WO2020000871A1 - 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法 - Google Patents

一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法 Download PDF

Info

Publication number
WO2020000871A1
WO2020000871A1 PCT/CN2018/115815 CN2018115815W WO2020000871A1 WO 2020000871 A1 WO2020000871 A1 WO 2020000871A1 CN 2018115815 W CN2018115815 W CN 2018115815W WO 2020000871 A1 WO2020000871 A1 WO 2020000871A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
module
reel
sprinkler irrigation
transmission module
Prior art date
Application number
PCT/CN2018/115815
Other languages
English (en)
French (fr)
Inventor
汤玲迪
汤跃
杨磊
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/623,688 priority Critical patent/US11382285B2/en
Publication of WO2020000871A1 publication Critical patent/WO2020000871A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/09Watering arrangements making use of movable installations on wheels or the like
    • A01G25/095Watering arrangements making use of movable installations on wheels or the like winch-driven
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15117Radio link, wireless
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2625Sprinkler, irrigation, watering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the invention relates to the field of wireless control and motor control, in particular to a wireless interconnection control system and method for an electrically driven reel-type sprinkler irrigation machine that improves the uniformity of sprinkler irrigation.
  • the reel sprinkler is an important efficient and water-saving irrigation equipment.
  • the uniform coefficient of sprinkler irrigation is one of the important indicators reflecting the quality of sprinkler irrigation. According to the requirements in GB 50085-2007 "Technical Specifications for Sprinkler Irrigation Part 4: Technical Parameters of Sprinkler Irrigation", the uniformity coefficient of sprinkler irrigation in a row sprinkler system should not be less than 0.85.
  • Patent (CN 105961152A) discloses a speed control system based on a brushless DC motor and APP.
  • the brushless DC motor is used instead of a water turbine to achieve the average speed recovery of the nozzle car, but it does not consider the nozzle inlet pressure change caused by the resistance loss of the PE pipe. Effect on sprinkler irrigation uniformity.
  • the patent (CN106171864A) discloses an intelligent electric reel sprinkler irrigation machine, which is provided with an on-board pressure detection device, but does not control the nozzle inlet pressure.
  • a pressure transmitter is installed at the nozzle inlet and a wireless data transmission module is used for communication between the pressure transmitter and the frequency converter that controls the speed of the pump motor, additional pressure transmitters and wireless data transmission modules need to be provided Power supply, which in turn brings additional costs and troubles in use.
  • Power supply which in turn brings additional costs and troubles in use.
  • the present invention provides a wireless interconnection control system for an electrically driven reel-type sprinkler irrigation machine that improves the uniformity of sprinkler irrigation.
  • the present invention achieves the above technical objectives through the following technical means.
  • An electronically driven reel-type sprinkler irrigation machine wireless interconnection control system for improving sprinkler irrigation uniformity includes a microprocessor controller module, a wireless data transmission module, an STC single-chip microcomputer module, a frequency converter, a pump motor, a pressure transmitter, and a GPRS wireless transmission module , Mobile phone APP client, encoder, the microprocessor controller module communicates with the wireless data transmission module through the USART serial port, the wireless data transmission module uses the USART serial port to communicate with the STC microcontroller module, and the STC microcontroller module communicates with the inverter through the I / O port
  • the water pump is connected to the water source and the disc sprinkler through the water pipe respectively.
  • the input end of the microprocessor controller module is connected to a pressure transmitter.
  • the pressure transmitter is installed on the outer wall of the water inlet pipe of the reel sprinkler.
  • the processing controller module is connected to the GPRS wireless transmission module through a serial port, and the GPRS wireless transmission module communicates with the mobile phone APP client.
  • the microprocessor controller module also sequentially connects the brushless DC motor controller and the brushless DC through the I / O port.
  • a motor, an encoder for detecting the speed of the brushless DC motor is installed on the output shaft of the brushless DC motor, Processing module connected to the input controller.
  • the microprocessor controller module includes a serial transceiver module, a speed control signal conditioning module, and an alarm monitoring module.
  • the serial transceiver module is used to implement communication between the microprocessor controller module and the inverter and the GPRS wireless transmission module.
  • the speed control signal conditioning module, the brushless DC motor controller, and the brushless DC motor form a speed PID controller to adjust the speed of the brushless DC motor;
  • the alarm monitoring module monitors the state of the PE pipe and the sprinkler head during the operation of the reel sprinkler Inlet pressure, alert the user when an abnormal situation occurs, the state of the PE pipe includes the unrolled length, the number of coiled layers, and the number of coiled turns.
  • the nozzle inlet pressure is obtained by subtracting the PE pipe pressure loss from the inlet pressure.
  • the PE pipe pressure loss includes It consists of a dynamically changing unrolled part and a curved coiled part. It is obtained by experiments. Because the existing calculation model cannot fully calculate the pressure loss of PE coils, it is more reliable to measure the pressure loss data of PE pipes of different specifications and different lengths in advance.
  • the same method can be used to establish dynamic pressure loss databases for PE pipes of different specifications.
