WO2020000928A1 - 变频空调器及其控制方法、控制装置 - Google Patents

变频空调器及其控制方法、控制装置 Download PDF

Info

Publication number
WO2020000928A1
WO2020000928A1 PCT/CN2018/121224 CN2018121224W WO2020000928A1 WO 2020000928 A1 WO2020000928 A1 WO 2020000928A1 CN 2018121224 W CN2018121224 W CN 2018121224W WO 2020000928 A1 WO2020000928 A1 WO 2020000928A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
compressor
air conditioner
inverter
operating frequency
Prior art date
Application number
PCT/CN2018/121224
Other languages
English (en)
French (fr)
Inventor
熊建国
王磊
汪俊勇
熊俊峰
李舸
李款磊
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020000928A1 publication Critical patent/WO2020000928A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the present application relates to the technical field of generating units, and in particular, to a variable frequency air conditioner, a control method thereof, and a control device.
  • 24V weak current is generally used to control air conditioners exported to Beiguan, Laguan and other regions.
  • the internal and external units of this type of air conditioner are mostly fixed frequency units, and no communication is required between the internal and external units. Therefore, internal and external machines from different manufacturers can be mixed and used, thereby increasing the diversity of user choices and reducing the cost of installation and maintenance.
  • the internal unit, external unit and thermostat of the fixed-frequency air conditioner are mostly controlled by 24V weak current.
  • the internal unit has no motherboard and cannot detect the return air temperature and pipe temperature.
  • the external unit cannot detect the indoor set temperature, return air temperature, Tube temperature and other parameters.
  • the internal and external machines can only receive the switching signal from the thermostat, and use this to turn the compressor on or off, so as to cool or heat, so the user experience is poor.
  • the inverter air conditioner still needs to use 485 communication mode, and communication between the internal and external machines is required.
  • the user must choose the matching internal and external machines, which reduces the diversity of user choices and high installation and maintenance costs.
  • a control method of a variable frequency air conditioner wherein the control method is applied to an external unit of the variable frequency air conditioner, There is no communication between them, and the control method includes:
  • the operating frequency of the inverter compressor is controlled according to the continuous operation time and the number of shutdowns.
  • controlling the operating frequency of the variable frequency compressor according to the continuous operating time and the number of shutdowns includes:
  • control method further includes:
  • the initial operating frequency of the variable frequency compressor is determined according to the outdoor ambient temperature value, wherein the initial operating frequency has a corresponding relationship with the outdoor ambient temperature value.
  • the initial operating frequency of the variable frequency compressor is divided into five levels: ultra high frequency, high frequency, intermediate frequency, low frequency and low frequency.
  • step of increasing the operating frequency of the variable frequency compressor includes: stepwise increasing the operating frequency of the variable frequency compressor until the operating frequency of the variable frequency compressor reaches an ultra-high frequency level;
  • the reducing the operating frequency of the variable frequency compressor includes stepwise reducing the operating frequency of the variable frequency compressor until the operating frequency of the variable frequency compressor drops to a low frequency level.
  • the method further includes:
  • the inverter air conditioner When the inverter air conditioner is in a cooling mode, determining the outdoor ambient temperature value from low to high as a first interval, a second interval, a third interval, a fourth interval, and a fifth interval;
  • the corresponding relationship is the first interval, the second interval, the third interval, the fourth interval, and the fifth interval, respectively, in order with the low frequency, the low frequency, the intermediate frequency, the high frequency, and the ultra high frequency. correspond.
  • the method further includes:
  • the inverter air conditioner When the inverter air conditioner is in a heating mode, determining the outdoor ambient temperature value from high to low as a sixth interval, a seventh interval, an eighth interval, a ninth interval, and a tenth interval;
  • the sixth interval, the seventh interval, the eighth interval, the ninth interval, and the tenth interval are sequentially with the low frequency, the low frequency, the intermediate frequency, the high frequency, and the ultra high frequency, respectively. correspond.
  • the load of the frequency conversion compressor corresponding to the initial operating frequency of the frequency conversion compressor from low frequency to ultra high frequency is a first load, a second load, a third load, a fourth load, and a fifth load.
  • control method further includes:
  • variable frequency air conditioner When the variable frequency air conditioner is in a cooling mode, controlling the electronic expansion valve of the external machine to be fully opened and controlling the thermal expansion valve of the internal machine to throttle;
  • the electronic expansion valve controlling the external unit is throttled, and the thermal expansion valve controlling the internal unit is turned on.
  • controlling the thermal expansion valve of the internal machine to throttle includes:
  • the thermal expansion valve controlling the internal machine is opened as the superheat degree increases.
  • controlling the conduction of the electronic expansion valve of the external machine includes:
  • the electronic expansion valve controlling the external machine is opened as the exhaust temperature of the inverter compressor increases.
  • variable frequency air conditioner for performing the control method described in the first aspect.
  • the variable frequency air conditioner includes an internal unit and an external unit. There is no communication between the external machine and the internal machine, and the external machine includes: a main board and a variable frequency compressor;
  • the main board is connected to the inverter compressor and is used to control the inverter compressor to operate at an initial operating frequency; and sending a control instruction to the inverter compressor according to the continuous operation time and the number of shutdowns of the inverter compressor;
  • the inverter compressor is configured to receive a control instruction sent by the main board, and adjust its own operating frequency according to the control instruction.
  • the external device further includes: a temperature sensing pack,
  • the temperature sensing package is connected to the main board and is used to obtain an outdoor ambient temperature value
  • the main board is configured to determine the initial operating frequency of the variable frequency compressor according to the outdoor ambient temperature value, wherein the initial operating frequency has a corresponding relationship with the outdoor ambient temperature value.
  • the external machine further includes: an electronic expansion valve
  • the internal machine includes: a thermal expansion valve
  • the electronic expansion valve is connected to the main board, and is used to be in a fully open state when the variable frequency air conditioner is in a cooling mode, and in a throttling state when the variable frequency air conditioner is in a heating mode;
  • the thermal expansion valve is configured to be in a throttling state when the inverter air conditioner is in a cooling mode, and to be in a conducting state when the inverter air conditioner is in a heating mode.
  • the internal machine further includes: an evaporator connected to the thermal expansion valve,
  • the electronic expansion valve is further configured to be opened as the exhaust temperature of the inverter compressor increases when the inverter air conditioner is in a heating mode;
  • the thermal expansion valve is further configured to be opened as the superheat degree of the evaporator increases when the inverter air conditioner is in a cooling mode.
  • the external machine further includes: a condenser, a four-way valve, and a steam fraction,
  • One end of the condenser is connected to the electronic expansion valve, and the other end is connected to the four-way valve;
  • the four-way valve is connected in a closed loop to the frequency conversion compressor and the steam.
  • a control device for a variable frequency air conditioner is further provided.
  • the control device is configured to execute the control method described in the first aspect, and the control device is applied to the variable frequency air conditioner.
  • the control device includes:
  • a control module for controlling the inverter compressor to run at the initial operating frequency
  • a monitoring module for monitoring the continuous running time and the number of shutdowns of the variable frequency compressor
  • the control module is further configured to control an operating frequency of the variable frequency compressor according to the continuous operating time and the number of shutdowns.
  • control module is further configured to compare the continuous running time with a preset time; if the continuous running time is greater than the preset time, increase the running frequency of the variable frequency compressor; if the continuous running time If it is less than or equal to the preset time, it is determined whether the number of shutdown times of the inverter compressor is greater than the preset number of times during the continuous operation time; if it is, then the operating frequency of the inverter compressor is reduced; if not, Then controlling the inverter compressor to still operate at the initial operating frequency.
  • control device further includes: a detection module for detecting an outdoor environment temperature value; a determination module for determining the initial operating frequency of the variable frequency compressor according to the outdoor environment temperature value, wherein the The initial operating frequency has a corresponding relationship with the outdoor ambient temperature value.
  • the initial operating frequency of the variable frequency compressor is divided into five levels: ultra high frequency, high frequency, intermediate frequency, low frequency and low frequency.
  • control module is further configured to increase the operating frequency of the variable frequency compressor step by step if the continuous running time is greater than the preset time until the operating frequency of the variable frequency compressor reaches an ultra-high frequency Level; if the continuous running time is less than or equal to the preset time, determine whether the number of shutdown times of the inverter compressor is greater than the preset number of times during the continuous running time; if it is, reduce the level by level The operating frequency of the inverter compressor until the operating frequency of the inverter compressor drops to a low frequency level.
