of the outdoor unit Uo. .
  • the refrigerant circulates in the refrigerant circuit F in a well-known heat pump cycle in accordance with the operation mode during air conditioning.
  • the compressor 11, the outdoor heat exchanger 12 (condenser), the outdoor expansion valve 14 (expansion valve), the indoor expansion valve 19 (expansion valve), and the indoor heat exchanger 16 (evaporator) are sequentially operated.
  • the refrigerant circulates through.
  • the compressor 11, the indoor heat exchanger 16 (condenser), the indoor expansion valve 19 (expansion valve), the outdoor expansion valve 14 (expansion valve), and the outdoor heat exchanger 12 (evaporator) are sequentially operated.
  • the refrigerant circulates through.
  • the air conditioning system W includes the refrigerant circuit F in which the refrigerant circulates sequentially through the compressor 11, the “condenser”, the “expansion valve”, and the “evaporator”.
  • One of the units is an outdoor heat exchanger 12 and the other is an indoor heat exchanger 16.
  • the outdoor unit Uo is provided with a suction pressure sensor 21, a suction temperature sensor 22, a discharge pressure sensor 23, and a discharge temperature sensor 24.
  • the suction pressure sensor 21 is a sensor that detects the pressure (suction pressure) of the refrigerant on the suction side of the compressor 11.
  • the suction temperature sensor 22 is a sensor that detects the temperature of the refrigerant (suction temperature) on the suction side of the compressor 11.
  • the discharge pressure sensor 23 is a sensor that detects the pressure (discharge pressure) of the refrigerant on the discharge side of the compressor 11.
  • the discharge temperature sensor 24 is a sensor that detects the temperature (discharge temperature) of the refrigerant on the discharge side of the compressor 11. The detection values of the suction pressure sensor 21, the suction temperature sensor 22, the discharge pressure sensor 23, and the discharge temperature sensor 24 are output to the air conditioning management device 200 via the outdoor control circuit 31.
  • the indoor unit Ui is provided with refrigerant temperature sensors 25 and 26, an intake air temperature sensor 27, and an outlet air temperature sensor 28.
  • the refrigerant temperature sensor 25 is a sensor that detects the temperature of the refrigerant flowing near one end h1 of the indoor heat exchanger 16.
  • the other refrigerant temperature sensor 26 is a sensor that detects the temperature of the refrigerant flowing near the other end h2 of the indoor heat exchanger 16.
  • the suction air temperature sensor 27 is a sensor that detects the temperature of air on the air suction side (inlet side) of the indoor heat exchanger 16.
  • the blowout air temperature sensor 28 is a sensor that detects the temperature of air on the air blowout side (outlet side) of the indoor heat exchanger 16. Respective detection values of the refrigerant temperature sensors 25 and 26, the suction air temperature sensor 27, and the blow-off air temperature sensor 28 are output to the outdoor control circuit 31 and the air conditioning management device 200 via the indoor control circuit 32.
  • the outdoor unit Uo is provided with an outdoor control circuit 31, and the indoor unit Ui is provided with an indoor control circuit 32.
  • the outdoor control circuit 31 and the indoor control circuit 32 include electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. . Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the outdoor control circuit 31 controls the compressor 11, the outdoor fan 13, the outdoor expansion valve 14, and the like based on the detection value of each sensor and a command from the air conditioning management device 200, and outputs a predetermined signal to the indoor control circuit 32.
  • the indoor control circuit 32 controls the indoor fan 17 and the indoor expansion valve 19 based on a signal received from the outdoor control circuit 31 and a command from the air conditioning management device 200.
  • the remote controller Re exchanges predetermined information with the indoor control circuit 32 by infrared communication or the like. For example, signals related to the operation / stop of the air conditioning, the setting of the operation mode, the timer, and the change of the set temperature are transmitted from the remote controller Re to the indoor control circuit 32.
  • the signal transmitted from the indoor control circuit 32 to the remote controller Re includes, for example, information on the temperature and humidity of indoor air.
  • the air conditioning management device 200 illustrated in FIG. 2 has a function of managing air conditioning by the air conditioner 100 and, as described later, estimating the humidity of indoor air based on a detection value of each sensor. .
  • the air-conditioning management device 200 is configured to include electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the outdoor control circuit 31 and the indoor control circuit 32 via a communication line.
  • FIG. 3 is a functional block diagram of the air conditioning management device 200 (see FIG. 2 as appropriate).
  • the air conditioning management device 200 includes a storage unit 210, a control unit 220, and a notification unit 230.
  • the storage unit 210 stores rotation speed-design airflow information 211, design volumetric efficiency information 212, and sensible heat load information 213 in addition to a predetermined program.
  • the rotation speed-design airflow information 211 is information indicating a predetermined design airflow corresponding to the rotation speed of the indoor fan 17.
  • the “design airflow” described above is an airflow of the indoor unit Ui obtained by a preliminary experiment or the like based on the specifications of the indoor fan 17 and the indoor heat exchanger 16.
  • the design volumetric efficiency information 212 shown in FIG. 3 is information indicating the design volumetric efficiency of the compressor 11 (see FIG. 2).
  • the “design volumetric efficiency” is a volumetric efficiency based on the specifications of the compressor 11, and is calculated based on a rotation speed of a motor (not shown) of the compressor 11 and the like.
  • the sensible heat load information 213 stored in the storage unit 210 will be described later.
  • the control unit 220 performs a predetermined process based on a detection value of each sensor, data of the storage unit 210, and the like. As illustrated in FIG. 3, the control unit 220 includes a refrigerant-side heat exchange amount estimating unit 221, an air-side heat exchange amount estimating unit 222, a learning unit 223, a comparing unit 224, a determining unit 225, and a humidity estimating unit. 226 and an air-conditioning control unit 227.
  • the “refrigerant side” of the refrigerant side heat exchange amount Qref means a heat exchange amount estimated based on a detected value such as a temperature and a pressure of the refrigerant.
  • the air-side heat exchange amount estimating unit 222 determines the indoor temperature based on the rotation speed-design airflow information 211 in addition to the temperature of the air on the suction side and the air outlet side of the indoor heat exchanger 16 and the rotation speed of the indoor fan 17. It is estimated as the air-side heat exchange amount Q air in the heat exchanger 16.
  • the “air side” of the air side heat exchange amount Q air means a heat exchange amount estimated based on the air temperature or the like.
  • the temperature of the heat transfer tubes (not shown) of the indoor heat exchanger 16 may fall below the dew point.
  • a latent heat load is generated that changes the state of water vapor in the air into water. Since this latent heat load is not reflected in the temperature change of the air, the air-side heat exchange amount Q air (sensible heat) based on the temperature difference between the suction side and the blow-out side air is larger than the refrigerant side heat exchange amount Q ref (total heat). Is also smaller.
  • the presence or absence of latent heat is determined based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair .
  • Learning unit 223 shown in FIG. 3 does not contain latent heat exchange of the air in the indoor heat exchanger 16 when (sensible heat in which only) It is known, air to refrigerant heat exchange quantity Q ref The ratio (Q air / Q ref ) of the side heat exchange amount Q air is learned.
  • Figure 4 is an explanatory diagram showing a refrigerant-side heat exchange quantity Q ref and the air-side heat exchange rate Q air when the heat exchange of the air in the indoor heat exchanger is only the sensible heat load.
  • the horizontal axis of FIG. 4 is a refrigerant-side heat exchange quantity Q ref estimated by the refrigerant side heat exchange amount estimating unit 221 (see FIG. 3).
  • the vertical axis in FIG. 4 is the air-side heat exchange amount Q air estimated by the air-side heat exchange amount estimation unit 222 (see FIG. 3).
  • a plurality of points shown in FIG. 4 are data obtained during a learning period in which it is known that the heat exchange of air in the indoor heat exchanger 16 is only a sensible heat load and there is almost no latent heat load.
  • a cooling operation in which the set temperature is equal to or higher than a predetermined value is given.
  • the learning unit 223 uses a plurality of refrigerant-side heat exchange amounts Qref and air-side heat exchange amounts Q air obtained during a predetermined learning period, for example, based on the least squares method, as shown in FIG.
  • the mathematical formula of the straight line L1 shown is derived. Note that the learning unit 223 may calculate the moving average of the ratio (Q air / Q ref ) obtained in time series instead of the mathematical expression of the straight line L1.
  • the total heat is substantially equal to the sensible heat.
  • the refrigerant side heat exchange amount Q ref (total heat) and the air side heat exchange amount Q air (sensible heat) become substantially equal, and the slope of the straight line L1 becomes a value close to “1”.
  • the learning unit 223 determines, for example, that the predetermined range is lower than the straight line L11 having the slope (a + b1) and higher than the straight line L12 having the slope (a ⁇ b1). To learn. To explain from another viewpoint, the learning unit 223 determines that the ratio (Q air / Q ref ) when the heat exchange in the indoor heat exchanger 16 is almost only sensible heat is (a ⁇ b 1) ⁇ (Q air / Sensible heat load information 213 (see FIG. 3) indicating the range of (Q ref ) ⁇ (a + b1) is stored in the storage unit 210.
  • the comparison unit 224 illustrated in FIG. 3 compares the magnitude of the refrigerant-side heat exchange amount Qref with the magnitude of the air-side heat exchange amount Qair during the air-conditioning operation.
  • the determination unit 225 determines the presence or absence of latent heat with respect to the heat exchange of the air in the indoor heat exchanger 16 based on the comparison result of the comparison unit 224.
  • the humidity estimating unit 226 estimates the humidity of the air going to the indoor heat exchanger 16.
  • the air-conditioning control unit 227 performs a predetermined air-conditioning control based on the estimation result of the humidity estimating unit 226 and the like.
  • the notifying unit 230 notifies the estimation result of the humidity estimating unit 226 and the like.
  • a display is an example of such a notification unit 230.
  • the notification unit 230 may have a predetermined communication function, and may notify the remote controller Re (see FIG. 2) and the user's portable terminal 300 (see FIG. 1) of the estimation result and the like of the humidity estimation unit 226.
  • FIG. 5 is a flowchart showing the processing of the control unit 220 provided in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate). At the time of "START" in FIG. 5, it is assumed that the sensible heat load information 213 has already been learned. Also, it is assumed that the air conditioner 100 is performing the cooling operation based on a command from the remote controller Re during the processing in FIG.
  • the control unit 220 when estimating the humidity of the indoor air (that is, when performing the processing of S101 to S106), the control unit 220 causes the heat exchange of the air in the indoor heat exchanger 16 to include the latent heat (the indoor heat exchanger 16). It is preferable to perform a process of making the indoor heat exchanger 16 function as an evaporator so that the temperature of the indoor heat exchanger 16 falls below the dew point. For example, the control unit 220 may start the cooling operation at a set temperature lower than a predetermined temperature based on a command from the remote controller Re. This is because, as described later, the humidity of the room air can be estimated without a humidity sensor (not shown) (S106).
  • the refrigerant-side heat exchange amount estimating unit 221 estimates the refrigerant side heat exchange amount Q ref of the indoor heat exchanger 16 (the refrigerant heat exchanger estimation step). More specifically, the control unit 220 firstly controls the compressor 11 based on the detection value of the suction pressure sensor 21, the detection value of the suction temperature sensor 22, and the degree of superheat of the refrigerant on the suction side of the compressor 11. Calculate the refrigerant density on the suction side. It is assumed that a predetermined value of the refrigerant superheat degree on the suction side of the compressor 11 is stored in advance based on a previous experiment.
  • control unit 220 determines the refrigerant density on the suction side of the compressor 11, the stroke volume of the compressor 11, the rotation speed of the compressor motor (not shown), and the designed volumetric efficiency of the compressor 11.
  • the refrigerant circulation amount per unit time in the refrigerant circuit F is calculated. It is assumed that the stroke volume of the compressor 11 is known. Further, the design volumetric efficiency of the compressor 11 is estimated based on the above-described design volumetric efficiency information 212 (see FIG. 3).
  • control unit 220 determines one end and the other end of the indoor heat exchanger 16 (that is, the inlet side and the outlet side) based on the detection value of the discharge pressure sensor 23 and the detection values of the refrigerant temperature sensors 25 and 26. Side), the difference in specific enthalpy of the refrigerant is calculated.
  • the control unit 220 determines the refrigerant-side heat exchange amount Q of the indoor heat exchanger 16 based on the specific enthalpy difference of the refrigerant at one end and the other end of the indoor heat exchanger 16 and the above-described refrigerant circulation amount. Estimate ref . As described above, the control unit 220 estimates the refrigerant-side heat exchange amount Qref in the indoor heat exchanger 16 based on the information including the temperatures of the refrigerant at one end and the other end of the indoor heat exchanger 16.
  • step S102 the control unit 220 estimates the air-side heat exchange amount Q air of the indoor heat exchanger 16 by the air-side heat exchange amount estimation unit 222 (air-side heat exchange amount estimation step). More specifically, the control unit 220 first calculates the design airflow corresponding to the rotation speed of the indoor fan 17 with reference to the rotation speed-design airflow information 211. Then, the control unit 220 determines the air-side heat exchange amount Q air of the indoor heat exchanger 16 based on the design air volume, the detection value of the intake air temperature sensor 27, and the detection value of the blow-out air temperature sensor 28. Is estimated.
  • control unit 220 determines the temperature of the air flowing toward the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, and the design airflow corresponding to the rotation speed of the indoor fan 17.
  • the air-side heat exchange amount Q air in the indoor heat exchanger 16 is estimated.
  • step S103 the control unit 220 causes the comparing unit 224 to determine whether the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref .
  • FIG. 6 is an explanatory diagram showing an example of points (Q ref , Q air ) in the case where latent heat is included in heat exchange in the indoor heat exchanger.
  • the horizontal axis in FIG. 6 is the refrigerant-side heat exchange amount Qref
  • the vertical axis is the air-side heat exchange amount Qair .
  • the hatched area shown in FIG. 6 is a range in which the heat exchange of the air in the indoor heat exchanger 16 is assumed to be only the sensible heat load.
  • the air-side heat exchange amount Q1 air is smaller than the refrigerant-side heat exchange amount Q1 ref , and the point (Q1 ref , Q1 air ) deviates from a predetermined range of a hatched portion.
  • latent heat was included in the heat exchange of air in the indoor heat exchanger 16. That is, when the water vapor contained in the air sucked into the indoor unit Ui (see FIG. 2) condenses on the indoor heat exchanger 16 (see FIG. 2), latent heat is generated.
  • step S104 the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside a predetermined range.
  • FIG. 7 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ).
  • the horizontal axis represents time
  • the vertical axis represents the ratio (Q air / Q ref ).
