WO2020003453A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2020003453A1
WO2020003453A1 PCT/JP2018/024661 JP2018024661W WO2020003453A1 WO 2020003453 A1 WO2020003453 A1 WO 2020003453A1 JP 2018024661 W JP2018024661 W JP 2018024661W WO 2020003453 A1 WO2020003453 A1 WO 2020003453A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
casing
partition plate
cover
main casing
Prior art date
Application number
PCT/JP2018/024661
Other languages
French (fr)
Japanese (ja)
Inventor
将 二階堂
笠原 雅之
佑貴 石塚
原島 寿和
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2018/024661 priority Critical patent/WO2020003453A1/en
Priority to JP2020526816A priority patent/JP6952895B2/en
Publication of WO2020003453A1 publication Critical patent/WO2020003453A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • a cooling flow path is formed in the casing so as to be located on the outer peripheral side of the plurality of working chambers, and a cooling liquid (for example, water or oil) is formed in the cooling flow path.
  • a cooling liquid for example, water or oil
  • the cooling flow path of Patent Document 1 includes a first flow path portion formed along a side surface of one side of the casing (lower side in FIG. 2 and a left side in FIG. 4), and the other side of the casing (upper side in FIG. 2). , A second flow path portion formed along the side surface (right side in FIG. 4) and a first flow path portion formed in the casing so as to be located on one side (right side in FIG. 3) in the rotor axial direction. A third flow passage portion connecting the first flow passage portion and the third flow passage portion, the third flow passage portion connecting the first flow passage portion and the third flow passage portion; And a fourth flow path part connecting the flow path parts.
  • the cooling passage of Patent Document 1 has a first opening provided on one side surface of the casing and a second opening provided on the opposite side surface of the casing.
  • a first cover is detachably attached to one side surface of the casing using bolts, and the first cover covers the first opening.
  • a second cover is detachably attached to the opposite side surface of the casing using bolts, and the second cover covers the second opening.
  • the first and second flow path portions have a significantly increased flow path variation because the flow path cross section is significantly enlarged and reduced. More specifically, the inlet (that is, the connection with one of the third and fourth flow path portions) and the outlet (that is, the third and fourth flow paths) in the first or second flow path portion are provided.
  • the straight line portion connecting the other of the road portions has a relatively high flow velocity, but the flow distance is relatively small in a portion away from the straight line portion. Therefore, there is room for improvement in cooling performance.
  • the partition plate for partitioning the cooling flow path is provided only in the casing, the shape of the casing becomes complicated, and it becomes difficult to manufacture the casing.
  • the present invention has been made in view of the above problems, and one of the problems is to improve the cooling performance without complicating the shape of the casing, suppressing the variation in the flow velocity in the cooling flow path of the casing. Is what you do.
  • the present invention includes a plurality of means for solving the above problems.
  • a screw rotor, a casing accommodating the screw rotor, and a cooling unit formed in the casing and having an opening are provided.
  • FIG. 2 is a vertical sectional view taken along the line II-II in FIG. 1.
  • It is a perspective view showing the structure of the main casing and cover in one embodiment of the present invention.
  • It is an exploded perspective view showing the structure of the main casing and cover in one embodiment of the present invention.
  • It is a perspective view showing the structure of the left cover in one embodiment of the present invention.
  • It is a perspective view showing the structure of the right cover in one embodiment of the present invention.
  • It is a perspective view showing the schematic structure of the cooling channel of the main casing in one embodiment of the present invention.
  • FIG. 9 is a left side view as viewed from an arrow IX direction in FIG. 8.
  • FIG. 9 is a right side view as viewed from an arrow X direction in FIG. 8.
  • It is a horizontal sectional view showing the structure of the compressor in a comparative example.
  • It is a perspective view showing the structure of the main casing and cover in a comparative example.
  • It is a perspective view showing the schematic structure of the cooling flow path of the main casing in a comparative example.
  • It is a perspective view showing the schematic structure of the cooling flow path of the main casing in the 1st modification of this invention.
  • It is a perspective view showing the schematic structure of the cooling channel of the main casing in the 2nd modification of this invention.
  • FIG. 1 is a horizontal sectional view showing the structure of the compressor in the present embodiment
  • FIG. 2 is a vertical sectional view taken along the line II-II in FIG.
  • FIG. 3 is a perspective view illustrating the structure of the main casing and the cover according to the present embodiment
  • FIG. 4 is an exploded perspective view illustrating the structure of the main casing and the cover according to the present embodiment.
  • FIG. 5 is a perspective view illustrating the structure of the left cover according to the present embodiment
  • FIG. 6 is a perspective view illustrating the structure of the right cover according to the present embodiment.
  • FIG. 7 is a cross-sectional view illustrating the structure of the partition plate of the cover according to the present embodiment.
  • the compressor of this embodiment includes a male rotor 1A and a female rotor 1B, which are screw rotors, and a casing 2 that houses the male rotor 1A and the female rotor 1B and forms a plurality of working chambers in their tooth spaces.
  • the compressor of the present embodiment is an oilless screw compressor (specifically, does not supply oil to the working chamber).
  • the male rotor 1A and the female rotor 1B are arranged so that their axial directions (horizontal directions in FIGS. 1 and 2) are horizontal.
  • the male rotor 1A is rotatably supported by a bearing 7A on one axial side and a bearing 8A on the other axial side.
  • the female rotor 1B is rotatably supported by a bearing 7B on one axial side and a bearing 8B on the other axial side.
  • a pinion gear 9 is connected to a rotating shaft of a motor via, for example, a gear mechanism and a belt mechanism.
  • the torque of the motor is transmitted to the male rotor 1A via the pinion gear 9, the gear mechanism, and the belt mechanism, so that the male rotor 1A rotates.
  • Timing gears 10A and 10B are provided at the other axial ends of the male rotor 1A and the female rotor 1B, respectively, and the timing gears 10A and 10B mesh with each other.
  • the torque of the male rotor 1A is transmitted to the female rotor 1B via the timing gears 10A and 10B, so that the female rotor 1B rotates.
  • the male rotor 1A and the female rotor 1B rotate so as to mesh with each other without contact.
  • the main casing 11 houses the tooth portions of the male rotor 1A and the female rotor 1B and forms a plurality of working chambers in the tooth grooves. Since heat is generated in the process of compressing the working chamber, the main casing 11 and the like are heated and thermally expanded. Therefore, for example, in order to suppress thermal expansion of the main casing 11, a cooling flow path 14 is formed in the main casing 11 so as to be located on the outer peripheral side of the plurality of working chambers, and the cooling liquid is caused to flow through the cooling flow path 14. It has become.
  • the cooling channel 14 is roughly composed of channel portions 15A, 15B, 15C, 15D, and 15E (details will be described later).
  • the left cover 17A is provided with partition plates 18A to 18F protruding toward the cooling channel 14, and the right cover 17B is provided with partition plates 18G and 18H protruding toward the cooling channel 14.
  • the partition plates 18A, 18B, 18C, 18D extend in a vertical direction (in other words, a direction perpendicular to the rotor axis direction).
  • the partition plate 18E is connected between the upper end of the partition plate 18D and the lower end of the partition plate 18C, and extends in the front-rear direction (in other words, the direction parallel to the rotor axis direction).
  • the partition plate 18F is connected to the lower end of the partition plate 18B and extends in the front-rear direction.
  • the partition plates 18G, 18H extend in the front-back direction.
  • a predetermined gap is formed between the front end of each partition plate and the surface of the main casing 11 opposed thereto, and the covers 17A and 17B cover the openings 16A and 16B.
  • care is taken so that each partition plate does not hit the surface of the main casing 11 (see FIG. 7).
  • the surface of the main casing 11 facing the leading ends of the partition plates 18A to 18D has a cylindrical shape in accordance with the shape of the female rotor 1B, and the distance from the flat cover 17A differs from place to place.
  • each partition plate has a shape such that the distal end portion is along the surface of the main casing 11 described above.
  • the length of each partition plate (specifically, the length protruding toward the cooling passage) is a predetermined length greater than the distance between the cover and the portion of the main casing 11 facing the tip of each partition plate. It is getting shorter.
  • the predetermined length is desirably small in order to restrict the flow of the cooling liquid, but must be large enough to absorb manufacturing tolerances of the cover and the main casing 11 and thermal expansion of the main casing 11. It is.
  • the main casing 11 includes a casing-side partition plate 19E extending in the front-rear direction so as to be continuous with the rear end side (the right side in FIG. 10) of the partition plate 18G of the right cover 17B.
