WO2020003365A1 - Heat exchange ventilation device - Google Patents

Heat exchange ventilation device Download PDF

Info

Publication number
WO2020003365A1
WO2020003365A1 PCT/JP2018/024083 JP2018024083W WO2020003365A1 WO 2020003365 A1 WO2020003365 A1 WO 2020003365A1 JP 2018024083 W JP2018024083 W JP 2018024083W WO 2020003365 A1 WO2020003365 A1 WO 2020003365A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air
heat exchange
exhaust
air supply
Prior art date
Application number
PCT/JP2018/024083
Other languages
French (fr)
Japanese (ja)
Inventor
淳生 土井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/024083 priority Critical patent/WO2020003365A1/en
Priority to JP2020526743A priority patent/JPWO2020003365A1/en
Publication of WO2020003365A1 publication Critical patent/WO2020003365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a heat exchange ventilator for exchanging heat between an exhaust flow for discharging indoor air to the outside of a room and an air supply flow for supplying outdoor air to the room.
  • a preheater may be installed on an air passage leading from the outside air intake of the building to the intake of the heat exchange ventilator to take measures to increase the temperature of the outside air taken into the heat exchange ventilator.
  • Patent Document 1 discloses a heat exchange ventilator that operates a pre-heater when a temperature detected by a suction temperature sensor provided in the heat exchange ventilator does not exceed a certain threshold temperature.
  • the heat exchange ventilator disclosed in Patent Literature 1 stops the operation of the preheater when the suction temperature of the heat exchange ventilator rises and exceeds a threshold due to an increase in outside air temperature or the like.
  • the heat exchange ventilator disclosed in Patent Literature 1 discloses that, even if the suction temperature exceeds the threshold, if the outside air temperature is not sufficiently increased, when the preheater stops operating, the suction temperature again increases to the threshold temperature. It may be as follows. In this case, in the heat exchange ventilation device disclosed in Patent Document 1, the operation of the preheater is restarted. The heat exchange ventilation device disclosed in Patent Literature 1 sometimes repeats the operation and stop of the preheater.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a heat exchange ventilator capable of suppressing low-temperature air from entering a housing.
  • the present invention provides an air supply blower that generates an air supply flow, an exhaust air blower that generates an exhaust air flow, and performs heat exchange between the air supply flow and the exhaust air flow. It has a heat exchanger and a temperature sensor for measuring the temperature of the supply airflow. According to the present invention, a heat generated by a pre-heater that heats a supply airflow before passing through a heat exchanger based on which of a plurality of preset temperature ranges a temperature difference between a measurement result of a temperature sensor and a set temperature belongs to.
  • the control unit includes a heating value setting unit for setting an amount.
  • the heat exchange ventilator according to the present invention has a phenomenon in which low-temperature air is supplied to a room and a phenomenon in which low-temperature air penetrates into a housing to adversely affect electric components or cause dew condensation to occur in a heat exchange element. This has the effect that hardly occurs.
  • Functional block diagram of a control unit of the heat exchange ventilation device according to Embodiment 1. Flow chart showing the flow of the operation of the heat exchange ventilation device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a heat exchange ventilation apparatus according to Embodiment 1 of the present invention.
  • an external preheater unit 2 having a preheater 18 is installed in the outside air suction duct 5.
  • the preheater 18 heats the supply airflow before passing through the heat exchanger 19.
  • the preheater 18 is controlled by a DC voltage signal output from the heat exchange ventilator 1.
  • the heat exchange ventilator 1 includes a supply air blower 11 for generating a supply air flow, an exhaust blower 10 for generating an exhaust flow, and a heat exchanger including a heat exchange element for performing heat exchange between the supply air flow and the exhaust flow. 19, a control unit 14 for controlling the pre-heater 18, and an outside air temperature sensor 3 for measuring the temperature of the outside air OA.
  • the air supply blower 11, the exhaust blower 10, and the heat exchanger 19 are housed in a housing 15.
  • the housing 15 is provided with a supply air passage 16 through which a supply air flow passes and an exhaust air passage 17 through which an exhaust flow passes.
  • the outside air temperature sensor 3 is installed in the air supply passage 16 upstream of the heat exchanger 19.
  • the heat exchange ventilator 1 includes a return air temperature sensor 4 for measuring the temperature of the exhaust gas flow.
  • the return air temperature sensor 4 is installed in the exhaust air passage 17 upstream of the heat exchanger 19.
  • the air supply blower 11 sucks outside air OA from outside through the outside air suction duct 5 and blows out air supply SA into the room through the air supply duct 7 to generate a supply air flow.
  • the exhaust blower 10 sucks indoor air RA from the room through the return air duct 8 and blows out the exhaust air EA to the outside through the exhaust duct 9 to generate an exhaust flow.
  • FIG. 2 is a functional block diagram of a control unit of the heat exchange ventilation device according to Embodiment 1.
  • the control unit 14 outputs a DC voltage signal to the preheater 18 based on a temperature difference between the temperature of the supply air flow and the set temperature, and a set temperature storage unit 141 that stores a set temperature serving as a reference for operation control of the preheater 18.
  • a heat generation amount setting unit 142 In the first embodiment, the temperature of the supply air flow is the temperature of the outside air OA measured by the outside air temperature sensor 3.
  • the set temperature stored in the set temperature storage unit 141 may be rewritable by the user.
  • FIG. 3 is a flowchart showing the flow of the operation of the heat exchange ventilator according to Embodiment 1.
  • the preheater 18 has five levels of heat generation, and the heat generation increases in the order of the first state, the second state, the third state, the fourth state, and the fifth state. That is, the preheater 18 is in one of the stopped state, the first state, the second state, the third state, the fourth state, and the fifth state.
  • step A01 the heat generation amount setting unit 142 reads the set temperature Ta stored in the set temperature storage unit 141.
  • the calorific value setting unit 142 reads the measured value of the temperature of the outside air OA from the outside air temperature sensor 3.
  • the heat generation amount setting unit 142 sets the measured value of the temperature of the outside air OA read from the outside air temperature sensor 3 as the supply air flow temperature Tc.
  • the heat generation amount setting unit 142 determines whether or not the supply air temperature Tc is equal to or higher than the set temperature Ta. That is, the heat generation amount setting unit 142 determines whether or not a temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is 0 ° C. or more.
  • step A03 If the supply air temperature Tc is equal to or higher than the set temperature Ta, the result is Yes in step A03, and in step A04, the heat generation amount setting unit 142 outputs a DC voltage signal of 0 V to the pre-heater unit 2.
  • the preheater 18 When a 0 V DC voltage signal is input, the preheater 18 is stopped and does not heat the supply air flow.
  • the result is No in step A05, and the heat generation amount setting unit 142 outputs a DC voltage signal of 0 V to the preheater unit 2.
  • the result is Yes in step A05, and the process returns to step A01.
  • step A06 the heat generation amount setting unit 142 determines that the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is ⁇ 5. It is determined whether the temperature is not lower than 0 ° C and lower than 0 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is ⁇ 5 ° C. or more and less than 0 ° C., the result is Yes in step A06, and in step A07, the calorific value setting unit 142 outputs the 2V DC voltage signal to the pre-heater. Output to unit 2.
  • step A06 When a DC voltage signal of 2 V is input, the preheater 18 heats the supply airflow in the first state. Until the set time elapses from the determination in step A06, the determination in step A08 is No, and the heat generation amount setting unit 142 outputs a 2V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A06, the result in step A08 is Yes, and the process returns to step A01.
  • step A06 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than ⁇ 5 ° C. and less than 0 ° C., the result is No in step A06, and in step A09, the heat generation amount setting unit 142 sets the temperature based on the supply air temperature Tc. It is determined whether or not the temperature difference obtained by subtracting the temperature Ta is not less than -10 ° C and less than -5 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is ⁇ 10 ° C. or more and less than ⁇ 5 ° C., the result is Yes in step A09, and in step A10, the calorific value setting unit 142 outputs the 4V DC voltage signal.
