WO2020001277A1 - 一种上行同步方法、装置和*** - Google Patents

一种上行同步方法、装置和*** Download PDF

Info

Publication number
WO2020001277A1
WO2020001277A1 PCT/CN2019/090990 CN2019090990W WO2020001277A1 WO 2020001277 A1 WO2020001277 A1 WO 2020001277A1 CN 2019090990 W CN2019090990 W CN 2019090990W WO 2020001277 A1 WO2020001277 A1 WO 2020001277A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
uplink
timing advance
uplink timing
adjustment
Prior art date
Application number
PCT/CN2019/090990
Other languages
English (en)
French (fr)
Inventor
王健
闫嘉川
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020001277A1 publication Critical patent/WO2020001277A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of wireless communications, and in particular, to an uplink synchronization method, device, and system.
  • a base station receives a sounding reference reported by a user equipment (UE, User Equipment) Signal (SRS, Sounding Reference Signal) and demodulation reference signal (DMRS, Demodulation Reference Signal) to obtain the time adjustment value, and determine the uplink timing advance (TA, Timing, Advance) value according to the time adjustment value, the BS maps the TA value to where
  • the media access control unit (MAC, CE, Control, Control) of the cell sends a timing advance command (TAC, Timing Advance Command) to the UE using the MAC CE, and the UE receives the TAC to obtain uplink synchronization adjustment.
  • TAC Timing Advance Command
  • the BS In a radio resource control (RRC, Radio Resource Control) connected (RRC_CONNECTED) state, the BS needs to maintain a TA value.
  • RRC Radio Resource Control
  • the time when the uplink signal arrives at the BS may change with time, for example, the UE is in a high-speed moving state, the transmission path is switched, and the UE's crystal oscillator is shifted. Therefore, the UE needs to continuously update the TA value.
  • the BS uses MAC and CE to issue TAC.
  • the cycle is long and needs to wait for feedback.
  • the reason is that in the LTE system, the TA value is not adjusted frequently, and the TAC overhead is large, and frequent TAC is issued.
  • PDSCH Downlink physical shared channel
  • CP Cyclic Prefix
  • the UE moves the deviation of the TA value The value will be relatively large.
  • the TA value may jump over a wide range. Therefore, uplink synchronization needs to be performed more quickly and frequently. If the TAC is frequently sent in the MAC CE, the PDSCH resources will be wasted and the system efficiency will be reduced.
  • Embodiments of the present application provide an uplink synchronization method, device, and system.
  • An embodiment of the present application provides an uplink synchronization method, including:
  • the method further includes:
  • An embodiment of the present application proposes an uplink synchronization method, including:
  • An uplink timing advance value is determined according to the downlink control information, and an uplink synchronization adjustment is performed according to the uplink timing advance value.
  • the determining the uplink timing advance value according to the downlink control information includes:
  • An embodiment of the present application proposes an uplink synchronization device, including:
  • a determining module configured to determine an uplink timing advance value
  • the sending module is configured to send the uplink timing advance value to the first communication node using the downlink control information.
  • An embodiment of the present application proposes an uplink synchronization device, including:
  • a receiving module configured to receive downlink control information sent by a second communication node
  • the synchronization module is configured to determine an uplink timing advance value according to the downlink control information, and perform uplink synchronization adjustment according to the uplink timing advance value.
  • An embodiment of the present application provides an uplink synchronization device, including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, any one of the foregoing is implemented.
  • An uplink synchronization method When the instructions are executed by the processor, any one of the foregoing is implemented.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any of the foregoing uplink synchronization methods are implemented.
  • An embodiment of the present application proposes an uplink synchronization system, including:
  • a second communication node configured to determine an uplink timing advance value; and using downlink control information to send an uplink timing advance value to the first communication node;
  • the first communication node is configured to receive downlink control information sent by the second communication node; determine an uplink timing advance value according to the downlink control information, and perform uplink synchronization adjustment according to the uplink timing advance value.
  • the embodiments of the present application include: determining an uplink TA value; and sending downlink control information (DCI, Downlink Control Information) to a first communication node.
  • DCI downlink control information
  • the embodiment of the present application uses DCI to send the uplink TA value, which does not occupy PDSCH resources, and can frequently send DCI to update the TA value, and realizes timely uplink synchronization without reducing system efficiency.
  • a MAC is used to send a TAC to the first communication node, and the TAC carries the uplink TA value.
  • the embodiment of the present application combines MAC CE and DCI to implement TA value update, that is, MAC value is used to coarsely adjust the TA value, and DCI is used to finely adjust the TA value, which improves the accuracy of updating the TA value.
  • FIG. 1 is a flowchart of an uplink synchronization method according to an embodiment of the present application
  • FIG. 2 is a flowchart of an uplink synchronization method according to another embodiment of the present application.
  • FIG. 3 is a schematic structural composition diagram of an uplink synchronization apparatus according to another embodiment of the present application.
  • FIG. 4 is a schematic structural composition diagram of an uplink synchronization apparatus according to another embodiment of the present application.
  • FIG. 5 is a schematic structural composition diagram of an uplink synchronization system according to another embodiment of the present application.
  • Example 6 is a schematic flowchart of Example 1 of an uplink synchronization method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a MAC CE according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an example 2 of an uplink synchronization method according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of an example 3 of an uplink synchronization method according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of an example 4 of an uplink synchronization method according to an embodiment of the present application.
  • an embodiment of the present application provides an uplink synchronization method, including:
  • Step 100 Determine the uplink TA value.
  • a time adjustment value may be obtained by receiving measurement information reported by the first communication node, and performing filtering calculation according to the measurement information, and determining an uplink TA value according to the time adjustment value.
  • the measurement information can be obtained from the reported reference signals such as SRS and DMRS.
  • Measurement information such as channel state information includes modulation order (RI, Rank Indication) and signal-to-noise ratio (SINR, Signal to Interference plus Noise Ratio).
  • RI modulation order
  • SINR Signal to Interference plus Noise Ratio
  • Step 101 Use DCI to send an uplink TA value to the first communication node.
  • This embodiment of the present application uses DCI to send the uplink timing advance value, which does not occupy PDSCH resources, and can frequently send DCI to update the TA value, and implements uplink synchronization in a timely manner without reducing system efficiency.
  • any one of the following methods may be adopted to implement sending the uplink TA value to the first communication node by using DCI.
  • the uplink TA value is directly mapped into the DCI, and the DCI is sent to the first communication node.
  • the uplink TA value needs to be converted into an uplink TA adjustment value first, so that the uplink TA adjustment value It falls within the TA effective value range.
  • the uplink TA value is greater than or equal to the minimum value of the TA effective value range and less than or equal to the maximum value of the TA effective value range, determining that the uplink TA adjustment value is the uplink TA value;
  • the uplink TA adjustment value is the minimum value of the TA effective value range
  • the uplink TA adjustment value is the maximum value of the TA effective value range.
  • the mapping of the uplink TA adjustment value to the DCI includes:
  • Quantify the uplink TA adjustment value according to the adjustment step size that is, round the ratio of the uplink TA adjustment value to the adjustment step size as the quantized uplink TA adjustment value
  • Map the quantized uplink TA adjustment value to the uplink TA bit value specifically, map the quantized uplink TA adjustment value to the uplink TA bit value according to a predetermined mapping relationship; for example, use L bits to represent the uplink in DCI TA bit value, a specific value of L bit corresponds to a quantized uplink TA adjustment value, thereby forming a mapping relationship;
  • the DCI carries the uplink TA bit value.
  • DCI may be sent through a physical downlink control channel (PDCCH, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the TAC field in the DCI may be used to carry the uplink TA bit value, and the TAC field may be a new field in the DCI or a reserved field in the multiplexed DCI.
  • the maximum coverage of the TAC field is 2 L ⁇ nTs, which is the difference between the maximum and minimum values of the TA effective value range, where Ts is the transmission interval and nTs is the adjustment step corresponding to DCI
  • the adjustment step size may be carried in the DCI or may not be carried in the DCI, that is, agreed in advance.
  • the maximum and minimum values of the TA effective value range can be pre-agreed or pre-configured (such as high-level signaling configuration), and can be determined according to the sending period of the uplink TA value in DCI and the occurrence probability of the uplink TA value in the sending period, even if It is obtained that the occurrence probability of the uplink TA value within the TA effective value range in the sending period exceeds a preset probability.
  • the uplink TA value does not exceed the TA effective value range. Therefore, it is not necessary to convert the uplink TA value into an uplink TA adjustment value, and it is only necessary to directly map the uplink TA value into the DCI.
  • the method for mapping the uplink TA value to the DCI is the same as the method for mapping the uplink TA adjustment value to the DCI, and details are not described herein again.
  • the method further includes:
  • the preset threshold may be a TA effective value range.
  • the method when the absolute value of the difference between the uplink TA value determined this time and the uplink TA value determined last time is greater than or equal to the preset threshold, the method further includes:
  • the MAC is used to send a TAC to the first communication node, and the TAC carries an uplink TA value.