  • the cover 17B has a casing-side partition plate 19F that extends in the front-rear direction so as to be continuous with the front end side (left side in FIG. 10) of the partition plate 18H.
  • the cooling passage 14 of the main casing 11 of the present embodiment includes passage portions 15A and 15B formed along the left side surface of the main casing 11 and a passage portion 15C formed along the right side surface of the main casing 11.
  • a flow path portion 15D formed in the main casing 11 so as to be located on one side in the rotor axis direction and connecting the flow path section 15A and the flow path section 15C;
  • the casing 11 includes a flow path portion 15E and a flow path portion 15E connecting the flow path portion 15C.
  • the flow path portions 15A, 15B, and 15C are shown in a shape extending linearly in the vertical direction for convenience. It has a shape extending in an arc shape in the vertical direction so as to follow the shape of the casing 11.
  • the supply pipe 20 is connected near the suction port 3 in the flow path portion 15B, and the discharge pipe 21 is connected near the discharge port 5 in the flow path portion 15A. Then, as shown in FIG. 8, the cooling liquid (specifically, water or oil, for example) supplied from the supply pipe 20 is supplied to the flow path portion 15B, the flow path portion 15E, the flow path portion 15C, the flow path portion 15D, The fluid flows in the order of the flow path portion 15A, and then is discharged from the discharge pipe 21.
  • the cooling liquid specifically, water or oil, for example
  • the supply pipe 20 is connected to the flow path portion 31A in the vicinity of the connection part with the flow path part 31C (in other words, the part distant from the suction port 3), and the connection part of the flow path part 31B with the flow path part 31D is connected.
  • a discharge pipe 21 is connected in the vicinity (in other words, at a part distant from the discharge port 5). Then, the cooling liquid supplied from the supply pipe 20 to a part of the flow path part 31A flows in the order of the flow path part 31C and the flow path part 31B according to the supplied flow, and one of the cooling liquids flowing through the flow path part 31B. The part is discharged from the discharge pipe 21. The remainder of the coolant that has flowed through the flow channel portion 31B flows in the order of the flow channel portion 31D and the flow channel portion 31A, and merges with the coolant supplied from the supply pipe 20.
  • the cooling channel 14 of the main casing 11 of the present embodiment is divided by a partition plate, so that the cross section of the channel is subdivided. Further, it is designed so that the sectional area of the subdivided flow path does not change significantly. Therefore, variation in the flow velocity in the cooling channel 14 can be suppressed, and the cooling performance can be improved. Further, since the partition plate is provided on the main casing 11 and the covers 17A and 17B, the shape of the main casing 11 is not complicated unlike the case where the partition plate is provided only on the main casing 11. Therefore, the manufacture (specifically, for example, casting) of the main casing 11 is easy.
  • the cooling channel 14 of the present embodiment is configured such that the cooling liquid flows in the order of the channel portion 15B, the channel portion 15E, the channel portion 15C, the channel portion 15D, and the channel portion 15A (in other words, the cooling channel). Liquid is not diverted). As a result, the flow rates of the coolant in the flow path portions 15B, 15E, 15C, 15D, and 15A become substantially the same. Therefore, also from this viewpoint, it is possible to suppress the variation in the flow velocity in the cooling channel 14 and improve the cooling performance.
  • the supply pipe 20 is connected to the vicinity of the suction port 3 (that is, a portion where the temperature of the main casing 11 is relatively low), and the discharge pipe 21 is connected to the vicinity of the discharge port 5 (that is, of the main casing 11). (Where the temperature is relatively high). Thereby, the temperature difference between the coolant in the cooling passage 14 and the main casing 11 can be reduced, and the efficiency of heat exchange can be improved.
  • the flow path portion 15B meanders so that a portion flowing in the vertical direction is more than a portion flowing in the front-rear direction has been described as an example. Modifications are possible without departing from the technical idea.
  • the flow path portion 15B may meander so that a portion flowing in the front-back direction is more than a portion flowing in the up-down direction.
  • the flow path portion 15C meanders so as to increase the portion flowing in the front-rear direction more than the portion flowing in the up-down direction.
  • the present invention is not limited to this. Modifications are possible without departing from the technical idea.
  • the flow path portion 15C may meander so that a portion flowing in the vertical direction is larger than a portion flowing in the front-rear direction.
  • the partition plates 18A to 18F of the left cover 17A and the casing-side partition plates 19A to 19D connected thereto separate the flow path portion 15A from the flow path portion 15B, and only the flow path portion 15B is separated.
  • partition plate of the left cover 17A and the casing-side partition plate connected thereto may separate the flow path portion 15A and the flow path portion 15B, and may partition both the flow path portions 15A and 15B so as to meander.
  • the partition plates 18A to 18H of the covers 17A and 17B and the casing-side partition plates 19A to 19F linearly extend in the up-down direction or the front-back direction, respectively.
  • the present invention is not limited thereto, and may be modified without departing from the spirit and technical idea of the present invention. That is, the partition plate may extend linearly in an oblique direction unless it is parallel to a linear portion connecting the inlet and the outlet of the flow path portion 15A (or 15B), or may extend in a curved manner. May be present.
  • the present invention is not limited to this, and is within a scope not departing from the spirit and technical idea of the present invention. Can be deformed.
  • the main casing 11 has a plurality of guides 22 for loosely fitting and supporting the distal ends of the partition plates 18A to 18H of the covers 17A and 17B. May be provided.
  • Each guide 22 may be constituted by one or two protruding portions as shown in FIG. 16 or FIG. 17, or may be constituted by a concave portion as shown in FIG.
  • the length of the guide 22 (specifically, the height of the protruding portion or the depth of the concave portion in the left-right direction in the figure) is the predetermined length described above (that is, the front end of each partition plate and the opposite end thereof). (The distance from the main casing 11).
  • the main casing 11 has the casing-side partition plates 19A to 19F connected to the partition plates 18A, 18C, 18F to 18H of the covers 17A and 17B has been described as an example.
  • the present invention is not limited to this. Modifications can be made without departing from the spirit and technical idea of the present invention.
  • the main casing 11 may not have a partition plate connected to the partition plates of the covers 17A and 17B.
  • the design of the main casing 11 side may be the same as the comparative example, and the cooling performance can be improved as compared with the comparative example.
  • 1A Male rotor (screw rotor), 1B: Female rotor (screw rotor), 2: Casing, 11: Main casing, 12: Suction side casing, 13: Discharge side casing, 14: Cooling channel, 15A: Channel portion (First flow path part), 15B ... flow path part (second flow path part), 15C ... flow path part (third flow path part), 15D ... flow path part (fourth flow path part) , 15E: flow path portion (fifth flow path portion), 16A: opening (first opening), 16B: opening (second opening), 17A: left cover (first cover), 17B: right side cover (second cover), 18A to 18H: partition plate, 19A to 19F: casing side partition plate, 22: guide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a compressor in which cooling performance is improved by suppressing a variation in flow speed within a cooling flow passage in a casing without complicating the shape of the casing. This compressor has: a main casing (11) for housing a male rotor (1A) and a female rotor (1B); a cooling flow passage (14) formed in the main casing (11) and having openings (16A, 16B); a left side cover (17A) removably mounted on the left side surface of the main casing (11) and covering the opening (16A); and a right side cover (17A) removably mounted on the right side surface of the main casing (11) and covering the opening (16B). The left side cover (17A) is provided with partition plates (18A-18F) protruding to the cooling flow passage (14) side. The right side cover (17B) is provided with partition plates (18G, 18H) protruding to the cooling flow passage (14) side.

Description

圧縮機Compressor
 本発明は、ケーシングの冷却流路を有する圧縮機に関する。 The present invention relates to a compressor having a casing cooling passage.
 圧縮機は、例えば雌雄一対のスクリューロータと、スクリューロータを収納してスクリューロータの歯溝に複数の作動室を形成するケーシングとを備える。作動室は、スクリューロータの回転に伴い、ロータ軸方向の一方側から他方側へ移動する。これにより、作動室は、ロータ軸方向の一方側の吸入ポート(開口)を介して吸入流路から気体を吸入する吸入過程、気体を圧縮する圧縮過程、及びロータ軸方向の他方側の吐出ポート(開口)を介して吐出流路へ圧縮気体を吐出する吐出過程を順次行うようになっている。 The compressor includes, for example, a pair of male and female screw rotors, and a casing that houses the screw rotors and forms a plurality of working chambers in the tooth spaces of the screw rotors. The working chamber moves from one side in the axial direction of the rotor to the other side as the screw rotor rotates. Thus, the working chamber is provided with a suction process of sucking gas from the suction flow path through a suction port (opening) on one side in the rotor axis direction, a compression process of compressing gas, and a discharge port on the other side in the rotor axis direction. The discharge process of discharging the compressed gas to the discharge flow path through the (opening) is sequentially performed.