  • the compensation value of the machine pressure and the correction value of the inlet pressure, and the control pressure of the water pump motor inverter is reset by the wireless data transmission module, so as to control the water pump motor to increase the water supply pressure, so that the inlet pressure is compensated and the nozzle pressure is reached.
  • the wireless data transmission module so as to control the water pump motor to increase the water supply pressure, so that the inlet pressure is compensated and the nozzle pressure is reached.
  • the wireless data transmission module, the STC single-chip microcomputer module, the inverter and the microprocessor controller module constitute a pressure PID controller to control the entry pressure of the reel-type sprinkler irrigation machine.
  • the GPRS wireless transmission module includes a short message sending / receiving module, and the short message sending / receiving module interacts with a mobile phone APP client to interact with various working condition information of the reel type sprinkler irrigation machine during operation.
  • the mobile phone APP client includes a parameter setting interface of the reel-type sprinkler and a real-time display interface of the working condition of the reel-type sprinkler.
  • the microprocessor controller module is an STM32F103RBT6 processor
  • the pressure transmitter is an AS-131 series diffusion silicon pressure transmitter
  • the GPRS wireless transmission module uses an ATK-SIM800C module
  • the wireless data transmission module WSN-02 wireless data transmission module is an STM32F103RBT6 processor
  • a wireless interconnection control method for an electrically driven reel-type sprinkler irrigation machine for improving the uniformity of sprinkler irrigation includes the following steps:
  • the GPRS wireless transmission module After receiving the information from the mobile phone APP client, the GPRS wireless transmission module transmits the pressure and speed values to the microprocessor controller module, and the microprocessor controller module starts the reel-type sprinkler irrigation machine to run;
  • the pressure transmitter sends the pressure signal to the microprocessor controller module.
  • the microprocessor controller module sends the pressure control control signal to the STC microcontroller module remotely through the wireless data transmission module.
  • the STC microcontroller module forwards the pressure control signal to the inverter.
  • the microprocessor controller module forwards the real-time pressure signal of the pressure transmitter and the real-time speed signal of the encoder to the mobile phone APP client through the GPRS wireless transmission module, and the relevant parameters are displayed in real time on the working condition of the reel sprinkler.
  • the user monitors the operating conditions in real time and can make corresponding adjustments.
  • the present invention has the following beneficial effects:
  • the field parameters are presented to the operator in real time and accurately.
  • the user can remotely and centrally control the sprinkler irrigation operations of multiple groups of sprinkler irrigation machines, providing front-end guarantee for the intelligent irrigation of sprinkler irrigation machines. .
  • FIG. 1 is a connection block diagram of a control system according to the present invention.
  • Figure 2 shows the system's mobile APP client parameter setting interface.
  • FIG. 3 is a real-time display interface of the mobile APP client operating conditions of the system.
  • Figure 4 is a flowchart of the wireless control system operation.
  • the reference signs are as follows: 1-microprocessor controller module, 2-reel sprinkler, 3-inverter, 4-water pump motor, 5-pressure transmitter, 6-GPRS wireless transmission module, 7-mobile APP Client, 8-brushless DC motor controller, 9-brushless DC motor, 10-encoder, 11-water source ground, 12-STC microcontroller module, 13-wireless digital transmission module.
  • FIG. 1 The overall structure of a wireless interconnection control system for an electrically driven reel-type sprinkler irrigation machine that improves the uniformity of sprinkler irrigation is shown in Figure 1. It includes a microprocessor controller module 1, a reel-type sprinkler irrigation machine 2, and a wireless data transmission module 13 (WSN-02 Wireless data transmission module), STC single-chip module 12, inverter 3, pump motor 4, pressure transmitter 5 (AS-131 series diffusion silicon pressure transmitter), GPRS wireless transmission module 6 (ATK-SIM800C module), mobile phone APP client 7, brushless DC motor controller 8, brushless DC motor 9, encoder 10, and water source 11; microprocessor controller module 1, GPRS wireless transmission module 6 is installed on the reel sprinkler 2 chassis , The reel type sprinkler irrigation machine 2 uses the STM32F103RBT6 microprocessor controller module 1 as the main controller.
  • WSN-02 Wireless data transmission module wireless data transmission module 13
  • STC single-chip module 12 inverter 3
  • pump motor 4 pressure transmitter 5 (AS-131 series diffusion silicon pressure transmitter)
  • the microprocessor controller module 1 communicates through the USART serial port (using the TTL protocol) wireless data transmission module 13 and the wireless data transmission module 13 passes the USART.
  • the serial port (using the TTL protocol) communicates with the STC single-chip module 12, the STC single-chip module 12 is connected to the inverter 3 through the I / O port, and the pump motor 4 is connected to the water source 11 and the reel sprinkler 2 through the water pipe.
  • the inverter 3 By changing the input frequency Controls the rotation speed of the pump motor 4.
  • the inlet pressure of the reel sprinkler is measured by a pressure transmitter 5 installed on the outer wall of the inlet pipe of the reel sprinkler 2.
  • the pressure transmitter 5 and the input terminal of the microprocessor controller module 1 Connected to transmit the pressure signal to the microprocessor controller module 1 in real time; the reel type sprinkler irrigation machine 2 uses a brushless DC motor 9 instead of a water turbine as the driving device to drive the reel to control the PE pipe recovery speed; the inverter 3, wireless data
  • the transmission module 13, the STC microcontroller module 12, and the microprocessor controller module 1 form a pressure PID controller.