  • step A11 When a DC voltage signal of 4 V is input, the preheater 18 heats the supply airflow in the second state. From the determination in step A09 to the elapse of the set time, the determination in step A11 is No, and the heat generation amount setting unit 142 outputs a 4V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A09, the result in step A11 is Yes, and the process returns to step A01.
  • the calorific value setting unit 142 determines the temperature of the supply air flow Tc. It is determined whether or not the temperature difference obtained by subtracting the set temperature Ta is not less than ⁇ 15 ° C. and less than ⁇ 10 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is ⁇ 15 ° C. or more and less than ⁇ 10 ° C., the result is Yes in step A12, and in step A13, the calorific value setting unit 142 outputs the 6 V DC voltage signal.
  • the calorific value setting unit 142 calculates It is determined whether or not the temperature difference obtained by subtracting the set temperature Ta is ⁇ 20 ° C. or more and less than ⁇ 15 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is ⁇ 20 ° C. or more and less than ⁇ 15 ° C., the result is Yes in step A15, and in step A16, the calorific value setting unit 142 outputs the 8 V DC voltage signal. Output to the pre-heater unit 2.
  • step A15 When the DC voltage signal of 8 V is input, the preheater 18 heats the supply airflow in the fourth state. Until the set time elapses from the determination in step A15, the result is No in step A17, and the calorific value setting unit 142 outputs an 8V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A15, the result is Yes in step A17, and the process returns to step A01.
  • step A15 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than ⁇ 20 ° C. and less than ⁇ 15 ° C., the result is No in step A15, and in step A18, the calorific value setting unit 142 outputs the 10 V DC voltage signal. Output to the pre-heater unit 2.
  • the preheater 18 heats the supply airflow in the fifth state.
  • the heat generation amount setting unit 142 outputs a DC voltage signal of 10V to the preheater unit 2.
  • the set time has elapsed from the determination in step A15, the result is Yes in step A19, and the process returns to step A01.
  • the heat exchange ventilator 1 controls the preheater 18 based on a temperature difference between a measured value of the temperature of the outside air OA taken in from outside and a set temperature. Specifically, the calorific value of the pre-heater 18 is changed based on which of a plurality of preset temperature ranges contains the temperature difference between the measured value of the temperature of the outside air OA and the set temperature. Therefore, if the fluctuation of the temperature difference between the measured value of the temperature of the outside air OA and the set temperature falls within the same temperature range, the calorific value of the preheater 18 is not changed.
  • the calorific value of the pre-heater 18 based on the temperature range including the temperature difference between the measured value of the temperature of the outside air OA and the set temperature, the outside air OA is hard to be excessively heated by the pre-heater 18 and heat exchange is prevented. Fluctuations in the temperature of the outside air OA taken into the housing 15 of the ventilation device 1 can be reduced. For this reason, in the heat exchange ventilator 1 according to the first embodiment, the operation and stop of the preheater 18 are repeated, so that intermittent intrusion of low-temperature air into the housing 15 can be suppressed.
  • the heat exchange ventilator 1 has an adverse effect on electric components due to the event that the low-temperature supply air SA is supplied into the room and the low-temperature outside air OA entering the housing 15. An event that condensation occurs on the heat exchange element of the exchanger 19 is less likely to occur.
  • FIG. FIG. 4 is a diagram illustrating a configuration of a heat exchange ventilation apparatus according to Embodiment 2 of the present invention.
  • the supply air temperature sensor 12 is installed in the supply air passage 16 downstream of the heat exchanger 19.
  • the temperature of the air supply flow used by the control unit 14 to control the preheater 18 is a value measured by the air supply temperature sensor 12.
  • the rest is the same as the heat exchange ventilator 1 according to the first embodiment. That is, the heat exchange ventilator 1 according to Embodiment 2 executes the operation of the flowchart shown in FIG. 2 using the measurement value of the supply air temperature sensor 12.
  • the heat exchange ventilator 1 controls the pre-heater 18 based on the temperature difference between the measured value of the temperature of the supply air SA supplied into the room and the set temperature. Specifically, the heat generation amount of the pre-heater 18 is changed based on which of a plurality of preset temperature ranges contains the temperature difference between the measured value of the temperature of the supply air SA and the set temperature. Therefore, if the fluctuation in the temperature difference between the measured value of the temperature of the supply air SA and the set temperature falls within the same temperature range, the amount of heat generated by the preheater 18 is not changed.
  • the calorific value of the pre-heater 18 based on the temperature range including the temperature difference between the measured value of the temperature of the supply air SA and the set temperature, it becomes difficult for the pre-heater 18 to excessively heat the outside air OA.
  • the fluctuation of the temperature of the outside air OA taken into the housing 15 of the exchange ventilation device 1 can be reduced.
  • the heat exchange ventilator 1 according to Embodiment 2 controls the pre-heater 18 using the measured value of the temperature of the supply air SA actually supplied to the room, so that the temperature of the supply air SA supplied to the room is low. It is easy to suppress becoming.
  • FIG. FIG. 5 is a diagram showing a configuration of a heat exchange ventilation apparatus according to Embodiment 3 of the present invention.
  • the preheater 13 is installed in the housing 15.
  • the preheater 13 is installed in the air supply passage 16 upstream of the heat exchanger 19.
  • the temperature of the supply air flow used by the control unit 14 to control the preheater 13 may be either the temperature of the outside air OA measured by the outside air temperature sensor 3 or the temperature of the supply air SA measured by the supply air temperature sensor 12.
  • the heat exchange ventilator 1 includes the preheater 13 in the housing, and therefore does not require wiring for connecting the control unit 14 and the preheater 13, and is easy to install and maintain.
  • the function of the control unit 14 of the heat exchange ventilator 1 according to the first, second or third embodiment is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or a processing device that executes a program stored in a storage device.
  • FIG. 6 is a diagram illustrating a configuration in which the function of the control unit of the heat exchange ventilation device according to the first, second, or third embodiment is realized by hardware.
  • the processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control unit 14.
  • the hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
  • the function of the control unit 14 is realized by software, firmware, or a combination of software and firmware.
  • FIG. 7 is a diagram showing a configuration in which the function of the control unit of the heat exchange ventilation apparatus according to the first, second, or third embodiment is realized by software.
  • the processing circuit 29 includes an arithmetic unit 291 that executes the program 29b, a random access memory 292 used by the arithmetic unit 291 for a work area, and a storage device 293 that stores the program 29b.
  • the function of the control unit 14 is realized by the arithmetic unit 291 expanding and executing the program 29b stored in the storage device 293 on the random access memory 292.
  • the software or firmware is described in a programming language and stored in the storage device 293.
  • the arithmetic unit 291 can be, but is not limited to, a central processing unit.
  • the processing circuit 29 implements the function of the control unit 14 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control unit 14.
  • processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This heat-exchange ventilation device (1) has: an air-supply blower device (11) for generating an air supply flow; an air-discharge blower device (10) for generating an air discharge flow; a heat exchanger (19) for performing heat exchange between the air supply flow and the air discharge flow; an external air temperature sensor (3) for measuring the temperature of the air supply flow; and a control unit (14) comprising a heat-generation-amount-setting unit that sets a heat generation amount of a preheater (18) for heating the air supply flow before the same passes through the heat exchanger (19), the heat generation amount being set on the basis of to which of a plurality of preset temperature ranges the temperature difference between a set temperature and a measurement result from the external air temperature sensor (3) belongs.