  • the embodiment of the present application combines MAC CE and DCI to implement TA value update, that is, MAC value is used to coarsely adjust the TA value, and DCI is used to finely adjust the TA value, which improves the accuracy of updating the TA value.
  • the first number of bits and the second number of bits are the same, and the first adjustment step size and the second adjustment step size are the same;
  • the first number of bits and the second number of bits are the same, and the first adjustment step size and the second adjustment step size are different;
  • the first number of bits is different from the second number of bits, and the first adjustment step size is the same as the second adjustment step size;
  • the first bit number is different from the second bit number, and the first adjustment step size and the second adjustment step size are different;
  • the first number of bits is the number of bits occupied by the uplink TA value in the DCI
  • the second number of bits is the number of bits occupied by the uplink TA value in the MAC CE
  • the first adjustment step is the uplink TA value in the DCI.
  • the corresponding adjustment step size, and the second adjustment step size is the adjustment step size corresponding to the uplink TA value in the MAC CE.
  • an uplink synchronization method including:
  • Step 200 Receive the DCI sent by the second communication node.
  • Step 201 Determine an uplink TA value according to the DCI, and perform uplink synchronization adjustment according to the uplink TA value.
  • determining the uplink timing advance value according to the DCI includes:
  • the quantized uplink TA adjustment value is converted into the uplink TA value according to the adjustment step size, that is, the adjustment step size is multiplied by the quantized uplink TA adjustment value to obtain an uplink TA value.
  • the uplink TA value obtained by the first communication node is the aforementioned uplink TA adjustment value.
  • MAC uplink CE can be used to coarsely adjust the uplink TA value, and then DCI is used to fine-tune the uplink TA value, thereby improving the accuracy of updating the TA value.
  • determining the uplink timing advance value according to the DCI includes:
  • the quantized uplink TA value is converted into the uplink TA value according to the adjustment step size, that is, the adjustment step size is multiplied by the quantized uplink TA value to obtain an uplink TA value.
  • the method further includes:
  • the first communication node and the second communication node may be any communication nodes.
  • the first communication node may be a UE and the second communication node may be a base station.
  • an uplink synchronization apparatus including:
  • a determining module 301 configured to determine an uplink timing advance value
  • the sending module 302 is configured to send an uplink timing advance value to the first communication node using downlink control information.
  • the sending module 302 is configured to compare the uplink timing advance value determined this time with the uplink timing advance value determined last time, and when the uplink timing advance value determined this time and When the absolute value of the difference between the uplink timing advance values determined once is less than a preset threshold, the uplink control advance value is sent to the first communication node using the downlink control information.
  • the sending module 302 is further configured to: when an absolute value of a difference between the uplink timing advance value determined this time and the uplink timing advance value determined last time is greater than or equal to the preset threshold Using a media access control unit to send a timing advance command to the first communication node, where the timing advance command carries the uplink timing advance value.
  • the first bit number is the same as the second bit number, and the first adjustment step size is the same as the second adjustment step size;
  • the first number of bits and the second number of bits are the same, and the first adjustment step size and the second adjustment step size are different;
  • the first number of bits is different from the second number of bits, and the first adjustment step size is the same as the second adjustment step size;
  • the first bit number is different from the second bit number, and the first adjustment step size and the second adjustment step size are different;
  • the first number of bits is the number of bits occupied by the uplink timing advance value in the downlink control information
  • the second number of bits is the number of bits occupied by the uplink timing advance value in the media access control unit.
  • the first adjustment step size is an adjustment step size corresponding to the uplink timing advance value in the downlink control information
  • the second adjustment step size is the uplink timing advance value in the media access control unit The corresponding adjustment step size.
  • the sending module 302 is configured to determine an uplink timing advance adjustment value according to the uplink timing advance value
  • the sending module 302 is configured to determine the uplink timing advance adjustment value according to the uplink timing advance value in the following manner:
  • the uplink timing advance adjustment value is the uplink timing advance value when the uplink timing advance value is greater than or equal to the minimum value of the timing advance effective value range and less than or equal to the maximum value of the timing advance effective value range ;
  • the uplink timing advance value is smaller than the minimum value of the timing advance effective value range, determining that the uplink timing advance adjustment value is the minimum value of the timing advance effective value range;
  • the sending module 302 is configured to map the uplink timing advance adjustment value to the downlink control information in the following manner:
  • an uplink synchronization apparatus including:
  • the receiving module 401 is configured to receive downlink control information sent by a second communication node
  • the synchronization module 402 is configured to determine an uplink timing advance value according to the downlink control information, and perform uplink synchronization adjustment according to the uplink timing advance value.
  • the synchronization module 402 is configured to map the uplink timing advance bit value carried in the downlink control information to the uplink timing advance bit value according to a mapping relationship between the uplink timing advance bit value and the quantized uplink timing advance adjustment value.
  • a quantized uplink timing advance adjustment value converts the quantized uplink timing advance adjustment value to the uplink timing advance value according to an adjustment step; and performs uplink synchronization adjustment according to the uplink timing advance value.
  • an uplink synchronization device including a processor and a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are executed by the processor, the foregoing is implemented. Either uplink synchronization method.
  • Another embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the foregoing uplink synchronization methods are implemented.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • an uplink synchronization system including:
  • the second communication node 501 is configured to determine an uplink timing advance value; and send the uplink timing advance value to the first communication node using downlink control information;
  • the first communication node 502 is configured to receive downlink control information sent by the second communication node; determine an uplink timing advance value according to the downlink control information, and perform uplink synchronization adjustment according to the uplink timing advance value.
  • the BS sends an uplink TA value to the UE through DCI.
  • the method includes:
  • Step 600 The BS receives the measurement information reported by the UE in the local cell, obtains a time adjustment value through filtering calculation, and determines an uplink TA value according to the time adjustment value.
  • the measurement information includes at least one of the following: SRS, DMRS.
  • Step 601 The BS adjusts the uplink TA value according to a TA effective value range corresponding to the TAC field of the DCI of the cell in which the BS determines the uplink TA adjustment value.
  • the TAC field may be a new field in DCI or a reserved field in DCI.
  • the uplink TA adjustment value is the minimum value of the TA effective value range
  • the uplink TA adjustment value is the maximum value of the TA effective value range.
  • the length of the TAC field in DCI is L bits, and the adjustment step corresponding to DCI is nTs.
  • the maximum coverage of the TAC field in DCI is 2 L ⁇ nTs, which is the minimum value of the effective value range of TA, T2. for The maximum value T1 is
  • Step 602 The BS maps the determined uplink TA adjustment value to the TAC field of the DCI of the cell.
  • the uplink TA adjustment value is quantized according to the adjustment step size, that is, the ratio of the uplink TA adjustment value and the adjustment step size is rounded as the quantized uplink TA adjustment value;
  • Map the quantized uplink TA adjustment value to an uplink TA bit value specifically, map the quantized uplink TA adjustment value to an uplink TA bit value according to a predetermined mapping relationship; for example, the TAC field in DCI uses L bits To represent the uplink TA bit value. A specific value of the L bit corresponds to a quantized uplink TA adjustment value, thereby forming a mapping relationship.
  • Step 603 The BS sends the DCI including the TAC field to the UE through the PDCCH.
  • Step 604 The UE receives the DCI, parses the TAC field in the DCI, converts the uplink TA bit value in the TAC field into an uplink TA value, and performs uplink synchronization adjustment according to the uplink TA value.
  • the TAC field in the DCI carries the uplink TA bit value and sends it to the first communication node. Specifically, the DCI is sent through the PDCCH.
  • the UE first converts the uplink TA bit value in the TAC field into a quantized uplink TA adjustment value, and uses the product of the uplink TA adjustment value and the adjustment step size corresponding to the DCI as the uplink TA value.
  • the MAC CE transmission cycle is large and cannot meet the requirement for fast uplink synchronization.
  • the TAC occupation field in the MAC CE is long. If it is frequently transmitted, PDSCH resources will be wasted and system throughput will be reduced.
  • the uplink TA value is measured in this embodiment of the present application, the measured uplink TA value may exceed the data range that can be represented by the TAC field in the DCI. Therefore, the obtained uplink TA adjustment value needs to be adjusted to meet the data range corresponding to the TAC field in the DCI. ; Then, the adjusted uplink TA adjustment value needs to be mapped into the TAC field of the DCI of the cell, and then sent to the UE through the PDCCH.
  • This method uses the DCI to send the uplink TA value instead of the MAC CE, while not occupying the PDSCH resources, it satisfies the requirement for frequent sending of the uplink TA value, and improves the system throughput.
  • This example can be applied to a 5G New Radio (NR, New Ratio) high frequency fixed wireless access (FWA, Fixed Wireless Access) scenario, in which the MAC, CE, and DCI are used to send an uplink TA value to the UE.
  • NR New Radio
  • FWA Fixed Wireless Access
  • the UE has fixed access.
  • the uplink TA value fluctuates slightly.