  • control module is further configured to control the electronic expansion valve of the external unit to be fully opened and control the thermal expansion valve of the internal unit to throttle when the inverter air conditioner is in a cooling mode;
  • the electronic expansion valve of the external unit is controlled to throttle, and the thermal expansion valve of the internal unit is controlled to be turned on.
  • the external machine does not need to communicate with the internal machine, and then adjusts the operating frequency of the inverter compressor according to the indoor set temperature value, return air temperature and other parameters. Instead, the inverter compressor is determined. After the initial operating frequency of the inverter, the operating frequency can be adjusted according to the continuous operating time and the number of shutdowns of the inverter compressor, and the output capacity of the inverter compressor can be changed, thereby taking into account the superior comfort of the inverter air conditioner and the strong user experience At the same time, it guarantees that there is no need for communication between internal and external machines and no supporting use is required, which increases the diversity of user choices.
  • FIG. 1 is a flowchart of a control method of a variable frequency air conditioner according to one or more embodiments of the present application
  • FIG. 2 is a flowchart of a control method of a variable frequency air conditioner according to one or more embodiments of the present application
  • FIG. 3 is a flowchart of a control method of a variable frequency air conditioner according to one or more embodiments of the present application
  • variable frequency air conditioner is a structural block diagram of a variable frequency air conditioner according to one or more embodiments of the present application.
  • variable frequency air conditioner is a schematic structural diagram of a variable frequency air conditioner according to one or more embodiments of the present application.
  • FIG. 6 is a structural block diagram of a control device of a variable frequency air conditioner according to one or more embodiments of the present application.
  • An embodiment of the present application provides a control method of a variable frequency air conditioner.
  • the control method is applied to an external unit of a variable frequency air conditioner.
  • the external unit includes a variable frequency compressor, and there is no communication between the external unit and the internal unit, as shown in FIG. 1.
  • Control methods include:
  • Step S101 Control the inverter compressor to operate according to the initial operating frequency
  • Step S102 monitoring the continuous running time and the number of shutdowns of the inverter compressor
  • Step S103 Control the operating frequency of the inverter compressor according to the continuous operation time and the number of shutdowns.
  • the external machine does not need to communicate with the internal machine, and then adjusts the operating frequency of the inverter compressor according to the indoor set temperature value, return air temperature and other parameters. Instead, it determines the frequency of the inverter compressor. After the initial operating frequency, the operating frequency can be adjusted according to the continuous operating time and the number of shutdowns of the inverter compressor, and the output capacity of the inverter compressor can be changed, thereby taking into account the superiority of the inverter air conditioner, such as high comfort and strong user experience At the same time, it ensures that there is no need for communication between the internal and external machines and no supporting use is required, which increases the diversity of user choices.
  • the external unit generally includes important components that control the operation of the air conditioner, such as a compressor, so the external unit has a shorter life than the internal unit. If the internal and external units of the variable frequency air conditioner need to communicate and support the use, when a failure occurs, the external and internal units need to be replaced together, which will easily damage the decoration and increase costs. However, if only fixed-frequency air conditioners with no communication between the internal and external units are used, user comfort is poor and energy is wasted. Therefore, the inventor provides a control method of the variable frequency air conditioner according to this embodiment after intensive research.
  • the initial operating frequency of the inverter compressor should be determined first.
  • the outdoor ambient temperature value can be detected; the frequency of the inverter compressor is determined according to the outdoor ambient temperature value.
  • the initial operating frequency where the initial operating frequency has a corresponding relationship with the outdoor ambient temperature value.
  • the outdoor ambient temperature value can be changed from low
  • the highest interval is determined as the first interval, the second interval, the third interval, the fourth interval, and the fifth interval in order; the corresponding relationship is the first interval, the second interval, the third interval, the fourth interval, and the fifth interval, respectively.
  • the lowest interval is determined as the first interval, the second interval, the third interval, the fourth interval, and the fifth interval in order; the corresponding relationship is the first interval, the second interval, the third interval, the fourth interval, and the fifth interval, respectively.
  • low frequency, low frequency, medium frequency, high frequency and ultra high frequency corresponds to low frequency, low frequency, medium frequency, high frequency and ultra high frequency.
  • the outdoor ambient temperature value can be determined from high to low as the sixth interval, the seventh interval, the eighth interval, the ninth interval, and the tenth interval; the corresponding relationship is the sixth interval.
  • the seventh, seventh, eighth, ninth, and tenth intervals correspond to low frequency, low frequency, intermediate frequency, high frequency, and ultra high frequency, respectively.
  • the initial frequency of the inverter compressor from the low frequency to the ultra-high frequency corresponds to the inverter compressor load in order of the first load, the second load, the third load, the fourth load, and the fifth load, where the first load ⁇
  • the second load ⁇ the third load ⁇ the fourth load ⁇ the fifth load. It can be understood that the higher the initial operating frequency of the inverter compressor, the greater the load.
  • the first load to the fifth load are 40%, 60%, 80%, 100%, and 120% in this order. 120% means that the inverter compressor has a large load and is overloaded.
  • the division of the initial operating frequency of the inverter compressor is only an example, and is not intended to limit the manner of dividing the initial operating frequency of the inverter compressor.
  • manufacturers can divide the initial operating frequency of the inverter compressor into more or less grades according to where the air conditioner is sold.
  • the inventors have considered that users have different degrees of demand for cooling capacity or heating capacity under different ambient temperatures. For example, in Table 1, when the temperature is ⁇ 40 ° C, the inventor urgently needs The temperature drops rapidly, so the inverter compressor operates at ultra high frequency. This division is also not a limitation.
  • step S101 may be performed to control the inverter compressor to operate at the initial operating frequency.
  • step S101 the continuous operation time and the number of shutdowns of the inverter compressor can be monitored; and the operating frequency of the variable frequency compressor is controlled according to the continuous operation time and the shutdown times.
  • step S103 controlling the operating frequency of the variable frequency compressor according to the continuous running time and the number of shutdowns, including:
  • Step S1031 comparing the continuous running time with a preset time
  • Step S1032 if the continuous operation time is longer than the preset time, increase the operation frequency of the variable frequency compressor;
  • Step S1033 If the continuous running time is less than or equal to the preset time, determine whether the number of shutdown times of the inverter compressor is greater than the preset times during the continuous running time;
  • Step S1034 if yes, reduce the operating frequency of the inverter compressor
  • Step S1035 If not, control the inverter compressor to still operate at the initial operating frequency.
  • the preset time is a parameter set after comprehensively considering user needs and the performance of the inverter compressor.
  • the continuous running time of the inverter compressor is longer than the preset time, it means that the inverter compressor running at the current operating frequency cannot reach the temperature required by the user, or it takes a long time to reach the temperature required by the user .
  • the operating frequency of the inverter compressor can be increased within the range that the inverter compressor can bear. If the continuous running time is less than or equal to the preset time, the relationship between the number of shutdowns of the inverter compressor and the preset number can be judged.
  • the greater the number of shutdowns it indicates that the current inverter compressor is sufficient to meet the needs of the user (because the inverter compressor will stop only when the user set temperature is reached), and frequent shutdown and restart will cause damage to the inverter compressor. Therefore, while determining that the inverter compressor meets the needs of the user, the operating frequency of the inverter compressor can be appropriately reduced to take into account the user experience and the performance of the inverter compressor.
  • the number of shutdowns is not greater than the preset number, it means that the current operating frequency, that is, the initial operating frequency, is appropriate, and the inverter compressor can be controlled to continue to operate at the initial operating frequency.
  • the frequency conversion compression is increased.
  • the running frequency of the machine includes: if the continuous running time is greater than the preset time, increase the running frequency of the inverter compressor step by step until the operating frequency of the inverter compressor reaches the UHF level; if the continuous running time is less than or equal to the preset time, Then determine whether the frequency of the inverter compressor is stopped more than a preset number of times during continuous operation time; if so, reducing the frequency of the inverter compressor includes: stepwise reducing the frequency of the inverter compressor until the frequency of the inverter compressor Downgraded to low frequency.