Description

熱交換換気装置Heat exchange ventilator
 本発明は、室内の空気を室外へ排出する排気流と、室外の空気を室内へ給気する給気流との間で熱交換を行う熱交換換気装置に関する。 The present invention relates to a heat exchange ventilator for exchanging heat between an exhaust flow for discharging indoor air to the outside of a room and an air supply flow for supplying outdoor air to the room.
 熱交換換気装置では、冬季の早朝などの外気温が低い時において、給気温度が低いまま室内へ供給される問題と、低温空気が熱交換換気装置の筐体内に侵入することによってモータといった電気部品へ悪影響を及ぼしたり、熱交換素子で結露が発生したりするなどの問題が生じる可能性がある。そのため、建物の外気取入口から熱交換換気装置の取入口につながる風路上にプレヒータを設置し、熱交換換気装置に取り入れる外気の温度を上昇させる対策をとることがある。 In the heat exchange ventilator, when the outside air temperature is low such as in the early morning of winter, the supply air temperature is low and the air is supplied indoors. There is a possibility that problems such as adverse effects on components and dew condensation occurring in the heat exchange element may occur. Therefore, a preheater may be installed on an air passage leading from the outside air intake of the building to the intake of the heat exchange ventilator to take measures to increase the temperature of the outside air taken into the heat exchange ventilator.
 特許文献1には、熱交換換気装置に備えられた吸込温度センサによって検知された温度が、ある一つの閾値温度を超えていない場合にプレヒータを運転させる熱交換換気装置が開示されている。特許文献1に開示される熱交換換気装置は、外気温度が上昇するなどして熱交換換気装置の吸込温度が上昇し閾値を越えた際、プレヒータの運転を停止する。 Patent Document 1 discloses a heat exchange ventilator that operates a pre-heater when a temperature detected by a suction temperature sensor provided in the heat exchange ventilator does not exceed a certain threshold temperature. The heat exchange ventilator disclosed in Patent Literature 1 stops the operation of the preheater when the suction temperature of the heat exchange ventilator rises and exceeds a threshold due to an increase in outside air temperature or the like.
実開昭56-164441号公報Japanese Utility Model Publication No. 56-164441
 しかしながら、特許文献1に開示される熱交換換気装置は、吸込温度が閾値を超えても、外気温度が十分に上昇していない場合には、プレヒータが運転を停止すると、再び吸込温度が閾値温度以下となってしまうことがある。この場合、特許文献1に開示される熱交換換気装置は、プレヒータの運転が再開されることになる。特許文献1に開示される熱交換換気装置は、このようにプレヒータの運転と停止とを繰り返すことがある。 However, the heat exchange ventilator disclosed in Patent Literature 1 discloses that, even if the suction temperature exceeds the threshold, if the outside air temperature is not sufficiently increased, when the preheater stops operating, the suction temperature again increases to the threshold temperature. It may be as follows. In this case, in the heat exchange ventilation device disclosed in Patent Document 1, the operation of the preheater is restarted. The heat exchange ventilation device disclosed in Patent Literature 1 sometimes repeats the operation and stop of the preheater.
 プレヒータが運転と停止とを繰り返すと、断続的に低温空気が熱交換換気装置の筐体へ侵入するという問題がある。 (4) When the preheater is repeatedly operated and stopped, there is a problem that low-temperature air intermittently enters the housing of the heat exchange ventilator.
 本発明は、上記に鑑みてなされたものであって、低温の空気が筐体内に侵入することを抑制できる熱交換換気装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a heat exchange ventilator capable of suppressing low-temperature air from entering a housing.
 上述した課題を解決し、目的を達成するために、本発明は、給気流を発生させる給気送風機と、排気流を発生させる排気送風機と、給気流と排気流との間で熱交換を行う熱交換器と、給気流の温度を測定する温度センサとを有する。本発明は、温度センサの測定結果と設定温度との温度差が、予め設定した複数の温度範囲の何れに属するかに基づいて、熱交換器を通過する前の給気流を加熱するプレヒータの発熱量を設定する発熱量設定部を備えた制御部を有する。 In order to solve the above-described problems and achieve the object, the present invention provides an air supply blower that generates an air supply flow, an exhaust air blower that generates an exhaust air flow, and performs heat exchange between the air supply flow and the exhaust air flow. It has a heat exchanger and a temperature sensor for measuring the temperature of the supply airflow. According to the present invention, a heat generated by a pre-heater that heats a supply airflow before passing through a heat exchanger based on which of a plurality of preset temperature ranges a temperature difference between a measurement result of a temperature sensor and a set temperature belongs to. The control unit includes a heating value setting unit for setting an amount.
 本発明に係る熱交換換気装置は、低温の空気が室内へ供給される事象及び低温の空気が筐体内に侵入することによって電気部品へ悪影響を与えたり熱交換素子に結露が発生したりする事象が生じにくいという効果を奏する。 The heat exchange ventilator according to the present invention has a phenomenon in which low-temperature air is supplied to a room and a phenomenon in which low-temperature air penetrates into a housing to adversely affect electric components or cause dew condensation to occur in a heat exchange element. This has the effect that hardly occurs.
本発明の実施の形態1に係る熱交換換気装置の構成を示す図The figure which shows the structure of the heat exchange ventilation apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る熱交換換気装置の制御部の機能ブロック図Functional block diagram of a control unit of the heat exchange ventilation device according to Embodiment 1. 実施の形態1に係る熱交換換気装置の動作の流れを示すフローチャートFlow chart showing the flow of the operation of the heat exchange ventilation device according to the first embodiment. 本発明の実施の形態2に係る熱交換換気装置の構成を示す図The figure which shows the structure of the heat exchange ventilation apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換換気装置の構成を示す図The figure which shows the structure of the heat exchange ventilation apparatus which concerns on Embodiment 3 of this invention. 実施の形態1、実施の形態2又は実施の形態3に係る熱交換換気装置の制御部の機能をハードウェアで実現した構成を示す図The figure which shows the structure which realized the function of the control part of the heat exchange ventilation apparatus concerning Embodiment 1, Embodiment 2 or Embodiment 3 by hardware. 実施の形態1、実施の形態2又は実施の形態3に係る熱交換換気装置の制御部の機能をソフトウェアで実現した構成を示す図The figure which shows the structure which realized the function of the control part of the heat exchange ventilation apparatus which concerns on Embodiment 1, Embodiment 2 or Embodiment 3 by software.
 以下に、本発明の実施の形態に係る熱交換換気装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a heat exchange ventilation device according to an embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1に係る熱交換換気装置の構成を示す図である。実施の形態1に係る熱交換換気装置1は、プレヒータ18を有する外付けのプレヒータユニット2が外気吸込ダクト5に設置されている。プレヒータ18は、熱交換器19を通過する前の給気流を加熱する。プレヒータ18は、熱交換換気装置1から出力される直流電圧信号によって制御される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a heat exchange ventilation apparatus according to Embodiment 1 of the present invention. In the heat exchange ventilation device 1 according to the first embodiment, an external preheater unit 2 having a preheater 18 is installed in the outside air suction duct 5. The preheater 18 heats the supply airflow before passing through the heat exchanger 19. The preheater 18 is controlled by a DC voltage signal output from the heat exchange ventilator 1.
 熱交換換気装置1は、給気流を発生させる給気送風機11と、排気流を発生させる排気送風機10と、給気流と排気流との間で熱交換を行う熱交換素子を備えた熱交換器19と、プレヒータ18を制御する制御部14と、外気OAの温度を測定する外気温度センサ3とを備える。給気送風機11、排気送風機10及び熱交換器19は、筐体15に収容されている。筐体15は、給気流が通過する給気風路16及び排気流が通過する排気風路17が設けられている。外気温度センサ3は、熱交換器19よりも上流側の給気風路16に設置されている。また、熱交換換気装置1は、排気流の温度を測定する還気温度センサ4を備えている。還気温度センサ4は、熱交換器19よりも上流側の排気風路17に設置されている。 The heat exchange ventilator 1 includes a supply air blower 11 for generating a supply air flow, an exhaust blower 10 for generating an exhaust flow, and a heat exchanger including a heat exchange element for performing heat exchange between the supply air flow and the exhaust flow. 19, a control unit 14 for controlling the pre-heater 18, and an outside air temperature sensor 3 for measuring the temperature of the outside air OA. The air supply blower 11, the exhaust blower 10, and the heat exchanger 19 are housed in a housing 15. The housing 15 is provided with a supply air passage 16 through which a supply air flow passes and an exhaust air passage 17 through which an exhaust flow passes. The outside air temperature sensor 3 is installed in the air supply passage 16 upstream of the heat exchanger 19. Further, the heat exchange ventilator 1 includes a return air temperature sensor 4 for measuring the temperature of the exhaust gas flow. The return air temperature sensor 4 is installed in the exhaust air passage 17 upstream of the heat exchanger 19.