  • ⁇ ⁇ (Q air / Q ref ) ⁇ ⁇ is the range of the ratio (Q air / Q ref ) when the heat exchange of the air in the indoor heat exchanger 16 is only the sensible heat load. Is set. This is the sensible heat load information 213 (see FIG. 3).
  • the ratio (Q air / Q ref ) is smaller than the predetermined value ⁇ at each of the times t1, t2, and t3.
  • the control unit 220 calculates a moving average of a plurality of ratios (Q air / Q ref ) calculated in time series, and determines whether the moving average deviates from a predetermined range ⁇ ⁇ (Q air / Q ref ) ⁇ ⁇ . The determination may be made (S104). In addition, when the control unit 220 calculates the ratio (Q air / Q ref ), the approximate straight line L2 of the plurality of points (Q ref , Q air ) shown in FIG. 6 is calculated by the least square method, and the approximate straight line L2 is calculated. It may be determined whether the inclination is out of the predetermined range ⁇ ⁇ (Q air / Q ref ) ⁇ ⁇ (S104).
  • step S104 the process of the control unit 220 proceeds to step S105.
  • the control unit 220 causes the determination unit 225 to determine that the heat exchange of the air in the indoor heat exchanger 16 includes latent heat ("latent heat is present").
  • step S106 the control unit 220 causes the humidity estimating unit 226 to estimate the humidity of the air flowing toward the indoor heat exchanger 16 (humidity estimating step).
  • FIG. 8 is an air line diagram relating to the temperature and humidity of the air on the suction side and the air outlet side of the indoor heat exchanger.
  • the horizontal axis in FIG. 8 is the dry-bulb temperature of the air, and the vertical axis is the absolute humidity of the air.
  • a curve R is a curve indicating a state where the relative humidity is 100 [%].
  • point P2 is an example of the temperature and humidity of the suction air flowing toward the indoor heat exchanger 16
  • point P3 indicates the temperature and humidity of the blown air after the suction air exchanges heat with the indoor heat exchanger 16. I have.
  • the temperature of the air on the blow-out side falls below the dew point. That is, on the psychrometric chart, the point P3 indicating the state of the blown air is on the curve R at a relative humidity of 100%. Therefore, based on the detection value of the blow-off air temperature sensor 28 (see FIG. 2) (at the point P3, the dry-bulb temperature is 10 ° C.) and the determination result of “latent heat” (S105), the air-line diagram is used. The position of the point P3 is determined.
  • the control unit 220 determines the suction air based on the ratio (Q air / Q ref ) of the air side heat exchange amount Q air (sensible heat) to the refrigerant side heat exchange amount Q ref (total heat: sensible heat + latent heat). (The position of the point P2) is estimated. It is assumed that data corresponding to the psychrometric chart in FIG. 8 is stored in advance in the storage unit 210 (see FIG. 3) as a data table, for example.
  • the control unit 220 estimates the humidity of the indoor air (S106). That is, the control unit 220 determines the temperature of the air going to the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, the refrigerant-side heat exchange amount Q ref , and the air-side heat exchange amount Q air. Then, the humidity of the air going to the indoor heat exchanger 16 is estimated (S106). Thereby, the humidity of the indoor air can be estimated even if the humidity sensor is not provided in the indoor unit Ui (see FIG. 2), so that the manufacturing cost of the air conditioner 100 can be reduced.
  • step S107 of FIG. 5 the control unit 220 determines whether the humidity (for example, relative humidity) calculated in step S106 is equal to or more than a predetermined value.
  • This predetermined value is a threshold value serving as a criterion for determining whether or not to perform the dehumidifying operation (S108), and is set in advance. If the humidity is equal to or higher than the predetermined value (S107: Yes), the process of the control unit 220 proceeds to step S108.
  • control unit 220 executes a dehumidifying operation (air conditioning control step). For example, when performing the dehumidifying operation, the control unit 220 generates a command signal for reducing the opening degree of the indoor expansion valve 19 and transmits the command signal to the air conditioner 100. Thereby, the evaporation temperature of the refrigerant flowing into the indoor heat exchanger 16 (evaporator) decreases, and the degree of superheat of the refrigerant increases, so that the dehumidifying operation can be performed.
  • a dehumidifying operation air conditioning control step
  • control unit 220 may generate a command signal for decreasing the rotation speed of the indoor fan 17 and transmit the command signal to the air conditioner 100. Even with such control, the degree of superheat of the refrigerant flowing into the indoor heat exchanger 16 (evaporator) increases, so that the dehumidifying operation can be performed. After performing the dehumidifying operation (S108) for a predetermined time, the control unit 220 may perform the cooling operation again.
  • step S107 If the humidity is less than the predetermined value in step S107 (S107: No), the control unit 220 ends the series of processes without performing the dehumidifying operation (END). That is, the control unit 220 continues the cooling operation without performing the dehumidifying operation. This is because when the humidity is low, it is not particularly necessary to perform the dehumidifying operation.
  • step S103 When Q ref ⁇ Q air is satisfied in step S103 (S103: No), or when the ratio (Q air / Q ref ) is within a predetermined range in step S104 (S104: No), the process of the control unit 220 is performed. Proceed to step S109.
  • step S109 the control unit 220 determines by the determination unit 225 that the heat exchange of the air in the indoor heat exchanger 16 does not include latent heat (“no latent heat”). In this case, since the humidity of the room air is not so high, it is not particularly necessary to perform the dehumidification operation.
  • the control unit 220 ends a series of processes (END).
  • the history information of the humidity estimated in step S106 may be stored in the storage unit 210 (see FIG. 3). It is preferable that the control unit 220 transmits the humidity history information stored in the storage unit 210 to the remote controller Re (see FIG. 2) or the portable terminal 300 (terminal: see FIG. 1). Thereby, the user can easily grasp the temporal change of the humidity of the indoor air. Further, the control unit 220 may transmit the history information of the humidity and the ratio (Q air / Q ref ) of the indoor air to a remote monitoring center (not shown). The computer (not shown) of the remote monitoring center is also included in the “terminal”.
  • the air flow in the indoor heat exchanger 16 is determined.
  • the control unit 220 determines whether or not latent heat is included in the heat exchange (S105, S109). When it is determined that latent heat is included in the heat exchange (S105), the control unit 220 estimates the humidity of the room air (S106).
  • the controller 220 appropriately performs the dehumidifying operation based on the humidity of the indoor air (S108 in FIG. 5), so that highly comfortable air conditioning can be performed.
  • the control of the present embodiment is effective.
  • the air conditioning system W according to the present invention has been described in the embodiments, but the present invention is not limited to these descriptions, and various changes can be made.
  • the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref (S103: Yes in FIG. 5), and the ratio (Q air / Q ref ) is out of the predetermined range.
  • the control unit 220 estimates the humidity (S106) has been described, but the present invention is not limited to this.
  • step S105 determines whether the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref .
  • the control unit 220 estimates the humidity of the air flowing toward the indoor heat exchanger 16. You may do so. Even in such processing, it is possible to appropriately calculate the humidity of the room air.
  • the control unit 220 includes the learning unit 223 (see FIG. 3) has been described, but the learning unit 223 may be omitted.
  • the ratio (Q air / Q ref ) is substantially equal to “1” in the case where the air conditioning is performed under the operating condition that the latent heat is not included in the heat exchange of the air in the indoor heat exchanger 16, the control is performed.
  • the unit 220 may estimate the humidity of the room air.
  • the control unit 220 estimates the humidity of the indoor air. As a result, the error relating to the estimation of the humidity of the indoor air can be further reduced.
  • the control unit 220 may perform the following process regarding the process of estimating the humidity of the room air.
  • the control unit 220 determines whether one of the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair is larger than the other.
  • the aforementioned “predetermined range” may be corrected. That is, the control unit 220 corrects (learns) the “predetermined range” based on the ratio (Q air / Q ref ) when latent heat is not included in the heat exchange of the air in the indoor heat exchanger 16. You may make it. Thereby, even if dust adheres to the indoor heat exchanger 16 or the like or the compressor 11 deteriorates, the control unit 220 can estimate the humidity of the indoor air with high accuracy.
  • the configuration in which the air-conditioning management device 200 outputs a command signal to the air conditioner 100 has been described.
  • the configuration is not limited to this.
  • the air conditioning management device 200 may be configured to output a command signal to both the air conditioner 100 and the dehumidifier 400 (see FIG. 9).
  • FIG. 9 is a schematic configuration diagram including an air conditioning system WA according to a modification.
  • the air conditioning system WA includes an air conditioner 100, an air conditioning management device 200, and a dehumidifier 400.
  • the air conditioning management device 200 is connected to the outdoor unit Uo and the indoor unit Ui via the communication line M, and is also connected to the dehumidifier 400 via the communication line M. That is, the dehumidifier 400 provided in the air-conditioned space from which the air-conditioned air is blown out with the driving of the indoor fan 17 and the control unit 220 (see FIG. 3) of the air-conditioning management device 200 can communicate with each other.
  • the dehumidifier 400 shown in FIG. 9 is a device that mainly performs dehumidification. Since the configuration of the dehumidifier 400 is well known, a detailed description is omitted.
  • the control unit 220 (see FIG. 3) of the air conditioning management device 200 outputs a signal for performing the dehumidifying operation to the dehumidifier 400 when the humidity of the room air is less than the predetermined value.
  • the dehumidifying operation is performed only by the dehumidifier 400, so that the efficiency of the air conditioning can be increased.
  • the air conditioner 100 may be in a stopped state, or may be performing a cooling operation or the like.
  • the control unit 220 outputs a signal for performing the dehumidifying operation to the dehumidifier 400, and performs the dehumidifying operation using the refrigerant circuit F (see FIG. 2). Do.
  • the operation of the air conditioner 100 can compensate for the dehumidification that the dehumidifier 400 lacks.
  • the control unit 220 May be performed. That is, the control unit 220 predicts the future humidity based on the history information of the indoor air humidity, and determines the set temperature of the cooling operation when performing the above-described processing in the future based on the prediction result. You may. As an example, the control unit 220 calculates a moving average of the indoor air humidity estimated in the last several days, and based on this moving average, sets the temperature at the time of the cooling operation when estimating the humidity next time. To determine. As a result, it is possible to prevent the set temperature of the cooling operation when estimating the humidity from being too high or too low.
  • control unit 220 may reduce the air volume as compared with the normal cooling operation, or It is preferable to make the wind direction in the vertical direction of the machine Ui (see FIG. 2) more horizontal than in the normal cooling operation. Thereby, when estimating the humidity of the indoor air, it is possible to suppress the cool air from being blown down, and thereby to improve the comfort for the user.
  • the control unit 220 when performing the process of making the indoor heat exchanger 16 function as an evaporator so that latent heat is included in the heat exchange of air, the control unit 220 causes the indoor heat exchanger 16 to function as an evaporator, Preferably, the vessel 16 is frozen. More specifically, in response to a command from the control unit 220, the outdoor control circuit 31 and the indoor control circuit 32 drive the compressor 11, and further increase the opening degree of the indoor expansion valve 19 as compared with a normal cooling operation. Make it smaller. As a result, the refrigerant having a low pressure and a low evaporation temperature flows into the indoor heat exchanger 16, so that moisture in the air is frosted on the indoor heat exchanger 16, and the frost and ice easily grow. At this time, since the latent heat is reliably included in the heat exchange of the air in the indoor heat exchanger 16, the humidity of the indoor air can be estimated with high accuracy.
  • the outdoor control circuit 31 and the indoor control circuit 32 defrost the indoor heat exchanger 16 after freezing the indoor heat exchanger 16.
  • frost and ice of the indoor heat exchanger 16 are naturally thawed at room temperature, and a large amount of the frost and ice travel along the fins (not shown) of the indoor heat exchanger 16. Water runs down. As a result, dust in the indoor heat exchanger 16 is washed away.
  • Such a method of cleaning the indoor heat exchanger 16 is referred to as “freeze cleaning”. Instead of the above-mentioned "freeze washing", the indoor heat exchanger 16 may be made to function as an evaporator, and the indoor heat exchanger 16 may be condensed.
  • the dust of the indoor heat exchanger 16 is also washed away by such “condensation washing”. Further, it is preferable that the control unit 220 estimates the humidity of the indoor air when performing the “condensation cleaning”. Even with such a method, the humidity of the room air can be estimated with high accuracy.
  • the control unit 220 may start the process of estimating the humidity of the room air in response to a command from the remote controller Re or the portable terminal 300.
  • the estimation result of the indoor air humidity can be displayed on the remote controller Re or the like.
  • the configuration in which the air-conditioning system W includes the air-conditioning management device 200 has been described, but is not limited thereto.
  • the air-conditioning management device 200 may be omitted, and the outdoor control circuit 31 (control unit) or the indoor control circuit 32 (control unit) may perform a series of processes related to estimation of humidity.
  • the multi-type air conditioner 100 provided with the plurality of indoor units Ui has been described, but the present invention is not limited to this.
  • the embodiments can be applied to various types of air conditioners, in addition to a wall-mounted air conditioner (not shown) provided with one indoor unit and one outdoor unit.
  • a program for causing a computer to execute processing such as estimation of humidity can be provided via a communication line, and can be written and distributed on a recording medium such as a CD-ROM. Is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system is provided which has excellent comfort and low manufacturing cost. This air conditioning system is provided with a refrigerant circuit and with a control unit (220) which controls air conditioning. When the air-side heat exchange amount is lower than the refrigerant-side heat exchange amount, the control unit (220) estimates the humidity of air moving towards an indoor heat exchanger on the basis of the temperature of the air moving towards the indoor heat exchanger, the temperature of air that has undergone heat exchange in the indoor heat exchanger, the refrigerant-side heat exchange amount and the air-side heat exchange amount, and controls air conditioning on the basis of said humidity.

Description

空調システム、空調方法、及びプログラムAir conditioning system, air conditioning method, and program
 本発明は、空調システム等に関する。 The present invention relates to an air conditioning system and the like.
 空気調和機による空調に関して、室内空気(空調対象空間)の温度の他に、室内空気の湿度も空調の快適性に影響を及ぼすことが知られている。例えば、特許文献1には、室内機に温湿度センサが設けられた空気調和機について記載されている。 空調 Regarding air conditioning by an air conditioner, it is known that, in addition to the temperature of the room air (the space to be air-conditioned), the humidity of the room air also affects the comfort of the air conditioning. For example, Patent Literature 1 describes an air conditioner in which a temperature and humidity sensor is provided in an indoor unit.