  • the MAC CE is used to send the uplink TA value to the UE. Due to the large step size of the MAC CE adjustment, it is difficult to perform uplink TA in a small range. The value fluctuation is adjusted.
  • the MAC CE structure used to send the uplink TA value is shown in Figure 7, where 2 bits are used as reserved fields, and the remaining 6 bits are used to send the TAC carrying the uplink TA value, which corresponds to the uplink TA value index. The range is 0 to 63.
  • beam switching may cause a sudden change in the uplink TA value.
  • Only the DCI is used to send the uplink TA value.
  • the number of bits allocated by DCI and the small step size adjustment implementation scheme are difficult to cover the sudden change in the uplink TA value caused by the beam switching.
  • MAC CE is used to adjust the step size of the large-scale uplink TA value caused by beam switching, and DCI is used to fine-tune the small-scale fluctuation of uplink TA value in the FWA scene to obtain more For reliable link performance.
  • the method includes:
  • Step 800 The BS receives the measurement information reported by the UE in the local cell, obtains a time adjustment value through filtering calculation, and determines an uplink TA value according to the time adjustment value.
  • the measurement information includes at least one of the following: SRS, DMRS.
  • Step 801 The BS judges whether the absolute value of the difference between the determined uplink TA value and the last determined uplink TA value is greater than or equal to a preset threshold. When the determined uplink TA value and the last determined uplink TA value are between When the absolute value of the difference is less than the preset threshold, perform steps 802 to 805; when the absolute value of the difference between the determined uplink TA value and the last determined uplink TA value is greater than or equal to the preset threshold, perform steps 806 to Step 807.
  • the fluctuation range of the uplink TA value is considered to be large, causing the fluctuation range of the uplink Ta value
  • the larger cause may be beam switching; or, the uplink TA value sent by the MAC CE last time does not take effect. In this case, the MAC CE needs to be coarsely adjusted once to obtain preliminary uplink synchronization.
  • Step 802 The BS adjusts the uplink TA value according to the TA effective value range corresponding to the TAC field of the DCI of the cell in which the BS determines the uplink TA adjustment value.
  • the TAC field may be a new field in DCI or a reserved field in DCI.
  • the uplink TA adjustment value is the minimum value of the TA effective value range
  • the uplink TA adjustment value is the maximum value of the TA effective value range.
  • the length of the TAC field in DCI is L bits, and the adjustment step corresponding to DCI is nTs.
  • the maximum coverage of the TAC field in DCI is 2 L ⁇ nTs, which is the minimum value of the effective value range of TA, T2. for The maximum value T1 is
  • Step 803 The BS maps the determined uplink TA adjustment value to the TAC field of the DCI of the cell.
  • the uplink TA adjustment value is quantized according to the adjustment step size, that is, the ratio of the uplink TA adjustment value and the adjustment step size is rounded as the quantized uplink TA adjustment value;
  • Map the quantized uplink TA adjustment value to an uplink TA bit value specifically, map the quantized uplink TA adjustment value to an uplink TA bit value according to a predetermined mapping relationship; for example, the TAC field in DCI uses L bits To represent the uplink TA bit value. A specific value of the L bit corresponds to a quantized uplink TA adjustment value, thereby forming a mapping relationship.
  • Step 804 The BS sends the DCI including the TAC field to the UE through the PDCCH.
  • Step 805 The UE receives DCI, parses the TAC field in the DCI, converts the uplink TA bit value in the TAC field into an uplink TA value, and performs uplink synchronization adjustment according to the uplink TA value.
  • the TAC field in the DCI carries the uplink TA bit value and sends it to the first communication node. Specifically, the DCI is sent through the PDCCH.
  • the UE first converts the uplink TA bit value in the TAC field into a quantized uplink TA adjustment value, and uses the product of the uplink TA adjustment value and the adjustment step size corresponding to the DCI as the uplink TA value.
  • Step 806 The BS sends a TAC to the first communication node using the MAC CE, and the TAC carries an uplink TA value.
  • Step 807 The BS waits for the UE feedback message, and the base station makes corresponding adjustments to the historical filter value according to the UE feedback message, and starts to receive the measurement information reported by the UE, that is, it proceeds to step 800.
  • the TAC field in the DCI and the TAC field in the MAC CE maintain the same number of bits, and adjust the uplink synchronization of the UE by an adjustment step smaller than the adjustment step corresponding to the MAC CE to achieve fine adjustment.
  • the motion path is direct to reflection, and there are a large number of UEs connected, only using MAC CE to send the uplink TA value to the UE, it needs to occupy too much PDSCH resources, and the overhead load is too large; Only use the DCI to send the uplink TA value to the UE. If the UE moves fast, or the uplink TA value fluctuates rapidly and is caused by other reasons, more bits need to be allocated in the DCI to send the uplink TA value to cover the uplink. The fluctuation range of the TA value.
  • the MAC CE and the DCI use different bit numbers to send the uplink TA value to the UE with the same adjustment step. As shown in Figure 9, the method includes:
  • Step 900 The BS receives the measurement information reported by the UE in the local cell, obtains a time adjustment value through filtering calculation, and determines an uplink TA value according to the time adjustment value.
  • the measurement information includes at least one of the following: SRS, DMRS.
  • Step 901 The BS judges whether the absolute value of the difference between the determined uplink TA value and the last determined uplink TA value is greater than or equal to a preset threshold. When the determined uplink TA value and the last determined uplink TA value are When the absolute value of the difference is less than the preset threshold, perform steps 902 to 905; when the absolute value of the difference between the determined uplink TA value and the last determined uplink TA value is greater than or equal to the preset threshold, perform steps 906 to Step 907.
  • the fluctuation range of the uplink TA value is considered to be large, causing the fluctuation range of the uplink Ta value.
  • the larger reason may be beam switching; or, the uplink TA value sent by the MAC CE last time does not take effect. In this case, the MAC CE needs to be coarsely adjusted once to obtain preliminary uplink synchronization.
  • Step 902 The BS adjusts the uplink TA value according to the TA effective value range corresponding to the TAC field of the DCI of the cell in which the BS determines the uplink TA adjustment value.
  • the TAC field may be a new field in DCI or a reserved field in DCI.
  • the uplink TA adjustment value is the minimum value of the TA effective value range
  • the uplink TA adjustment value is the maximum value of the TA effective value range.
  • the length of the TAC field in DCI is L bits, and the adjustment step corresponding to DCI is nTs.
  • the maximum coverage of the TAC field in DCI is 2 L ⁇ nTs, which is the minimum value of the effective value range of TA, T2. for The maximum value T1 is
  • Step 903 The BS maps the determined uplink TA adjustment value to the TAC field of the DCI of the cell.
  • the uplink TA adjustment value is quantized according to the adjustment step size, that is, the ratio of the uplink TA adjustment value and the adjustment step size is rounded as the quantized uplink TA adjustment value;
  • Map the quantized uplink TA adjustment value to an uplink TA bit value specifically, map the quantized uplink TA adjustment value to an uplink TA bit value according to a predetermined mapping relationship; for example, the TAC field in DCI uses L bits To represent the uplink TA bit value. A specific value of the L bit corresponds to a quantized uplink TA adjustment value, thereby forming a mapping relationship.
  • Step 904 The BS sends the DCI including the TAC field to the UE through the PDCCH.
  • Step 905 The UE receives the DCI, parses the TAC field in the DCI, converts the uplink TA bit value in the TAC field into an uplink TA value, and performs uplink synchronization adjustment according to the uplink TA value.
  • the TAC field in the DCI carries the uplink TA bit value and sends it to the first communication node. Specifically, the DCI is sent through the PDCCH.
  • the UE first converts the uplink TA bit value in the TAC field into a quantized uplink TA adjustment value, and uses the product of the uplink TA adjustment value and the adjustment step size corresponding to the DCI as the uplink TA value.
  • Step 906 The BS sends a TAC to the first communication node using the MAC CE, where the TAC carries an uplink TA value.
  • Step 907 The BS waits for the UE feedback message, and the base station makes corresponding adjustments to the historical filter value according to the UE feedback message, and starts to receive the measurement information reported by the UE, that is, it proceeds to step 800.
  • the TAC field in DCI and the TAC field in MAC CE use different numbers of bits to guide the uplink arrival time of the UE with the same step size.
  • the CP is short, and the UE is susceptible to synchronization. It is too wasteful to use PDSCH to frequently send TAC using MAC CE, and TAC is sent periodically using MAC CE. Because of the short CP characteristics at high frequencies, Before the period arrives, the UE may lose synchronization. Therefore, MAC can be used to periodically send TAC, and within the period, DCI is used to send TAC.
  • the TAC field of DCI contains the adjustment step size, and the adjustment step size is optional. It can realize the adaptive adjustment of the UE. When the uplink TA value fluctuates greatly, the BS allocates a relatively large step size to the UE, and conversely, the BS allocates a relatively small step size to the UE.
  • the method includes:
  • Step 1000 The BS receives the measurement information reported by the UE in the local cell, obtains a time adjustment value through filtering calculation, and determines an uplink TA value according to the time adjustment value.
  • the measurement information includes at least one of the following: SRS, DMRS.
  • Step 1001 The BS issues a TAC using the MAC CE, and the TAC carries an uplink TA value.
  • the MAC CE adjusts the UE using a large step size.
  • Step 1002 The BS judges whether the MAC CE delivery cycle is reached. If the MAC CE delivery cycle is reached, then step 1000 is continued; if the MAC CE delivery cycle is not reached, step 1003 is continued.
  • Step 1003 The BS uses the DCI to deliver the uplink TA value.
  • the number of bits used to carry the uplink TA value allocated by the TAC field in the DCI is less than the number of bits used to carry the uplink TA value in the MAC CE.
  • the long adjustment step length corrects the uplink arrival time of the UE.
  • two bits are reserved in the TAC field in the DCI to indicate the adjustment step size used for the uplink TA value issued by the DCI, that is, the value delivered by the DCI.
  • the adjustment step of the uplink TA value is variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种上行同步方法、装置和***,所述上行同步方法包括:确定上行定时提前TA值;使用下行控制信息DCI向第一通信节点发送上行定时提前TA值。