 作動室の圧縮過程にて熱が生じるため、ケーシング等が加熱されて熱膨張する。そこで、例えばケーシングの熱膨張を抑えるため、複数の作動室の外周側に位置するようにケーシング内に冷却流路を形成し、この冷却流路に冷却液(詳細には、例えば水又は油)を流通する技術が知られている(例えば特許文献1の図2、図3、及び図4参照)。 熱 Since heat is generated in the process of compressing the working chamber, the casing and the like are heated and thermally expanded. Therefore, for example, in order to suppress thermal expansion of the casing, a cooling flow path is formed in the casing so as to be located on the outer peripheral side of the plurality of working chambers, and a cooling liquid (for example, water or oil) is formed in the cooling flow path. Is known (see, for example, FIGS. 2, 3, and 4 of Patent Document 1).
 特許文献1の冷却流路は、ケーシングの一方側(図2中下側、図4中左側)の側面に沿って形成された第1の流路部分と、ケーシングの他方側(図2中上側、図4中右側)の側面に沿って形成された第2の流路部分と、ロータ軸方向の一方側(図3中右側)に位置するようにケーシングに形成されて第1の流路部分と第2の流路部分を接続する第3の流路部分と、ロータ軸方向の他方側(図3中左側)に位置するようにケーシングに形成されて第1の流路部分と第3の流路部分を接続する第4の流路部分とで構成されている。 The cooling flow path of Patent Document 1 includes a first flow path portion formed along a side surface of one side of the casing (lower side in FIG. 2 and a left side in FIG. 4), and the other side of the casing (upper side in FIG. 2). , A second flow path portion formed along the side surface (right side in FIG. 4) and a first flow path portion formed in the casing so as to be located on one side (right side in FIG. 3) in the rotor axial direction. A third flow passage portion connecting the first flow passage portion and the third flow passage portion, the third flow passage portion connecting the first flow passage portion and the third flow passage portion; And a fourth flow path part connecting the flow path parts.
 特許文献1の冷却流路は、ケーシングの一方側の側面に設けられた第1の開口部と、ケーシングの反対側の側面に設けられた第2の開口部とを有する。ケーシングの一方側の側面には第1のカバーがボルトを用いて着脱可能に取付けられ、第1のカバーが第1の開口部を覆っている。ケーシングの反対側の側面には第2のカバーがボルトを用いて着脱可能に取付けられ、第2のカバーが第2の開口部を覆っている。そして、第1及び第2のカバーを取外すことにより、冷却流路の清掃が行えるようになっている。 冷却 The cooling passage of Patent Document 1 has a first opening provided on one side surface of the casing and a second opening provided on the opposite side surface of the casing. A first cover is detachably attached to one side surface of the casing using bolts, and the first cover covers the first opening. A second cover is detachably attached to the opposite side surface of the casing using bolts, and the second cover covers the second opening. By removing the first and second covers, the cooling channel can be cleaned.
特開平08-284863号公報JP 08-284863 A
 しかしながら、上記従来技術には次のような改善の余地があった。上述した冷却流路を構成する第1~第4の流路部分のうち、第1及び第2の流路部分は、流路断面が著しく拡大して縮小するため、流速のバラツキが大きくなる。具体的に説明すると、第1又は第2の流路部分における入口(すなわち、第3及び第4の流路部分のうちの一方との接続部)と出口(すなわち、第3及び第4の流路部分のうちの他方との接続部)を結ぶ直線部分は、流速が比較的大きいものの、この直線部分から離れた部分は、流速が比較的小さくなる。そのため、冷却性能の点で改善の余地があった。かといって、冷却流路を仕切る仕切板をケーシングのみに設ければ、ケーシングの形状が複雑化して、ケーシングの製作が困難となる。 However, there is room for the following improvements in the prior art. Among the first to fourth flow path portions constituting the above-described cooling flow path, the first and second flow path portions have a significantly increased flow path variation because the flow path cross section is significantly enlarged and reduced. More specifically, the inlet (that is, the connection with one of the third and fourth flow path portions) and the outlet (that is, the third and fourth flow paths) in the first or second flow path portion are provided. The straight line portion connecting the other of the road portions) has a relatively high flow velocity, but the flow distance is relatively small in a portion away from the straight line portion. Therefore, there is room for improvement in cooling performance. On the other hand, if the partition plate for partitioning the cooling flow path is provided only in the casing, the shape of the casing becomes complicated, and it becomes difficult to manufacture the casing.
 本発明は、上記事柄に鑑みてなされたものであり、ケーシングの形状を複雑化することなく、ケーシングの冷却流路内の流速のバラツキを抑えて、冷却性能を向上させることを課題の一つとするものである。 The present invention has been made in view of the above problems, and one of the problems is to improve the cooling performance without complicating the shape of the casing, suppressing the variation in the flow velocity in the cooling flow path of the casing. Is what you do.
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、スクリューロータと、前記スクリューロータを収納するケーシングと、前記ケーシングに形成され、開口部を有する冷却流路と、前記ケーシングに着脱可能に取付けられ、前記開口部を覆うカバーと、を有し、前記カバーは、前記冷却流路側に突出する少なくとも1つの仕切板が設けられている。 構成 In order to solve the above problems, the configurations described in the claims are applied. The present invention includes a plurality of means for solving the above problems. For example, a screw rotor, a casing accommodating the screw rotor, and a cooling unit formed in the casing and having an opening are provided. A cover that is detachably attached to the casing and covers the opening; and the cover is provided with at least one partition plate protruding toward the cooling flow path.
 本発明によれば、ケーシングの形状を複雑化することなく、ケーシングの冷却流路内の流速のバラツキを抑えて、冷却性能を向上させることができる。 According to the present invention, without complicating the shape of the casing, it is possible to suppress the variation in the flow velocity in the cooling channel of the casing and improve the cooling performance.
 なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 課題 Note that problems, configurations, and effects other than those described above will be clarified by the following description.
本発明の一実施形態における圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the compressor in one embodiment of the present invention. 図1の矢視II-IIによる鉛直断面図である。FIG. 2 is a vertical sectional view taken along the line II-II in FIG. 1. 本発明の一実施形態におけるメインケーシング及びカバーの構造を表す斜視図である。It is a perspective view showing the structure of the main casing and cover in one embodiment of the present invention. 本発明の一実施形態におけるメインケーシング及びカバーの構造を表す分解斜視図である。It is an exploded perspective view showing the structure of the main casing and cover in one embodiment of the present invention. 本発明の一実施形態における左側カバーの構造を表す斜視図である。It is a perspective view showing the structure of the left cover in one embodiment of the present invention. 本発明の一実施形態における右側カバーの構造を表す斜視図である。It is a perspective view showing the structure of the right cover in one embodiment of the present invention. 本発明の一実施形態におけるカバーの仕切板の構造を表す断面図である。It is sectional drawing showing the structure of the partition of the cover in one Embodiment of this invention. 本発明の一実施形態におけるメインケーシングの冷却流路の概略構造を表す斜視図である。It is a perspective view showing the schematic structure of the cooling channel of the main casing in one embodiment of the present invention. 図8中矢印IX方向から見た左側面図である。FIG. 9 is a left side view as viewed from an arrow IX direction in FIG. 8. 図8中矢印X方向から見た右側面図である。FIG. 9 is a right side view as viewed from an arrow X direction in FIG. 8. 比較例における圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the compressor in a comparative example. 比較例におけるメインケーシング及びカバーの構造を表す斜視図である。It is a perspective view showing the structure of the main casing and cover in a comparative example. 比較例におけるメインケーシングの冷却流路の概略構造を表す斜視図である。It is a perspective view showing the schematic structure of the cooling flow path of the main casing in a comparative example. 本発明の第1の変形例におけるメインケーシングの冷却流路の概略構造を表す斜視図である。It is a perspective view showing the schematic structure of the cooling flow path of the main casing in the 1st modification of this invention. 本発明の第2の変形例におけるメインケーシングの冷却流路の概略構造を表す斜視図である。It is a perspective view showing the schematic structure of the cooling channel of the main casing in the 2nd modification of this invention. 本発明の第3の変形例におけるカバーの仕切板の構造を表す断面図である。It is sectional drawing showing the structure of the partition of the cover in the 3rd modification of this invention. 本発明の第4の変形例におけるカバーの仕切板の構造を表す断面図である。It is sectional drawing showing the structure of the partition of the cover in the 4th modification of this invention. 本発明の第5の変形例におけるカバーの仕切板の構造を表す断面図である。It is sectional drawing showing the structure of the partition of the cover in the 5th modification of this invention. 本発明の第6の変形例におけるメインケーシングの冷却流路の左側面図である。It is a left view of the cooling channel of the main casing in the 6th modification of the present invention. 本発明の第6の変形例におけるメインケーシングの冷却流路の右側面図である。It is a right view of the cooling channel of the main casing in a 6th modification of the present invention.