  • the operating frequency of the inverter compressor can be adjusted according to the continuous operating time and the number of shutdowns of the inverter compressor, which can take into account the user comfort and the performance of the inverter compressor. While ensuring the performance of the inverter compressor, it meets the user's requirements. Use experience.
  • the internal and external units can be sold independently. For example, an external unit of a certain manufacturer can be used with fixed-frequency internal units of other manufacturers, which is convenient for users to choose. And if the user installs the fixed-frequency internal unit and needs to replace the external unit shown in this application, there is no need to disassemble the internal unit and connect the pipes, which saves the cost of installation and maintenance.
  • inverter air conditioners are more energy efficient than fixed frequency air conditioners.
  • control method further includes: when the variable frequency air conditioner is in a cooling mode, controlling the electronic expansion valve of the external machine to be fully opened, controlling the thermal expansion valve of the internal machine to throttle; In the mode, the electronic expansion valve controlling the external machine is throttled, and the thermal expansion valve of the internal machine is controlled to conduct.
  • controlling the thermal expansion valve of the internal machine to throttle includes: monitoring the superheat of the evaporator; controlling the thermal expansion valve of the internal machine to open as the superheat increases.
  • Controlling the conduction of the electronic expansion valve of the external machine includes monitoring the exhaust temperature of the inverter compressor; controlling the electronic expansion valve of the external machine to open as the exhaust temperature of the inverter compressor rises.
  • the thermal expansion valve and the electronic expansion valve can be adjusted and adjusted according to the superheat degree and the exhaust temperature of the inverter compressor, respectively, so as to meet the refrigerant flow demand of the inverter air conditioner in the cooling or heating mode.
  • an embodiment of the present application further provides a control method of a variable-frequency air conditioner.
  • the control method includes:
  • Step S301 power on
  • Step S302 Detect the outdoor ambient temperature
  • Step S303 The compressor runs according to the target frequency (the target frequency is the initial operating frequency);
  • Step S304 Determine whether the continuous running time is greater than T; if yes, execute step S305; if not, execute step S306;
  • Step S305 The compressor is upshifted; return to step S304;
  • Step S306 Determine whether the number of start-stop times is greater than N; if yes, execute step S307; if not, execute step S308;
  • step S307 the compressor is shifted down by one gear; the process returns to step S306.
  • Step S308 Maintain the current frequency operation.
  • the operating frequency can be adjusted according to the continuous operating time and the number of shutdowns of the inverter compressor, and the output capacity of the inverter compressor can be changed, thereby taking into account the superiority of the inverter air conditioner, such as high comfort and strong user experience. This ensures that there is no need for communication between the internal and external machines and no supporting use is required, which increases the diversity of user choices.
  • variable frequency air conditioner which can be used to execute the control methods shown in FIGS. 1 to 3.
  • the variable frequency air conditioner includes an internal unit and an external unit, and there is no communication between the external unit and the internal unit, as shown in FIG. 4.
  • the external machine includes: main board 1 and inverter compressor 2;
  • the main board 1 is connected to the inverter compressor 2 and is used to control the inverter compressor 2 to operate at the initial operating frequency.
  • the control instruction is sent to the inverter compressor 2 according to the continuous operation time and the number of shutdowns of the inverter compressor 2;
  • the inverter compressor 2 is used to receive a control instruction sent by the main board 1 and adjust its own operating frequency according to the control instruction.
  • variable frequency compressor 2 adjusts its output according to the continuous operation time and the number of shutdowns through hierarchical adjustment.
  • the operating frequency can be adjusted according to the continuous running time and the number of shutdowns of the inverter compressor 2 to change the output capacity of the inverter compressor 2, thereby taking into account the superiority of the inverter air conditioner, such as high comfort and strong user experience. At the same time, it ensures that there is no need for communication between the internal and external machines and no supporting use is required, which increases the diversity of user choices.
  • the external device further includes: a temperature sensing package,
  • Temperature sensing package which is connected to the main board 1 and used to obtain the outdoor ambient temperature value
  • the main board 1 is configured to determine an initial operating frequency of the variable frequency compressor 2 according to an outdoor ambient temperature value, where the initial operating frequency has a corresponding relationship with the outdoor ambient temperature value.
  • the internal unit does not have a motherboard and a temperature sensor. There is no communication between the internal and external units, and there is no communication between the internal unit and the temperature controller, and between the external unit and the temperature controller.
  • the internal and external units can only receive switching signals from the thermostat.
  • the external machine further includes: an electronic expansion valve 3, and the internal machine includes: a thermal expansion valve 4 and an electronic expansion valve 3, which are connected to the main board 1 and are used in a variable frequency air conditioner.
  • the thermal expansion valve 4 is used when the inverter air conditioner is in the cooling mode, in the throttling state, and in the inverter air conditioner When in heating mode, it is on.
  • thermal expansion valve 4 may be a one-way thermal expansion valve, which is used for throttling during cooling and conducting during heating.
  • the internal unit further includes: an evaporator 5 connected to the thermal expansion valve 4,
  • the electronic expansion valve 3 is also used to open the inverter air conditioner when the inverter air conditioner is in the heating mode.
  • the thermal expansion valve 4 is also used to open up as the superheat degree of the evaporator 5 increases when the inverter air conditioner is in a cooling mode.
  • the external machine further includes: a condenser 6, a four-way valve 7, and a steam fraction 8.
  • One end of the condenser 6 is connected to the electronic expansion valve 3 and the other end is connected to the four-way valve 7;
  • the four-way valve 7 is connected in a closed loop to the inverter compressor 2 and the steam sub-unit 8.
  • An embodiment of the present application further provides a control device for a variable frequency air conditioner, where the control device is configured to execute the control methods shown in FIG. 1 to FIG. 3.
  • the control device is applied to the external unit of the inverter air conditioner.
  • the external unit includes a variable frequency compressor. There is no communication between the external unit and the internal unit.
  • the control unit includes:
  • a control module 601, configured to control the inverter compressor to run at an initial operating frequency
  • a monitoring module 602 configured to monitor the continuous running time and the number of shutdowns of the inverter compressor
  • the control module 601 is further configured to control the operating frequency of the inverter compressor according to the continuous running time and the number of shutdowns.
  • the operating frequency can be adjusted according to the continuous operating time and the number of shutdowns of the inverter compressor, and the output capacity of the inverter compressor can be changed, thereby taking into account the superiority of the inverter air conditioner, such as high comfort and strong user experience. This ensures that there is no need for communication between the internal and external machines and no supporting use is required, which increases the diversity of user choices.
  • control module 601 is further configured to compare the continuous running time with a preset time; if the continuous running time is greater than the preset time, increase the running frequency of the inverter compressor; if the continuous running time is less than or equal to Preset time, determine whether the frequency of the inverter compressor is stopped more than the preset number of times during continuous operation time; if it is, reduce the frequency of the inverter compressor; if not, control the inverter compressor to operate at the initial operating frequency .
  • control device further includes: a detecting module for detecting an outdoor ambient temperature value; a determining module for determining an initial operating frequency of the variable frequency compressor according to the outdoor ambient temperature value, wherein the initial operating frequency and the The outdoor ambient temperature value has a corresponding relationship.
  • the control module 601 is further configured to: Time, the operating frequency of the inverter compressor is increased step by step until the operating frequency of the inverter compressor reaches the UHF level; if the continuous operation time is less than or equal to the preset time, it is judged that the inverter compressor stops during the continuous operation time Whether the number of times is greater than a preset number; if so, reduce the operating frequency of the inverter compressor step by step until the operating frequency of the inverter compressor drops to a low frequency level.
  • control module 601 is further configured to control the electronic expansion valve of the external unit to be fully opened and control the thermal expansion valve of the internal unit to throttle when the inverter air conditioner is in the cooling mode; In the heating mode, the electronic expansion valve controlling the external unit is throttled, and the thermal expansion valve controlling the internal unit is turned on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种变频空调器及其控制方法、控制装置。其中,该控制方法应用于变频空调器的外机中,外机和内机之间无通讯,控制方法包括:控制变频压缩机按照初始运行频率运行;监控变频压缩机的连续运行时间和停机次数。根据压缩机的连续运行时间和停机次数来调整压缩机的运行频率,改变压缩机的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时,保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性