特開2017-150764号公報JP 2017-150764 A
 特許文献1に記載の技術では、温湿度センサの検出値に基づき、快適性の高い空調を行うことが可能になる。しかしながら、特許文献1に記載の技術では、温度・湿度のそれぞれを検出するセンサ素子が設けられる分、製造コストの増加を招く。このようなことを考慮して、室内空気の湿度を検出せずに、室内空気の温度のみを検出する構成にすると、空調の快適性が低くなる可能性がある。 According to the technique described in Patent Document 1, it is possible to perform highly comfortable air conditioning based on the detection value of the temperature and humidity sensor. However, according to the technology described in Patent Literature 1, the manufacturing cost is increased because the sensor elements for detecting the temperature and the humidity are provided. Considering such a situation, if a configuration is adopted in which only the temperature of the indoor air is detected without detecting the humidity of the indoor air, the comfort of the air conditioning may be reduced.
 そこで、本発明は、快適性が高く、製造コストが安い空調システム等を提供することを課題とする。 Therefore, an object of the present invention is to provide an air-conditioning system or the like having high comfort and low manufacturing cost.
 前記課題を解決するために、本発明は、冷媒側熱交換量よりも空気側熱交換量の方が小さい場合、室内熱交換器に向かう空気の温度、前記室内熱交換器で熱交換した空気の温度、前記冷媒側熱交換量、及び前記空気側熱交換量に基づいて、前記室内熱交換器に向かう空気の湿度を制御部が推定し、当該湿度に基づいて空調制御を行うことを特徴とする。 In order to solve the above-mentioned problem, the present invention provides a method for controlling the temperature of air flowing to an indoor heat exchanger when the amount of heat exchanged on the air side is smaller than the amount of heat exchanged on the refrigerant side. The controller estimates the humidity of the air heading to the indoor heat exchanger based on the temperature of the refrigerant, the refrigerant-side heat exchange amount, and the air-side heat exchange amount, and performs air conditioning control based on the humidity. And
 本発明によれば、快適性が高く、製造コストが安い空調システム等を提供できる。 According to the present invention, it is possible to provide an air conditioning system or the like with high comfort and low manufacturing cost.
本発明の実施形態に係る空調システムを含む概略的な構成図である。1 is a schematic configuration diagram including an air conditioning system according to an embodiment of the present invention. 本発明の実施形態に係る空調システムの空気調和機を含む構成図である。1 is a configuration diagram including an air conditioner of an air conditioning system according to an embodiment of the present invention. 本発明の実施形態に係る空調システムの空調管理装置の機能ブロック図である。It is a functional block diagram of an air-conditioning management device of an air-conditioning system concerning an embodiment of the present invention. 本発明の実施形態に係る空調システムにおいて、室内熱交換器における空気の熱交換が顕熱負荷のみであるときの冷媒側熱交換量Qref及び空気側熱交換量Qairを示す説明図である。FIG. 4 is an explanatory diagram showing a refrigerant-side heat exchange amount Q ref and an air-side heat exchange amount Q air when heat exchange of air in an indoor heat exchanger is only a sensible heat load in the air conditioning system according to the embodiment of the present invention. . 本発明の実施形態に係る空調システムの空調管理装置が備える制御部の処理を示すフローチャートである。It is a flowchart which shows the process of the control part with which the air-conditioning management apparatus of the air-conditioning system concerning embodiment of this invention is provided. 本発明の実施形態に係る空調システムにおいて、室内熱交換器での熱交換に潜熱が含まれる場合の点(Qref,Qair)の例を示す説明図である。It is an explanatory view showing an example of a point ( Qref , Qair ) when latent heat is included in heat exchange in an indoor heat exchanger in an air-conditioning system concerning an embodiment of the present invention. 本発明の実施形態に係る空調システムにおいて、比率(Qair/Qref)の時間的推移の例を示す説明図である。It is an explanatory view showing an example of a temporal transition of ratio ( Qair / Qref ) in an air- conditioning system concerning an embodiment of the present invention. 本発明の実施形態に係る空調システムにおいて、室内熱交換器の吸込側・吹出側の空気の温湿度に関する空気線図である。FIG. 4 is an air line diagram relating to temperature and humidity of air on the suction side and the air outlet side of the indoor heat exchanger in the air conditioning system according to the embodiment of the present invention. 本発明の変形例に係る空調システムを含む概略的な構成図である。It is a schematic structure figure containing an air-conditioning system concerning a modification of the present invention.
≪実施形態≫
 図1は、実施形態に係る空調システムWを含む概略的な構成図である。
 なお、図1では配管Jの図示を簡略化し、室外機Uoから4台の室内機Uiに冷媒を導く配管と、4台の室内機Uiから室外機Uoに冷媒を導く配管と、を共通の実線(配管J)で図示している。
<< embodiment >>
FIG. 1 is a schematic configuration diagram including an air conditioning system W according to the embodiment.
In FIG. 1, the illustration of the pipe J is simplified, and the pipe that guides the refrigerant from the outdoor unit Uo to the four indoor units Ui and the pipe that guides the refrigerant from the four indoor units Ui to the outdoor unit Uo are common. This is shown by a solid line (pipe J).
 空調システムWは、空調を行うためのシステムであり、空気調和機100と、空調管理装置200と、を備えている。なお、空調管理装置200が複数のサーバを含む構成であってもよい。図1に示す携帯端末300は、空気調和機100のユーザが所持しているスマートフォン、タブレット、携帯電話等の端末機であり、空調管理装置200との間でネットワークNを介して通信可能になっている。 The air conditioning system W is a system for performing air conditioning, and includes an air conditioner 100 and an air conditioning management device 200. The air-conditioning management device 200 may include a plurality of servers. The mobile terminal 300 illustrated in FIG. 1 is a terminal such as a smartphone, a tablet, and a mobile phone owned by a user of the air conditioner 100, and can communicate with the air conditioning management device 200 via the network N. ing.
<空気調和機の構成>
 空気調和機100は、冷房運転や暖房運転等の空調を行う機器である。図1では、一例として、上吹きタイプの室外機Uoと、天井埋込タイプの4台の室内機Uiと、が配管Jを介して接続されたマルチ型の空気調和機100を図示している。図1に示すように、室外機Uoは、通信線Mを介して室内機Uiに接続されるとともに、通信線Mを介して空調管理装置200にも接続されている。
<Configuration of air conditioner>
The air conditioner 100 is a device that performs air conditioning such as a cooling operation and a heating operation. FIG. 1 illustrates, as an example, a multi-type air conditioner 100 in which an outdoor unit Uo of a top blowing type and four indoor units Ui of a ceiling embedded type are connected via a pipe J. . As shown in FIG. 1, the outdoor unit Uo is connected to the indoor unit Ui via the communication line M, and is also connected to the air conditioning management device 200 via the communication line M.
 図2は、空気調和機100の冷媒回路Fを含む構成図である。
 なお、図2では、4台の室内機Ui(図1参照)のうち2台を図示し、残りの2台については図示を省略している。また、図2では、室外熱交換器12や室内熱交換器16における空気の流れを白抜き矢印で示している。
FIG. 2 is a configuration diagram including the refrigerant circuit F of the air conditioner 100.
In FIG. 2, two of the four indoor units Ui (see FIG. 1) are illustrated, and illustration of the remaining two units is omitted. In FIG. 2, the flow of air in the outdoor heat exchanger 12 and the indoor heat exchanger 16 is indicated by outline arrows.
 空気調和機100は、室外機Uoに設けられる機器として、圧縮機11と、室外熱交換器12と、室外ファン13と、室外膨張弁14と、四方弁15と、を備えている。
 圧縮機11は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器である。このような圧縮機11として、例えば、スクロール式圧縮機やロータリ式圧縮機が用いられる。
The air conditioner 100 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13, an outdoor expansion valve 14, and a four-way valve 15 as devices provided in the outdoor unit Uo.
The compressor 11 is a device that compresses a low-temperature and low-pressure gas refrigerant and discharges it as a high-temperature and high-pressure gas refrigerant. As such a compressor 11, for example, a scroll compressor or a rotary compressor is used.
 室外熱交換器12は、その伝熱管(図示せず)を通流する冷媒と、室外ファン13から送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外熱交換器12の一端g1は、四方弁15の切替えによって、圧縮機11の吸入側又は吐出側に接続され、他端g2は液側配管J1に接続されている。 The outdoor heat exchanger 12 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 13. One end g1 of the outdoor heat exchanger 12 is connected to the suction side or the discharge side of the compressor 11 by switching the four-way valve 15, and the other end g2 is connected to the liquid side pipe J1.
 室外ファン13は、室外熱交換器12に外気を送り込むファンである。室外ファン13は、駆動源である室外ファンモータ13aを備え、室外熱交換器12の付近に配置されている。
 室外膨張弁14は、室外熱交換器12に流れる冷媒の流量を調整したり、室外熱交換器12を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側配管J1に設けられている。
 四方弁15は、空調時の運転モードに応じて、冷媒の流路を切り替える弁である。
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12. The outdoor fan 13 includes an outdoor fan motor 13a as a driving source, and is arranged near the outdoor heat exchanger 12.
The outdoor expansion valve 14 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 and reduces the pressure of the refrigerant when the outdoor heat exchanger 12 functions as an evaporator. It is provided in.
The four-way valve 15 is a valve that switches the flow path of the refrigerant according to the operation mode during air conditioning.
 また、空気調和機100は、室内機Uiに設けられる機器として、室内熱交換器16と、室内ファン17と、エアフィルタ18と、室内膨張弁19と、を備えている。
 室内熱交換器16は、その伝熱管(図示せず)を通流する冷媒と、室内ファン17から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器16の一端h1はガス側配管J2に接続され、他端h2は液側配管J3に接続されている。
In addition, the air conditioner 100 includes an indoor heat exchanger 16, an indoor fan 17, an air filter 18, and an indoor expansion valve 19 as devices provided in the indoor unit Ui.
The indoor heat exchanger 16 is a heat exchanger in which heat is exchanged between a refrigerant flowing through a heat transfer tube (not shown) and indoor air (air in a space to be air-conditioned) sent from an indoor fan 17. It is. One end h1 of the indoor heat exchanger 16 is connected to the gas side pipe J2, and the other end h2 is connected to the liquid side pipe J3.
 室内ファン17は、室内熱交換器16に室内空気を送り込むファンである。室内ファン17は、駆動源である室内ファンモータ17aを有し、室内熱交換器16の付近に配置されている。
 エアフィルタ18は、室内ファン17の駆動に伴って室内熱交換器16に向かう空気から塵埃を捕集するフィルタであり、室内熱交換器16の付近(空気吸込側)に配置されている。
The indoor fan 17 is a fan that sends indoor air to the indoor heat exchanger 16. The indoor fan 17 has an indoor fan motor 17a as a driving source, and is arranged near the indoor heat exchanger 16.
The air filter 18 is a filter that collects dust from air flowing toward the indoor heat exchanger 16 as the indoor fan 17 is driven, and is arranged near the indoor heat exchanger 16 (air suction side).
 室内膨張弁19は、室内熱交換器16に流れる冷媒の流量を調整したり、室内熱交換器16を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側配管J3に設けられている。なお、他の室内機Uiも同様の構成を備えている。 The indoor expansion valve 19 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 16 and reduces the pressure of the refrigerant when the indoor heat exchanger 16 functions as an evaporator. It is provided in. The other indoor units Ui have the same configuration.
 液側接続部K1は、それぞれの室内機Uiに一対一で接続された複数の液側配管J3と、室外熱交換器12の他端g2に接続された液側配管J1と、を接続するものである。
 ガス側接続部K2は、それぞれの室内機Uiに一対一で接続された複数のガス側配管J2と、室外機Uoの四方弁15に接続されたガス側配管J4と、を接続するものである。
The liquid-side connection part K1 connects the plurality of liquid-side pipes J3 connected one-to-one to each indoor unit Ui, and the liquid-side pipes J1 connected to the other end g2 of the outdoor heat exchanger 12. It is.
The gas side connection part K2 connects a plurality of gas side pipes J2 connected one-to-one to each indoor unit Ui, and a gas side pipe J4 connected to the four-way valve 15 of the outdoor unit Uo. .
 そして、空調時の運転モードに応じて、冷媒回路Fにおいて周知のヒートポンプサイクルで冷媒が循環するようになっている。例えば、冷房運転時には、圧縮機11、室外熱交換器12(凝縮器)、室外膨張弁14(膨張弁)、室内膨張弁19(膨張弁)、及び室内熱交換器16(蒸発器)を順次に介して冷媒が循環する。
 一方、暖房運転時には、圧縮機11、室内熱交換器16(凝縮器)、室内膨張弁19(膨張弁)、室外膨張弁14(膨張弁)、及び室外熱交換器12(蒸発器)を順次に介して冷媒が循環する。
The refrigerant circulates in the refrigerant circuit F in a well-known heat pump cycle in accordance with the operation mode during air conditioning. For example, during the cooling operation, the compressor 11, the outdoor heat exchanger 12 (condenser), the outdoor expansion valve 14 (expansion valve), the indoor expansion valve 19 (expansion valve), and the indoor heat exchanger 16 (evaporator) are sequentially operated. The refrigerant circulates through.
On the other hand, during the heating operation, the compressor 11, the indoor heat exchanger 16 (condenser), the indoor expansion valve 19 (expansion valve), the outdoor expansion valve 14 (expansion valve), and the outdoor heat exchanger 12 (evaporator) are sequentially operated. The refrigerant circulates through.
 すなわち、空調システムWは、圧縮機11、「凝縮器」、「膨張弁」、及び「蒸発器」を順次に介して冷媒が循環する冷媒回路Fを備え、前記した「凝縮器」及び「蒸発器」の一方は室外熱交換器12であり、他方は室内熱交換器16である。 That is, the air conditioning system W includes the refrigerant circuit F in which the refrigerant circulates sequentially through the compressor 11, the “condenser”, the “expansion valve”, and the “evaporator”. One of the units is an outdoor heat exchanger 12 and the other is an indoor heat exchanger 16.
 その他、室外機Uoには、吸入圧力センサ21と、吸入温度センサ22と、吐出圧力センサ23と、吐出温度センサ24と、が設けられている。
 吸入圧力センサ21は、圧縮機11の吸入側における冷媒の圧力(吸入圧力)を検出するセンサである。吸入温度センサ22は、圧縮機11の吸入側における冷媒の温度(吸入温度)を検出するセンサである。
In addition, the outdoor unit Uo is provided with a suction pressure sensor 21, a suction temperature sensor 22, a discharge pressure sensor 23, and a discharge temperature sensor 24.
The suction pressure sensor 21 is a sensor that detects the pressure (suction pressure) of the refrigerant on the suction side of the compressor 11. The suction temperature sensor 22 is a sensor that detects the temperature of the refrigerant (suction temperature) on the suction side of the compressor 11.