 本発明の一実施形態を、図面を参照しつつ説明する。 An embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態における圧縮機の構造を表す水平断面図であり、図2は、図1の矢視II-IIによる鉛直断面図である。図3は、本実施形態におけるメインケーシング及びカバーの構造を表す斜視図であり、図4は、本実施形態におけるメインケーシング及びカバーの構造を表す分解斜視図である。図5は、本実施形態における左側カバーの構造を表す斜視図であり、図6は、本実施形態における右側カバーの構造を表す斜視図である。図7は、本実施形態におけるカバーの仕切板の構造を表す断面図である。 FIG. 1 is a horizontal sectional view showing the structure of the compressor in the present embodiment, and FIG. 2 is a vertical sectional view taken along the line II-II in FIG. FIG. 3 is a perspective view illustrating the structure of the main casing and the cover according to the present embodiment, and FIG. 4 is an exploded perspective view illustrating the structure of the main casing and the cover according to the present embodiment. FIG. 5 is a perspective view illustrating the structure of the left cover according to the present embodiment, and FIG. 6 is a perspective view illustrating the structure of the right cover according to the present embodiment. FIG. 7 is a cross-sectional view illustrating the structure of the partition plate of the cover according to the present embodiment.
 本実施形態の圧縮機は、スクリューロータである雄ロータ1A及び雌ロータ1Bと、雄ロータ1A及び雌ロータ1Bを収納してそれらの歯溝に複数の作動室を形成するケーシング2とを備える。なお、本実施形態の圧縮機は、無給油式の(詳細には、作動室に油を供給しない)スクリュー圧縮機である。また、雄ロータ1A及び雌ロータ1Bは、それらの軸方向(図1及び図2中左右方向)が水平方向となるように配置されている。 The compressor of this embodiment includes a male rotor 1A and a female rotor 1B, which are screw rotors, and a casing 2 that houses the male rotor 1A and the female rotor 1B and forms a plurality of working chambers in their tooth spaces. The compressor of the present embodiment is an oilless screw compressor (specifically, does not supply oil to the working chamber). The male rotor 1A and the female rotor 1B are arranged so that their axial directions (horizontal directions in FIGS. 1 and 2) are horizontal.
 作動室は、雄ロータ1A及び雌ロータ1Bの回転に伴い、ロータ軸方向の一方側(図2中左側)から他方側(図2中右側)へ移動する。これにより、作動室は、ロータ軸方向の一方側の吸入ポート3(開口)を介して吸入流路4から空気(気体)を吸入する吸入過程、空気を圧縮する圧縮過程、ロータ軸方向の他方側の吐出ポート5(開口)を介して吐出流路6へ圧縮空気を吐出する吐出過程を順次行うようになっている。 The working chamber moves from one side (left side in FIG. 2) in the axial direction of the rotor to the other side (right side in FIG. 2) in accordance with the rotation of the male rotor 1A and the female rotor 1B. As a result, the working chamber is provided with a suction process for sucking air (gas) from the suction flow path 4 through the suction port 3 (opening) on one side in the rotor axial direction, a compression process for compressing air, and the other in the rotor axial direction. The discharge process of discharging the compressed air to the discharge flow path 6 through the discharge port 5 (opening) on the side is sequentially performed.
 雄ロータ1Aは、軸方向一方側の軸受7Aと軸方向他方側の軸受8Aによって回転可能に支持されている。雌ロータ1Bは、軸方向一方側の軸受7Bと軸方向他方側の軸受8Bによって回転可能に支持されている。 The male rotor 1A is rotatably supported by a bearing 7A on one axial side and a bearing 8A on the other axial side. The female rotor 1B is rotatably supported by a bearing 7B on one axial side and a bearing 8B on the other axial side.
 雄ロータ1Aの軸方向一方側の端部は、ケーシング2より突出すると共に、ピニオンギヤ9が設けられている。ピニオンギヤ9は、図示しないものの、例えばギヤ機構及びベルト機構を介してモータの回転軸に接続されている。ピニオンギヤ9、ギヤ機構、及びベルト機構を介してモータの回転力が雄ロータ1Aに伝達されることにより、雄ロータ1Aが回転する。 One end in the axial direction of the male rotor 1A protrudes from the casing 2 and is provided with a pinion gear 9. Although not shown, the pinion gear 9 is connected to a rotating shaft of a motor via, for example, a gear mechanism and a belt mechanism. The torque of the motor is transmitted to the male rotor 1A via the pinion gear 9, the gear mechanism, and the belt mechanism, so that the male rotor 1A rotates.
 雄ロータ1A及び雌ロータ1Bの軸方向他方側の端部にはタイミングギヤ10A,10Bがそれぞれ設けられ、タイミングギヤ10A,10Bが互いに噛み合わされている。タイミングギヤ10A,10Bを介して雄ロータ1Aの回転力が雌ロータ1Bに伝達されることにより、雌ロータ1Bが回転する。これにより、雄ロータ1A及び雌ロータ1Bは、互いに非接触で噛み合うように回転する。 タ イ ミ ン グ Timing gears 10A and 10B are provided at the other axial ends of the male rotor 1A and the female rotor 1B, respectively, and the timing gears 10A and 10B mesh with each other. The torque of the male rotor 1A is transmitted to the female rotor 1B via the timing gears 10A and 10B, so that the female rotor 1B rotates. Thus, the male rotor 1A and the female rotor 1B rotate so as to mesh with each other without contact.
 ケーシング2は、メインケーシング11と、メインケーシング11の軸方向一方側に接続された吸入側ケーシング12と、メインケーシング11の軸方向他方側に接続された吐出側ケーシング13とで構成されている。 The casing 2 is composed of a main casing 11, an intake casing 12 connected to one axial side of the main casing 11, and a discharge casing 13 connected to the other axial side of the main casing 11.
 メインケーシング11は、雄ロータ1A及び雌ロータ1Bの歯部を収納してそれらの歯溝に複数の作動室を形成している。作動室の圧縮過程にて熱が生じるため、メインケーシング11等が加熱されて熱膨張する。そこで、例えばメインケーシング11の熱膨張を抑えるため、複数の作動室の外周側に位置するようにメインケーシング11内に冷却流路14を形成し、この冷却流路14に冷却液を流通させるようになっている。冷却流路14は、大別して、流路部分15A,15B,15C,15D,15Eで構成されている(詳細は後述)。 The main casing 11 houses the tooth portions of the male rotor 1A and the female rotor 1B and forms a plurality of working chambers in the tooth grooves. Since heat is generated in the process of compressing the working chamber, the main casing 11 and the like are heated and thermally expanded. Therefore, for example, in order to suppress thermal expansion of the main casing 11, a cooling flow path 14 is formed in the main casing 11 so as to be located on the outer peripheral side of the plurality of working chambers, and the cooling liquid is caused to flow through the cooling flow path 14. It has become. The cooling channel 14 is roughly composed of channel portions 15A, 15B, 15C, 15D, and 15E (details will be described later).
 冷却流路14は、メインケーシング11の左側側面に設けられた開口部16A(第1の開口部)と、メインケーシング11の右側側面に設けられた開口部16B(第2の開口部)とを有する。メインケーシング11の左側側面には左側カバー17A(第1のカバー)がボルト(図示せず)を用いて着脱可能に取付けられ、左側カバー17Aが開口部16Aを覆っている。メインケーシング11の右側側面には右側カバー17B(第2のカバー)がボルト(図示せず)を用いて着脱可能に取付けられ、右側カバー17Bが開口部16Bを覆っている。そして、カバー17A,17Bを取外すことにより、冷却流路14の清掃が行えるようになっている。 The cooling passage 14 includes an opening 16 </ b> A (first opening) provided on the left side surface of the main casing 11 and an opening 16 </ b> B (second opening) provided on the right side surface of the main casing 11. Have. A left cover 17A (first cover) is detachably attached to the left side surface of the main casing 11 using bolts (not shown), and the left cover 17A covers the opening 16A. A right cover 17B (second cover) is detachably attached to the right side surface of the main casing 11 using bolts (not shown), and the right cover 17B covers the opening 16B. By removing the covers 17A and 17B, the cooling channel 14 can be cleaned.