 給気送風機11は、外気吸込ダクト5を通じて屋外から外気OAを吸い込み、給気ダクト7を通じて室内に給気SAを吹き出すことにより給気流を発生させる。排気送風機10は、還気ダクト8を通じて室内から室内空気RAを吸い込み、排気ダクト9を通じて屋外に排気EAを吹き出すことにより排気流を発生させる。 (4) The air supply blower 11 sucks outside air OA from outside through the outside air suction duct 5 and blows out air supply SA into the room through the air supply duct 7 to generate a supply air flow. The exhaust blower 10 sucks indoor air RA from the room through the return air duct 8 and blows out the exhaust air EA to the outside through the exhaust duct 9 to generate an exhaust flow.
 図2は、実施の形態1に係る熱交換換気装置の制御部の機能ブロック図である。制御部14は、プレヒータ18の運転制御の基準となる設定温度を記憶する設定温度記憶部141と、給気流の温度と設定温度との温度差に基づいて、プレヒータ18に直流電圧信号を出力する発熱量設定部142とを有する。実施の形態1において、給気流の温度は、外気温度センサ3が測定した外気OAの温度である。 FIG. 2 is a functional block diagram of a control unit of the heat exchange ventilation device according to Embodiment 1. The control unit 14 outputs a DC voltage signal to the preheater 18 based on a temperature difference between the temperature of the supply air flow and the set temperature, and a set temperature storage unit 141 that stores a set temperature serving as a reference for operation control of the preheater 18. A heat generation amount setting unit 142. In the first embodiment, the temperature of the supply air flow is the temperature of the outside air OA measured by the outside air temperature sensor 3.
 設定温度記憶部141に記憶する設定温度は、ユーザが書き換え可能であってもよい。 設定 The set temperature stored in the set temperature storage unit 141 may be rewritable by the user.
 図3は、実施の形態1に係る熱交換換気装置の動作の流れを示すフローチャートである。ここで、プレヒータ18は、5段階の発熱量を持ち、第1の状態、第2の状態、第3の状態、第4の状態及び第5の状態の順に発熱量が大きくなるものとする。すなわち、プレヒータ18は、停止、第1の状態、第2の状態、第3の状態、第4の状態及び第5の状態のいずれかの状態をとる。 FIG. 3 is a flowchart showing the flow of the operation of the heat exchange ventilator according to Embodiment 1. Here, it is assumed that the preheater 18 has five levels of heat generation, and the heat generation increases in the order of the first state, the second state, the third state, the fourth state, and the fifth state. That is, the preheater 18 is in one of the stopped state, the first state, the second state, the third state, the fourth state, and the fifth state.
 ステップA01において、発熱量設定部142は、設定温度記憶部141に記憶されている設定温度Taを読み込む。ステップA02において、発熱量設定部142は、外気温度センサ3から外気OAの温度の測定値を読み込む。発熱量設定部142は、ステップA03以降の処理では、外気温度センサ3から読み込んだ外気OAの温度の測定値を給気流の温度Tcとする。ステップA03において、発熱量設定部142は、給気流の温度Tcが設定温度Ta以上であるか否かを判断する。すなわち、発熱量設定部142は、給気流の温度Tcから設定温度Taを引いた温度差が0℃以上であるか否かを判断する。給気流の温度Tcが設定温度Ta以上であれば、ステップA03でYesとなり、ステップA04において、発熱量設定部142は、0Vの直流電圧信号をプレヒータユニット2へ出力する。0Vの直流電圧信号が入力されているとき、プレヒータ18は停止しており、給気流を加熱しない。ステップA03の判断から設定時間が経過するまでの間は、ステップA05でNoとなり、発熱量設定部142は、プレヒータユニット2へ0Vの直流電圧信号を出力する。ステップA03の判断から設定時間が経過すると、ステップA05でYesとなり、ステップA01に戻る。 In step A01, the heat generation amount setting unit 142 reads the set temperature Ta stored in the set temperature storage unit 141. In step A02, the calorific value setting unit 142 reads the measured value of the temperature of the outside air OA from the outside air temperature sensor 3. In the processing after step A03, the heat generation amount setting unit 142 sets the measured value of the temperature of the outside air OA read from the outside air temperature sensor 3 as the supply air flow temperature Tc. In step A03, the heat generation amount setting unit 142 determines whether or not the supply air temperature Tc is equal to or higher than the set temperature Ta. That is, the heat generation amount setting unit 142 determines whether or not a temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is 0 ° C. or more. If the supply air temperature Tc is equal to or higher than the set temperature Ta, the result is Yes in step A03, and in step A04, the heat generation amount setting unit 142 outputs a DC voltage signal of 0 V to the pre-heater unit 2. When a 0 V DC voltage signal is input, the preheater 18 is stopped and does not heat the supply air flow. Until the set time elapses from the determination in step A03, the result is No in step A05, and the heat generation amount setting unit 142 outputs a DC voltage signal of 0 V to the preheater unit 2. When the set time has elapsed from the determination in step A03, the result is Yes in step A05, and the process returns to step A01.
 一方、給気流の温度Tcが設定温度Ta未満であれば、ステップA03でNoとなり、ステップA06において、発熱量設定部142は、給気流の温度Tcから設定温度Taを引いた温度差が-5℃以上0℃未満であるか否かを判断する。給気流の温度Tcから設定温度Taを引いた温度差が-5℃以上0℃未満であれば、ステップA06でYesとなり、ステップA07において、発熱量設定部142は、2Vの直流電圧信号をプレヒータユニット2へ出力する。2Vの直流電圧信号が入力されているとき、プレヒータ18は第1の状態で給気流を加熱する。ステップA06の判断から設定時間が経過するまでの間は、ステップA08でNoとなり、発熱量設定部142は、プレヒータユニット2へ2Vの直流電圧信号を出力する。ステップA06の判断から設定時間が経過すると、ステップA08でYesとなり、ステップA01に戻る。 On the other hand, if the supply air temperature Tc is lower than the set temperature Ta, the result is No in step A03, and in step A06, the heat generation amount setting unit 142 determines that the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is −5. It is determined whether the temperature is not lower than 0 ° C and lower than 0 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is −5 ° C. or more and less than 0 ° C., the result is Yes in step A06, and in step A07, the calorific value setting unit 142 outputs the 2V DC voltage signal to the pre-heater. Output to unit 2. When a DC voltage signal of 2 V is input, the preheater 18 heats the supply airflow in the first state. Until the set time elapses from the determination in step A06, the determination in step A08 is No, and the heat generation amount setting unit 142 outputs a 2V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A06, the result in step A08 is Yes, and the process returns to step A01.
 給気流の温度Tcから設定温度Taを引いた温度差が-5℃以上0℃未満でなければ、ステップA06でNoとなり、ステップA09において、発熱量設定部142は、給気流の温度Tcから設定温度Taを引いた温度差が-10℃以上-5℃未満であるか否かを判断する。給気流の温度Tcから設定温度Taを引いた温度差が-10℃以上-5℃未満であれば、ステップA09でYesとなり、ステップA10において、発熱量設定部142は、4Vの直流電圧信号をプレヒータユニット2へ出力する。4Vの直流電圧信号が入力されているとき、プレヒータ18は第2の状態で給気流を加熱する。ステップA09の判断から設定時間が経過するまでの間は、ステップA11でNoとなり、発熱量設定部142は、プレヒータユニット2へ4Vの直流電圧信号を出力する。ステップA09の判断から設定時間が経過すると、ステップA11でYesとなり、ステップA01に戻る。 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than −5 ° C. and less than 0 ° C., the result is No in step A06, and in step A09, the heat generation amount setting unit 142 sets the temperature based on the supply air temperature Tc. It is determined whether or not the temperature difference obtained by subtracting the temperature Ta is not less than -10 ° C and less than -5 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is −10 ° C. or more and less than −5 ° C., the result is Yes in step A09, and in step A10, the calorific value setting unit 142 outputs the 4V DC voltage signal. Output to the pre-heater unit 2. When a DC voltage signal of 4 V is input, the preheater 18 heats the supply airflow in the second state. From the determination in step A09 to the elapse of the set time, the determination in step A11 is No, and the heat generation amount setting unit 142 outputs a 4V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A09, the result in step A11 is Yes, and the process returns to step A01.