Description

变频空调器及其控制方法、控制装置
相关申请
本申请要求2018年06月26日申请的,申请号为201810670161.X,名称为“一种变频空调器及其控制方法、控制装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及机组技术领域,具体而言,涉及一种变频空调器及其控制方法、控制装置。
背景技术
目前,一般采用24V弱电控制出口北关、拉关等地区的空调器。此种空调器的内外机多为定频机,内外机之间无需通讯。因此,不同厂家的内外机可以混搭使用,从而提高了用户选择的多样性,且降低了安装维修的成本。但定频空调器的内机、外机和温控器多采用24V弱电进行控制,内机没有主板,无法检测回风温度和管温,外机无法检测室内的设定温度、回风温度、管温等参数。内外机只能接收温控器发出的开关信号,并以此来开启或关闭压缩机,从而进行制冷或制热,因此,用户体验较差。而变频空调器仍需采用485通讯方式,内外机之间需要进行通讯,用户须选择配套的内外机,降低了用户选择的多样性,且安装维修成本高。
针对相关技术中变频空调器的内外机之间需要进行通讯且需配套使用,降低了用户选择的多样性的问题,目前尚未提出有效的解决方案。
发明内容
根据本申请的各种实施例,第一方面,提供了一种变频空调器的控制方法,其中,所述控制方法应用于所述变频空调器的外机中,所述外机和内机之间无通讯,所述控制方法包括:
控制变频压缩机按照初始运行频率运行;
监控所述变频压缩机的连续运行时间和停机次数;
根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率。
进一步地,根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率,包括:
比较所述连续运行时间与预设时间;
如果所述连续运行时间大于预设时间,则提高所述变频压缩机的运行频率;
如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;
如果是,则降低所述变频压缩机的运行频率;如果否,则控制所述变频压缩机仍按照所述初始运行频率运行。
进一步地,在控制变频压缩机按照初始运行频率运行之前,所述控制方法还包括:
检测室外环境温度值;
根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
进一步地,所述变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级。
进一步地,所述提高所述变频压缩机的运行频率包括:逐级提高所述变频压缩机的运行频率,直到所述变频压缩机的运行频率达到超高频等级;
所述降低所述变频压缩机的运行频率包括:逐级降低所述变频压缩机的运行频率,直到所述变频压缩机的运行频率降至低频等级。
进一步地,所述方法还包括:
当所述变频空调器处于制冷模式时,将所述室外环境温度值从低到高依次确定为第一区间、第二区间、第三区间、第四区间以及第五区间;
所述对应关系为所述第一区间、所述第二区间、所述第三区间、所述第四区间、所述第五区间依次分别与低频、中低频、中频、高频、超高频对应。
进一步地,所述方法还包括:
当所述变频空调器处于制热模式时,将所述室外环境温度值从高到低依次确定为第六区间、第七区间、第八区间、第九区间以及第十区间;
所述对应关系为所述第六区间、所述第七区间、所述第八区间、所述第九区间以及所述第十区间依次分别与低频、中低频、中频、高频、超高频对应。
进一步地,所述变频压缩机的初始运行频率从低频到超高频所对应的变频压缩机负荷依次为第一负荷、第二负荷、第三负荷、第四负荷以及第五负荷,其中,所述第一负荷<所述第二负荷<所述第三负荷<所述第四负荷<所述第五负荷。
进一步地,所述控制方法还包括:
当所述变频空调器处于制冷模式时,控制所述外机的电子膨胀阀全开,控制所述内机 的热力膨胀阀进行节流;
当所述空调器处于制热模式时,控制所述外机的所述电子膨胀阀进行节流,控制所述内机的所述热力膨胀阀导通。
进一步地,控制所述内机的热力膨胀阀进行节流包括:
监测蒸发器的过热度;
控制所述内机的所述热力膨胀阀随所述过热度的增大而开大。
进一步地,控制所述外机的所述电子膨胀阀导通包括:
监测所述变频压缩机的排气温度;
控制所述外机的所述电子膨胀阀随所述变频压缩机的所述排气温度升高而开大。
第二方面,根据本申请的各种实施例,还提供一种变频空调器,所述变频空调器用于执行第一方面所述的控制方法,所述变频空调器包括内机和外机,所述外机和所述内机之间无通讯,所述外机包括:主板及变频压缩机;
所述主板,与所述变频压缩机连接,用于控制所述变频压缩机按照初始运行频率运行;根据所述变频压缩机的连续运行时间和停机次数向所述变频压缩机发送控制指令;
所述变频压缩机,用于接收所述主板发送的控制指令,并根据所述控制指令调整自身的运行频率。
进一步地,所述外机还包括:感温包,
所述感温包,与所述主板连接,用于获取室外环境温度值;
所述主板,用于根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
进一步地,所述外机还包括:电子膨胀阀,所述内机包括:热力膨胀阀,
所述电子膨胀阀,与所述主板连接,用于在所述变频空调器处于制冷模式时,处于全开状态,在所述变频空调器处于制热模式时,处于节流状态;
所述热力膨胀阀,用于在所述变频空调器处于制冷模式时,处于节流状态,在所述变频空调器处于制热模式时,处于导通状态。
进一步地,所述内机还包括:与所述热力膨胀阀连接的蒸发器,
所述电子膨胀阀,还用于在所述变频空调器处于制热模式时,随所述变频压缩机的排气温度升高而开大;
所述热力膨胀阀,还用于在所述变频空调器处于制冷模式时,随所述蒸发器的过热度的增大而开大。
进一步地,所述外机还包括:冷凝器、四通阀以及汽分,
所述冷凝器的一端连接于所述电子膨胀阀,另一端连接于所述四通阀;
所述四通阀与所述变频压缩机和所述汽分呈闭合回路连接方式。
第三方面,根据本申请的各种实施例,还提供一种变频空调器的控制装置,所述控制装置用于执行第一方面所述的控制方法,所述控制装置应用于所述变频空调器的外机中,所述外机和内机之间无通讯,所述控制装置包括:
控制模块,用于控制变频压缩机按照初始运行频率运行;
监控模块,用于监控所述变频压缩机的连续运行时间和停机次数;
所述控制模块,还用于根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率。
进一步地,所述控制模块,还用于比较所述连续运行时间与预设时间;如果所述连续运行时间大于预设时间,则提高所述变频压缩机的运行频率;如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;如果是,则降低所述变频压缩机的运行频率;如果否,则控制所述变频压缩机仍按照所述初始运行频率运行。
进一步地,所述控制装置还包括:检测模块,用于检测室外环境温度值;确定模块,用于根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
进一步地,所述变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级。