 吐出圧力センサ23は、圧縮機11の吐出側における冷媒の圧力(吐出圧力)を検出するセンサである。吐出温度センサ24は、圧縮機11の吐出側における冷媒の温度(吐出温度)を検出するセンサである。
 吸入圧力センサ21、吸入温度センサ22、吐出圧力センサ23、及び吐出温度センサ24の各検出値は、室外制御回路31を介して空調管理装置200に出力される。
The discharge pressure sensor 23 is a sensor that detects the pressure (discharge pressure) of the refrigerant on the discharge side of the compressor 11. The discharge temperature sensor 24 is a sensor that detects the temperature (discharge temperature) of the refrigerant on the discharge side of the compressor 11.
The detection values of the suction pressure sensor 21, the suction temperature sensor 22, the discharge pressure sensor 23, and the discharge temperature sensor 24 are output to the air conditioning management device 200 via the outdoor control circuit 31.
 一方、室内機Uiには、冷媒温度センサ25,26と、吸込空気温度センサ27と、吹出空気温度センサ28と、が設けられている。
 冷媒温度センサ25は、室内熱交換器16の一端h1の付近を通流する冷媒の温度を検出するセンサである。他方の冷媒温度センサ26は、室内熱交換器16の他端h2の付近を通流する冷媒の温度を検出するセンサである。
On the other hand, the indoor unit Ui is provided with refrigerant temperature sensors 25 and 26, an intake air temperature sensor 27, and an outlet air temperature sensor 28.
The refrigerant temperature sensor 25 is a sensor that detects the temperature of the refrigerant flowing near one end h1 of the indoor heat exchanger 16. The other refrigerant temperature sensor 26 is a sensor that detects the temperature of the refrigerant flowing near the other end h2 of the indoor heat exchanger 16.
 吸込空気温度センサ27は、室内熱交換器16の空気吸込側(入口側)における空気の温度を検出するセンサである。吹出空気温度センサ28は、室内熱交換器16の空気吹出側(出口側)における空気の温度を検出するセンサである。
 冷媒温度センサ25,26、吸込空気温度センサ27、及び吹出空気温度センサ28の各検出値は、室内制御回路32を介して室外制御回路31や空調管理装置200に出力される。
The suction air temperature sensor 27 is a sensor that detects the temperature of air on the air suction side (inlet side) of the indoor heat exchanger 16. The blowout air temperature sensor 28 is a sensor that detects the temperature of air on the air blowout side (outlet side) of the indoor heat exchanger 16.
Respective detection values of the refrigerant temperature sensors 25 and 26, the suction air temperature sensor 27, and the blow-off air temperature sensor 28 are output to the outdoor control circuit 31 and the air conditioning management device 200 via the indoor control circuit 32.
 また、室外機Uoには室外制御回路31が設けられ、室内機Uiには室内制御回路32が設けられている。室外制御回路31や室内制御回路32は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。 The outdoor unit Uo is provided with an outdoor control circuit 31, and the indoor unit Ui is provided with an indoor control circuit 32. Although not shown, the outdoor control circuit 31 and the indoor control circuit 32 include electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. . Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
 室外制御回路31は、各センサの検出値や空調管理装置200からの指令に基づき、圧縮機11、室外ファン13、室外膨張弁14等を制御し、また、所定の信号を室内制御回路32に送信する。一方、室内制御回路32は、室外制御回路31から受信する信号や空調管理装置200からの指令に基づき、室内ファン17や室内膨張弁19を制御する。 The outdoor control circuit 31 controls the compressor 11, the outdoor fan 13, the outdoor expansion valve 14, and the like based on the detection value of each sensor and a command from the air conditioning management device 200, and outputs a predetermined signal to the indoor control circuit 32. Send. On the other hand, the indoor control circuit 32 controls the indoor fan 17 and the indoor expansion valve 19 based on a signal received from the outdoor control circuit 31 and a command from the air conditioning management device 200.
 リモコンReは、赤外線通信等によって、室内制御回路32との間で所定の情報をやり取りする。例えば、空調の運転/停止、運転モードの設定、タイマ、設定温度の変更等に関する信号が、リモコンReから室内制御回路32に送信される。一方、室内制御回路32からリモコンReに送信される信号として、例えば、室内空気の温度や湿度に関する情報が挙げられる。 (4) The remote controller Re exchanges predetermined information with the indoor control circuit 32 by infrared communication or the like. For example, signals related to the operation / stop of the air conditioning, the setting of the operation mode, the timer, and the change of the set temperature are transmitted from the remote controller Re to the indoor control circuit 32. On the other hand, the signal transmitted from the indoor control circuit 32 to the remote controller Re includes, for example, information on the temperature and humidity of indoor air.
<空調管理装置の構成>
 図2に示す空調管理装置200は、空気調和機100による空調を管理したり、後記するように、各センサの検出値に基づいて、室内空気の湿度を推定したりする機能を有している。空調管理装置200は、図示はしないが、CPU、ROM、RAM、各種インタフェース等の電子回路を含んで構成され、通信線を介して室外制御回路31や室内制御回路32に接続されている。
<Configuration of air conditioning management device>
The air conditioning management device 200 illustrated in FIG. 2 has a function of managing air conditioning by the air conditioner 100 and, as described later, estimating the humidity of indoor air based on a detection value of each sensor. . Although not shown, the air-conditioning management device 200 is configured to include electronic circuits such as a CPU, a ROM, a RAM, and various interfaces, and is connected to the outdoor control circuit 31 and the indoor control circuit 32 via a communication line.
 図3は、空調管理装置200の機能ブロック図である(適宜、図2を参照)。
 図3に示すように、空調管理装置200は、記憶部210と、制御部220と、報知部230と、を備えている。
 記憶部210には、所定のプログラムの他、回転速度-設計風量情報211と、設計体積効率情報212と、顕熱負荷情報213と、が格納されている。回転速度-設計風量情報211とは、室内ファン17の回転速度に対応する所定の設計風量を示す情報である。前記した「設計風量」とは、室内ファン17や室内熱交換器16の仕様に基づき、事前の実験等で得られる室内機Uiの風量である。
FIG. 3 is a functional block diagram of the air conditioning management device 200 (see FIG. 2 as appropriate).
As shown in FIG. 3, the air conditioning management device 200 includes a storage unit 210, a control unit 220, and a notification unit 230.
The storage unit 210 stores rotation speed-design airflow information 211, design volumetric efficiency information 212, and sensible heat load information 213 in addition to a predetermined program. The rotation speed-design airflow information 211 is information indicating a predetermined design airflow corresponding to the rotation speed of the indoor fan 17. The “design airflow” described above is an airflow of the indoor unit Ui obtained by a preliminary experiment or the like based on the specifications of the indoor fan 17 and the indoor heat exchanger 16.
 なお、室内ファン17の回転速度が大きいほど、設計風量も大きくなる。そして、室内ファン17の回転速度に対応する設計風量を算出するための数式等が、回転速度-設計風量情報211として、予め記憶部210に格納されている。 (4) The higher the rotation speed of the indoor fan 17, the larger the design air volume. Then, a mathematical expression or the like for calculating the design airflow corresponding to the rotation speed of the indoor fan 17 is stored in the storage unit 210 in advance as the rotation speed-design airflow information 211.
 図3に示す設計体積効率情報212とは、圧縮機11(図2参照)の設計体積効率を示す情報である。前記した「設計体積効率」とは、圧縮機11の仕様に基づく体積効率であり、圧縮機11のモータ(図示せず)の回転速度等に基づいて算出される。
 なお、記憶部210に格納されている顕熱負荷情報213については後記する。
The design volumetric efficiency information 212 shown in FIG. 3 is information indicating the design volumetric efficiency of the compressor 11 (see FIG. 2). The “design volumetric efficiency” is a volumetric efficiency based on the specifications of the compressor 11, and is calculated based on a rotation speed of a motor (not shown) of the compressor 11 and the like.
The sensible heat load information 213 stored in the storage unit 210 will be described later.
 制御部220は、各センサの検出値や記憶部210のデータ等に基づき、所定の処理を実行する。図3に示すように、制御部220は、冷媒側熱交換量推定部221と、空気側熱交換量推定部222と、学習部223と、比較部224と、判定部225と、湿度推定部226と、空調制御部227と、を備えている。 The control unit 220 performs a predetermined process based on a detection value of each sensor, data of the storage unit 210, and the like. As illustrated in FIG. 3, the control unit 220 includes a refrigerant-side heat exchange amount estimating unit 221, an air-side heat exchange amount estimating unit 222, a learning unit 223, a comparing unit 224, a determining unit 225, and a humidity estimating unit. 226 and an air-conditioning control unit 227.
 冷媒側熱交換量推定部221は、冷媒の温度や圧力等の検出値に基づいて、室内熱交換器16における冷媒側熱交換量Qrefを推定する。この冷媒側熱交換量Qrefの「冷媒側」とは、冷媒の温度や圧力等の検出値に基づいて推定された熱交換量であることを意味している。 Refrigerant heat exchange amount estimating unit 221, based on the detected value of temperature, pressure, etc. of the refrigerant, estimates the refrigerant side heat exchange quantity Q ref in the indoor heat exchanger 16. The “refrigerant side” of the refrigerant side heat exchange amount Qref means a heat exchange amount estimated based on a detected value such as a temperature and a pressure of the refrigerant.
 空気側熱交換量推定部222は、室内熱交換器16の吸込側・吹出側の空気の温度や、室内ファン17の回転速度の他、前記した回転速度-設計風量情報211に基づいて、室内熱交換器16における空気側熱交換量Qairとして推定する。この空気側熱交換量Qairの「空気側」とは、空気の温度等に基づいて推定された熱交換量であることを意味している。 The air-side heat exchange amount estimating unit 222 determines the indoor temperature based on the rotation speed-design airflow information 211 in addition to the temperature of the air on the suction side and the air outlet side of the indoor heat exchanger 16 and the rotation speed of the indoor fan 17. It is estimated as the air-side heat exchange amount Q air in the heat exchanger 16. The “air side” of the air side heat exchange amount Q air means a heat exchange amount estimated based on the air temperature or the like.
 ところで、室内空気の湿度が高いときに冷房運転が行われると、室内熱交換器16の伝熱管(図示せず)の温度が露点を下回ることがある。その結果、空気中の水蒸気を水に状態変化させる潜熱負荷が生じる。この潜熱負荷は空気の温度変化に反映されないため、吸込側・吹出側の空気の温度差に基づく空気側熱交換量Qair(顕熱)が、冷媒側熱交換量Qref(全熱)よりも小さくなる。本実施形態では、このような冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小関係に基づいて、潜熱の有無を判定するようにしている。 By the way, if the cooling operation is performed when the humidity of the indoor air is high, the temperature of the heat transfer tubes (not shown) of the indoor heat exchanger 16 may fall below the dew point. As a result, a latent heat load is generated that changes the state of water vapor in the air into water. Since this latent heat load is not reflected in the temperature change of the air, the air-side heat exchange amount Q air (sensible heat) based on the temperature difference between the suction side and the blow-out side air is larger than the refrigerant side heat exchange amount Q ref (total heat). Is also smaller. In the present embodiment, the presence or absence of latent heat is determined based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair .
 図3に示す学習部223は、室内熱交換器16における空気の熱交換に潜熱が含まれていない(顕熱のみである)ことが既知であるときに、冷媒側熱交換量Qrefに対する空気側熱交換量Qairの比率(Qair/Qref)を学習する。 Learning unit 223 shown in FIG. 3, does not contain latent heat exchange of the air in the indoor heat exchanger 16 when (sensible heat in which only) It is known, air to refrigerant heat exchange quantity Q ref The ratio (Q air / Q ref ) of the side heat exchange amount Q air is learned.
 図4は、室内熱交換器における空気の熱交換が顕熱負荷のみであるときの冷媒側熱交換量Qref及び空気側熱交換量Qairを示す説明図である。
 なお、図4の横軸は、冷媒側熱交換量推定部221(図3参照)によって推定された冷媒側熱交換量Qrefである。図4の縦軸は、空気側熱交換量推定部222(図3参照)によって推定された空気側熱交換量Qairである。
Figure 4 is an explanatory diagram showing a refrigerant-side heat exchange quantity Q ref and the air-side heat exchange rate Q air when the heat exchange of the air in the indoor heat exchanger is only the sensible heat load.
The horizontal axis of FIG. 4 is a refrigerant-side heat exchange quantity Q ref estimated by the refrigerant side heat exchange amount estimating unit 221 (see FIG. 3). The vertical axis in FIG. 4 is the air-side heat exchange amount Q air estimated by the air-side heat exchange amount estimation unit 222 (see FIG. 3).
 図4に示す複数の点は、室内熱交換器16における空気の熱交換が顕熱負荷のみであって、潜熱負荷がほとんどないことが既知の学習期間に得られたデータである。このような学習期間での運転モードとして、例えば、暖房運転の他、設定温度が所定値以上の冷房運転が挙げられる。 複数 A plurality of points shown in FIG. 4 are data obtained during a learning period in which it is known that the heat exchange of air in the indoor heat exchanger 16 is only a sensible heat load and there is almost no latent heat load. As an operation mode in such a learning period, for example, in addition to the heating operation, a cooling operation in which the set temperature is equal to or higher than a predetermined value is given.
 学習部223(図3参照)は、所定の学習期間に得られた複数の冷媒側熱交換量Qrefや空気側熱交換量Qairを用いて、例えば、最小二乗法に基づき、図4に示す直線L1の数式を導く。なお、直線L1の数式に代えて、時系列的に得られる比率(Qair/Qref)の移動平均を学習部223が算出するようにしてもよい。 The learning unit 223 (see FIG. 3) uses a plurality of refrigerant-side heat exchange amounts Qref and air-side heat exchange amounts Q air obtained during a predetermined learning period, for example, based on the least squares method, as shown in FIG. The mathematical formula of the straight line L1 shown is derived. Note that the learning unit 223 may calculate the moving average of the ratio (Q air / Q ref ) obtained in time series instead of the mathematical expression of the straight line L1.
 学習期間においては、前記したように、室内熱交換器16における空気の熱交換において潜熱がほとんど含まれないため、その全熱が顕熱に略等しくなる。その結果、冷媒側熱交換量Qref(全熱)と空気側熱交換量Qair(顕熱)とが略等しくなり、直線L1の傾きが“1”に近い値になる。 During the learning period, since the latent heat is hardly included in the heat exchange of the air in the indoor heat exchanger 16 as described above, the total heat is substantially equal to the sensible heat. As a result, the refrigerant side heat exchange amount Q ref (total heat) and the air side heat exchange amount Q air (sensible heat) become substantially equal, and the slope of the straight line L1 becomes a value close to “1”.