 給気流の温度Tcから設定温度Taを引いた温度差が-10℃以上-5℃未満でなければ、ステップA09でNoとなり、ステップA12において、発熱量設定部142は、給気流の温度Tcから設定温度Taを引いた温度差が-15℃以上-10℃未満であるか否かを判断する。給気流の温度Tcから設定温度Taを引いた温度差が-15℃以上-10℃未満であれば、ステップA12でYesとなり、ステップA13において、発熱量設定部142は、6Vの直流電圧信号をプレヒータユニット2へ出力する。6Vの直流電圧信号が入力されているとき、プレヒータ18は第3の状態で給気流を加熱する。ステップA12の判断から設定時間が経過するまでの間は、ステップA14でNoとなり、発熱量設定部142は、プレヒータユニット2へ6Vの直流電圧信号を出力する。ステップA12の判断から設定時間が経過すると、ステップA14でYesとなり、ステップA01に戻る。 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than −10 ° C. and less than −5 ° C., the result is No in Step A09, and in Step A12, the calorific value setting unit 142 determines the temperature of the supply air flow Tc. It is determined whether or not the temperature difference obtained by subtracting the set temperature Ta is not less than −15 ° C. and less than −10 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is −15 ° C. or more and less than −10 ° C., the result is Yes in step A12, and in step A13, the calorific value setting unit 142 outputs the 6 V DC voltage signal. Output to the pre-heater unit 2. When a 6 V DC voltage signal is input, the preheater 18 heats the supply airflow in the third state. Until the set time elapses from the determination in step A12, the result is No in step A14, and the heat generation amount setting unit 142 outputs a 6V DC voltage signal to the pre-heater unit 2. When the set time has elapsed from the determination in step A12, the result in step A14 is Yes, and the process returns to step A01.
 給気流の温度Tcから設定温度Taを引いた温度差が-15℃以上-10℃未満でなければ、ステップA12でNoとなり、ステップA15において、発熱量設定部142は、給気流の温度Tcから設定温度Taを引いた温度差が-20℃以上-15℃未満であるか否かを判断する。給気流の温度Tcから設定温度Taを引いた温度差が-20℃以上-15℃未満であれば、ステップA15でYesとなり、ステップA16において、発熱量設定部142は、8Vの直流電圧信号をプレヒータユニット2へ出力する。8Vの直流電圧信号が入力されているとき、プレヒータ18は第4の状態で給気流を加熱する。ステップA15の判断から設定時間が経過するまでの間は、ステップA17でNoとなり、発熱量設定部142は、プレヒータユニット2へ8Vの直流電圧信号を出力する。ステップA15の判断から設定時間が経過すると、ステップA17でYesとなり、ステップA01に戻る。 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than −15 ° C. and less than −10 ° C., the result is No in step A12, and in step A15, the calorific value setting unit 142 calculates It is determined whether or not the temperature difference obtained by subtracting the set temperature Ta is −20 ° C. or more and less than −15 ° C. If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is −20 ° C. or more and less than −15 ° C., the result is Yes in step A15, and in step A16, the calorific value setting unit 142 outputs the 8 V DC voltage signal. Output to the pre-heater unit 2. When the DC voltage signal of 8 V is input, the preheater 18 heats the supply airflow in the fourth state. Until the set time elapses from the determination in step A15, the result is No in step A17, and the calorific value setting unit 142 outputs an 8V DC voltage signal to the preheater unit 2. When the set time has elapsed from the determination in step A15, the result is Yes in step A17, and the process returns to step A01.
 給気流の温度Tcから設定温度Taを引いた温度差が-20℃以上-15℃未満でなければ、ステップA15でNoとなり、ステップA18において、発熱量設定部142は、10Vの直流電圧信号をプレヒータユニット2へ出力する。10Vの直流電圧信号が入力されているとき、プレヒータ18は第5の状態で給気流を加熱する。ステップA15の判断から設定時間が経過するまでの間は、ステップA19でNoとなり、発熱量設定部142は、プレヒータユニット2へ10Vの直流電圧信号を出力する。ステップA15の判断から設定時間が経過すると、ステップA19でYesとなり、ステップA01に戻る。 If the temperature difference obtained by subtracting the set temperature Ta from the supply air temperature Tc is not less than −20 ° C. and less than −15 ° C., the result is No in step A15, and in step A18, the calorific value setting unit 142 outputs the 10 V DC voltage signal. Output to the pre-heater unit 2. When a DC voltage signal of 10 V is input, the preheater 18 heats the supply airflow in the fifth state. Until the set time elapses from the determination in step A15, the result is No in step A19, and the heat generation amount setting unit 142 outputs a DC voltage signal of 10V to the preheater unit 2. When the set time has elapsed from the determination in step A15, the result is Yes in step A19, and the process returns to step A01.
 実施の形態1に係る熱交換換気装置1は、室外から取り込む外気OAの温度の測定値と設定温度との温度差に基づいてプレヒータ18を制御する。具体的には、外気OAの温度の測定値と設定温度との温度差が、予め設定した複数の温度範囲の何れに含まれるかに基づいて、プレヒータ18の発熱量を変更する。したがって、外気OAの温度の測定値と設定温度との温度差の変動が同じ温度範囲の中に収まれば、プレヒータ18の発熱量は変更されない。また、外気OAの温度の測定値と設定温度との温度差が含まれる温度範囲に基づいてプレヒータ18の発熱量を変更することにより、外気OAをプレヒータ18で過剰に加熱しにくくなり、熱交換換気装置1の筐体15に取り込まれる外気OAの温度の変動を小さくできる。このため、実施の形態1に係る熱交換換気装置1は、プレヒータ18の運転と停止とが繰り返されて、断続的に低温空気が筐体15へ侵入することを抑制できる。したがって、実施の形態1に係る熱交換換気装置1は、低温の給気SAが室内へ供給される事象及び低温の外気OAが筐体15内に侵入することによって電気部品へ悪影響を与えたり熱交換器19の熱交換素子に結露が発生したりする事象が生じにくい。 The heat exchange ventilator 1 according to the first embodiment controls the preheater 18 based on a temperature difference between a measured value of the temperature of the outside air OA taken in from outside and a set temperature. Specifically, the calorific value of the pre-heater 18 is changed based on which of a plurality of preset temperature ranges contains the temperature difference between the measured value of the temperature of the outside air OA and the set temperature. Therefore, if the fluctuation of the temperature difference between the measured value of the temperature of the outside air OA and the set temperature falls within the same temperature range, the calorific value of the preheater 18 is not changed. Further, by changing the calorific value of the pre-heater 18 based on the temperature range including the temperature difference between the measured value of the temperature of the outside air OA and the set temperature, the outside air OA is hard to be excessively heated by the pre-heater 18 and heat exchange is prevented. Fluctuations in the temperature of the outside air OA taken into the housing 15 of the ventilation device 1 can be reduced. For this reason, in the heat exchange ventilator 1 according to the first embodiment, the operation and stop of the preheater 18 are repeated, so that intermittent intrusion of low-temperature air into the housing 15 can be suppressed. Therefore, the heat exchange ventilator 1 according to the first embodiment has an adverse effect on electric components due to the event that the low-temperature supply air SA is supplied into the room and the low-temperature outside air OA entering the housing 15. An event that condensation occurs on the heat exchange element of the exchanger 19 is less likely to occur.
実施の形態2.
 図4は、本発明の実施の形態2に係る熱交換換気装置の構成を示す図である。実施の形態2に係る熱交換換気装置1は、熱交換器19よりも下流側の給気風路16に給気温度センサ12が設置されている。制御部14がプレヒータ18の制御に用いる給気流の温度は、給気温度センサ12の測定値である。この他については、実施の形態1に係る熱交換換気装置1と同様である。すなわち、実施の形態2に係る熱交換換気装置1は、給気温度センサ12の測定値を用いて、図2に示したフローチャートの動作を実行する。
Embodiment 2 FIG.
FIG. 4 is a diagram illustrating a configuration of a heat exchange ventilation apparatus according to Embodiment 2 of the present invention. In the heat exchange ventilator 1 according to the second embodiment, the supply air temperature sensor 12 is installed in the supply air passage 16 downstream of the heat exchanger 19. The temperature of the air supply flow used by the control unit 14 to control the preheater 18 is a value measured by the air supply temperature sensor 12. The rest is the same as the heat exchange ventilator 1 according to the first embodiment. That is, the heat exchange ventilator 1 according to Embodiment 2 executes the operation of the flowchart shown in FIG. 2 using the measurement value of the supply air temperature sensor 12.