进一步地,所述控制模块,还用于如果所述连续运行时间大于所述预设时间,则逐级提高所述变频压缩机的运行频率,直到所述变频压缩机的运行频率达到超高频等级;如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;如果是,则逐级降低所述变频压缩机的运行频率,直到所述变频压缩机的运行频率降至低频等级。
进一步地,所述控制模块,还用于当所述变频空调器处于制冷模式时,控制所述外机的电子膨胀阀全开,控制所述内机的热力膨胀阀进行节流;当所述空调器处于制热模式时,控制所述外机的所述电子膨胀阀进行节流,控制所述内机的所述热力膨胀阀导通。
本申请的技术方案中,外机无需采用与内机进行通讯后,再根据室内设定温度值、回风温度等参数来调整变频压缩机的运行频率的方式,而是在确定了变频压缩机的初始运行频率之后,可根据变频压缩机的连续运行时间和停机次数来调整运行频率,改变变频压缩机的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时, 保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性。
附图说明
图1是根据本申请一个或多个实施例的一种变频空调器的控制方法的流程图;
图2是根据本申请一个或多个实施例的一种变频空调器的控制方法的流程图;
图3是根据本申请一个或多个实施例的一种变频空调器的控制方法的流程图;
图4是根据本申请一个或多个实施例的一种变频空调器的结构框图;
图5是根据本申请一个或多个实施例的一种变频空调器的结构示意图;
图6是根据本申请一个或多个实施例的一种变频空调器的控制装置的结构框图。
具体实施方式
下面结合附图和具体实施例对本申请作进一步详细描述,应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
为了解决相关技术中变频空调器的内外机之间需要进行通讯且需配套使用,降低了用户选择的多样性的问题。本申请实施例提供了一种变频空调器的控制方法,该控制方法应用于变频空调器的外机中,外机包括变频压缩机,外机和内机之间无通讯,如图1所示,控制方法包括:
步骤S101、控制变频压缩机按照初始运行频率运行;
步骤S102、监控变频压缩机的连续运行时间和停机次数;
步骤S103、根据连续运行时间和停机次数控制变频压缩机的运行频率。
在本实施例中,外机无需采用与内机进行通讯后,再根据室内设定温度值、回风温度等参数来调整变频压缩机的运行频率的方式,而是在确定了变频压缩机的初始运行频率之后,可根据变频压缩机的连续运行时间和停机次数来调整运行频率,改变变频压缩机的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时,保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性。
需要说明的是,外机一般包含控制空调器运行的重要器件,例如压缩机,所以外机与内机相比,寿命较短。如果变频空调器的内机和外机需进行通讯和配套使用,则出现故障时,需一起更换外机和内机,极容易破坏装修且增加了成本。但如果仅使用内外机之间无 通讯的定频空调器,则用户舒适性较差,且较为浪费能源。因此,发明人经过深入研究,提供了本实施例所述的变频空调器的控制方法。
可以理解的是,在变频空调器上电后,首先应确定变频压缩机的初始运行频率,在一种可能的实现方式中,可检测室外环境温度值;根据室外环境温度值确定变频压缩机的初始运行频率,其中,初始运行频率与室外环境温度值具有对应关系。
在一个示例中,如果变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级,则当变频空调器处于制冷模式时,可以将室外环境温度值从低到高依次确定为第一区间、第二区间、第三区间、第四区间以及第五区间;则对应关系为第一区间、第二区间、第三区间、第四区间、第五区间依次分别与低频、中低频、中频、高频、超高频对应。当变频空调器处于制热模式时,可将室外环境温度值从高到低依次确定为第六区间、第七区间、第八区间、第九区间以及第十区间;则对应关系为第六区间、第七区间、第八区间、第九区间以及第十区间依次分别与低频、中低频、中频、高频、超高频对应。其中,变频压缩机的初始运行频率从低频到超高频所对应的变频压缩机负荷依次为第一负荷、第二负荷、第三负荷、第四负荷以及第五负荷,其中,第一负荷<第二负荷<第三负荷<第四负荷<第五负荷。可以理解的是,变频压缩机的初始运行频率越高,负荷越大。
在一种应用性示例中,上述环境温度值区间、变频压缩机的负荷以及初始运行频率之间的对应关系如下表1所示。
表1
Figure PCTCN2018121224-appb-000001
其中,第一负荷至第五负荷依次为40%、60%、80%、100%、120%。120%表示变频压缩机负载较大,超负荷运行。
需要说明的是,上述示例中,对变频压缩机初始运行频率的划分只作为一种示例,并不作为对变频压缩机初始运行频率划分方式的限定。在实际应用中,厂家可根据空调器的 出售地将变频压缩机的初始运行频率划分为更多等级或更少等级。且对于室外环境温度值的区间性划分中,发明人考虑了在不同环境温度下,用户对制冷量或制热量的需求程度不同,例如,表1中,当温度≥40℃时,发明人急需温度迅速降低,因此,变频压缩机以超高频运行。此划分方式也不作为一种限定。
本实现方式中,综合考虑了变频压缩机的负荷以及不同环境温度下用户的需求程度等因素,确定了一个适宜的对应关系。在满足用户体验的同时,保障了变频压缩机的使用安全,提高了变频压缩机的使用寿命。
在根据对应关系确定了压缩机的初始运行频率后,可执行步骤S101、控制变频压缩机按照初始运行频率运行。在执行完步骤S101后,可监控变频压缩机的连续运行时间和停机次数;并根据连续运行时间和停机次数控制变频压缩机的运行频率。
在一种可能的实现方式中,如图2所示,步骤S103、根据连续运行时间和停机次数控制变频压缩机的运行频率,包括:
步骤S1031、比较连续运行时间与预设时间;
步骤S1032、如果连续运行时间大于预设时间,则提高变频压缩机的运行频率;
步骤S1033、如果连续运行时间小于或等于预设时间,则判断在连续运行时间内,变频压缩机的停机次数是否大于预设次数;
步骤S1034、如果是,则降低变频压缩机的运行频率;
步骤S1035、如果否,则控制变频压缩机仍按照初始运行频率运行。
需要说明的是,预设时间是综合考虑用户需求与变频压缩机性能之后,设定的一个参数。当变频压缩机的连续运行时间较长,以至于大于预设时间时,说明以当前运行频率运行的变频压缩机,无法达到用户需求的温度,或者达到用户需要的温度时,需要较长的时间。以上两种情况均会降低用户的使用体验。因此,可在变频压缩机所能承受的范围内提高变频压缩机的运行频率。如果连续运行时间小于或等于预设时间,则可判断变频压缩机的停机次数与预设次数的关系。停机次数越多,表明当前变频压缩机足以满足用户的需求(因为只有达到用户设定温度后,变频压缩机才会停机),而频繁停机再启动,会对变频压缩机造成损害。因此,在确定变频压缩机满足用户需求的同时,可适当降低变频压缩机的运行频率,以兼顾用户体验和变频压缩机的性能。而当停机次数不大于预设次数时,则说明当前运行频率即初始运行频率适宜,可控制变频压缩机继续按照初始运行频率运行。