 この直線L1の傾きをaとすると、学習部223は、例えば、傾きが(a+b1)の直線L11よりも下側であり、かつ、傾きが(a-b1)の直線L12よりも上側の所定範囲を学習する。別の観点から説明すると、学習部223は、室内熱交換器16での熱交換がほとんど顕熱のみであるときの比率(Qair/Qref)に関して、(a-b1)≦(Qair/Qref)≦(a+b1)の範囲を示す顕熱負荷情報213(図3参照)を記憶部210に格納する。 Assuming that the slope of the straight line L1 is a, the learning unit 223 determines, for example, that the predetermined range is lower than the straight line L11 having the slope (a + b1) and higher than the straight line L12 having the slope (a−b1). To learn. To explain from another viewpoint, the learning unit 223 determines that the ratio (Q air / Q ref ) when the heat exchange in the indoor heat exchanger 16 is almost only sensible heat is (a−b 1) ≦ (Q air / Sensible heat load information 213 (see FIG. 3) indicating the range of (Q ref ) ≦ (a + b1) is stored in the storage unit 210.
 図3に示す比較部224は、空調運転中に、冷媒側熱交換量Qrefと空気側熱交換量Qairとの大小を比較する。
 判定部225は、比較部224の比較結果に基づき、室内熱交換器16での空気の熱交換に関して、潜熱の有無を判定する。
The comparison unit 224 illustrated in FIG. 3 compares the magnitude of the refrigerant-side heat exchange amount Qref with the magnitude of the air-side heat exchange amount Qair during the air-conditioning operation.
The determination unit 225 determines the presence or absence of latent heat with respect to the heat exchange of the air in the indoor heat exchanger 16 based on the comparison result of the comparison unit 224.
 湿度推定部226は、室内熱交換器16での空気の熱交換に潜熱が含まれる場合、室内熱交換器16に向かう空気の湿度を推定する。
 空調制御部227は、湿度推定部226の推定結果等に基づいて、所定の空調制御を実行する。
When the latent heat is included in the heat exchange of the air in the indoor heat exchanger 16, the humidity estimating unit 226 estimates the humidity of the air going to the indoor heat exchanger 16.
The air-conditioning control unit 227 performs a predetermined air-conditioning control based on the estimation result of the humidity estimating unit 226 and the like.
 報知部230は、湿度推定部226の推定結果等を報知する。このような報知部230として、例えば、ディスプレイが挙げられる。その他、報知部230が所定の通信機能を有し、湿度推定部226の推定結果等をリモコンRe(図2参照)やユーザの携帯端末300(図1参照)に報知するようにしてもよい。 The notifying unit 230 notifies the estimation result of the humidity estimating unit 226 and the like. A display is an example of such a notification unit 230. In addition, the notification unit 230 may have a predetermined communication function, and may notify the remote controller Re (see FIG. 2) and the user's portable terminal 300 (see FIG. 1) of the estimation result and the like of the humidity estimation unit 226.
<空調管理装置の処理>
 図5は、空調管理装置200が備える制御部220の処理を示すフローチャートである(適宜、図2、図3を参照)。
 なお、図5の「START」時には、前記した顕熱負荷情報213が既に学習されているものとする。また、図5の処理中、リモコンReからの指令に基づき、空気調和機100が冷房運転を実行しているものとする。
<Processing of air conditioning management device>
FIG. 5 is a flowchart showing the processing of the control unit 220 provided in the air-conditioning management device 200 (see FIGS. 2 and 3 as appropriate).
At the time of "START" in FIG. 5, it is assumed that the sensible heat load information 213 has already been learned. Also, it is assumed that the air conditioner 100 is performing the cooling operation based on a command from the remote controller Re during the processing in FIG.
 また、室内空気の湿度を推定する際(つまり、S101~106の処理を行う際)、制御部220が、室内熱交換器16での空気の熱交換に潜熱が含まれる(室内熱交換器16の温度が露点を下回る)ように、室内熱交換器16を蒸発器として機能させる処理を行うことが好ましい。例えば、制御部220が、リモコンReからの指令に基づく所定温度よりも低い設定温度で冷房運転を開始させてもよい。これによって、後記するように、湿度センサ(図示せず)がなくても、室内空気の湿度を推定できるからである(S106)。 Further, when estimating the humidity of the indoor air (that is, when performing the processing of S101 to S106), the control unit 220 causes the heat exchange of the air in the indoor heat exchanger 16 to include the latent heat (the indoor heat exchanger 16). It is preferable to perform a process of making the indoor heat exchanger 16 function as an evaporator so that the temperature of the indoor heat exchanger 16 falls below the dew point. For example, the control unit 220 may start the cooling operation at a set temperature lower than a predetermined temperature based on a command from the remote controller Re. This is because, as described later, the humidity of the room air can be estimated without a humidity sensor (not shown) (S106).
 ステップS101において制御部220は、冷媒側熱交換量推定部221によって、室内熱交換器16の冷媒側熱交換量Qrefを推定する(冷媒側熱交換量推定ステップ)。具体的に説明すると、制御部220は、まず、吸入圧力センサ21の検出値と、吸入温度センサ22の検出値と、圧縮機11の吸入側の冷媒過熱度と、に基づいて、圧縮機11の吸入側の冷媒密度を算出する。なお、圧縮機11の吸入側の冷媒過熱度は、事前の実験に基づき、所定の値が予め記憶されているものとする。 Control unit 220 in step S101, the refrigerant-side heat exchange amount estimating unit 221 estimates the refrigerant side heat exchange amount Q ref of the indoor heat exchanger 16 (the refrigerant heat exchanger estimation step). More specifically, the control unit 220 firstly controls the compressor 11 based on the detection value of the suction pressure sensor 21, the detection value of the suction temperature sensor 22, and the degree of superheat of the refrigerant on the suction side of the compressor 11. Calculate the refrigerant density on the suction side. It is assumed that a predetermined value of the refrigerant superheat degree on the suction side of the compressor 11 is stored in advance based on a previous experiment.
 そして、制御部220は、圧縮機11の吸入側の冷媒密度と、圧縮機11の行程容積と、圧縮機モータ(図示せず)の回転速度と、圧縮機11の設計体積効率と、に基づいて、冷媒回路Fにおける単位時間当たりの冷媒循環量を算出する。なお、圧縮機11の行程容積は、既知であるものとする。また、圧縮機11の設計体積効率は、前記した設計体積効率情報212(図3参照)に基づいて推定される。 Then, the control unit 220 determines the refrigerant density on the suction side of the compressor 11, the stroke volume of the compressor 11, the rotation speed of the compressor motor (not shown), and the designed volumetric efficiency of the compressor 11. Thus, the refrigerant circulation amount per unit time in the refrigerant circuit F is calculated. It is assumed that the stroke volume of the compressor 11 is known. Further, the design volumetric efficiency of the compressor 11 is estimated based on the above-described design volumetric efficiency information 212 (see FIG. 3).
 さらに、制御部220は、吐出圧力センサ23の検出値と、冷媒温度センサ25,26の検出値と、に基づいて、室内熱交換器16の一端側・他端側(つまり、入口側・出口側)における冷媒の比エンタルピ差を算出する。 Further, the control unit 220 determines one end and the other end of the indoor heat exchanger 16 (that is, the inlet side and the outlet side) based on the detection value of the discharge pressure sensor 23 and the detection values of the refrigerant temperature sensors 25 and 26. Side), the difference in specific enthalpy of the refrigerant is calculated.
 そして、制御部220は、室内熱交換器16の一端側・他端側における冷媒の比エンタルピ差と、前記した冷媒循環量と、に基づいて、室内熱交換器16の冷媒側熱交換量Qrefを推定する。このように、制御部220は、室内熱交換器16の一端側・他端側の冷媒の温度を含む情報に基づき、室内熱交換器16における冷媒側熱交換量Qrefを推定する。 Then, the control unit 220 determines the refrigerant-side heat exchange amount Q of the indoor heat exchanger 16 based on the specific enthalpy difference of the refrigerant at one end and the other end of the indoor heat exchanger 16 and the above-described refrigerant circulation amount. Estimate ref . As described above, the control unit 220 estimates the refrigerant-side heat exchange amount Qref in the indoor heat exchanger 16 based on the information including the temperatures of the refrigerant at one end and the other end of the indoor heat exchanger 16.
 次に、ステップS102において制御部220は、空気側熱交換量推定部222によって、室内熱交換器16の空気側熱交換量Qairを推定する(空気側熱交換量推定ステップ)。具体的に説明すると、制御部220は、まず、回転速度-設計風量情報211を参照し、室内ファン17の回転速度に対応する設計風量を算出する。そして、制御部220は、前記した設計風量と、吸込空気温度センサ27の検出値と、吹出空気温度センサ28の検出値と、に基づいて、室内熱交換器16の空気側熱交換量Qairを推定する。 Next, in step S102, the control unit 220 estimates the air-side heat exchange amount Q air of the indoor heat exchanger 16 by the air-side heat exchange amount estimation unit 222 (air-side heat exchange amount estimation step). More specifically, the control unit 220 first calculates the design airflow corresponding to the rotation speed of the indoor fan 17 with reference to the rotation speed-design airflow information 211. Then, the control unit 220 determines the air-side heat exchange amount Q air of the indoor heat exchanger 16 based on the design air volume, the detection value of the intake air temperature sensor 27, and the detection value of the blow-out air temperature sensor 28. Is estimated.
 このように、制御部220は、室内熱交換器16に向かう空気の温度、室内熱交換器16で熱交換した空気の温度、及び、室内ファン17の回転速度に対応する設計風量に基づいて、室内熱交換器16における空気側熱交換量Qairを推定する。 As described above, the control unit 220 determines the temperature of the air flowing toward the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, and the design airflow corresponding to the rotation speed of the indoor fan 17. The air-side heat exchange amount Q air in the indoor heat exchanger 16 is estimated.
 次に、ステップS103において制御部220は、比較部224によって、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さいか否かを判定する。 Next, in step S103, the control unit 220 causes the comparing unit 224 to determine whether the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref .
 図6は、室内熱交換器での熱交換に潜熱が含まれる場合の点(Qref,Qair)の例を示す説明図である。
 なお、図6の横軸は冷媒側熱交換量Qrefであり、縦軸は空気側熱交換量Qairである。また、図6に示す斜線部分は、室内熱交換器16での空気の熱交換が顕熱負荷のみであると想定される範囲である。
FIG. 6 is an explanatory diagram showing an example of points (Q ref , Q air ) in the case where latent heat is included in heat exchange in the indoor heat exchanger.
The horizontal axis in FIG. 6 is the refrigerant-side heat exchange amount Qref , and the vertical axis is the air-side heat exchange amount Qair . The hatched area shown in FIG. 6 is a range in which the heat exchange of the air in the indoor heat exchanger 16 is assumed to be only the sensible heat load.
 例えば、点P1に着目すると、冷媒側熱交換量Q1refよりも空気側熱交換量Q1airのほうが小さく、さらに、点(Q1ref,Q1air)が斜線部分の所定範囲から逸脱している。これは、室内熱交換器16における空気の熱交換に潜熱が含まれていたからである。つまり、室内機Ui(図2参照)に吸い込まれた空気に含まれる水蒸気が室内熱交換器16(図2参照)に結露する際、潜熱が生じたからである。なお、図6に示す他の点についても同様である。 For example, focusing on the point P1, the air-side heat exchange amount Q1 air is smaller than the refrigerant-side heat exchange amount Q1 ref , and the point (Q1 ref , Q1 air ) deviates from a predetermined range of a hatched portion. This is because latent heat was included in the heat exchange of air in the indoor heat exchanger 16. That is, when the water vapor contained in the air sucked into the indoor unit Ui (see FIG. 2) condenses on the indoor heat exchanger 16 (see FIG. 2), latent heat is generated. The same applies to other points shown in FIG.
 図5のステップS103において冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さい場合(S103:Yes)、制御部220の処理はステップS104に進む。
 ステップS104において制御部220は、比率(Qair/Qref)が所定範囲外であるか否かを判定する。
If the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref in step S103 of FIG. 5 (S103: Yes), the process of the control unit 220 proceeds to step S104.
In step S104, the control unit 220 determines whether or not the ratio (Q air / Q ref ) is outside a predetermined range.
 図7は、比率(Qair/Qref)の時間的推移の例を示す説明図である。
 なお、図7の横軸は時刻であり、縦軸は比率(Qair/Qref)である。図7の例では、室内熱交換器16での空気の熱交換が顕熱負荷のみであるときの比率(Qair/Qref)の範囲として、α≦(Qair/Qref)≦βが設定されている。これが、前記した顕熱負荷情報213(図3参照)である。また、図7の例では、時刻t1,t2,t3のそれぞれにおいて、比率(Qair/Qref)が、所定値αよりも小さくなっている。
FIG. 7 is an explanatory diagram showing an example of a temporal transition of the ratio (Q air / Q ref ).
In FIG. 7, the horizontal axis represents time, and the vertical axis represents the ratio (Q air / Q ref ). In the example of FIG. 7, α ≦ (Q air / Q ref ) ≦ β is the range of the ratio (Q air / Q ref ) when the heat exchange of the air in the indoor heat exchanger 16 is only the sensible heat load. Is set. This is the sensible heat load information 213 (see FIG. 3). In the example of FIG. 7, the ratio (Q air / Q ref ) is smaller than the predetermined value α at each of the times t1, t2, and t3.
 なお、時系列的に算出された複数の比率(Qair/Qref)の移動平均を制御部220が算出し、この移動平均が所定範囲α≦(Qair/Qref)≦βから外れたか否かを判定するようにしてもよい(S104)。
 その他、比率(Qair/Qref)を制御部220が算出する際、図6に示す複数の点(Qref,Qair)の近似直線L2を最小二乗法で算出し、この近似直線L2の傾きが所定範囲α≦(Qair/Qref)≦βから外れているか否かを判定するようにしてもよい(S104)。
The control unit 220 calculates a moving average of a plurality of ratios (Q air / Q ref ) calculated in time series, and determines whether the moving average deviates from a predetermined range α ≦ (Q air / Q ref ) ≦ β. The determination may be made (S104).
In addition, when the control unit 220 calculates the ratio (Q air / Q ref ), the approximate straight line L2 of the plurality of points (Q ref , Q air ) shown in FIG. 6 is calculated by the least square method, and the approximate straight line L2 is calculated. It may be determined whether the inclination is out of the predetermined range α ≦ (Q air / Q ref ) ≦ β (S104).