 左側カバー17Aは、冷却流路14側に突出する仕切板18A~18Fが設けられ、右側カバー17Bは、冷却流路14側に突出する仕切板18G,18Hが設けられている。仕切板18A,18B,18C,18Dは、上下方向(言い換えれば、ロータ軸方向に対して垂直な方向)に延在する。仕切板18Eは、仕切板18Dの上端と仕切板18Cの下端の間で接続されて前後方向(言い換えれば、ロータ軸方向に対して平行な方向)に延在する。仕切板18Fは、仕切板18Bの下端で接続されて前後方向に延在する。仕切板18G,18Hは、前後方向に延在する。 The left cover 17A is provided with partition plates 18A to 18F protruding toward the cooling channel 14, and the right cover 17B is provided with partition plates 18G and 18H protruding toward the cooling channel 14. The partition plates 18A, 18B, 18C, 18D extend in a vertical direction (in other words, a direction perpendicular to the rotor axis direction). The partition plate 18E is connected between the upper end of the partition plate 18D and the lower end of the partition plate 18C, and extends in the front-rear direction (in other words, the direction parallel to the rotor axis direction). The partition plate 18F is connected to the lower end of the partition plate 18B and extends in the front-rear direction. The partition plates 18G, 18H extend in the front-back direction.
 なお、本実施形態では、各仕切板の先端部とこれに対向するメインケーシング11の表面との間には所定の隙間が形成されており、カバー17A,17Bが開口部16A,16Bを覆った場合に各仕切板がメインケーシング11の表面に当たらないように配慮されている(図7参照)。仕切板18A~18Dの先端部に対向するメインケーシング11の表面は、雌ロータ1Bの形状に従って円筒形になっており、平板状のカバー17Aとの距離が場所ごとに異なっている。また、仕切板18G,18Hの先端部に対向するメインケーシング11の表面は、雄ロータ1Aの形状に従って円筒形になっており、平板状のカバー17Bとの距離が場所ごとに異なっている。そのため、図5及び図6で示すように、各仕切板は、その先端部が前述したメインケーシング11の表面に沿うような形状となっている。言い換えれば、各仕切板の長さ(詳細には、冷却流路側に突出する長さ)は、各仕切板の先端部に対向するメインケーシング11の部分とカバーとの距離より所定の長さだけ短くなっている。この所定の長さは、冷却液の流れを制限するためには小さいことが望ましいものの、カバー及びメインケーシング11の製造公差やメインケーシング11の熱膨張などを吸収できるだけの大きさであることが必要である。 In the present embodiment, a predetermined gap is formed between the front end of each partition plate and the surface of the main casing 11 opposed thereto, and the covers 17A and 17B cover the openings 16A and 16B. In this case, care is taken so that each partition plate does not hit the surface of the main casing 11 (see FIG. 7). The surface of the main casing 11 facing the leading ends of the partition plates 18A to 18D has a cylindrical shape in accordance with the shape of the female rotor 1B, and the distance from the flat cover 17A differs from place to place. The surface of the main casing 11 facing the distal ends of the partition plates 18G and 18H has a cylindrical shape according to the shape of the male rotor 1A, and the distance to the flat cover 17B differs from place to place. Therefore, as shown in FIG. 5 and FIG. 6, each partition plate has a shape such that the distal end portion is along the surface of the main casing 11 described above. In other words, the length of each partition plate (specifically, the length protruding toward the cooling passage) is a predetermined length greater than the distance between the cover and the portion of the main casing 11 facing the tip of each partition plate. It is getting shorter. The predetermined length is desirably small in order to restrict the flow of the cooling liquid, but must be large enough to absorb manufacturing tolerances of the cover and the main casing 11 and thermal expansion of the main casing 11. It is.
 メインケーシング11は、後述の図9で示すように、左側カバー17Aの仕切板18A,18Cの上端側(図9中上側)にそれぞれ連なって上下方向に延在するケーシング側仕切板19A,19Bと、左側カバー17Aの仕切板18Fの後端側(図9中左側)に連なって上下方向に延在するケーシング側仕切板19Cと、左側カバー17Aの仕切板18Fの前端側(図9中右側)に連なって前後方向に延在するケーシング側仕切板19Dとを有する。また、メインケーシング11は、後述の図10で示すように、右側カバー17Bの仕切板18Gの後端側(図10中右側)に連なって前後方向に延在するケーシング側仕切板19Eと、右側カバー17Bの仕切板18Hの前端側(図10中左側)に連なって前後方向に延在するケーシング側仕切板19Fとを有する。 As shown in FIG. 9 described below, the main casing 11 is connected to casing- side partition plates 19A and 19B that extend in the vertical direction so as to be continuous with upper end sides (upper side in FIG. 9) of the partition plates 18A and 18C of the left cover 17A. A casing-side partition plate 19C extending vertically along the rear end side (left side in FIG. 9) of the partition plate 18F of the left cover 17A, and a front end side (right side in FIG. 9) of the partition plate 18F of the left cover 17A. And a casing-side partition plate 19D extending in the front-rear direction. Further, as shown in FIG. 10 described later, the main casing 11 includes a casing-side partition plate 19E extending in the front-rear direction so as to be continuous with the rear end side (the right side in FIG. 10) of the partition plate 18G of the right cover 17B. The cover 17B has a casing-side partition plate 19F that extends in the front-rear direction so as to be continuous with the front end side (left side in FIG. 10) of the partition plate 18H.
 次に、本実施形態のメインケーシング11の冷却流路14について説明する。図8は、本実施形態におけるメインケーシング11の冷却流路14の概略構造を表す斜視図である。図9は、図8中矢印IX方向から見た左側面図であり、図10は、図8中矢印X方向から見た右側面図である。 Next, the cooling channel 14 of the main casing 11 of the present embodiment will be described. FIG. 8 is a perspective view illustrating a schematic structure of the cooling passage 14 of the main casing 11 in the present embodiment. 9 is a left side view as seen from the direction of arrow IX in FIG. 8, and FIG. 10 is a right side view as seen from the direction of arrow X in FIG.
 本実施形態のメインケーシング11の冷却流路14は、メインケーシング11の左側側面に沿って形成された流路部分15A,15Bと、メインケーシング11の右側側面に沿って形成された流路部分15Cと、ロータ軸方向の一方側に位置するようにメインケーシング11に形成されて流路部分15Aと流路部分15Cを接続する流路部分15Dと、ロータ軸方向の他方側に位置するようにメインケーシング11に形成されて流路部分15Bと流路部分15Cを接続する流路部分15Eとで構成されている。なお、図8(及び後述の図14、図15)において、流路部分15A,15B,15Cは、便宜上、上下方向に直線状に延在する形状で示されているものの、実際には、メインケーシング11の形状に沿うように上下方向に円弧状に延在する形状となっている。 The cooling passage 14 of the main casing 11 of the present embodiment includes passage portions 15A and 15B formed along the left side surface of the main casing 11 and a passage portion 15C formed along the right side surface of the main casing 11. A flow path portion 15D formed in the main casing 11 so as to be located on one side in the rotor axis direction and connecting the flow path section 15A and the flow path section 15C; The casing 11 includes a flow path portion 15E and a flow path portion 15E connecting the flow path portion 15C. In FIG. 8 (and FIGS. 14 and 15 to be described later), the flow path portions 15A, 15B, and 15C are shown in a shape extending linearly in the vertical direction for convenience. It has a shape extending in an arc shape in the vertical direction so as to follow the shape of the casing 11.
 左側カバー17Aの仕切板18F及びケーシング側仕切板19C,19Dは、流路部分15Aと流路部分15Bを区分する。左側カバー17Aの仕切板18A~18E及びケーシング側仕切板19A,19Bは、流路部分15Bが蛇行するように(詳細には、例えば、前後方向に流れる部分より、上下方向に流れる部分が多くなるように)仕切る。右側カバー17Bの仕切板18G,18H及びケーシング側仕切板19E,19Fは、流路部分15Cが蛇行するように(詳細には、例えば、上下方向に流れる部分より、前後方向に流れる部分が多くなるように)仕切る。 The partition plate 18F of the left cover 17A and the casing- side partition plates 19C, 19D separate the flow path portion 15A and the flow path portion 15B. The partition plates 18A to 18E of the left cover 17A and the casing- side partition plates 19A and 19B are configured so that the flow path portion 15B meanders (specifically, for example, a portion flowing in the vertical direction is more than a portion flowing in the front-rear direction). Partition). The partition plates 18G, 18H of the right cover 17B and the casing- side partition plates 19E, 19F are configured so that the flow path portion 15C meanders (specifically, for example, a portion flowing in the front-rear direction is more than a portion flowing in the up-down direction). Partition).