在一种可能的实现方式中,如果变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级,则如果连续运行时间大于预设时间,则提高变频压缩机的运行频率包括:如果连续运行时间大于预设时间,则逐级提高变频压缩机的运行频率,直到变 频压缩机的运行频率达到超高频等级;如果连续运行时间小于或等于预设时间,则判断在连续运行时间内,变频压缩机的停机次数是否大于预设次数;如果是,则降低变频压缩机的运行频率包括:逐级降低变频压缩机的运行频率,直到变频压缩机的运行频率降至低频等级。
由此,根据变频压缩机的连续运行时间和停机次数对变频压缩机的运行频率进行调整,可兼顾用户舒适度与变频压缩机的性能,在保证变频压缩机的性能的同时,满足了用户的使用体验。且相较于定频空调器来说,内外机可独立销售,例如,某一厂家的外机可搭配其他厂家的定频内机使用,便于用户的选择。且如果用户安装好定频内机,需要更换本申请所示的外机时,无需拆卸内机,连管连线,节省了安装维修的成本。再者,变频空调器相较于定频空调来说,更为节能。
下面从元器件的角度对变频压缩机的工作流程进行简单说明。在一种可能的实现方式中,控制方法还包括:当变频空调器处于制冷模式时,控制外机的电子膨胀阀全开,控制内机的热力膨胀阀进行节流;当空调器处于制热模式时,控制外机的电子膨胀阀进行节流,控制内机的热力膨胀阀导通。其中,控制内机的热力膨胀阀进行节流包括:监测蒸发器的过热度;控制内机的热力膨胀阀随过热度的增大而开大。控制外机的电子膨胀阀导通包括:监测变频压缩机的排气温度;控制外机的电子膨胀阀随变频压缩机的排气温度升高而开大。
由此,热力膨胀阀和电子膨胀阀可分别根据过热度以及变频压缩机的排气温度进行修正调节,以满足在制冷或制热模式下,变频空调器对于冷媒流量的需求。
如图3所示,本申请实施例还提供一种变频空调器的控制方法,该控制方法包括:
步骤S301、开机;
步骤S302、检测室外环境温度;
步骤S303、压缩机按照目标频率运行(目标频率即初始运行频率);
步骤S304、判断连续运行时间是否大于T;如果是,则执行步骤S305,如果否,则执行步骤S306;
步骤S305、压缩机升一档;返回执行步骤S304;
步骤S306、判断开停机次数是否大于N;如果是,则执行步骤S307;如果否,则执行步骤S308;
步骤S307、压缩机降一档;返回执行步骤S306。
步骤S308、维持当前频率运行。
需要说明的是,在压缩机升一档后,重新判断连续运行时间是否大于T,直到连续运 行时间不大于T,或者压缩机升到最高档位。在压缩机降一档后,重新判断开停机次数是否大于N,直到开停机次数不大于N,或者压缩机降至最低档位。
由此,可根据变频压缩机的连续运行时间和停机次数来调整运行频率,改变变频压缩机的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时,保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性。
本申请实施例还提供一种变频空调器,可用于执行图1至图3所示的控制方法,变频空调器包括内机和外机,外机和内机之间无通讯,如图4所示,外机包括:主板1及变频压缩机2;
主板1,与变频压缩机2连接,用于控制变频压缩机2按照初始运行频率运行;根据变频压缩机2的连续运行时间和停机次数向变频压缩机2发送控制指令;
变频压缩机2,用于接收主板1发送的控制指令,并根据控制指令调整自身的运行频率。
需要说明的是,变频压缩机2通过分级调节,根据连续运行时间和停机次数调节能力输出。
由此,可根据变频压缩机2的连续运行时间和停机次数来调整运行频率,改变变频压缩机2的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时,保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性。
在一种可能的实现方式中,外机还包括:感温包,
感温包,与主板1连接,用于获取室外环境温度值;
主板1,用于根据室外环境温度值确定变频压缩机2的初始运行频率,其中,初始运行频率与室外环境温度值具有对应关系。
需要说明的是,内机无主板和感温包。内外机之间无通讯,且内机和温控器、外机和温控器之间也无通讯。内外机只能接收温控器发出的开关信号。
在一种可能的实现方式中,如图5所示,外机还包括:电子膨胀阀3,内机包括:热力膨胀阀4,电子膨胀阀3,与主板1连接,用于在变频空调器处于制冷模式时,处于全开状态,在变频空调器处于制热模式时,处于节流状态;热力膨胀阀4,用于在变频空调器处于制冷模式时,处于节流状态,在变频空调器处于制热模式时,处于导通状态。
需要说明的是,热力膨胀阀4可为单向热力膨胀阀,用于制冷时节流,制热时导通。
在一种可能的实现方式中,内机还包括:与热力膨胀阀4连接的蒸发器5,
电子膨胀阀3,还用于在变频空调器处于制热模式时,随变频压缩机2的排气温度升高而开大;
热力膨胀阀4,还用于在变频空调器处于制冷模式时,随蒸发器5的过热度的增大而开大。
在一种可能的实现方式中,如图5所示,外机还包括:冷凝器6、四通阀7以及汽分8,
冷凝器6的一端连接于电子膨胀阀3,另一端连接于四通阀7;
四通阀7与变频压缩机2和汽分8呈闭合回路连接方式。
本申请实施例还提供一种变频空调器的控制装置,控制装置用于执行图1至图3所示的控制方法。控制装置应用于变频空调器的外机中,外机包括变频压缩机,外机和内机之间无通讯,如图6所示,控制装置包括:
控制模块601,用于控制变频压缩机按照初始运行频率运行;
监控模块602,用于监控变频压缩机的连续运行时间和停机次数;
控制模块601,还用于根据连续运行时间和停机次数控制变频压缩机的运行频率。
由此,可根据变频压缩机的连续运行时间和停机次数来调整运行频率,改变变频压缩机的输出能力大小,从而在兼顾了变频空调器舒适性较高,用户体验较强等优越性的同时,保证了内外机之间无需通讯,无需配套使用,增加了用户选择的多样性。
在一种可能的实现方式中,控制模块601,还用于比较连续运行时间与预设时间;如果连续运行时间大于预设时间,则提高变频压缩机的运行频率;如果连续运行时间小于或等于预设时间,则判断在连续运行时间内,变频压缩机的停机次数是否大于预设次数;如果是,则降低变频压缩机的运行频率;如果否,则控制变频压缩机仍按照初始运行频率运行。
在一种可能的实现方式中,控制装置还包括:检测模块,用于检测室外环境温度值;确定模块,用于根据室外环境温度值确定变频压缩机的初始运行频率,其中,初始运行频率与室外环境温度值具有对应关系。
在一种可能的实现方式中,如果变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级,控制模块601,还用于如果连续运行时间大于预设时间,则逐级提高变频压缩机的运行频率,直到变频压缩机的运行频率达到超高频等级;如果连续运行时间小于或等于预设时间,则判断在连续运行时间内,变频压缩机的停机次数是否大于预设次数;如果是,则逐级降低变频压缩机的运行频率,直到变频压缩机的运行频率降至低频等级。
在一种可能的实现方式中,控制模块601,还用于当变频空调器处于制冷模式时,控制外机的电子膨胀阀全开,控制内机的热力膨胀阀进行节流;当空调器处于制热模式时, 控制外机的电子膨胀阀进行节流,控制内机的热力膨胀阀导通。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台移动终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (22)