 図5のステップS104において比率(Qair/Qref)が所定範囲外である場合(S104:Yes)、制御部220の処理はステップS105に進む。
 ステップS105において制御部220は、判定部225によって、室内熱交換器16における空気の熱交換に潜熱が含まれている(「潜熱あり」)と判定する。
When the ratio (Q air / Q ref ) is out of the predetermined range in step S104 of FIG. 5 (S104: Yes), the process of the control unit 220 proceeds to step S105.
In step S105, the control unit 220 causes the determination unit 225 to determine that the heat exchange of the air in the indoor heat exchanger 16 includes latent heat ("latent heat is present").
 次に、ステップS106において制御部220は、湿度推定部226によって、室内熱交換器16に向かう空気の湿度を推定する(湿度推定ステップ)。 Next, in step S106, the control unit 220 causes the humidity estimating unit 226 to estimate the humidity of the air flowing toward the indoor heat exchanger 16 (humidity estimating step).
 図8は、室内熱交換器の吸込側・吹出側の空気の温湿度に関する空気線図である。
 なお、図8の横軸は、空気の乾球温度であり、縦軸は、空気の絶対湿度である。また、曲線Rは、相対湿度が100[%]の状態を示す曲線である。また、点P2は、室内熱交換器16に向かう吸込空気の温湿度の例であり、点P3は、この吸込空気が室内熱交換器16で熱交換した後の吹出空気の温湿度を示している。
FIG. 8 is an air line diagram relating to the temperature and humidity of the air on the suction side and the air outlet side of the indoor heat exchanger.
The horizontal axis in FIG. 8 is the dry-bulb temperature of the air, and the vertical axis is the absolute humidity of the air. A curve R is a curve indicating a state where the relative humidity is 100 [%]. Further, point P2 is an example of the temperature and humidity of the suction air flowing toward the indoor heat exchanger 16, and point P3 indicates the temperature and humidity of the blown air after the suction air exchanges heat with the indoor heat exchanger 16. I have.
 冷房運転中、室内熱交換器16での空気の熱交換に潜熱が含まれる場合には、吹出側の空気の温度が露点を下回る。つまり、空気線図上では、吹出空気の状態を示す点P3が相対湿度100%の曲線R上にある。したがって、吹出空気温度センサ28(図2参照)の検出値(点P3では、乾球温度10℃)と、「潜熱あり」との判定結果(S105)と、に基づき、空気線図上での点P3の位置が確定される。 During the cooling operation, if the heat exchange of the air in the indoor heat exchanger 16 includes latent heat, the temperature of the air on the blow-out side falls below the dew point. That is, on the psychrometric chart, the point P3 indicating the state of the blown air is on the curve R at a relative humidity of 100%. Therefore, based on the detection value of the blow-off air temperature sensor 28 (see FIG. 2) (at the point P3, the dry-bulb temperature is 10 ° C.) and the determination result of “latent heat” (S105), the air-line diagram is used. The position of the point P3 is determined.
 一方、吸込側の空気に関しては、吸込空気温度センサ27(図2参照)の検出値(点P2では、乾球温度が約27℃)に基づき、点P2が破線L3上に存在することが分かる。そこで、制御部220は、冷媒側熱交換量Qref(全熱:顕熱+潜熱)に対する空気側熱交換量Qair(顕熱)の比率(Qair/Qref)に基づいて、吸込空気の湿度(点P2の位置)を推定する。なお、図8の空気線図に相当するデータが、例えば、データテーブルとして記憶部210(図3参照)に予め格納されているものとする。 On the other hand, regarding the air on the suction side, it is understood that the point P2 exists on the broken line L3 based on the detection value of the suction air temperature sensor 27 (see FIG. 2) (at the point P2, the dry bulb temperature is about 27 ° C.). . Therefore, the control unit 220 determines the suction air based on the ratio (Q air / Q ref ) of the air side heat exchange amount Q air (sensible heat) to the refrigerant side heat exchange amount Q ref (total heat: sensible heat + latent heat). (The position of the point P2) is estimated. It is assumed that data corresponding to the psychrometric chart in FIG. 8 is stored in advance in the storage unit 210 (see FIG. 3) as a data table, for example.
 このように制御部220は、室内熱交換器16における空気の熱交換に潜熱が含まれる場合には(図5のS105)、室内空気の湿度を推定する(S106)。つまり、制御部220は、室内熱交換器16に向かう空気の温度、室内熱交換器16で熱交換した空気の温度、冷媒側熱交換量Qref、及び空気側熱交換量Qairに基づいて、室内熱交換器16に向かう空気の湿度を推定する(S106)。これによって、室内機Ui(図2参照)に湿度センサが設けられていなくても室内空気の湿度を推定できるため、空気調和機100の製造コストを削減できる。 As described above, when the latent heat is included in the heat exchange of the air in the indoor heat exchanger 16 (S105 in FIG. 5), the control unit 220 estimates the humidity of the indoor air (S106). That is, the control unit 220 determines the temperature of the air going to the indoor heat exchanger 16, the temperature of the air that has exchanged heat in the indoor heat exchanger 16, the refrigerant-side heat exchange amount Q ref , and the air-side heat exchange amount Q air. Then, the humidity of the air going to the indoor heat exchanger 16 is estimated (S106). Thereby, the humidity of the indoor air can be estimated even if the humidity sensor is not provided in the indoor unit Ui (see FIG. 2), so that the manufacturing cost of the air conditioner 100 can be reduced.
 図5のステップS107において制御部220は、ステップS106で算出した湿度(例えば、相対湿度)が所定値以上であるか否かを判定する。この所定値は、除湿運転(S108)を行うか否かの判定基準となる閾値であり、予め設定されている。前記した湿度が所定値以上である場合(S107:Yes)、制御部220の処理はステップS108に進む。 In step S107 of FIG. 5, the control unit 220 determines whether the humidity (for example, relative humidity) calculated in step S106 is equal to or more than a predetermined value. This predetermined value is a threshold value serving as a criterion for determining whether or not to perform the dehumidifying operation (S108), and is set in advance. If the humidity is equal to or higher than the predetermined value (S107: Yes), the process of the control unit 220 proceeds to step S108.
 ステップS108において制御部220は、除湿運転を実行する(空調制御ステップ)。例えば、制御部220は、除湿運転を行う際、室内膨張弁19の開度を小さくする指令信号を生成し、空気調和機100に送信する。これによって、室内熱交換器16(蒸発器)に流入する冷媒の蒸発温度が低くなり、この冷媒の過熱度が大きくなるため、除湿運転を行うことができる。 に お い て In step S108, control unit 220 executes a dehumidifying operation (air conditioning control step). For example, when performing the dehumidifying operation, the control unit 220 generates a command signal for reducing the opening degree of the indoor expansion valve 19 and transmits the command signal to the air conditioner 100. Thereby, the evaporation temperature of the refrigerant flowing into the indoor heat exchanger 16 (evaporator) decreases, and the degree of superheat of the refrigerant increases, so that the dehumidifying operation can be performed.
 その他、除湿運転を行う際、制御部220が、室内ファン17の回転速度を小さくする指令信号を生成し、空気調和機100に送信するようにしてもよい。このような制御でも、室内熱交換器16(蒸発器)に流入する冷媒の過熱度が大きくなるため、除湿運転を行うことができる。なお、除湿運転(S108)を所定時間行った後、制御部220が再び冷房運転を行うようにしてもよい。 In addition, when performing the dehumidifying operation, the control unit 220 may generate a command signal for decreasing the rotation speed of the indoor fan 17 and transmit the command signal to the air conditioner 100. Even with such control, the degree of superheat of the refrigerant flowing into the indoor heat exchanger 16 (evaporator) increases, so that the dehumidifying operation can be performed. After performing the dehumidifying operation (S108) for a predetermined time, the control unit 220 may perform the cooling operation again.
 また、ステップS107において湿度が所定値未満である場合(S107:No)、制御部220は、除湿運転を行うことなく、一連の処理を終了する(END)。つまり、制御部220は、除湿運転を行わずに、冷房運転を継続する。湿度が低い場合には、除湿運転を行う必要は特にないからである。 If the humidity is less than the predetermined value in step S107 (S107: No), the control unit 220 ends the series of processes without performing the dehumidifying operation (END). That is, the control unit 220 continues the cooling operation without performing the dehumidifying operation. This is because when the humidity is low, it is not particularly necessary to perform the dehumidifying operation.
 また、ステップS103においてQref≦Qairである場合や(S103:No)、ステップS104において比率(Qair/Qref)が所定範囲内である場合(S104:No)、制御部220の処理はステップS109に進む。 When Q ref ≦ Q air is satisfied in step S103 (S103: No), or when the ratio (Q air / Q ref ) is within a predetermined range in step S104 (S104: No), the process of the control unit 220 is performed. Proceed to step S109.
 ステップS109において制御部220は、判定部225によって、室内熱交換器16における空気の熱交換に潜熱が含まれていない(「潜熱なし」)と判定する。この場合には、室内空気の湿度がそれほど高くないため、除湿運転を行う必要は特にない。
 ステップS109の処理を行った後、制御部220は、一連の処理を終了する(END)。
In step S109, the control unit 220 determines by the determination unit 225 that the heat exchange of the air in the indoor heat exchanger 16 does not include latent heat (“no latent heat”). In this case, since the humidity of the room air is not so high, it is not particularly necessary to perform the dehumidification operation.
After performing the process of step S109, the control unit 220 ends a series of processes (END).
 なお、図5では省略しているが、ステップS106で推定された湿度の履歴情報が記憶部210(図3参照)に記憶されるようにしてもよい。そして、記憶部210に記憶された湿度の履歴情報を制御部220がリモコンRe(図2参照)又は携帯端末300(端末機:図1参照)に送信するようにすることが好ましい。これによって、室内空気の湿度の時間的な変化をユーザが容易に把握できる。また、制御部220が、室内空気の湿度や比率(Qair/Qref)の履歴情報を遠隔監視センタ(図示せず)に送信するようにしてもよい。この遠隔監視センタのコンピュータ(図示せず)も「端末機」に含まれる。 Although omitted in FIG. 5, the history information of the humidity estimated in step S106 may be stored in the storage unit 210 (see FIG. 3). It is preferable that the control unit 220 transmits the humidity history information stored in the storage unit 210 to the remote controller Re (see FIG. 2) or the portable terminal 300 (terminal: see FIG. 1). Thereby, the user can easily grasp the temporal change of the humidity of the indoor air. Further, the control unit 220 may transmit the history information of the humidity and the ratio (Q air / Q ref ) of the indoor air to a remote monitoring center (not shown). The computer (not shown) of the remote monitoring center is also included in the “terminal”.
<効果>
 本実施形態によれば、冷媒側熱交換量Qrefと、空気側熱交換量Qairと、の大小関係等に基づいて(図5のS103,S104)、室内熱交換器16での空気の熱交換に潜熱が含まれているか否かを制御部220が判定する(S105,S109)。そして、前記した熱交換に潜熱が含まれると判定した場合(S105)、制御部220は、室内空気の湿度を推定する(S106)。
<Effect>
According to the present embodiment, based on the magnitude relationship between the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair (S103, S104 in FIG. 5), the air flow in the indoor heat exchanger 16 is determined. The control unit 220 determines whether or not latent heat is included in the heat exchange (S105, S109). When it is determined that latent heat is included in the heat exchange (S105), the control unit 220 estimates the humidity of the room air (S106).
 これによって、室内機Uiに湿度センサ(図示せず)が設けられていなくても、室内空気の湿度を正確に推定できるため、空気調和機100の製造コストを削減できる。また、室内空気の湿度に基づき、制御部220が除湿運転を適宜に行うことで(図5のS108)、快適性の高い空調を行うことができる。特に、高温多湿の地域に空気調和機100が設けられる場合には、本実施形態の制御が有効である。 (4) With this, even if the indoor unit Ui is not provided with a humidity sensor (not shown), the humidity of the indoor air can be accurately estimated, so that the manufacturing cost of the air conditioner 100 can be reduced. In addition, the controller 220 appropriately performs the dehumidifying operation based on the humidity of the indoor air (S108 in FIG. 5), so that highly comfortable air conditioning can be performed. In particular, when the air conditioner 100 is provided in a hot and humid area, the control of the present embodiment is effective.
≪変形例≫
 以上、本発明に係る空調システムWについて実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、実施形態では、冷媒側熱交換量Qrefよりも空気側熱交換量Qairのほうが小さく(図5のS103:Yes)、かつ、比率(Qair/Qref)が所定範囲外である場合(S104:Yes)、制御部220が湿度を推定する処理(S106)について説明したが、これに限らない。例えば、ステップS105の判定処理を省略し、冷媒側熱交換量Qrefよりも空気側熱交換量Qairの方が小さい場合、室内熱交換器16に向かう空気の湿度を制御部220が推定するようにしてもよい。このような処理でも、室内空気の湿度を適切に算出することが可能である。
≪Modified example≫
As described above, the air conditioning system W according to the present invention has been described in the embodiments, but the present invention is not limited to these descriptions, and various changes can be made.
For example, in the embodiment, the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref (S103: Yes in FIG. 5), and the ratio (Q air / Q ref ) is out of the predetermined range. In the case (S104: Yes), the process in which the control unit 220 estimates the humidity (S106) has been described, but the present invention is not limited to this. For example, if the determination process of step S105 is omitted and the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref , the control unit 220 estimates the humidity of the air flowing toward the indoor heat exchanger 16. You may do so. Even in such processing, it is possible to appropriately calculate the humidity of the room air.
 また、実施形態では、制御部220(図3参照)が学習部223(図3参照)を備える構成について説明したが、この学習部223を省略してもよい。そして、室内熱交換器16での空気の熱交換に潜熱が含まれないような運転条件で空調が行われた場合において、比率(Qair/Qref)が“1”に略等しいとき、制御部220が、室内空気の湿度を推定するようにしてもよい。具体的には、暖房運転中、又は、設定温度が所定値以上である冷房運転中、冷媒側熱交換量Qrefと空気側熱交換量Qairとが略等しい場合において、その後に設定温度が前記した所定値未満である冷房運転を行うとき、制御部220が、室内空気の湿度を推定する。これによって、室内空気の湿度の推定に関する誤差をさらに小さくすることができる。 In the embodiment, the configuration in which the control unit 220 (see FIG. 3) includes the learning unit 223 (see FIG. 3) has been described, but the learning unit 223 may be omitted. When the ratio (Q air / Q ref ) is substantially equal to “1” in the case where the air conditioning is performed under the operating condition that the latent heat is not included in the heat exchange of the air in the indoor heat exchanger 16, the control is performed. The unit 220 may estimate the humidity of the room air. Specifically, during the heating operation, or during the cooling operation in which the set temperature is equal to or higher than the predetermined value, when the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair are substantially equal, the set temperature is thereafter When performing the cooling operation that is less than the predetermined value, the control unit 220 estimates the humidity of the indoor air. As a result, the error relating to the estimation of the humidity of the indoor air can be further reduced.