Description

一种上行同步方法、装置和***
相关申请的交叉引用
本申请基于申请号为201810671518.6、申请日为2018年06月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于无线通信领域,尤指一种上行同步方法、装置和***。
背景技术
在长期演进(LTE,Long Term Evolution)通信***,以及高级长期演进(LTE-A,LTE-Advanced)通信***中,基站(BS,Base Station)接收用户设备(UE,User Equipment)上报的探测参考信号(SRS,Sounding Reference Signal)和解调参考信号(DMRS,Demodulation Reference Signal)等得到时间调整值,根据时间调整值确定上行定时提前(TA,Timing Advance)值,BS将该TA值映射到所在小区的媒体接入控制单元(MAC CE,Medium Access Control Control element)中,并使用MAC CE下发定时提前命令(TAC,Timing Advance Command)给UE,UE接收TAC获得上行同步调整。
在无线资源控制(RRC,Radio Resource Control)连接(RRC_CONNECTED)状态,BS需要维护TA值。虽然在随机接入过程中,UE与BS获得了上行同步,但上行信号到达BS的时间可能会随时间发生变化,例如,UE处于高速移动状态、切换传输路径、UE的晶振偏移等情况,因此,UE需要不断地更新TA值。
在LTE通信***中,BS使用MAC CE下发TAC,周期较长,且需要等待反馈,原因是在LTE***中,不需要频繁的调整TA值,且TAC开销 较大,频繁的下发TAC会造成下行物理共享信道(PDSCH,Physical Downlink Shared Channel)资源浪费。而在某些场景中,如5G高频场景中,由于频带更宽,采样频率更高,相对的时隙长度和循环前缀(CP,Cyclic Prefix)长度更短,UE移动时,TA值的偏差值会比较大,此外,由于波束的频繁切换,可能导致TA值大范围跳变。因此,需要更为快速频繁的进行上行同步,如果频繁的在MAC CE中下发TAC,会导致PDSCH资源浪费,造成***效率下降。
发明内容
本申请实施例提供了一种上行同步方法、装置和***。
本申请实施例提供了一种上行同步方法,包括:
确定上行定时提前值;
使用下行控制信息向第一通信节点发送上行定时提前值。
在本申请实施例中,所述确定上行定时提前值之后,该方法还包括:
比对本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值,当本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值之差的绝对值小于预设阈值时,使用所述下行控制信息向所述第一通信节点发送所述上行定时提前值。
本申请实施例提出了一种上行同步方法,包括:
接收第二通信节点发送的下行控制信息;
根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
在本申请实施例中,所述根据下行控制信息确定上行定时提前值包括:
根据上行定时提前比特值和量化后的上行定时提前调整值的映射关系,将所述下行控制信息中携带的上行定时提前比特值映射为所述量化后的上行定时提前调整值;
根据调整步长将所述量化后的上行定时提前调整值转换为所述上行定 时提前值。
本申请实施例提出了一种上行同步装置,包括:
确定模块,配置为确定上行定时提前值;
发送模块,配置为使用下行控制信息向第一通信节点发送上行定时提前值。
本申请实施例提出了一种上行同步装置,包括:
接收模块,配置为接收第二通信节点发送的下行控制信息;
同步模块,配置为根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
本申请实施例提出了一种上行同步装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种上行同步方法。
本申请实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种上行同步方法的步骤。
本申请实施例提出了一种上行同步***,包括:
第二通信节点,配置为确定上行定时提前值;使用下行控制信息向第一通信节点发送上行定时提前值;
第一通信节点,配置为接收第二通信节点发送的下行控制信息;根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
本申请实施例包括:确定上行TA值;使用下行控制信息(DCI,Downlink Control Information)向第一通信节点发送上行TA值。本申请实施例使用DCI来发送上行TA值,不会占用PDSCH资源,并且可以频繁发送DCI来实现TA值的更新,实现了在不降低***效率的同时及时进行上行同步。
在另一个实施例中,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值小于预设阈值时,使用DCI向所述第一通信节点发送所述上行TA值;当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于预设阈值时,使用MAC CE向所述第一通信节点发送TAC, TAC携带所述上行TA值。本申请实施例联合MAC CE和DCI实现TA值的更新,即使用MAC CE对TA值进行粗调,使用DCI对TA值进行精调,提高了TA值的更新精度。
本申请实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请实施例的实施例一起用于解释本申请实施例的技术方案,并不构成对本申请实施例技术方案的限制。
图1为本申请一个实施例提出的上行同步方法的流程图;
图2为本申请另一个实施例提出的上行同步方法的流程图;
图3为本申请另一个实施例提出的上行同步装置的结构组成示意图;
图4为本申请另一个实施例提出的上行同步装置的结构组成示意图;
图5为本申请另一个实施例提出的上行同步***的结构组成示意图;
图6为本申请实施例上行同步方法的示例1的流程示意图;
图7为本申请实施例MAC CE的结构示意图;
图8为本申请实施例上行同步方法的示例2的流程示意图;
图9为本申请实施例上行同步方法的示例3的流程示意图;
图10为本申请实施例上行同步方法的示例4的流程示意图。
具体实施方式
下文中将结合附图对本申请实施例进行详细说明。需要说明的是,在 不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
参见图1,本申请一个实施例提出了一种上行同步方法,包括:
步骤100、确定上行TA值。
在本申请实施例中,可以通过接收第一通信节点上报的测量信息,根据测量信息采用滤波计算得到时间调整值,根据时间调整值确定上行TA值。
其中,测量信息可以从上报的参考信号如SRS、DMRS中获取。
测量信息如信道状态信息,包括调制阶数(RI,Rank Indication)和信噪比(SINR,Signal to Interference plus Noise Ratio)。
步骤101、使用DCI向第一通信节点发送上行TA值。
本申请实施例使用DCI来发送上行定时提前值,不会占用PDSCH资源,并且可以频繁发送DCI来实现TA值的更新,实现了在不降低***效率的同时及时进行上行同步。
在本申请实施例中,可以采用以下任一种方式来实现使用DCI向第一通信节点发送上行TA值。
第一种、根据上行TA值确定上行TA调整值;将上行TA调整值映射到DCI中,将DCI发送给所述第一通信节点;
第二种,直接将上行TA值映射到DCI中,将DCI发送给第一通信节点。
对于第一种方法,由于DCI中承载上行TA值存在一定的TA有效值范围,如果上行TA值超出TA有效值范围,则需要先将上行TA值转换为上行TA调整值,使得上行TA调整值落入TA有效值范围内。
具体可以按照以下方式进行调整:
当所述上行TA值大于或等于TA有效值范围的最小值,且小于或等于 TA有效值范围的最大值时,确定所述上行TA调整值为所述上行TA值;
当所述上行TA值小于TA有效值范围的最小值时,确定所述上行TA调整值为TA有效值范围的最小值;
当上行TA值大于TA有效值范围的最大值时,确定上行TA调整值为TA有效值范围的最大值。
其中,将上行TA调整值映射到DCI中包括:
按照调整步长将所述上行TA调整值进行量化,即将上行TA调整值和调整步长的比值进行取整作为量化后的上行TA调整值;
将量化后的上行TA调整值映射为上行TA比特值;具体可以按照预先约定好的映射关系将量化后的上行TA调整值映射为上行TA比特值;例如,在DCI中采用L比特来表示上行TA比特值,L比特的一个具体取值与一个量化后的上行TA调整值对应,从而形成映射关系;
在DCI中携带所述上行TA比特值。
其中,可以通过物理下行控制信道(PDCCH,Physical Downlink Control Channel)发送DCI。