 実施の形態2に係る熱交換換気装置1は、室内に供給される給気SAの温度の測定値と設定温度との温度差に基づいてプレヒータ18を制御する。具体的には、給気SAの温度の測定値と設定温度との温度差が、予め設定した複数の温度範囲の何れに含まれるかに基づいて、プレヒータ18の発熱量を変更する。したがって、給気SAの温度の測定値と設定温度との温度差の変動が同じ温度範囲の中に収まれば、プレヒータ18の発熱量は変更されない。また、給気SAの温度の測定値と設定温度との温度差が含まれる温度範囲に基づいてプレヒータ18の発熱量を変更することにより、外気OAをプレヒータ18で過剰に加熱しにくくなり、熱交換換気装置1の筐体15に取り込まれる外気OAの温度の変動を小さくできる。このため、実施の形態2に係る熱交換換気装置1は、プレヒータ18の運転と停止とが繰り返されて、断続的に低温空気が筐体15へ侵入することを抑制できる。実施の形態2に係る熱交換換気装置1は、実際に室内に供給される給気SAの温度の測定値を用いてプレヒータ18を制御するため、室内に供給される給気SAの温度が低くなることを抑制しやすい。 The heat exchange ventilator 1 according to Embodiment 2 controls the pre-heater 18 based on the temperature difference between the measured value of the temperature of the supply air SA supplied into the room and the set temperature. Specifically, the heat generation amount of the pre-heater 18 is changed based on which of a plurality of preset temperature ranges contains the temperature difference between the measured value of the temperature of the supply air SA and the set temperature. Therefore, if the fluctuation in the temperature difference between the measured value of the temperature of the supply air SA and the set temperature falls within the same temperature range, the amount of heat generated by the preheater 18 is not changed. Further, by changing the calorific value of the pre-heater 18 based on the temperature range including the temperature difference between the measured value of the temperature of the supply air SA and the set temperature, it becomes difficult for the pre-heater 18 to excessively heat the outside air OA. The fluctuation of the temperature of the outside air OA taken into the housing 15 of the exchange ventilation device 1 can be reduced. For this reason, in the heat exchange ventilator 1 according to Embodiment 2, the operation and the stop of the preheater 18 are repeated, and the intermittent intrusion of the low-temperature air into the housing 15 can be suppressed. The heat exchange ventilator 1 according to the second embodiment controls the pre-heater 18 using the measured value of the temperature of the supply air SA actually supplied to the room, so that the temperature of the supply air SA supplied to the room is low. It is easy to suppress becoming.
実施の形態3.
 図5は、本発明の実施の形態3に係る熱交換換気装置の構成を示す図である。実施の形態3に係る熱交換換気装置1は、プレヒータ13が筐体15内に設置されている。プレヒータ13は、熱交換器19よりも上流側の給気風路16に設置されている。制御部14がプレヒータ13の制御に用いる給気流の温度は、外気温度センサ3が測定した外気OAの温度及び給気温度センサ12が測定した給気SAの温度のどちらであってもよい。
Embodiment 3 FIG.
FIG. 5 is a diagram showing a configuration of a heat exchange ventilation apparatus according to Embodiment 3 of the present invention. In the heat exchange ventilation device 1 according to the third embodiment, the preheater 13 is installed in the housing 15. The preheater 13 is installed in the air supply passage 16 upstream of the heat exchanger 19. The temperature of the supply air flow used by the control unit 14 to control the preheater 13 may be either the temperature of the outside air OA measured by the outside air temperature sensor 3 or the temperature of the supply air SA measured by the supply air temperature sensor 12.
 実施の形態3に係る熱交換換気装置1は、プレヒータ13を筐体内に備えるため、制御部14とプレヒータ13とを接続する配線を引き回す作業が不要であり、設置及びメンテナンスが容易である。 The heat exchange ventilator 1 according to the third embodiment includes the preheater 13 in the housing, and therefore does not require wiring for connecting the control unit 14 and the preheater 13, and is easy to install and maintain.
 上記の実施の形態1、実施の形態2又は実施の形態3に係る熱交換換気装置1の制御部14の機能は、処理回路により実現される。処理回路は、専用のハードウェアであっても、記憶装置に格納されるプログラムを実行する処理装置であってもよい。 機能 The function of the control unit 14 of the heat exchange ventilator 1 according to the first, second or third embodiment is realized by a processing circuit. The processing circuit may be dedicated hardware or a processing device that executes a program stored in a storage device.
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、又はこれらを組み合わせたものが該当する。図6は、実施の形態1、実施の形態2又は実施の形態3に係る熱交換換気装置の制御部の機能をハードウェアで実現した構成を示す図である。処理回路29には、制御部14の機能を実現する論理回路29aが組み込まれている。処理回路29を実現するハードウェアには、マイクロコントローラを例示できる。 If the processing circuit is dedicated hardware, the processing circuit may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit, a field programmable gate array, or a combination thereof. Is applicable. FIG. 6 is a diagram illustrating a configuration in which the function of the control unit of the heat exchange ventilation device according to the first, second, or third embodiment is realized by hardware. The processing circuit 29 incorporates a logic circuit 29a for realizing the function of the control unit 14. The hardware that implements the processing circuit 29 can be exemplified by a microcontroller.
 処理回路29が処理装置の場合、制御部14の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit 29 is a processing device, the function of the control unit 14 is realized by software, firmware, or a combination of software and firmware.
 図7は、実施の形態1、実施の形態2又は実施の形態3に係る熱交換換気装置の制御部の機能をソフトウェアで実現した構成を示す図である。処理回路29は、プログラム29bを実行する演算装置291と、演算装置291がワークエリアに用いるランダムアクセスメモリ292と、プログラム29bを記憶する記憶装置293を有する。記憶装置293に記憶されているプログラム29bを演算装置291がランダムアクセスメモリ292上に展開し、実行することにより、制御部14の機能が実現される。ソフトウェア又はファームウェアはプログラム言語で記述され、記憶装置293に格納される。演算装置291は、中央処理装置を例示できるがこれに限定はされない。 FIG. 7 is a diagram showing a configuration in which the function of the control unit of the heat exchange ventilation apparatus according to the first, second, or third embodiment is realized by software. The processing circuit 29 includes an arithmetic unit 291 that executes the program 29b, a random access memory 292 used by the arithmetic unit 291 for a work area, and a storage device 293 that stores the program 29b. The function of the control unit 14 is realized by the arithmetic unit 291 expanding and executing the program 29b stored in the storage device 293 on the random access memory 292. The software or firmware is described in a programming language and stored in the storage device 293. The arithmetic unit 291 can be, but is not limited to, a central processing unit.
 処理回路29は、記憶装置293に記憶されたプログラム29bを読み出して実行することにより、制御部14の機能を実現する。プログラム29bは、制御部14の機能を実現する手順及び方法をコンピュータに実行させるものであるとも言える。 The processing circuit 29 implements the function of the control unit 14 by reading and executing the program 29b stored in the storage device 293. It can be said that the program 29b causes a computer to execute a procedure and a method for realizing the function of the control unit 14.
 なお、処理回路29は、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that the processing circuit 29 may be partially realized by dedicated hardware and partially realized by software or firmware.
 このように、処理回路29は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the processing circuit 29 can realize the above-described functions by hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
 1 熱交換換気装置、2 プレヒータユニット、3 外気温度センサ、4 還気温度センサ、5 外気吸込ダクト、7 給気ダクト、8 還気ダクト、9 排気ダクト、10 排気送風機、11 給気送風機、12 給気温度センサ、13,18 プレヒータ、14 制御部、15 筐体、16 給気風路、17 排気風路、19 熱交換器、29 処理回路、29a 論理回路、29b プログラム、141 設定温度記憶部、142 発熱量設定部、291 演算装置、292 ランダムアクセスメモリ、293 記憶装置。 1 heat exchange ventilator, 2 preheater unit, 3 outside air temperature sensor, 4 return air temperature sensor, 5 outside air intake duct, 7 supply air duct, 8 return air duct, 9 exhaust duct, 10 exhaust blower, 11 air supply blower, 12 Supply air temperature sensor, 13,18 preheater, 14 control unit, 15 enclosure, 16 supply air passage, 17 exhaust air passage, 19 heat exchanger, 29 processing circuit, 29a logic circuit, 29b program, 141 setting temperature storage unit, 142 heat generation amount setting unit, 291 operation unit, 292 random access memory, 293 storage device.