 また、例えば、室内熱交換器16やエアフィルタ18に塵埃が付着していると、室内ファン17の回転速度に対応する設計風量よりも実際の風量の方が小さくなる。その結果、冷媒側熱交換量Qrefよりも空気側熱交換量Qairの方が大きくなることがある。
 また、圧縮機11において圧縮室(図示せず)のシール性が低下すると、圧縮室から冷媒が漏れやすくなるため、冷媒側熱交換量Qrefよりも空気側熱交換量Qairの方が小さくなることもある。
 そこで、比率(Qair/Qref)が「所定範囲」内である場合に制御部220が室内空気の湿度を推定する処理に関して、さらに次の処理を行うようにしてもよい。すなわち、暖房運転中、又は、設定温度が所定値以上である冷房運転中、冷媒側熱交換量Qref及び空気側熱交換量Qairのうち一方が他方よりも大きい場合、制御部220が、前記した「所定範囲」を補正するようにしてもよい。つまり、室内熱交換器16での空気の熱交換に潜熱が含まれていないと想定されるときの比率(Qair/Qref)に基づき、制御部220が「所定範囲」を補正(学習)するようにしてもよい。これによって、室内熱交換器16等に塵埃が付着していたり、圧縮機11が劣化したりしても、制御部220が、室内空気の湿度を高精度で推定できる。
Further, for example, when dust adheres to the indoor heat exchanger 16 and the air filter 18, the actual air volume is smaller than the designed air volume corresponding to the rotation speed of the indoor fan 17. As a result, the air side heat exchange amount Q air may be larger than the refrigerant side heat exchange amount Q ref .
Further, when the sealing performance of the compression chamber (not shown) in the compressor 11 is reduced, the refrigerant is likely to leak from the compression chamber, so that the air-side heat exchange amount Q air is smaller than the refrigerant-side heat exchange amount Q ref. It can be.
Therefore, when the ratio (Q air / Q ref ) is within the “predetermined range”, the control unit 220 may perform the following process regarding the process of estimating the humidity of the room air. That is, during the heating operation, or during the cooling operation in which the set temperature is equal to or higher than the predetermined value, when one of the refrigerant-side heat exchange amount Qref and the air-side heat exchange amount Qair is larger than the other, the control unit 220: The aforementioned “predetermined range” may be corrected. That is, the control unit 220 corrects (learns) the “predetermined range” based on the ratio (Q air / Q ref ) when latent heat is not included in the heat exchange of the air in the indoor heat exchanger 16. You may make it. Thereby, even if dust adheres to the indoor heat exchanger 16 or the like or the compressor 11 deteriorates, the control unit 220 can estimate the humidity of the indoor air with high accuracy.
 また、実施形態では、空調管理装置200が空気調和機100に指令信号を出力する構成について説明したが、これに限らない。例えば、次に説明するように、空調管理装置200が、空気調和機100及び除湿機400(図9参照)の両方に指令信号を出力する構成であってもよい。 In the embodiment, the configuration in which the air-conditioning management device 200 outputs a command signal to the air conditioner 100 has been described. However, the configuration is not limited to this. For example, as described below, the air conditioning management device 200 may be configured to output a command signal to both the air conditioner 100 and the dehumidifier 400 (see FIG. 9).
 図9は、変形例に係る空調システムWAを含む概略的な構成図である。
 図9に示すように、空調システムWAは、空気調和機100と、空調管理装置200と、除湿機400と、を備えている。空調管理装置200は、通信線Mを介して室外機Uoや室内機Uiに接続されるとともに、通信線Mを介して除湿機400にも接続されている。つまり、室内ファン17の駆動に伴って空気調和された空気が吹き出される空調対象空間に設けられる除湿機400と、空調管理装置200の制御部220(図3参照)と、が互いに通信可能になっている。図9に示す除湿機400は、主に除湿を行う機器である。なお、除湿機400の構成について周知であるから、詳細な説明を省略する。
FIG. 9 is a schematic configuration diagram including an air conditioning system WA according to a modification.
As shown in FIG. 9, the air conditioning system WA includes an air conditioner 100, an air conditioning management device 200, and a dehumidifier 400. The air conditioning management device 200 is connected to the outdoor unit Uo and the indoor unit Ui via the communication line M, and is also connected to the dehumidifier 400 via the communication line M. That is, the dehumidifier 400 provided in the air-conditioned space from which the air-conditioned air is blown out with the driving of the indoor fan 17 and the control unit 220 (see FIG. 3) of the air-conditioning management device 200 can communicate with each other. Has become. The dehumidifier 400 shown in FIG. 9 is a device that mainly performs dehumidification. Since the configuration of the dehumidifier 400 is well known, a detailed description is omitted.
 このような構成において、空調管理装置200の制御部220(図3参照)は、室内空気の湿度が所定値未満である場合には、除湿運転を行わせる信号を除湿機400に出力する。このように、室内空気の湿度がそれほど高くない場合には、除湿機400のみに除湿運転を行わせることで、空調の高効率化を図ることができる。なお、前記した場合において、空気調和機100は停止状態であってもよいし、また、冷房運転等を行っていてもよい。
 一方、室内空気の湿度が前記した所定値以上である場合、制御部220は、除湿運転を行わせる信号を除湿機400に出力するとともに、冷媒回路F(図2参照)を用いて除湿運転を行う。これによって、除湿機400では足りない分の除湿を空気調和機100の運転で補うことができる。
In such a configuration, the control unit 220 (see FIG. 3) of the air conditioning management device 200 outputs a signal for performing the dehumidifying operation to the dehumidifier 400 when the humidity of the room air is less than the predetermined value. As described above, when the humidity of the room air is not so high, the dehumidifying operation is performed only by the dehumidifier 400, so that the efficiency of the air conditioning can be increased. In the above case, the air conditioner 100 may be in a stopped state, or may be performing a cooling operation or the like.
On the other hand, when the humidity of the indoor air is equal to or higher than the predetermined value, the control unit 220 outputs a signal for performing the dehumidifying operation to the dehumidifier 400, and performs the dehumidifying operation using the refrigerant circuit F (see FIG. 2). Do. Thus, the operation of the air conditioner 100 can compensate for the dehumidification that the dehumidifier 400 lacks.
 また、空気の熱交換に潜熱が含まれるように室内熱交換器16を蒸発器として機能させる処理中、室内空気の湿度の履歴情報が記憶部210に記憶される場合において、制御部220が次の処理を行うようにしてもよい。すなわち、制御部220が、室内空気の湿度の履歴情報に基づいて、将来の湿度を予測し、その予測結果に基づいて、前記した処理を将来に行う際の冷房運転の設定温度を決めるようにしてもよい。その一例を挙げると、制御部220は、直近の数日間に推定した室内空気の湿度の移動平均を算出し、この移動平均に基づいて、次回に湿度を推定する際の冷房運転時の設定温度を決定する。これによって、湿度を推定する際の冷房運転の設定温度が高すぎたり、また、低すぎたりすることを防止できる。 Also, during the process of making the indoor heat exchanger 16 function as an evaporator so that latent heat is included in the heat exchange of air, when the history information of the humidity of the indoor air is stored in the storage unit 210, the control unit 220 May be performed. That is, the control unit 220 predicts the future humidity based on the history information of the indoor air humidity, and determines the set temperature of the cooling operation when performing the above-described processing in the future based on the prediction result. You may. As an example, the control unit 220 calculates a moving average of the indoor air humidity estimated in the last several days, and based on this moving average, sets the temperature at the time of the cooling operation when estimating the humidity next time. To determine. As a result, it is possible to prevent the set temperature of the cooling operation when estimating the humidity from being too high or too low.
 また、空気の熱交換に潜熱が含まれるように室内熱交換器16を蒸発器として機能させる処理を行う際、制御部220が、通常の冷房運転時よりも風量を小さくするか、又は、室内機Ui(図2参照)の上下方向の風向を通常の冷房運転時よりも水平に近づけることが好ましい。これによって、室内空気の湿度を推定する際、冷風が下方に吹き降ろされることを抑制し、ひいては、ユーザにとっての快適性を高めることができる。 Further, when performing the process of causing the indoor heat exchanger 16 to function as an evaporator so that latent heat is included in the heat exchange of the air, the control unit 220 may reduce the air volume as compared with the normal cooling operation, or It is preferable to make the wind direction in the vertical direction of the machine Ui (see FIG. 2) more horizontal than in the normal cooling operation. Thereby, when estimating the humidity of the indoor air, it is possible to suppress the cool air from being blown down, and thereby to improve the comfort for the user.
 また、空気の熱交換に潜熱が含まれるように室内熱交換器16を蒸発器として機能させる処理を行う際、制御部220が、室内熱交換器16を蒸発器として機能させ、この室内熱交換器16を凍結させることが好ましい。より詳しく説明すると、制御部220からの指令に応じて、室外制御回路31や室内制御回路32が、圧縮機11を駆動し、さらに、通常の冷房運転時よりも室内膨張弁19の開度を小さくする。これによって、低圧で蒸発温度の低い冷媒が室内熱交換器16に流入するため、空気中の水分が室内熱交換器16に着霜し、その霜や氷が成長しやすくなる。このとき、室内熱交換器16での空気の熱交換には潜熱が確実に含まれるため、室内空気の湿度を高精度で推定できる。 Further, when performing the process of making the indoor heat exchanger 16 function as an evaporator so that latent heat is included in the heat exchange of air, the control unit 220 causes the indoor heat exchanger 16 to function as an evaporator, Preferably, the vessel 16 is frozen. More specifically, in response to a command from the control unit 220, the outdoor control circuit 31 and the indoor control circuit 32 drive the compressor 11, and further increase the opening degree of the indoor expansion valve 19 as compared with a normal cooling operation. Make it smaller. As a result, the refrigerant having a low pressure and a low evaporation temperature flows into the indoor heat exchanger 16, so that moisture in the air is frosted on the indoor heat exchanger 16, and the frost and ice easily grow. At this time, since the latent heat is reliably included in the heat exchange of the air in the indoor heat exchanger 16, the humidity of the indoor air can be estimated with high accuracy.
 そして、室外制御回路31や室内制御回路32は、室内熱交換器16を凍結させた後、室内熱交換器16を解凍する。例えば、圧縮機11や室内ファン17が停止状態にされることで、室内熱交換器16の霜や氷が室温で自然解凍され、室内熱交換器16のフィン(図示せず)を伝って多量の水が流れ落ちる。その結果、室内熱交換器16の塵埃が洗い流される。このような室内熱交換器16の洗浄方法を「凍結洗浄」という。
 なお、前記した「凍結洗浄」に代えて、室内熱交換器16を蒸発器として機能させ、この室内熱交換器16を結露させてもよい。このような「結露洗浄」によっても、室内熱交換器16の塵埃が洗い流される。また、「結露洗浄」を行っているときに制御部220が室内空気の湿度を推定することが好ましい。このような方法でも、室内空気の湿度を高精度で推定できる。
Then, the outdoor control circuit 31 and the indoor control circuit 32 defrost the indoor heat exchanger 16 after freezing the indoor heat exchanger 16. For example, when the compressor 11 and the indoor fan 17 are stopped, frost and ice of the indoor heat exchanger 16 are naturally thawed at room temperature, and a large amount of the frost and ice travel along the fins (not shown) of the indoor heat exchanger 16. Water runs down. As a result, dust in the indoor heat exchanger 16 is washed away. Such a method of cleaning the indoor heat exchanger 16 is referred to as “freeze cleaning”.
Instead of the above-mentioned "freeze washing", the indoor heat exchanger 16 may be made to function as an evaporator, and the indoor heat exchanger 16 may be condensed. The dust of the indoor heat exchanger 16 is also washed away by such “condensation washing”. Further, it is preferable that the control unit 220 estimates the humidity of the indoor air when performing the “condensation cleaning”. Even with such a method, the humidity of the room air can be estimated with high accuracy.
 また、リモコンReや携帯端末300の指令に応じて、制御部220が、室内空気の湿度を推定する処理を開始するようにしてもよい。これによって、空気調和機100の湿度をユーザが確かめたいとき、室内空気の湿度の推定結果をリモコンRe等に表示させることができる。 (4) The control unit 220 may start the process of estimating the humidity of the room air in response to a command from the remote controller Re or the portable terminal 300. Thus, when the user wants to check the humidity of the air conditioner 100, the estimation result of the indoor air humidity can be displayed on the remote controller Re or the like.
 また、各実施形態では、空調システムW(図2参照)が空調管理装置200を備える構成について説明したが、これに限らない。例えば、空調管理装置200を省略し、湿度の推定に関する一連の処理を室外制御回路31(制御部)や室内制御回路32(制御部)が行うようにしてもよい。 In each embodiment, the configuration in which the air-conditioning system W (see FIG. 2) includes the air-conditioning management device 200 has been described, but is not limited thereto. For example, the air-conditioning management device 200 may be omitted, and the outdoor control circuit 31 (control unit) or the indoor control circuit 32 (control unit) may perform a series of processes related to estimation of humidity.
 また、各実施形態では、複数の室内機Ui(図1参照)が設けられるマルチ型の空気調和機100について説明したが、これに限らない。例えば、室内機と室外機とが一台ずつ設けられた壁掛型の空気調和機(図示せず)の他、さまざまな種類の空気調和機に各実施形態を適用可能である。 In each embodiment, the multi-type air conditioner 100 provided with the plurality of indoor units Ui (see FIG. 1) has been described, but the present invention is not limited to this. For example, the embodiments can be applied to various types of air conditioners, in addition to a wall-mounted air conditioner (not shown) provided with one indoor unit and one outdoor unit.
 なお、湿度の推定等の処理(図5参照)をコンピュータに実行させるためのプログラムを通信回線を介して提供することが可能であり、また、CD-ROM等の記録媒体に書き込んで配布することも可能である。 A program for causing a computer to execute processing such as estimation of humidity (see FIG. 5) can be provided via a communication line, and can be written and distributed on a recording medium such as a CD-ROM. Is also possible.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Each embodiment has been described in detail in order to explain the present invention in an easily understandable manner, and is not necessarily limited to one having all the described configurations. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
In addition, the above-described mechanisms and configurations are shown to be necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.