在本申请实施例中,可以采用DCI中的TAC字段携带上行TA比特值,TAC字段可以是DCI中的新增字段或复用DCI中的保留字段。
当TAC字段的长度为L比特时,TAC字段的最大覆盖范围为2 L×nTs,即TA有效值范围的最大值和最小值之差,其中,Ts为传输间隔,nTs为DCI对应的调整步长,该调整步长可以携带在DCI中,也可以不携带在DCI中,即预先约定好。
TA有效值范围的最大值和最小值可以预先约定,或预先配置(如高层信令配置),可以根据DCI中的上行TA值的发送周期和发送周期内上行TA值的出现概率来确定,即使得TA有效值范围内的上行TA值在发送周期内的出现概率超过预设概率。
对于第二种方法,认为上行TA值不会超出TA有效值范围,因此,不需要将上行TA值转换为上行TA调整值,直接将上行TA值映射到DCI中即可。
将上行TA值映射到DCI中的方法与将上行TA调整值映射到DCI中的方法相同,这里不再赘述。
在本申请另一个实施例中,确定上行TA值之后,该方法还包括:
比对本次确定的上行TA值和上一次确定的上行TA值,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值小于预设阈值时,使用DCI向所述第一通信节点发送上行TA值。
上述预设阈值可以是TA有效值范围。
在本申请另一个实施例中,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于所述预设阈值时,该方法还包括:
使用MAC CE向第一通信节点发送TAC,TAC携带上行TA值。
本申请实施例联合MAC CE和DCI实现TA值的更新,即使用MAC CE对TA值进行粗调,使用DCI对TA值进行精调,提高了TA值的更新精度。
在本申请实施例中,第一比特数和第二比特数相同,且第一调整步长和第二调整步长相同;
或者,第一比特数和第二比特数相同,且第一调整步长和第二调整步长不同;
或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长相同;
或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长不同;
其中,第一比特数为DCI中所述上行TA值占用的比特数,第二比特数为MAC CE中所述上行TA值占用的比特数,第一调整步长为DCI中所述上行TA值对应的调整步长,第二调整步长为MAC CE中所述上行TA值对应的调整步长。
参见图2,本申请另一个实施例提出了一种上行同步方法,包括:
步骤200、接收第二通信节点发送的DCI。
步骤201、根据DCI确定上行TA值,根据上行TA值进行上行同步调 整。
在本申请实施例中,当第二通信节点采用第一种方式来实现使用DCI向第一通信节点发送上行TA值时,根据DCI确定上行定时提前值包括:
根据上行TA比特值和量化后的上行TA调整值的映射关系,将DCI中携带的上行TA比特值映射为所述量化后的上行TA调整值;
根据调整步长将所述量化后的上行TA调整值转换为所述上行TA值,即将调整步长乘以量化后的上行TA调整值得到上行TA值。
也就是说,如果第二通信节点在发送上行TA值时上行TA值超出TA有效值范围,则无法准确获得上行TA值,最终第一通信节点获得的上行TA值也即上述的上行TA调整值,这种情况下可以先采用MAC CE对上行TA值进行粗调,再采用DCI对上行TA值进行精调,从而提高了TA值的更新精度。
当第二通信节点采用第二种方式来实现使用DCI向第一通信节点发送上行TA值时,根据DCI确定上行定时提前值包括:
根据上行TA比特值和量化后的上行TA值的映射关系,将DCI中携带的上行TA比特值映射为所述量化后的上行TA值;
根据调整步长将所述量化后的上行TA值转换为所述上行TA值,即将调整步长乘以量化后的上行TA值得到上行TA值。
在本申请另一个实施例中,该方法还包括:
接收第二通信节点使用MAC CE发送的TAC,向第二通信节点返回反馈消息。
在本申请实施例中,第一通信节点和第二通信节点可以是任意通信节点,例如,第一通信节点可以是UE,第二通信节点可以是基站。
参见图3,本申请另一个实施例提出了一种上行同步装置,包括:
确定模块301,配置为确定上行定时提前值;
发送模块302,配置为使用下行控制信息向第一通信节点发送上行定时提前值。
在本申请实施例中,发送模块302,配置为比对本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值,当本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值之差的绝对值小于预设阈值时,使用所述下行控制信息向所述第一通信节点发送所述上行定时提前值。
在本申请实施例中,发送模块302,还配置为当本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值之差的绝对值大于或等于所述预设阈值时,使用媒体接入控制单元向所述第一通信节点发送定时提前命令,所述定时提前命令携带所述上行定时提前值。
在本申请实施例中,
第一比特数和第二比特数相同,且第一调整步长和第二调整步长相同;
或者,第一比特数和第二比特数相同,且第一调整步长和第二调整步长不同;
或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长相同;
或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长不同;
其中,所述第一比特数为所述下行控制信息中所述上行定时提前值占用的比特数,所述第二比特数为所述媒体接入控制单元中所述上行定时提前值占用的比特数,所述第一调整步长为所述下行控制信息中所述上行定时提前值对应的调整步长,所述第二调整步长为所述媒体接入控制单元中所述上行定时提前值对应的调整步长。
在本申请实施例中,发送模块302,配置为根据所述上行定时提前值确定上行定时提前调整值;
将所述上行定时提前调整值映射到所述下行控制信息中,将所述下行控制信息发送给所述第一通信节点。
在本申请实施例中,发送模块302配置为采用以下方式实现根据上行定时提前值确定上行定时提前调整值:
当所述上行定时提前值大于或等于定时提前有效值范围的最小值,且 小于或等于所述定时提前有效值范围的最大值时,确定所述上行定时提前调整值为所述上行定时提前值;
当所述上行定时提前值小于所述定时提前有效值范围的最小值时,确定所述上行定时提前调整值为所述定时提前有效值范围的最小值;
当所述上行定时提前值大于所述定时提前有效值范围的最大值时,确定所述上行定时提前调整值为所述定时提前有效值范围的最大值。
在本申请实施例中,发送模块302配置为采用以下方式实现将上行定时提前调整值映射到下行控制信息:
按照调整步长将所述上行定时提前调整值进行量化;
将量化后的上行定时提前调整值映射为上行定时提前比特值;
在所述下行控制信息中携带所述上行定时提前比特值。
参见图4,本申请另一个实施例提出了一种上行同步装置,包括:
接收模块401,配置为接收第二通信节点发送的下行控制信息;
同步模块402,配置为根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
在本申请实施例中,同步模块402,配置为根据上行定时提前比特值和量化后的上行定时提前调整值的映射关系,将所述下行控制信息中携带的上行定时提前比特值映射为所述量化后的上行定时提前调整值;根据调整步长将所述量化后的上行定时提前调整值转换为所述上行定时提前值;根据所述上行定时提前值进行上行同步调整。
本申请另一个实施例提出了一种上行同步装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种上行同步方法。
本申请另一个实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种上行同步方法的步骤。
计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、 磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
参见图5,本申请另一个实施例提出了一种上行同步***,包括:
第二通信节点501,配置为确定上行定时提前值;使用下行控制信息向第一通信节点发送上行定时提前值;
第一通信节点502,配置为接收第二通信节点发送的下行控制信息;根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
下面通过具体示例详细说明本申请实施例的具体实现方式,但是值得注意的以下示例的序号,仅是为了区分不同的示例,并非是示例优先顺序的排序。
示例1
本示例中,在5G高频通信场景中BS通过DCI向UE发送上行TA值,如图6所示,该方法包括:
步骤600、BS接收所在小区中UE上报的测量信息,通过滤波计算得到时间调整值,根据时间调整值确定上行TA值。
本步骤中,测量信息包括以下至少之一:SRS、DMRS。
步骤601、BS根据所在小区DCI的TAC字段对应的TA有效值范围调整上行TA值,以确定上行TA调整值。
本步骤中,TAC字段可以是DCI中的新增字段或者使用DCI中的保留字段。