Claims (6)

  1.  給気流を発生させる給気送風機と、
     排気流を発生させる排気送風機と、
     前記給気流と前記排気流との間で熱交換を行う熱交換器と、
     前記給気流の温度を測定する温度センサと、
     前記温度センサの測定結果と設定温度との温度差が、予め設定した複数の温度範囲の何れに属するかに基づいて、前記熱交換器を通過する前の前記給気流を加熱するプレヒータの発熱量を設定する発熱量設定部を備えた制御部とを有することを特徴とする熱交換換気装置。
    An air supply blower for generating an air supply flow,
    An exhaust blower for generating an exhaust flow;
    A heat exchanger that performs heat exchange between the supply air stream and the exhaust air stream;
    A temperature sensor for measuring the temperature of the supply air flow,
    The calorific value of the pre-heater that heats the supply air flow before passing through the heat exchanger, based on which of the plurality of preset temperature ranges the temperature difference between the measurement result of the temperature sensor and the set temperature belongs to. And a control unit having a heating value setting unit for setting the heat exchange ventilator.
  2.  前記給気送風機、前記排気送風機及び前記熱交換器を収容し、前記給気流が通過する給気風路と前記排気流が通過する排気風路とが設けられた筐体を備え、
     前記温度センサは、前記熱交換器よりも上流側の前記給気風路に設置された外気温度センサであることを特徴とする請求項1に記載の熱交換換気装置。
    The air supply blower, housing the exhaust blower and the heat exchanger, provided with a housing provided with an air supply passage and an exhaust air passage through which the exhaust air flow passes,
    The heat exchange ventilator according to claim 1, wherein the temperature sensor is an outside air temperature sensor installed in the air supply passage upstream of the heat exchanger.
  3.  前記給気送風機、前記排気送風機及び前記熱交換器を収容し、前記給気流が通過する給気風路と前記排気流が通過する排気風路とが設けられた筐体を備え、
     前記温度センサは、前記熱交換器よりも下流側の前記給気風路に設置された給気温度センサであることを特徴とする請求項1に記載の熱交換換気装置。
    The air supply blower, housing the exhaust blower and the heat exchanger, provided with a housing provided with an air supply passage and an exhaust air passage through which the exhaust air flow passes,
    The heat exchange ventilator according to claim 1, wherein the temperature sensor is an air supply temperature sensor installed in the air supply passage downstream of the heat exchanger.
  4.  前記プレヒータが前記筐体に収容されたことを特徴とする請求項2又は3に記載の熱交換換気装置。 The heat exchange ventilator according to claim 2, wherein the preheater is housed in the housing.
  5.  前記制御部は、前記設定温度を書き換え可能に記憶する設定温度記憶部を有することを特徴とする請求項1から4のいずれか1項に記載の熱交換換気装置。 The heat exchange ventilator according to any one of claims 1 to 4, wherein the control unit includes a set temperature storage unit that stores the set temperature in a rewritable manner.
  6.  前記発熱量設定部は、前記プレヒータの発熱量の設定を定期的に繰り返すことを特徴とする請求項1から5のいずれか1項に記載の熱交換換気装置。 6. The heat exchange ventilator according to claim 1, wherein the calorific value setting unit periodically repeats setting of the calorific value of the preheater. 7.
PCT/JP2018/024083 2018-06-26 2018-06-26 Heat exchange ventilation device WO2020003365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/024083 WO2020003365A1 (en) 2018-06-26 2018-06-26 Heat exchange ventilation device
JP2020526743A JPWO2020003365A1 (en) 2018-06-26 2018-06-26 Heat exchange ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024083 WO2020003365A1 (en) 2018-06-26 2018-06-26 Heat exchange ventilation device