 11  圧縮機
 12  室外熱交換器(凝縮器/蒸発器)
 13  室外ファン
 14  室外膨張弁(膨張弁)
 15  四方弁
 16  室内熱交換器(蒸発器/凝縮器)
 17  室内ファン
 18  エアフィルタ
 19  室内膨張弁(膨張弁)
 31  室外制御回路(制御部)
 32  室内制御回路(制御部)
 53  フィルタ清掃部
 100 空気調和機
 200 空調管理装置
 210 記憶部
 220 制御部
 230 報知部
 300 携帯端末(端末機)
 400 除湿機
 F   冷媒回路
 Re  リモコン
 W,WA 空調システム
11 Compressor 12 Outdoor heat exchanger (condenser / evaporator)
13 outdoor fan 14 outdoor expansion valve (expansion valve)
15 Four-way valve 16 Indoor heat exchanger (evaporator / condenser)
17 indoor fan 18 air filter 19 indoor expansion valve (expansion valve)
31 Outdoor control circuit (control unit)
32 Indoor control circuit (control unit)
53 Filter cleaning unit 100 Air conditioner 200 Air conditioning management device 210 Storage unit 220 Control unit 230 Notification unit 300 Portable terminal (terminal)
400 Dehumidifier F Refrigerant circuit Re Remote controller W, WA Air conditioning system

Claims (14)

  1.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路を備え、
     前記凝縮器及び前記蒸発器の一方は室外熱交換器であり、他方は室内熱交換器であり、
     前記室内熱交換器の付近に配置される室内ファンと、
     前記室内ファンの回転速度に対応する所定の設計風量が記憶されている記憶部と、
     空調制御を行う制御部と、をさらに備え、
     前記制御部は、
     前記室内熱交換器の一端側・他端側の冷媒の温度を含む情報に基づき、前記室内熱交換器における冷媒側熱交換量を推定するとともに、
     前記室内熱交換器に向かう空気の温度、前記室内熱交換器で熱交換した空気の温度、及び、前記室内ファンの回転速度に対応する前記設計風量に基づいて、前記室内熱交換器における空気側熱交換量を推定し、
     前記冷媒側熱交換量よりも前記空気側熱交換量の方が小さい場合、前記室内熱交換器に向かう空気の温度、前記室内熱交換器で熱交換した空気の温度、前記冷媒側熱交換量、及び前記空気側熱交換量に基づいて、前記室内熱交換器に向かう空気の湿度を推定し、当該湿度に基づいて空調制御を行う空調システム。
    A compressor, a condenser, an expansion valve, and a refrigerant circuit in which the refrigerant circulates sequentially through the evaporator,
    One of the condenser and the evaporator is an outdoor heat exchanger, the other is an indoor heat exchanger,
    An indoor fan arranged near the indoor heat exchanger,
    A storage unit in which a predetermined design airflow corresponding to the rotation speed of the indoor fan is stored,
    A control unit for performing air conditioning control,
    The control unit includes:
    Based on information including the temperature of the refrigerant at one end and the other end of the indoor heat exchanger, and estimating a refrigerant-side heat exchange amount in the indoor heat exchanger,
    Based on the temperature of the air flowing toward the indoor heat exchanger, the temperature of the air that has exchanged heat in the indoor heat exchanger, and the design airflow corresponding to the rotation speed of the indoor fan, the air side in the indoor heat exchanger Estimate the amount of heat exchange,
    When the air-side heat exchange amount is smaller than the refrigerant-side heat exchange amount, the temperature of the air flowing to the indoor heat exchanger, the temperature of the air that has exchanged heat in the indoor heat exchanger, the refrigerant-side heat exchange amount And an air conditioning system for estimating the humidity of air heading toward the indoor heat exchanger based on the air-side heat exchange amount, and performing air-conditioning control based on the humidity.
  2.  前記制御部は、前記湿度が所定値以上である場合、除湿運転を行うこと
     を特徴とする請求項1に記載の空調システム。
    The air conditioning system according to claim 1, wherein the control unit performs a dehumidification operation when the humidity is equal to or more than a predetermined value.
  3.  前記制御部は、前記除湿運転を行う際、前記膨張弁の開度を小さくすること
     を特徴とする請求項2に記載の空調システム。
    The air conditioning system according to claim 2, wherein the control unit reduces the opening of the expansion valve when performing the dehumidifying operation.
  4.  前記制御部は、前記除湿運転を行う際、前記室内ファンの回転速度を小さくすること
     を特徴とする請求項2に記載の空調システム。
    The air conditioning system according to claim 2, wherein the control unit reduces the rotation speed of the indoor fan when performing the dehumidifying operation.
  5.  暖房運転中、又は、設定温度が所定値以上である冷房運転中、前記冷媒側熱交換量と前記空気側熱交換量とが等しい場合において、その後に設定温度が前記所定値未満である冷房運転を行うとき、前記制御部は、前記湿度を推定すること
     を特徴とする請求項1に記載の空調システム。
    During the heating operation, or during the cooling operation in which the set temperature is equal to or higher than the predetermined value, when the refrigerant-side heat exchange amount is equal to the air-side heat exchange amount, thereafter, the cooling operation in which the set temperature is lower than the predetermined value The air conditioning system according to claim 1, wherein, when performing the control, the control unit estimates the humidity.
  6.  前記制御部は、前記冷媒側熱交換量に対する前記空気側熱交換量の比率が所定範囲内である場合、前記湿度を推定し、
     暖房運転中、又は、設定温度が所定値以上である冷房運転中、前記冷媒側熱交換量及び前記空気側熱交換量のうち一方が他方よりも大きい場合、前記所定範囲を補正すること
     を特徴とする請求項1に記載の空調システム。
    When the ratio of the air-side heat exchange amount to the refrigerant-side heat exchange amount is within a predetermined range, the control unit estimates the humidity,
    During the heating operation, or during the cooling operation in which the set temperature is equal to or higher than a predetermined value, when one of the refrigerant-side heat exchange amount and the air-side heat exchange amount is larger than the other, the predetermined range is corrected. The air conditioning system according to claim 1, wherein:
  7.  前記室内ファンの駆動に伴って空気調和された空気が吹き出される空調対象空間に設けられる除湿機をさらに備え、
     前記除湿機は、前記制御部と通信可能であり、
     前記制御部は、
     前記湿度が所定値未満である場合には、除湿運転を行わせる信号を前記除湿機に出力し、
     前記湿度が前記所定値以上である場合には、除湿運転を行わせる信号を前記除湿機に出力するとともに、前記冷媒回路を用いて除湿運転を行うこと
     を特徴とする請求項1に記載の空調システム。
    Further provided is a dehumidifier provided in an air-conditioned space in which air-conditioned air is blown out with the driving of the indoor fan,
    The dehumidifier can communicate with the control unit,
    The control unit includes:
    If the humidity is less than a predetermined value, a signal for performing a dehumidification operation is output to the dehumidifier,
    If the humidity is equal to or higher than the predetermined value, a signal for performing a dehumidifying operation is output to the dehumidifier, and the dehumidifying operation is performed using the refrigerant circuit. system.
  8.  前記制御部は、前記湿度を推定する際、前記室内熱交換器での空気の熱交換に潜熱が含まれるように、前記室内熱交換器を前記蒸発器として機能させる処理を行うこと
     を特徴とする請求項1に記載の空調システム。
    The controller, when estimating the humidity, performs a process of causing the indoor heat exchanger to function as the evaporator such that latent heat is included in heat exchange of air in the indoor heat exchanger. The air-conditioning system according to claim 1.
  9.  前記処理中に前記制御部によって推定された前記湿度の履歴情報が、前記記憶部に記憶され、
     前記制御部は、前記記憶部に記憶された前記湿度の履歴情報をリモコン又は端末機に送信すること
     を特徴とする請求項8に記載の空調システム。
    History information of the humidity estimated by the control unit during the processing is stored in the storage unit,
    The air conditioning system according to claim 8, wherein the control unit transmits the humidity history information stored in the storage unit to a remote control or a terminal.
  10.  前記処理中に前記制御部によって推定された前記湿度の履歴情報が、前記記憶部に記憶され、
     前記制御部は、前記湿度の履歴情報に基づいて、将来の前記湿度を予測し、その予測結果に基づいて、将来に前記処理を行う際の冷房運転の設定温度を決めること
     を特徴とする請求項8に記載の空調システム。
    History information of the humidity estimated by the control unit during the processing is stored in the storage unit,
    The control unit predicts the future humidity based on the history information of the humidity, and determines a set temperature of a cooling operation when performing the process in the future based on the prediction result. Item 9. An air conditioning system according to item 8.
  11.  前記制御部は、前記処理を行う際、通常の冷房運転時よりも風量を小さくするか、又は、室内機の上下方向の風向を通常の冷房運転時よりも水平に近づけること
     を特徴とする請求項8に記載の空調システム。
    The control unit, when performing the process, makes the air volume smaller than in a normal cooling operation, or makes the vertical wind direction of the indoor unit closer to horizontal than in a normal cooling operation. Item 9. An air conditioning system according to item 8.
  12.  前記制御部は、前記処理を行う際、前記室内熱交換器を蒸発器として機能させ、当該室内熱交換器を凍結又は結露させること
     を特徴とする請求項8に記載の空調システム。
    The air conditioning system according to claim 8, wherein, when performing the processing, the control unit causes the indoor heat exchanger to function as an evaporator and causes the indoor heat exchanger to freeze or dew.
  13.  空気調和機の室内熱交換器の一端側・他端側の冷媒の温度を含む情報に基づき、前記室内熱交換器における冷媒側熱交換量を制御部が推定する冷媒側熱交換量推定ステップと、
     前記室内熱交換器に向かう空気の温度、前記室内熱交換器で熱交換した空気の温度、及び、前記室内熱交換器の付近に配置された室内ファンの回転速度に対応する所定の設計風量に基づいて、前記室内熱交換器における空気側熱交換量を前記制御部が推定する空気側熱交換量推定ステップと、
     前記冷媒側熱交換量よりも前記空気側熱交換量の方が小さい場合、前記室内熱交換器に向かう空気の温度、前記室内熱交換器で熱交換した空気の温度、前記冷媒側熱交換量、及び前記空気側熱交換量に基づいて、前記室内熱交換器に向かう空気の湿度を前記制御部が推定する湿度推定ステップと、
     前記湿度に基づいて、前記制御部が空調制御を行う空調制御ステップと、を含む空調方法。
    Based on information including the temperature of the refrigerant at one end and the other end of the indoor heat exchanger of the air conditioner, a refrigerant-side heat exchange amount estimating step in which the control unit estimates a refrigerant-side heat exchange amount in the indoor heat exchanger. ,
    The temperature of the air flowing toward the indoor heat exchanger, the temperature of the air that has exchanged heat in the indoor heat exchanger, and a predetermined design airflow corresponding to the rotation speed of an indoor fan disposed near the indoor heat exchanger. An air-side heat exchange amount estimation step in which the control unit estimates an air-side heat exchange amount in the indoor heat exchanger,
    When the air-side heat exchange amount is smaller than the refrigerant-side heat exchange amount, the temperature of the air flowing to the indoor heat exchanger, the temperature of the air that has exchanged heat in the indoor heat exchanger, the refrigerant-side heat exchange amount And, based on the air-side heat exchange amount, a humidity estimation step in which the control unit estimates the humidity of air heading for the indoor heat exchanger,
    An air conditioning control step, wherein the control unit performs air conditioning control based on the humidity.
  14.  請求項13に記載の空調方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the air conditioning method according to claim 13.
PCT/JP2018/024920 2018-06-29 2018-06-29 Air conditioning system, air conditioning method, and program WO2020003529A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527158A JP6971400B2 (en) 2018-06-29 2018-06-29 Air conditioning system, air conditioning method, and program
PCT/JP2018/024920 WO2020003529A1 (en) 2018-06-29 2018-06-29 Air conditioning system, air conditioning method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024920 WO2020003529A1 (en) 2018-06-29 2018-06-29 Air conditioning system, air conditioning method, and program

Publications (1)

Publication Number Publication Date
WO2020003529A1 true WO2020003529A1 (en) 2020-01-02

Family

ID=68984766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024920 WO2020003529A1 (en) 2018-06-29 2018-06-29 Air conditioning system, air conditioning method, and program

Country Status (2)

Country Link
JP (1) JP6971400B2 (en)
WO (1) WO2020003529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164387A (en) * 2022-07-29 2022-10-11 海信空调有限公司 Air conditioner and self-cleaning control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603144A (en) * 1983-06-21 1985-01-09 Oki Electric Ind Co Ltd Lead processing method of semiconductor package
JPH06341697A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Humidity sensing method for air conditioner
JP2006118822A (en) * 2004-10-25 2006-05-11 Samsung Electronics Co Ltd Air humidity detecting method, air humidity detector, and air conditioner
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603144A (en) * 1983-06-21 1985-01-09 Oki Electric Ind Co Ltd Lead processing method of semiconductor package
JPH06341697A (en) * 1993-06-02 1994-12-13 Hitachi Ltd Humidity sensing method for air conditioner
JP2006118822A (en) * 2004-10-25 2006-05-11 Samsung Electronics Co Ltd Air humidity detecting method, air humidity detector, and air conditioner
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164387A (en) * 2022-07-29 2022-10-11 海信空调有限公司 Air conditioner and self-cleaning control method thereof

Also Published As

Publication number Publication date
JP6971400B2 (en) 2021-11-24
JPWO2020003529A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6514422B1 (en) Air conditioning management system, air conditioning management method, and program
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
EP3312528B1 (en) Air conditioner
JP2010210121A (en) Air conditioner
WO2007094343A1 (en) Air-conditioning apparatus
US20240005212A1 (en) Correction apparatus, prediction apparatus, method, non-transitory computer-readable recording medium storing program, and correction model
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP2011137597A (en) Air conditioning device
JP5966327B2 (en) Air conditioning indoor unit
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
JP2002147905A (en) Refrigerating plant
WO2020003529A1 (en) Air conditioning system, air conditioning method, and program
JP2020091080A (en) Refrigeration cycle device
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP6595139B1 (en) Air conditioning management system, air conditioning management method, and program
KR102481685B1 (en) air conditioner
KR20070077639A (en) Multi air-conditioner and its control method
JP6716024B2 (en) Air conditioner
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system
US11994326B2 (en) Refrigerant leakage detection system
JP7219266B2 (en) air conditioning system
JP2022172975A (en) Air-conditioner
JP2023104429A (en) Air conditioner and control method for air conditioner
JP2010096397A (en) Refrigerant amount determining method of air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923791

Country of ref document: EP

Kind code of ref document: A1