本步骤中,当所述上行TA值大于或等于TA有效值范围的最小值,且小于或等于TA有效值范围的最大值时,确定所述上行TA调整值为所述上行TA值;
当所述上行TA值小于TA有效值范围的最小值时,确定所述上行TA调整值为TA有效值范围的最小值;
当上行TA值大于TA有效值范围的最大值时,确定上行TA调整值为TA有效值范围的最大值。
在本示例中,DCI中的TAC字段的长度为L比特,DCI对应的调整步长为nTs,则DCI中的TAC字段的最大覆盖范围为2 L×nTs,即TA有效值范围的最小值T2为
Figure PCTCN2019090990-appb-000001
最大值T1为
Figure PCTCN2019090990-appb-000002
步骤602、BS将确定的上行TA调整值映射到所在小区DCI的TAC字段中。
本步骤中,按照调整步长将所述上行TA调整值进行量化,即将上行TA调整值和调整步长的比值进行取整作为量化后的上行TA调整值;
将量化后的上行TA调整值映射为上行TA比特值;具体可以按照预先约定好的映射关系将量化后的上行TA调整值映射为上行TA比特值;例如,在DCI中的TAC字段采用L比特来表示上行TA比特值,L比特的一个具体取值与一个量化后的上行TA调整值对应,从而形成映射关系。
步骤603、BS通过PDCCH将包含TAC字段的DCI发送给UE。
步骤604、UE接收DCI,解析DCI中的TAC字段,将TAC字段中的上行TA比特值转换为上行TA值,根据上行TA值进行上行同步调整。
本步骤中,在DCI中的TAC字段携带上行TA比特值发送给第一通信节点,具体的,通过PDCCH发送DCI。
本步骤中,UE先将TAC字段中的上行TA比特值转换为量化后的上行TA调整值,将上行TA调整值和DCI对应的调整步长的乘积作为上行TA值。
相关技术中,MAC CE发送周期较大,无法满足快速地上行同步需求;此外,MAC CE中的TAC占用字段较长,如果频繁发送,会造成PDSCH资源浪费,造成***吞吐量降低。本申请实施例测量得到上行TA值后,测量得到的上行TA值可能超出DCI中的TAC字段能够表示的数据范围,因此需要调整得到的上行TA调整值,以满足DCI中TAC字段对应的数据范围;然后需要将调整后的上行TA调整值映射到所在小区DCI的TAC字段中,再通过PDCCH发送给UE。该方法通过DCI代替MAC CE发送上行TA值,在不占用PDSCH资源的同时,满足了上行TA值频繁发送的需求,提高了***吞吐量。
示例2
本示例可应用于5G新空口(NR,New Ratio)高频固定无线接入(FWA,Fixed Wireless Access)场景中,联合MAC CE和DCI向UE发送上行TA值。
在5G NR高频FWA场景中,UE固定接入,普遍情况下上行TA值波动较小,用MAC CE向UE发送上行TA值,因MAC CE调节的步长较大,难以对小范围上行TA值的波动进行调整,用于发送上行TA值的MAC CE结构如图7所示,其中2个比特(bit)作为保留字段,剩余6bit用于发送携带上行TA值的TAC,对应上行TA值索引范围为0~63。
5G NR高频FWA场景中,波束切换可能会造成上行TA值突变,仅用DCI发送上行TA值,DCI分配的比特数以及小步长调整实施方案,难以覆盖因波束切换造成的上行TA值突变。在示例中,采用MAC CE对波束切换带来的大程度上行TA值的跳变进行大步长调整,采用DCI对FWA场景中上行TA值的小范围波动的情况进行精细化调整,以获得更为可靠的链路性能。
如图8所示,该方法包括:
步骤800、BS接收所在小区中UE上报的测量信息,通过滤波计算得到时间调整值,根据时间调整值确定上行TA值。
本步骤中,测量信息包括以下至少之一:SRS、DMRS。
步骤801、BS判断本次确定的上行TA值和上一次确定的上行TA值之差的绝对值是否大于或等于预设阈值,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值小于预设阈值时,执行步骤802~步骤805;当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于预设阈值时,执行步骤806~步骤807。
本步骤中,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于预设阈值时,认为上行TA值的波动范围较大,造成上行Ta值的波动范围较大的原因有可能是波束切换;或者,上次通过MAC CE发送的上行TA值没有生效,这种情况下需要使用MAC CE进行粗调一次, 取得初步的上行同步。
步骤802、BS根据所在小区DCI的TAC字段对应的TA有效值范围调整上行TA值,以确定上行TA调整值。
本步骤中,TAC字段可以是DCI中的新增字段或者使用DCI中的保留字段。
本步骤中,当所述上行TA值大于或等于TA有效值范围的最小值,且小于或等于TA有效值范围的最大值时,确定所述上行TA调整值为所述上行TA值;
当所述上行TA值小于TA有效值范围的最小值时,确定所述上行TA调整值为TA有效值范围的最小值;
当上行TA值大于TA有效值范围的最大值时,确定上行TA调整值为TA有效值范围的最大值。
在本示例中,DCI中的TAC字段的长度为L比特,DCI对应的调整步长为nTs,则DCI中的TAC字段的最大覆盖范围为2 L×nTs,即TA有效值范围的最小值T2为
Figure PCTCN2019090990-appb-000003
最大值T1为
Figure PCTCN2019090990-appb-000004
步骤803、BS将确定的上行TA调整值映射到所在小区DCI的TAC字段中。
本步骤中,按照调整步长将所述上行TA调整值进行量化,即将上行TA调整值和调整步长的比值进行取整作为量化后的上行TA调整值;
将量化后的上行TA调整值映射为上行TA比特值;具体可以按照预先约定好的映射关系将量化后的上行TA调整值映射为上行TA比特值;例如,在DCI中的TAC字段采用L比特来表示上行TA比特值,L比特的一个具体取值与一个量化后的上行TA调整值对应,从而形成映射关系。
步骤804、BS通过PDCCH将包含TAC字段的DCI发送给UE。
步骤805、UE接收DCI,解析DCI中的TAC字段,将TAC字段中的上行TA比特值转换为上行TA值,根据上行TA值进行上行同步调整。
本步骤中,在DCI中的TAC字段携带上行TA比特值发送给第一通信 节点,具体的,通过PDCCH发送DCI。
本步骤中,UE先将TAC字段中的上行TA比特值转换为量化后的上行TA调整值,将上行TA调整值和DCI对应的调整步长的乘积作为上行TA值。
步骤806、BS使用MAC CE向第一通信节点发送TAC,TAC携带上行TA值。
步骤807、BS等待UE反馈消息,基站根据UE的反馈消息,对历史滤波值做出相应的调整,开始接收UE上报的测量信息,即继续执行步骤800。
本示例中,DCI中的TAC字段与MAC CE中的TAC字段保持相同的比特数,以小于MAC CE对应的调整步长的调整步长调整UE的上行同步,实现精细化调整。
示例3
本示例中,如果UE运动较快,运动路径为直射到反射,且接入的UE数较多,仅用MAC CE向UE发送上行TA值,需要占用过多的PDSCH资源,开销负荷过大;仅用DCI向UE发送上行TA值,如果UE运动较快,或其他原因造成的上行TA值的波动快且大,需要在DCI中分配较多的bit用来发送上行TA值,才能覆盖到上行TA值的波动范围。
联合使用MAC CE和DCI向UE发送上行TA值可以解决上述问题,具体的,MAC CE和DCI使用不同的比特数,以相同的调整步长向UE发送上行TA值。如图9所示,该方法包括:
步骤900、BS接收所在小区中UE上报的测量信息,通过滤波计算得到时间调整值,根据时间调整值确定上行TA值。
本步骤中,测量信息包括以下至少之一:SRS、DMRS。
步骤901、BS判断本次确定的上行TA值和上一次确定的上行TA值之差的绝对值是否大于或等于预设阈值,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值小于预设阈值时,执行步骤902~步骤905;当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于预设阈值时,执行步骤906~步骤907。
本步骤中,当本次确定的上行TA值和上一次确定的上行TA值之差的绝对值大于或等于预设阈值时,认为上行TA值的波动范围较大,造成上行Ta值的波动范围较大的原因有可能是波束切换;或者,上次通过MAC CE发送的上行TA值没有生效,这种情况下需要使用MAC CE进行粗调一次,取得初步的上行同步。
步骤902、BS根据所在小区DCI的TAC字段对应的TA有效值范围调整上行TA值,以确定上行TA调整值。
本步骤中,TAC字段可以是DCI中的新增字段或者使用DCI中的保留字段。
本步骤中,当所述上行TA值大于或等于TA有效值范围的最小值,且小于或等于TA有效值范围的最大值时,确定所述上行TA调整值为所述上行TA值;
当所述上行TA值小于TA有效值范围的最小值时,确定所述上行TA调整值为TA有效值范围的最小值;