  1. 一种变频空调器的控制方法,其特征在于,所述控制方法应用于所述变频空调器的外机中,所述外机和内机之间无通讯,所述控制方法包括:
    控制变频压缩机按照初始运行频率运行;
    监控所述变频压缩机的连续运行时间和停机次数;
    根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率。
  2. 根据权利要求1所述的控制方法,其特征在于,根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率,包括:
    比较所述连续运行时间与预设时间;
    如果所述连续运行时间大于预设时间,则提高所述变频压缩机的运行频率;
    如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;
    如果是,则降低所述变频压缩机的运行频率;如果否,则控制所述变频压缩机仍按照所述初始运行频率运行。
  3. 根据权利要求2所述的控制方法,其特征在于,在控制变频压缩机按照初始运行频率运行之前,所述控制方法还包括:
    检测室外环境温度值;
    根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
  4. 根据权利要求3所述的控制方法,其特征在于,所述变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级。
  5. 根据权利要求4所述的控制方法,其特征在于,
    所述提高所述变频压缩机的运行频率,包括:逐级提高所述变频压缩机的运行频率,直到所述变频压缩机的运行频率达到超高频等级;
    所述降低所述变频压缩机的运行频率,包括:逐级降低所述变频压缩机的运行频率,直到所述变频压缩机的运行频率降至低频等级。
  6. 根据权利要求4所述的控制方法,其特征在于,所述方法还包括:
    当所述变频空调器处于制冷模式时,将所述室外环境温度值从低到高依次确定为第一区间、第二区间、第三区间、第四区间以及第五区间;
    所述对应关系为所述第一区间、所述第二区间、所述第三区间、所述第四区间、所述 第五区间依次分别与低频、中低频、中频、高频、超高频对应。
  7. 根据权利要求4所述的控制方法,其特征在于,所述方法还包括:
    当所述变频空调器处于制热模式时,将所述室外环境温度值从高到低依次确定为第六区间、第七区间、第八区间、第九区间以及第十区间;
    所述对应关系为所述第六区间、所述第七区间、所述第八区间、所述第九区间以及所述第十区间依次分别与低频、中低频、中频、高频、超高频对应。
  8. 根据权利要求4所述的控制方法,其特征在于,所述变频压缩机的初始运行频率从低频到超高频所对应的变频压缩机负荷依次为第一负荷、第二负荷、第三负荷、第四负荷以及第五负荷,其中,所述第一负荷<所述第二负荷<所述第三负荷<所述第四负荷<所述第五负荷。
  9. 根据权利要求1-8中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    当所述变频空调器处于制冷模式时,控制所述外机的电子膨胀阀全开,控制所述内机的热力膨胀阀进行节流;
    当所述空调器处于制热模式时,控制所述外机的所述电子膨胀阀进行节流,控制所述内机的所述热力膨胀阀导通。
  10. 根据权利要求9所述的控制方法,其特征在于,控制所述内机的热力膨胀阀进行节流包括:
    监测蒸发器的过热度;
    控制所述内机的所述热力膨胀阀随所述过热度的增大而开大。
  11. 根据权利要求9所述的控制方法,其特征在于,控制所述外机的所述电子膨胀阀导通包括:
    监测所述变频压缩机的排气温度;
    控制所述外机的所述电子膨胀阀随所述变频压缩机的所述排气温度升高而开大。
  12. 一种变频空调器,其特征在于,所述变频空调器用于执行权1至权11中任意一项所述的控制方法,所述变频空调器包括内机和外机,所述外机和所述内机之间无通讯,所述外机包括:主板及变频压缩机;
    所述主板,与所述变频压缩机连接,用于控制所述变频压缩机按照初始运行频率运行;根据所述变频压缩机的连续运行时间和停机次数向所述变频压缩机发送控制指令;
    所述变频压缩机,用于接收所述主板发送的控制指令,并根据所述控制指令调整自身的运行频率。
  13. 根据权利要求12所述的变频空调器,其特征在于,所述外机还包括:感温包,
    所述感温包,与所述主板连接,用于获取室外环境温度值;
    所述主板,用于根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
  14. 根据权利要求12所述的变频空调器,其特征在于,所述外机还包括:电子膨胀阀,所述内机包括:热力膨胀阀,
    所述电子膨胀阀,与所述主板连接,用于在所述变频空调器处于制冷模式时,处于全开状态,在所述变频空调器处于制热模式时,处于节流状态;
    所述热力膨胀阀,用于在所述变频空调器处于制冷模式时,处于节流状态,在所述变频空调器处于制热模式时,处于导通状态。
  15. 根据权利要求14所述的变频空调器,其特征在于,所述内机还包括:与所述热力膨胀阀连接的蒸发器,
    所述电子膨胀阀,还用于在所述变频空调器处于制热模式时,随所述变频压缩机的排气温度升高而开大;
    所述热力膨胀阀,还用于在所述变频空调器处于制冷模式时,随所述蒸发器的过热度的增大而开大。
  16. 根据权利要求12-15中任一项所述的变频空调器,其特征在于,所述外机还包括:冷凝器、四通阀以及汽分,
    所述冷凝器的一端连接于所述电子膨胀阀,另一端连接于所述四通阀;
    所述四通阀与所述变频压缩机和所述汽分呈闭合回路连接方式。
  17. 一种变频空调器的控制装置,其特征在于,所述控制装置用于执行权1至权11中任意一项所述的控制方法,所述控制装置应用于所述变频空调器的外机中,所述外机和内机之间无通讯,所述控制装置包括:
    控制模块,用于控制变频压缩机按照初始运行频率运行;
    监控模块,用于监控所述变频压缩机的连续运行时间和停机次数;
    所述控制模块,还用于根据所述连续运行时间和所述停机次数控制所述变频压缩机的运行频率。
  18. 根据权利要求17所述的控制装置,其特征在于,
    所述控制模块,还用于比较所述连续运行时间与预设时间;
    如果所述连续运行时间大于预设时间,则提高所述变频压缩机的运行频率;
    如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;
    如果是,则降低所述变频压缩机的运行频率;如果否,则控制所述变频压缩机仍按照所述初始运行频率运行。
  19. 根据权利要求18所述的控制装置,其特征在于,所述控制装置还包括:
    检测模块,用于检测室外环境温度值;
    确定模块,用于根据所述室外环境温度值确定所述变频压缩机的所述初始运行频率,其中,所述初始运行频率与所述室外环境温度值具有对应关系。
  20. 根据权利要求17所述的控制装置,其特征在于,所述变频压缩机的初始运行频率分为超高频、高频、中频、中低频以及低频5个等级。
  21. 根据权利要求20所述的控制装置,其特征在于,
    所述控制模块,还用于如果所述连续运行时间大于所述预设时间,则逐级提高所述变频压缩机的运行频率,直到所述变频压缩机的运行频率达到超高频等级;如果所述连续运行时间小于或等于所述预设时间,则判断在所述连续运行时间内,所述变频压缩机的停机次数是否大于预设次数;如果是,则逐级降低所述变频压缩机的运行频率,直到所述变频压缩机的运行频率降至低频等级。
  22. 根据权利要求17-21中任一项所述的控制装置,其特征在于,
    所述控制模块,还用于当所述变频空调器处于制冷模式时,控制所述外机的电子膨胀阀全开,控制所述内机的热力膨胀阀进行节流;当所述空调器处于制热模式时,控制所述外机的所述电子膨胀阀进行节流,控制所述内机的所述热力膨胀阀导通。
PCT/CN2018/121224 2018-06-26 2018-12-14 变频空调器及其控制方法、控制装置 WO2020000928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810670161.X 2018-06-26
CN201810670161.XA CN108844188A (zh) 2018-06-26 2018-06-26 一种变频空调器及其控制方法、控制装置