 流路部分15Bにおける吸入ポート3の近傍には供給管20が接続され、流路部分15Aにおける吐出ポート5の近傍には排出管21が接続されている。そして、図8で示すように、供給管20から供給された冷却液(詳細には、例えば水又は油)は、流路部分15B、流路部分15E、流路部分15C、流路部分15D、流路部分15Aの順序で流れ、その後、排出管21から排出されるようになっている。 供給 The supply pipe 20 is connected near the suction port 3 in the flow path portion 15B, and the discharge pipe 21 is connected near the discharge port 5 in the flow path portion 15A. Then, as shown in FIG. 8, the cooling liquid (specifically, water or oil, for example) supplied from the supply pipe 20 is supplied to the flow path portion 15B, the flow path portion 15E, the flow path portion 15C, the flow path portion 15D, The fluid flows in the order of the flow path portion 15A, and then is discharged from the discharge pipe 21.
 次に、本実施形態のメインケーシング11の冷却流路14の作用効果を、比較例を用いて説明する。図11は、比較例における圧縮機の構造を表す水平断面図である。図12は、比較例におけるメインケーシング及びカバーの構造を表す斜視図である。図13は、比較例におけるメインケーシングの冷却流路の概略構造を表す斜視図である。 Next, the operation and effect of the cooling passage 14 of the main casing 11 of the present embodiment will be described using a comparative example. FIG. 11 is a horizontal sectional view illustrating the structure of the compressor in the comparative example. FIG. 12 is a perspective view illustrating a structure of a main casing and a cover in a comparative example. FIG. 13 is a perspective view illustrating a schematic structure of a cooling passage of a main casing in a comparative example.
 比較例では、カバー17A,17Bは、仕切板18A~18Hを有しないし、メインケーシング11は、ケーシング側仕切板19A~19Fを有しない。そのため、メインケーシング11の冷却流路30は、メインケーシング11の左側側面に沿って形成された流路部分31Aと、メインケーシング11の右側側面に沿って形成された流路部分31Bと、ロータ軸方向の一方側に位置するようにメインケーシング11に形成されて流路部分31Aと流路部分31Bを接続する流路部分31Cと、ロータ軸方向の他方側に位置するようにメインケーシング11に形成されて流路部分31Aと流路部分31Bを接続する流路部分31Dとで構成されている。 In the comparative example, the covers 17A and 17B do not have the partition plates 18A to 18H, and the main casing 11 does not have the casing-side partition plates 19A to 19F. Therefore, the cooling passage 30 of the main casing 11 has a passage portion 31A formed along the left side surface of the main casing 11, a passage portion 31B formed along the right side surface of the main casing 11, and a rotor shaft. A flow path portion 31C formed in the main casing 11 so as to be located on one side in the direction and connecting the flow path section 31A and the flow path section 31B, and formed in the main casing 11 so as to be located on the other side in the rotor axial direction. It is composed of a flow path portion 31A and a flow path portion 31D connecting the flow path portion 31B.
 流路部分31Aにおける流路部分31Cとの接続部の近傍(言い換えれば、吸入ポート3から離れた部分)には供給管20が接続され、流路部分31Bにおける流路部分31Dとの接続部の近傍(言い換えれば、吐出ポート5から離れた部分)には排出管21が接続されている。そして、供給管20から流路部分31Aの一部分に供給された冷却液は、供給された流れに従い流路部分31C、流路部分31Bの順序で流れ、流路部分31Bを流れた冷却液の一部が排出管21から排出される。流路部分31Bを流れた冷却液の残りは、流路部分31D、流路部分31Aの順序で流れ、供給管20から供給された冷却液と合流するようになっている。 The supply pipe 20 is connected to the flow path portion 31A in the vicinity of the connection part with the flow path part 31C (in other words, the part distant from the suction port 3), and the connection part of the flow path part 31B with the flow path part 31D is connected. A discharge pipe 21 is connected in the vicinity (in other words, at a part distant from the discharge port 5). Then, the cooling liquid supplied from the supply pipe 20 to a part of the flow path part 31A flows in the order of the flow path part 31C and the flow path part 31B according to the supplied flow, and one of the cooling liquids flowing through the flow path part 31B. The part is discharged from the discharge pipe 21. The remainder of the coolant that has flowed through the flow channel portion 31B flows in the order of the flow channel portion 31D and the flow channel portion 31A, and merges with the coolant supplied from the supply pipe 20.
 この比較例では、流路部分31Aは、流路部分31Bより、冷却液の流量が少なくなる傾向にある。また、流路部分31A,31Bは、流路断面が著しく拡大して縮小するため、流速のバラツキが大きくなる。具体的に説明すると、流路部分31Bにおける入口(すなわち、流路部分31Cとの接続部)と出口(すなわち、流路部分31Dとの接続部及び排出管21との接続部)を結ぶ直線部分は、図13中矢印F1で示すように流速が比較的大きいものの、この直線部分から離れた部分は、図13中矢印F2,F3で示すように流速が比較的小さくなる。流路部分31Aにおける入口(すなわち、流路部分31Dとの接続部)と出口(すなわち、流路部分31Cとの接続部)を結ぶ直線部分は、図13中矢印F4で示すように流速が比較的大きいものの、この直線部分から離れた部分は、図13中矢印F5、F6で示すように流速が比較的小さくなる。 In this comparative example, the flow rate of the coolant tends to be smaller in the flow path portion 31A than in the flow path portion 31B. In addition, the flow path portions 31A and 31B have a significantly increased flow path variation because the flow path cross section is significantly enlarged and reduced. More specifically, a straight line portion connecting an inlet (ie, a connection portion with the flow channel portion 31C) and an outlet (ie, a connection portion with the flow channel portion 31D and a connection portion with the discharge pipe 21) in the flow channel portion 31B. Although the flow velocity is relatively large as indicated by an arrow F1 in FIG. 13, the flow velocity is relatively small in a portion distant from this linear portion as indicated by arrows F2 and F3 in FIG. A straight line portion connecting the inlet (ie, the connection portion with the flow channel portion 31D) and the outlet (ie, the connection portion with the flow channel portion 31C) in the flow channel portion 31A has a flow velocity comparison as shown by an arrow F4 in FIG. Although the target is large, the flow away from the linear portion has a relatively low flow velocity as shown by arrows F5 and F6 in FIG.
 これに対し、本実施形態のメインケーシング11の冷却流路14は、仕切板によって仕切られることにより、流路断面が細分化されている。また、細分化された流路の断面積も大きく変化しないように設計されている。そのため、冷却流路14内の流速のバラツキを抑えて、冷却性能を向上させることができる。また、メインケーシング11及びカバー17A,17Bに仕切板を設けるので、メインケーシング11のみに仕切板を設ける場合とは異なり、メインケーシング11の形状が複雑化しない。そのため、メインケーシング11の製作(詳細には、例えば鋳造)が容易である。 On the other hand, the cooling channel 14 of the main casing 11 of the present embodiment is divided by a partition plate, so that the cross section of the channel is subdivided. Further, it is designed so that the sectional area of the subdivided flow path does not change significantly. Therefore, variation in the flow velocity in the cooling channel 14 can be suppressed, and the cooling performance can be improved. Further, since the partition plate is provided on the main casing 11 and the covers 17A and 17B, the shape of the main casing 11 is not complicated unlike the case where the partition plate is provided only on the main casing 11. Therefore, the manufacture (specifically, for example, casting) of the main casing 11 is easy.