当上行TA值大于TA有效值范围的最大值时,确定上行TA调整值为TA有效值范围的最大值。
在本示例中,DCI中的TAC字段的长度为L比特,DCI对应的调整步长为nTs,则DCI中的TAC字段的最大覆盖范围为2 L×nTs,即TA有效值范围的最小值T2为
Figure PCTCN2019090990-appb-000005
最大值T1为
Figure PCTCN2019090990-appb-000006
步骤903、BS将确定的上行TA调整值映射到所在小区DCI的TAC字段中。
本步骤中,按照调整步长将所述上行TA调整值进行量化,即将上行TA调整值和调整步长的比值进行取整作为量化后的上行TA调整值;
将量化后的上行TA调整值映射为上行TA比特值;具体可以按照预先约定好的映射关系将量化后的上行TA调整值映射为上行TA比特值;例如,在DCI中的TAC字段采用L比特来表示上行TA比特值,L比特的一个具体取值与一个量化后的上行TA调整值对应,从而形成映射关系。
步骤904、BS通过PDCCH将包含TAC字段的DCI发送给UE。
步骤905、UE接收DCI,解析DCI中的TAC字段,将TAC字段中的上行TA比特值转换为上行TA值,根据上行TA值进行上行同步调整。
本步骤中,在DCI中的TAC字段携带上行TA比特值发送给第一通信节点,具体的,通过PDCCH发送DCI。
本步骤中,UE先将TAC字段中的上行TA比特值转换为量化后的上行TA调整值,将上行TA调整值和DCI对应的调整步长的乘积作为上行TA值。
步骤906、BS使用MAC CE向第一通信节点发送TAC,TAC携带上行TA值。
步骤907、BS等待UE反馈消息,基站根据UE的反馈消息,对历史滤波值做出相应的调整,开始接收UE上报的测量信息,即继续执行步骤800。
本示例中,DCI中TAC字段与MAC CE中的TAC字段使用不同的比特数,以相同的步长指导UE的上行到达时间。
示例4
本示例中,5G高频场景中,CP短,UE易失步,使用MAC CE频繁下发TAC过于浪费PDSCH资源,使用MAC CE周期性的发送TAC,因为高频情况下的短CP特征,在周期到达之前,UE可能会失步,因此,可以使用MAC CE周期性发送TAC,在周期时间内,使用DCI下发TAC,其中DCI的TAC字段中包含调整步长,调整步长大小可选,能够实现UE的自适应调整。在上行TA值波动较大时,BS配给UE一个相对较大的步长,反之,BS配给UE一个相对较小的步长。
使用MAC CE周期性发送TAC,在周期内使用DCI小步长调整上行时间同步,如图10所示,该方法包括:
步骤1000、BS接收所在小区中UE上报的测量信息,通过滤波计算得到时间调整值,根据时间调整值确定上行TA值。
本步骤中,测量信息包括以下至少之一:SRS、DMRS。
步骤1001、BS使用MAC CE下发TAC,TAC携带上行TA值。
本步骤中,MAC CE使用大步长对UE进行调整。
步骤1002、BS判断是否到达MAC CE的下发周期,若到达MAC CE的下发周期则继续执行步骤1000;若没有到达MAC CE的下发周期,则继续执行步骤1003。
步骤1003、BS使用DCI下发上行TA值,DCI中的TAC字段分配的用于承载上行TA值的比特数小于MAC CE中用于承载上行TA值的比特数,以小于MAC CE对应的调整步长的调整步长对UE的上行到达时间进行修正,此外,在DCI中的TAC字段预留两个比特,用于指示DCI下发的上行TA值所使用的调整步长,即DCI下发的上行TA值的调整步长可变。
虽然本申请实施例所揭露的实施方式如上,但所述的内容仅为便于理解本申请实施例而采用的实施方式,并非用以限定本申请实施例。任何本申请实施例所属领域内的技术人员,在不脱离本申请实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种上行同步方法,包括:
    确定上行定时提前值;
    使用下行控制信息向第一通信节点发送上行定时提前值。
  2. 根据权利要求1所述的上行同步方法,其中,所述确定上行定时提前值之后,该方法还包括:
    比对本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值,当本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值之差的绝对值小于预设阈值时,使用所述下行控制信息向所述第一通信节点发送所述上行定时提前值。
  3. 根据权利要求2所述的上行同步方法,其中,当本次确定的所述上行定时提前值和上一次确定的所述上行定时提前值之差的绝对值大于或等于所述预设阈值时,该方法还包括:
    使用媒体接入控制单元向所述第一通信节点发送定时提前命令,所述定时提前命令携带所述上行定时提前值。
  4. 根据权利要求3所述的上行同步方法,其中,
    第一比特数和第二比特数相同,且第一调整步长和第二调整步长相同;
    或者,第一比特数和第二比特数相同,且第一调整步长和第二调整步长不同;
    或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长相同;
    或者,第一比特数和第二比特数不同,且第一调整步长和第二调整步长不同;
    其中,所述第一比特数为所述下行控制信息中所述上行定时提前值占用的比特数,所述第二比特数为所述媒体接入控制单元中所述上行定时提前值占用的比特数,所述第一调整步长为所述下行控制信息中所述上行定时提前值对应的调整步长,所述第二调整步长为所述媒体接入控制单元中 所述上行定时提前值对应的调整步长。
  5. 根据权利要求1~4任一项所述的上行同步方法,其中,所述使用下行控制信息向第一通信节点发送上行定时提前值包括:
    根据所述上行定时提前值确定上行定时提前调整值;
    将所述上行定时提前调整值映射到所述下行控制信息中,将所述下行控制信息发送给所述第一通信节点。
  6. 根据权利要求5所述的上行同步方法,其中,所述根据上行定时提前值确定上行定时提前调整值包括以下至少之一:
    当所述上行定时提前值大于或等于定时提前有效值范围的最小值,且小于或等于所述定时提前有效值范围的最大值时,确定所述上行定时提前调整值为所述上行定时提前值;
    当所述上行定时提前值小于所述定时提前有效值范围的最小值时,确定所述上行定时提前调整值为所述定时提前有效值范围的最小值;
    当所述上行定时提前值大于所述定时提前有效值范围的最大值时,确定所述上行定时提前调整值为所述定时提前有效值范围的最大值。
  7. 根据权利要求5所述的上行同步方法,其中,所述将上行定时提前调整值映射到下行控制信息中包括:
    按照调整步长将所述上行定时提前调整值进行量化;
    将量化后的上行定时提前调整值映射为上行定时提前比特值;
    在所述下行控制信息中携带所述上行定时提前比特值。
  8. 一种上行同步方法,包括:
    接收第二通信节点发送的下行控制信息;
    根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
  9. 根据权利要求8所述的上行同步方法,其中,所述根据下行控制信息确定上行定时提前值包括:
    根据上行定时提前比特值和量化后的上行定时提前调整值的映射关 系,将所述下行控制信息中携带的上行定时提前比特值映射为所述量化后的上行定时提前调整值;
    根据调整步长将所述量化后的上行定时提前调整值转换为所述上行定时提前值。
  10. 一种上行同步装置,包括:
    确定模块,配置为确定上行定时提前值;
    发送模块,配置为使用下行控制信息向第一通信节点发送上行定时提前值。
  11. 一种上行同步装置,包括:
    接收模块,配置为接收第二通信节点发送的下行控制信息;
    同步模块,配置为根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
  12. 一种上行同步装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,其中,当所述指令被所述处理器执行时,实现如权利要求1至9任一项所述的上行同步方法。
  13. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至9任一项所述的上行同步方法的步骤。
  14. 一种上行同步***,包括:
    第二通信节点,配置为确定上行定时提前值;使用下行控制信息向第一通信节点发送上行定时提前值;第一通信节点,配置为接收第二通信节点发送的下行控制信息;根据所述下行控制信息确定上行定时提前值,根据所述上行定时提前值进行上行同步调整。
PCT/CN2019/090990 2018-06-26 2019-06-12 一种上行同步方法、装置和*** WO2020001277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810671518.6 2018-06-26
CN201810671518.6A CN110650527B (zh) 2018-06-26 2018-06-26 一种上行同步方法、装置和***