Publications (1)

Publication Number Publication Date
WO2020000928A1 true WO2020000928A1 (zh) 2020-01-02

Family

ID=64202041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121224 WO2020000928A1 (zh) 2018-06-26 2018-12-14 变频空调器及其控制方法、控制装置

Country Status (2)

Country Link
CN (1) CN108844188A (zh)
WO (1) WO2020000928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245979A1 (en) 2021-05-18 2022-11-24 Bostongene Corporation Techniques for single sample expression projection to an expression cohort sequenced with another protocol

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844188A (zh) * 2018-06-26 2018-11-20 珠海格力电器股份有限公司 一种变频空调器及其控制方法、控制装置
CN109751738B (zh) * 2018-12-12 2021-10-15 广东美的暖通设备有限公司 用于多联机空调的控制方法、装置、室外机及多联机空调
CN109751739B (zh) * 2018-12-12 2021-04-20 广东美的暖通设备有限公司 用于多联机空调的控制方法、装置、室外机及多联机空调
CN109798635A (zh) * 2019-01-15 2019-05-24 广东美的暖通设备有限公司 空调***的控制方法及空调***
CN110039968A (zh) * 2019-03-04 2019-07-23 青岛海尔空调器有限总公司 车用空调的控制方法
CN110220265A (zh) * 2019-05-28 2019-09-10 苏州金俊智能科技有限公司 热泵空调的控制方法和应用其的热泵空调
CN110410996B (zh) * 2019-07-19 2022-09-30 宁波东邦电器有限公司 一种以湿度谷值为被调参数的压缩机除湿位式恒湿控制方法
CN110671776B (zh) * 2019-09-23 2020-11-13 珠海格力电器股份有限公司 无通讯空调机组的外机控制方法、装置、设备及存储介质
CN110701740B (zh) * 2019-09-26 2021-07-23 上海辛格林纳新时达电机有限公司 一种空调寻址方法
CN111380147B (zh) * 2020-03-30 2022-01-25 宁波奥克斯电气股份有限公司 变频空调过负荷控制方法、装置和变频空调器
CN111547091B (zh) * 2020-05-22 2021-05-11 中车株洲电力机车有限公司 一种轨道车辆变频空调的压缩机控制方法
CN113137703B (zh) * 2021-05-25 2022-06-07 宁波奥克斯电气股份有限公司 一种变频空调最小运行频率的控制方法和空调器
CN113483444B (zh) * 2021-06-21 2022-10-18 宁波奥克斯电气股份有限公司 一种压缩机停机控制方法、空调
CN113865062B (zh) * 2021-10-14 2022-11-18 珠海拓芯科技有限公司 一种变频空调器控制方法
CN114234383B (zh) * 2021-12-21 2023-08-08 北京小米移动软件有限公司 空调控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050223723A1 (en) * 2004-04-12 2005-10-13 York International Corporation Startup control system and method for a multiple compressor chiller system
CN203024273U (zh) * 2012-09-03 2013-06-26 广东美的暖通设备有限公司 多联室内机及多联式空调***
CN103388881A (zh) * 2013-06-28 2013-11-13 广东美的电器股份有限公司 热泵空调***及其控制方法
CN104791943A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN104791944A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN104791946A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN105091195A (zh) * 2014-05-09 2015-11-25 广东美的暖通设备有限公司 变频压缩机运行频率的调节方法、装置及变频空调***
CN108844188A (zh) * 2018-06-26 2018-11-20 珠海格力电器股份有限公司 一种变频空调器及其控制方法、控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104121174A (zh) * 2013-04-25 2014-10-29 珠海格力电器股份有限公司 压缩机运行控制方法、控制***及制冷循环***
CN103499135B (zh) * 2013-09-18 2016-06-22 广东美的集团芜湖制冷设备有限公司 一种空调压缩机停机控制方法
JP2017072323A (ja) * 2015-10-08 2017-04-13 パナソニックIpマネジメント株式会社 空気調和機
CN105444354B (zh) * 2015-12-07 2017-06-23 珠海格力电器股份有限公司 空调运行频率的控制方法及***
CN106839523B (zh) * 2017-01-16 2019-11-19 珠海格力电器股份有限公司 空调器的回油控制方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050223723A1 (en) * 2004-04-12 2005-10-13 York International Corporation Startup control system and method for a multiple compressor chiller system
CN203024273U (zh) * 2012-09-03 2013-06-26 广东美的暖通设备有限公司 多联室内机及多联式空调***
CN103388881A (zh) * 2013-06-28 2013-11-13 广东美的电器股份有限公司 热泵空调***及其控制方法
CN104791943A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN104791944A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN104791946A (zh) * 2014-01-21 2015-07-22 广东美的暖通设备有限公司 空调***及其控制方法、空调***的室外机
CN105091195A (zh) * 2014-05-09 2015-11-25 广东美的暖通设备有限公司 变频压缩机运行频率的调节方法、装置及变频空调***
CN108844188A (zh) * 2018-06-26 2018-11-20 珠海格力电器股份有限公司 一种变频空调器及其控制方法、控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022245979A1 (en) 2021-05-18 2022-11-24 Bostongene Corporation Techniques for single sample expression projection to an expression cohort sequenced with another protocol

Also Published As

Publication number Publication date
CN108844188A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2020000928A1 (zh) 变频空调器及其控制方法、控制装置
WO2018058732A1 (zh) 冷媒泄露保护控制方法、控制器及空调
CN108151250B (zh) 变频空调控制方法和装置
CN105135622B (zh) 家用空调的控制方法及家用空调
WO2019223301A1 (zh) 空调控制方法、控制装置及采用该方法的空调
CN103851847A (zh) 空调电子膨胀阀控制***、控制方法及多联机空调室外机
JP5984456B2 (ja) 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
US20210262713A1 (en) Method and Apparatus for Controlling Compressor to Switch Cylinder Mode, Unit, and Air Conditioner System
JPWO2016132466A1 (ja) 空気調和システム
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
CN107642879B (zh) 一种空调***的控制方法、装置及空调器
WO2023147721A1 (zh) 空调噪音的控制方法、控制***、电子设备和储存介质
JP6033416B2 (ja) 空気調和装置
JP2020143868A (ja) 制御装置、空気調和機、制御方法及びプログラム
US9920949B2 (en) Air conditioning system and energy management method of air conditioning system
US20210302055A1 (en) Systems and methods for communication in hvac system
US10359209B2 (en) Air conditioning apparatus
CN112128867A (zh) 一种多***除湿控制方法及装置
CN107084493B (zh) 变频空调、停机控制方法及计算机可读存储介质
JP2016166710A (ja) 空気調和システム
WO2021052193A1 (zh) 多联机空调***中室外机均衡结霜的控制方法
CN107894058B (zh) 一种空调状态控制方法与装置
CN108613329B (zh) 一种变频空调及其控制方法
CN112556127B (zh) 空调蓄冷控制方法、装置及计算机可读存储介质
JPH10318615A (ja) 空気調和機の運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924040

Country of ref document: EP

Kind code of ref document: A1