 また、本実施形態の冷却流路14は、流路部分15B、流路部分15E、流路部分15C、流路部分15D、流路部分15Aの順序で冷却液が流れるように(言い換えれば、冷却液が分流しないように)構成されている。これにより、流路部分15B、流路部分15E、流路部分15C、流路部分15D、及び流路部分15Aのそれぞれにおける冷却液の流量がほぼ同じになる。そのため、この観点からも、冷却流路14内の流速のバラツキを抑えて、冷却性能を向上させることができる。 Further, the cooling channel 14 of the present embodiment is configured such that the cooling liquid flows in the order of the channel portion 15B, the channel portion 15E, the channel portion 15C, the channel portion 15D, and the channel portion 15A (in other words, the cooling channel). Liquid is not diverted). As a result, the flow rates of the coolant in the flow path portions 15B, 15E, 15C, 15D, and 15A become substantially the same. Therefore, also from this viewpoint, it is possible to suppress the variation in the flow velocity in the cooling channel 14 and improve the cooling performance.
 また、本実施形態では、供給管20が吸入ポート3の近傍(すなわち、メインケーシング11の温度が比較的低い部分)に接続され、排出管21が吐出ポート5の近傍(すなわち、メインケーシング11の温度が比較的高い部分)に接続されている。これにより、冷却流路14内の冷却液とメインケーシング11との温度差を小さくして、熱交換の効率を向上させることができる。 In the present embodiment, the supply pipe 20 is connected to the vicinity of the suction port 3 (that is, a portion where the temperature of the main casing 11 is relatively low), and the discharge pipe 21 is connected to the vicinity of the discharge port 5 (that is, of the main casing 11). (Where the temperature is relatively high). Thereby, the temperature difference between the coolant in the cooling passage 14 and the main casing 11 can be reduced, and the efficiency of heat exchange can be improved.
 なお、上記一実施形態において、流路部分15Bは、前後方向に流れる部分より、上下方向に流れる部分が多くなるように蛇行する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図14で示す第1の変形例のように、流路部分15Bは、上下方向に流れる部分より、前後方向に流れる部分が多くなるように蛇行してもよい。 In the above-described embodiment, the case where the flow path portion 15B meanders so that a portion flowing in the vertical direction is more than a portion flowing in the front-rear direction has been described as an example. Modifications are possible without departing from the technical idea. For example, as in a first modification shown in FIG. 14, the flow path portion 15B may meander so that a portion flowing in the front-back direction is more than a portion flowing in the up-down direction.
 また、上記一実施形態において、流路部分15Cは、上下方向に流れる部分より、前後方向に流れる部分が多くなるように蛇行した場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図15で示す第2の変形例のように、流路部分15Cは、前後方向に流れる部分より、上下方向に流れる部分が多くなるように蛇行してもよい。 Further, in the above-described embodiment, the case where the flow path portion 15C meanders so as to increase the portion flowing in the front-rear direction more than the portion flowing in the up-down direction is described as an example. However, the present invention is not limited to this. Modifications are possible without departing from the technical idea. For example, as in a second modified example shown in FIG. 15, the flow path portion 15C may meander so that a portion flowing in the vertical direction is larger than a portion flowing in the front-rear direction.
 また、上記一実施形態において、左側カバー17Aの仕切板18A~18F及びこれに連なるケーシング側仕切板19A~19Dは、流路部分15Aと流路部分15Bを区分すると共に、流路部分15Bのみが蛇行するように仕切る場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、左側カバー17Aの仕切板及びこれに連なるケーシング側仕切板は、流路部分15Aと流路部分15Bを区分すると共に、流路部分15A,15Bの両方が蛇行するように仕切ってもよい。 In the above-described embodiment, the partition plates 18A to 18F of the left cover 17A and the casing-side partition plates 19A to 19D connected thereto separate the flow path portion 15A from the flow path portion 15B, and only the flow path portion 15B is separated. Although the case of partitioning in a meandering manner has been described by way of example, the invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, the partition plate of the left cover 17A and the casing-side partition plate connected thereto may separate the flow path portion 15A and the flow path portion 15B, and may partition both the flow path portions 15A and 15B so as to meander.
 また、上記一実施形態においては、カバー17A,17Bの仕切板18A~18H及びケーシング側仕切板19A~19Fは、それぞれ、上下方向又は前後方向に直線的に延在する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、仕切板は、流路部分15A(又は15B)の入口と出口を結ぶ直線部分に対して平行でなければ、斜め方向に直線的に延在してもよいし、若しくは、曲線的に延在してもよい。 Further, in the above-described embodiment, an example has been described in which the partition plates 18A to 18H of the covers 17A and 17B and the casing-side partition plates 19A to 19F linearly extend in the up-down direction or the front-back direction, respectively. However, the present invention is not limited thereto, and may be modified without departing from the spirit and technical idea of the present invention. That is, the partition plate may extend linearly in an oblique direction unless it is parallel to a linear portion connecting the inlet and the outlet of the flow path portion 15A (or 15B), or may extend in a curved manner. May be present.
 また、上記一実施形態においては、カバー17A,17Bの仕切板18A~18Hの先端部を支持しない構造を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図16~図18でそれぞれ示す第3~第5の変形例のように、メインケーシング11は、カバー17A,17Bの仕切板18A~18Hの先端部を遊嵌して支持する複数のガイド22を有してもよい。各ガイド22は、図16又は図17で示すように1つ又は2つの突出部で構成されてもよいし、図18で示すように窪み部で構成されてもよい。これらの変形例では、例えば流路部分15Aと流路部分15Bの間の冷却液の漏れを抑えるので、冷却性能を向上させることができる。なお、ガイド22の長さ(詳細には、図中左右方向における突出部の高さ又は窪み部の深さ)は、上述した所定の長さ(すなわち、各仕切板の先端部とこれに対向するメインケーシング11の部分との距離)より、長い。 Further, in the above-described embodiment, a structure in which the distal ends of the partition plates 18A to 18H of the covers 17A and 17B are not supported has been described as an example. However, the present invention is not limited to this, and is within a scope not departing from the spirit and technical idea of the present invention. Can be deformed. For example, as in the third to fifth modified examples shown in FIGS. 16 to 18, respectively, the main casing 11 has a plurality of guides 22 for loosely fitting and supporting the distal ends of the partition plates 18A to 18H of the covers 17A and 17B. May be provided. Each guide 22 may be constituted by one or two protruding portions as shown in FIG. 16 or FIG. 17, or may be constituted by a concave portion as shown in FIG. In these modifications, for example, the leakage of the cooling liquid between the flow path portion 15A and the flow path portion 15B is suppressed, so that the cooling performance can be improved. The length of the guide 22 (specifically, the height of the protruding portion or the depth of the concave portion in the left-right direction in the figure) is the predetermined length described above (that is, the front end of each partition plate and the opposite end thereof). (The distance from the main casing 11).
 また、上記一実施形態においては、複数の仕切板18A~18Hと複数のケーシング側仕切板19A~19Fが設けられた場合を例にとって説明し、第3~第5の変形例にいては、複数のガイド22が設けられた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、1つの仕切板と1つのケーシング側仕切板が設けられてもよいし、1つのガイドが設けられてもよい。 Further, in the above-described embodiment, a case where a plurality of partition plates 18A to 18H and a plurality of casing-side partition plates 19A to 19F are provided will be described as an example. In the third to fifth modified examples, a plurality of partition plates 18A to 18F will be described. Has been described as an example, but the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, one partition plate and one casing-side partition plate may be provided, or one guide may be provided.
 また、上記一実施形態において、メインケーシング11は、カバー17A,17Bの仕切板18A,18C,18F~18Hに連なるケーシング側仕切板19A~19Fを有する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。例えば図19及び図20で示す第6の変形例のように、メインケーシング11は、カバー17A,17Bの仕切板に連なる仕切板を有しなくともよい。本変形例においては、上記一実施形態と比べて冷却性能が劣るものの、メインケーシング11側の設計は比較例のままでよく、比較例と比べて冷却性能を向上させることができる。 In the above-described embodiment, the case where the main casing 11 has the casing-side partition plates 19A to 19F connected to the partition plates 18A, 18C, 18F to 18H of the covers 17A and 17B has been described as an example. However, the present invention is not limited to this. Modifications can be made without departing from the spirit and technical idea of the present invention. For example, as in a sixth modified example shown in FIGS. 19 and 20, the main casing 11 may not have a partition plate connected to the partition plates of the covers 17A and 17B. In this modification, although the cooling performance is inferior to that of the above-described embodiment, the design of the main casing 11 side may be the same as the comparative example, and the cooling performance can be improved as compared with the comparative example.
 なお、以上においては、本発明の適用対象として、2つのスクリューロータである雄ロータ1A及び雌ロータ1Bを備えた圧縮機を例にとって説明したが、これに限られず、例えば、1つ又は3つ以上のスクリューロータを備えた圧縮機であってもよい。 In the above description, as an application target of the present invention, a compressor having two screw rotors, ie, a male rotor 1A and a female rotor 1B has been described as an example. However, the present invention is not limited to this. A compressor provided with the above screw rotor may be used.