Publications (1)

Publication Number Publication Date
WO2020003365A1 true WO2020003365A1 (en) 2020-01-02

Family

ID=68984987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024083 WO2020003365A1 (en) 2018-06-26 2018-06-26 Heat exchange ventilation device

Country Status (2)

Country Link
JP (1) JPWO2020003365A1 (en)
WO (1) WO2020003365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812922A (en) * 2019-02-21 2019-05-28 珠海格力电器股份有限公司 Air conditioner condensation prevention control method, control device and air conditioner
KR20230044753A (en) * 2021-09-27 2023-04-04 한양대학교 산학협력단 Preheater for ventilator
WO2023203606A1 (en) * 2022-04-18 2023-10-26 三菱電機株式会社 Ventilating device and ventilation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180939U (en) * 1984-05-14 1985-11-30 三菱電機株式会社 air conditioning ventilation fan
JPS63194143A (en) * 1987-02-06 1988-08-11 Toshiba Corp Air-conditioning and ventilating fan
US5257736A (en) * 1992-08-06 1993-11-02 Donald Roy Self-regulating air ventilation apparatus
JPH06323593A (en) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd Heat exchange type ventilator
JP2004340467A (en) * 2003-05-15 2004-12-02 Mitsubishi Electric Corp Heat exchange ventilating device
KR20120057919A (en) * 2010-11-29 2012-06-07 린나이코리아 주식회사 Self-Preservation Driving Ventilator
JP2016169913A (en) * 2015-03-13 2016-09-23 三菱電機株式会社 Heat exchange ventilator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022256Y2 (en) * 1980-05-09 1985-07-02 三菱電機株式会社 air conditioning ventilation fan

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180939U (en) * 1984-05-14 1985-11-30 三菱電機株式会社 air conditioning ventilation fan
JPS63194143A (en) * 1987-02-06 1988-08-11 Toshiba Corp Air-conditioning and ventilating fan
US5257736A (en) * 1992-08-06 1993-11-02 Donald Roy Self-regulating air ventilation apparatus
JPH06323593A (en) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd Heat exchange type ventilator
JP2004340467A (en) * 2003-05-15 2004-12-02 Mitsubishi Electric Corp Heat exchange ventilating device
KR20120057919A (en) * 2010-11-29 2012-06-07 린나이코리아 주식회사 Self-Preservation Driving Ventilator
JP2016169913A (en) * 2015-03-13 2016-09-23 三菱電機株式会社 Heat exchange ventilator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812922A (en) * 2019-02-21 2019-05-28 珠海格力电器股份有限公司 Air conditioner condensation prevention control method, control device and air conditioner
KR20230044753A (en) * 2021-09-27 2023-04-04 한양대학교 산학협력단 Preheater for ventilator
KR102637582B1 (en) * 2021-09-27 2024-02-15 한양대학교 산학협력단 Preheater for ventilator
WO2023203606A1 (en) * 2022-04-18 2023-10-26 三菱電機株式会社 Ventilating device and ventilation system

Also Published As

Publication number Publication date
JPWO2020003365A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2020003365A1 (en) Heat exchange ventilation device
Guyot et al. Smart ventilation energy and indoor air quality performance in residential buildings: A review
CA3043996C (en) Temperature control system and methods for operating same
US10443876B2 (en) Thermostat with heat rise compensation based on wireless data transmission
US20200125058A1 (en) Temperature control system and methods for operating same
US10317862B2 (en) Systems and methods for heat rise compensation
JP5932350B2 (en) Air conditioning apparatus and air conditioning control method
JP2017110904A (en) Control of environment maintenance system
CN101099065A (en) Air conditioning unit control to reduce moisture varying operations
US20170016642A1 (en) Systems for Calibrating Airflow Rates in Heating, Ventilating, and Air Conditioning (HVAC) Ducts and HVAC Systems Including the Same
Clark et al. Efficacy of occupancy-based smart ventilation control strategies in energy-efficient homes in the United States
US11493220B2 (en) Systems and methods for heat rise compensation
Shea et al. Reducing university air handling unit energy usage through controls-based energy efficiency measures
WO2019026256A1 (en) Heat exchange ventilation device
US20220178575A1 (en) Ventilation system, integrated air conditioning system and control method thereof
WO2020134124A1 (en) Air-conditioning device control method and apparatus and air-conditioning device
US20080277488A1 (en) Method for Controlling HVAC Systems
JP6221058B2 (en) Air conditioning system
JP2018173200A (en) Air-conditioning control system and air-conditioning control method
JP6709970B2 (en) Control device for ventilation system of poultry house
US20070193288A1 (en) Device for saving power consumption of heating and air conditioning system
JP2004293886A (en) Operation control method and device for air conditioner
Lin et al. Energy efficiency measures for a high-tech campus in california based on total performance oriented optimization and retrofit (tpor) approach
JP2013019588A (en) Method of controlling outside air conditioner
WO2020174726A1 (en) Smoke prevention system, incineration facility, and smoke prevention method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924982

Country of ref document: EP

Kind code of ref document: A1