Publications (1)

Publication Number Publication Date
WO2020001277A1 true WO2020001277A1 (zh) 2020-01-02

Family

ID=68985307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090990 WO2020001277A1 (zh) 2018-06-26 2019-06-12 一种上行同步方法、装置和***

Country Status (2)

Country Link
CN (1) CN110650527B (zh)
WO (1) WO2020001277A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154445A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Timing advance command in downlink control information
CN113612523A (zh) * 2021-08-23 2021-11-05 东方红卫星移动通信有限公司 上行时间预补偿算法、终端同步方法及***
CN114499798A (zh) * 2020-11-13 2022-05-13 大唐移动通信设备有限公司 抓取异常信道探测参考信号srs数据的方法及其装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115428B (zh) * 2020-01-10 2022-04-12 大唐移动通信设备有限公司 一种上行同步调整方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170367116A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Grant-less Operations
CN107645767A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 时间提前量的测量方法及装置
WO2018031068A1 (en) * 2016-08-10 2018-02-15 Intel IP Corporation Partial symbol transmission
WO2018101880A1 (en) * 2016-11-30 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method for handling users with different timing alignment requirements
CN109076562A (zh) * 2016-04-14 2018-12-21 株式会社Ntt都科摩 用户终端以及无线通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123475B (zh) * 2010-01-12 2015-08-19 华为技术有限公司 一种定时提前分组的确定方法及装置
JP6039652B2 (ja) * 2011-05-06 2016-12-07 エルジー エレクトロニクス インコーポレイティド キャリアアグリゲーションを支援する無線接続システムにおいて伝送タイミングを調整する方法及び装置
CN102271418B (zh) * 2011-07-28 2016-04-20 电信科学技术研究院 一种随机接入的方法及装置
WO2013165138A1 (ko) * 2012-04-29 2013-11-07 엘지전자 주식회사 상향링크 신호 전송 및 수신 방법, 및 이들을 위한 장치
US11005613B2 (en) * 2013-01-24 2021-05-11 Qualcomm Incorporated Multiple power control and timing advance loops during wireless communication
WO2017116125A1 (ko) * 2015-12-29 2017-07-06 한국전자통신연구원 비면허 대역의 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 장치, 그리고 사운딩 참조 신호의 전송을 트리거하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076562A (zh) * 2016-04-14 2018-12-21 株式会社Ntt都科摩 用户终端以及无线通信方法
US20170367116A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Grant-less Operations
CN107645767A (zh) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 时间提前量的测量方法及装置
WO2018031068A1 (en) * 2016-08-10 2018-02-15 Intel IP Corporation Partial symbol transmission
WO2018101880A1 (en) * 2016-11-30 2018-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method for handling users with different timing alignment requirements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154445A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Timing advance command in downlink control information
US11678340B2 (en) 2020-01-31 2023-06-13 Qualcomm Incorporated Timing advance command in downlink control information
CN114499798A (zh) * 2020-11-13 2022-05-13 大唐移动通信设备有限公司 抓取异常信道探测参考信号srs数据的方法及其装置
CN114499798B (zh) * 2020-11-13 2024-03-26 大唐移动通信设备有限公司 抓取异常信道探测参考信号srs数据的方法及其装置
CN113612523A (zh) * 2021-08-23 2021-11-05 东方红卫星移动通信有限公司 上行时间预补偿算法、终端同步方法及***
CN113612523B (zh) * 2021-08-23 2023-02-28 东方红卫星移动通信有限公司 上行时间预补偿算法、终端同步方法及***

Also Published As

Publication number Publication date
CN110650527A (zh) 2020-01-03
CN110650527B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2020001277A1 (zh) 一种上行同步方法、装置和***
JP7156477B2 (ja) 方法、ユーザ機器、及び基地局
KR102342692B1 (ko) 무선 통신을 위한 방법 및 장치
JP2021005902A (ja) 基地局、User Equipment、及びこれらの方法
US11800477B2 (en) Method and apparatus for acquiring uplink transmission timing advance and communication system
WO2018137707A1 (en) Methods and apparatuses for power control in a wireless communication system
WO2020034440A1 (en) Power saving schemes in wireless communication
WO2023011562A1 (en) Method related to physical uplink control channel cell switching and user equipment
JP2023512896A (ja) 無線通信システムにおいてビーム失敗復旧方法及び装置
KR20220166846A (ko) 무선 통신 시스템에서 csi-rs 송수신 방법 및 장치
US20230318784A1 (en) Wireless communication method and device
CN111436108B (zh) 一种功率控制的方法以及功率控制的装置
KR102548064B1 (ko) 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치
US20230421340A1 (en) Implicit update of activated tci states
WO2022027509A1 (zh) 上行数据的发送方法、装置和***
WO2022077354A1 (en) Resource configuration using the burst spread parameter for wireless communication systems
KR20220144823A (ko) 무선 통신 시스템에서 pdsch 송수신 방법 및 장치
JP7218834B2 (ja) ユーザ機器及び基地局
WO2023197258A1 (zh) Ta指示方法、装置、设备及介质
WO2024098229A1 (en) Beam information triggering for cell activation
US20230354348A1 (en) Method and apparatus for transmitting and receiving radio signal in wireless communication system
WO2020237408A1 (zh) 信号处理方法以及装置
JP2023055765A (ja) ユーザ機器及び基地局
JP2023109827A (ja) ユーザ機器及び基地局
KR20240033245A (ko) 무선 통신 시스템에서 복조 참조 신호 번들링 기반 상향링크 채널 송신 또는 수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19824919

Country of ref document: EP

Kind code of ref document: A1