1A…雄ロータ(スクリューロータ)、1B…雌ロータ(スクリューロータ)、2…ケーシング、11…メインケーシング、12…吸入側ケーシング、13…吐出側ケーシング、14…冷却流路、15A…流路部分(第1の流路部分)、15B…流路部分(第2の流路部分)、15C…流路部分(第3の流路部分)、15D…流路部分(第4の流路部分)、15E…流路部分(第5の流路部分)、16A…開口部(第1の開口部)、16B…開口部(第2の開口部)、17A…左側カバー(第1のカバー)、17B…右側カバー(第2のカバー)、18A~18H…仕切板、19A~19F…ケーシング側仕切板、22…ガイド 1A: Male rotor (screw rotor), 1B: Female rotor (screw rotor), 2: Casing, 11: Main casing, 12: Suction side casing, 13: Discharge side casing, 14: Cooling channel, 15A: Channel portion (First flow path part), 15B ... flow path part (second flow path part), 15C ... flow path part (third flow path part), 15D ... flow path part (fourth flow path part) , 15E: flow path portion (fifth flow path portion), 16A: opening (first opening), 16B: opening (second opening), 17A: left cover (first cover), 17B: right side cover (second cover), 18A to 18H: partition plate, 19A to 19F: casing side partition plate, 22: guide

Claims (7)

  1.  スクリューロータと、
     前記スクリューロータを収納するケーシングと、
     前記ケーシングに形成され、開口部を有する冷却流路と、
     前記ケーシングに着脱可能に取付けられ、前記開口部を覆うカバーと、を有し、
     前記カバーは、前記冷却流路側に突出する少なくとも1つの仕切板が設けられている圧縮機。
    A screw rotor,
    A casing for housing the screw rotor,
    A cooling channel formed in the casing and having an opening;
    A cover that is detachably attached to the casing and covers the opening;
    The compressor, wherein the cover is provided with at least one partition plate protruding toward the cooling channel.
  2.  前記ケーシングの前記冷却流路には、前記仕切板の一部に連なる少なくとも1つのケーシング側仕切板が設けられている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein at least one casing-side partition plate connected to a part of the partition plate is provided in the cooling channel of the casing.
  3.  前記冷却流路は、前記ケーシングの一方側側面と他方側側面に沿って形成されており、
     前記冷却流路の前記開口部として、前記一方側側面に設けられた第1の開口部と、前記他方側側面に設けられた第2の開口部とがあり、
     前記カバーとして、前記第1の開口部を覆う第1のカバーと、前記第2の開口部を覆う第2のカバーとがある請求項1に記載の圧縮機。
    The cooling channel is formed along one side surface and the other side surface of the casing,
    As the opening of the cooling channel, there is a first opening provided on the one side surface, and a second opening provided on the other side surface,
    The compressor according to claim 1, wherein the cover includes a first cover that covers the first opening, and a second cover that covers the second opening.
  4.  前記ケーシングの前記冷却流路には、前記仕切板の一部に連なる少なくとも1つのケーシング側仕切板が設けられており、
     前記冷却流路は、前記一方側側面に沿って形成された第1の流路部分と第2の流路部分と、前記他方側側面に沿って形成された第3の流路部分と、ロータ軸方向の一方側に位置するように前記ケーシングに形成されて前記第1の流路部分と前記第3の流路部分を接続する第4の流路部分と、ロータ軸方向の他方側に位置するように前記ケーシングに形成されて前記第2の流路部分と前記第3の流路部分を接続する第5の流路部分とで構成されており、
     前記第1の流路部分と前記第2の流路部分とは、前記仕切板と前記ケーシング側仕切板とにより仕切られている請求項3に記載の圧縮機。
    In the cooling channel of the casing, at least one casing-side partition plate connected to a part of the partition plate is provided,
    A first flow path portion and a second flow path portion formed along the one side surface; a third flow path portion formed along the other side surface; A fourth flow path portion formed in the casing so as to be located on one side in the axial direction and connecting the first flow path portion and the third flow path portion; A fifth flow path portion formed in the casing so as to connect the second flow path portion and the third flow path portion,
    The compressor according to claim 3, wherein the first flow path portion and the second flow path portion are partitioned by the partition plate and the casing-side partition plate.
  5.  前記仕切板の前記冷却流路側に突出する長さは、前記仕切板の先端部に対向する前記ケーシングの部分と前記カバーとの距離より所定長さだけ短い請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein a length of the partition plate protruding toward the cooling flow path is shorter than a distance between the cover and the portion of the casing facing a tip end of the partition plate by a predetermined length.
  6.  前記ケーシングは、前記仕切板の先端部に遊嵌する少なくとも1つのガイドを有する請求項5に記載の圧縮機。 6. The compressor according to claim 5, wherein the casing has at least one guide that fits loosely on the tip of the partition plate. 7.
  7.  前記ガイドの高さ又は深さは、前記所定長さより長い請求項6に記載の圧縮機。 The compressor according to claim 6, wherein a height or a depth of the guide is longer than the predetermined length.
PCT/JP2018/024661 2018-06-28 2018-06-28 Compressor WO2020003453A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/024661 WO2020003453A1 (en) 2018-06-28 2018-06-28 Compressor
JP2020526816A JP6952895B2 (en) 2018-06-28 2018-06-28 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024661 WO2020003453A1 (en) 2018-06-28 2018-06-28 Compressor

Publications (1)

Publication Number Publication Date
WO2020003453A1 true WO2020003453A1 (en) 2020-01-02

Family

ID=68986747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024661 WO2020003453A1 (en) 2018-06-28 2018-06-28 Compressor

Country Status (2)

Country Link
JP (1) JP6952895B2 (en)
WO (1) WO2020003453A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209606A1 (en) * 2021-03-31 2022-10-06 株式会社日立産機システム Screw compressor
WO2024116433A1 (en) * 2022-11-30 2024-06-06 株式会社日立産機システム Screw compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284863A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Oil draining method of oil-free screw compressor
JP2012253874A (en) * 2011-06-01 2012-12-20 Nishishiba Electric Co Ltd Refrigerant passage structure of rotary electric machine
JP2014009610A (en) * 2012-06-28 2014-01-20 Nifco Inc Oil separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284863A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Oil draining method of oil-free screw compressor
JP2012253874A (en) * 2011-06-01 2012-12-20 Nishishiba Electric Co Ltd Refrigerant passage structure of rotary electric machine
JP2014009610A (en) * 2012-06-28 2014-01-20 Nifco Inc Oil separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209606A1 (en) * 2021-03-31 2022-10-06 株式会社日立産機システム Screw compressor
JP7507717B2 (en) 2021-03-31 2024-06-28 株式会社日立産機システム Screw Compressor
WO2024116433A1 (en) * 2022-11-30 2024-06-06 株式会社日立産機システム Screw compressor

Also Published As

Publication number Publication date
JP6952895B2 (en) 2021-10-27
JPWO2020003453A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP5998028B2 (en) Scroll type fluid machine
EP2529144B1 (en) Transmission having a fluid cooling shroud
JP4082009B2 (en) Turbo compressor
JP4600537B2 (en) Reserve tank
WO2020003453A1 (en) Compressor
JP2010510432A (en) Compressor element with rotor and rotor
JP5616866B2 (en) Turbo compressor
JP7156378B2 (en) Stator cooling structure
JP4206799B2 (en) Compressor
JP7390384B2 (en) Multistage pump including multistage pump body and application
JP2019085969A (en) Liquid-cooled type screw compressor
EP1811180A2 (en) Scroll fluid machine
JP4686919B2 (en) Scroll compressor
JP6195722B2 (en) Scroll type fluid machine
JP4589001B2 (en) Cooled screw vacuum pump
JP4876868B2 (en) Turbo compressor
JP6621187B2 (en) Refrigerator, compressor system
WO2019093106A1 (en) Liquid-cooled screw compressor
JP4811438B2 (en) Variable capacity turbocharger
JP5313260B2 (en) Dry pump
JP7465407B2 (en) parts
JP6657387B2 (en) Method for cooling a compressor or vacuum pump and compressor or vacuum pump applied to such method
JP5895902B2 (en) Compressor
WO2024116433A1 (en) Screw compressor
JP7267798B2 (en) Compressor and shell-and-tube heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924391

Country of ref document: EP

Kind code of ref document: A1