  • the pressure PID controller receives the pressure signal from the pressure transmitter 5 and performs PID calculation based on the set value, and sends a command to the inverter 3 Adjust the input voltage of the pump motor 4 to change the speed of the pump motor 4 and control the pressure of the reel-type sprinkler irrigation machine;
  • the GPRS wireless transmission module 6 includes a short message transceiver module, and the short message transceiver module interacts with the mobile phone APP client 7 Various operating conditions during operation.
  • the microprocessor controller 1 includes a speed control signal conditioning module, a serial data transceiver module, and an alarm monitoring module.
  • the serial transceiver module is used to implement the communication between the microprocessor controller module 1 and the wireless data transmission module 13, the microprocessor controller module 1 and GPRS.
  • microprocessor controller module 1 receives data from transceiver module through serial port 3 (using TTL protocol) to communicate with wireless data transmission module 13, wireless data transmission module 13 and STC microcontroller module 12 Serial port (using TTL protocol) communication, STC microcontroller module 12 communicates with inverter 3 through I / O port, inverter 3, wireless data transmission module 13, STC microcontroller module 12 and microprocessor controller module 1 together form a pressure PID
  • the controller and pressure transmitter 5 measure the real-time pressure value of the water inlet of the reel sprinkler.
  • the 4-20 mA analog signal output by the pressure transmitter 5 is converted into a digital signal by the ADC module inside the microprocessor controller 1.
  • the digital signal in the arithmetic module of the microprocessor controller 1 differs from the set pressure value of the local and on-line resistance loss model of the PE pipe and calculates the percentage relative to the set pressure value.
  • the microprocessor controller 1 transmits the real-time pressure value and the set pressure value to the wireless data transmission module 13 through the serial port 3 (using the TTL protocol).
  • the transmission module 13 transmits the received signal to the STC single-chip microcomputer module 12 through the serial port (using the TTL protocol).
  • the STC single-chip microcomputer module 12 parses the received digital signal into an analog signal and inputs it to the inverter 3 through the I / O port.
  • the inverter 3 The built-in arithmetic module calculates the difference between the actual pressure sent by the pressure transmitter 5 and the set pressure of the local and along-path resistance loss model of the PE pipe, and uses the pressure deviation and the change rate of the deviation over time as inputs.
  • the pressure PID controller adjusts the output speed of the pump motor by controlling the input voltage frequency of the pump motor 4 to realize the on-line adjustment of the inlet pressure of the reel-type sprinkler irrigation machine.
  • the speed control signal conditioning module and the brushless DC motor 9 and the brushless DC motor controller 8 form a speed PID controller. PID calculation is performed based on the speed value set by the mobile APP client 7 and the real-time speed of the brushless DC motor 9 to change the speed.
  • the input voltage of the brush DC motor 9 is used to adjust the speed of the brushless DC motor.
  • the alarm monitoring module monitors the state of PE pipe and nozzle inlet pressure during the reel sprinkler 2 operation.
  • the state of the PE pipe includes the unrolled length, the number of coiled layers, and the number of coils.
  • the nozzle pressure of the nozzle is abnormal due to the blocked water pipe of the reel sprinkler.
  • the APP client 7 sends a text message alarm to remind the user.
  • the encoder 10 installed on the output shaft of the brushless DC motor 9 will convert the measured rotational speed into a stable pulse voltage analog signal.
  • the speed PID controller will configure the corresponding I / O port as the input capture mode to monitor the PE tube recovery speed in real time. Through the serial port 1 of the serial data receiving and receiving module, the output speed is adjusted accordingly to maintain the stability of the recovery speed.
  • GPRS wireless transmission module 6 and microprocessor controller 1 serial data transceiver module are connected to each other through serial port 2 to complete the data exchange.
  • the user sets the relevant parameters in the mobile phone APP client 7 operation interface and sends the control instructions in a text message package. Go to the GPRS wireless transmission module 6, and then reach the microprocessor controller module 1 through the serial port 2 to complete the corresponding control function; the real-time reel sprinkler irrigation machine operating pressure when the reel sprinkler 2 is operating, the speed of the brushless DC motor 9
  • the data is sent to the mobile phone APP client 7 through the serial port 2 through the GPRS wireless transmission module 6 to realize the real-time display of the job status.
  • the mobile phone APP client 7 includes a reel-type sprinkler parameter setting interface ( Figure 2), a reel-type sprinkler working condition real-time display interface ( Figure 3), a reel-type sprinkler parameter setting interface for setting the reel-type sprinkler Nozzle inlet pressure, PE pipe recovery speed, number of GPRS wireless transmission module 6 that communicates with mobile phone APP client 7; real-time display interface of the working condition of the reel sprinkler machine is used to display the current nozzle of the GPRS wireless transmission module 6 Inlet pressure, PE tube current recovery speed, PE tube set recovery speed, nozzle set inlet pressure, battery current, battery voltage, battery power, recovery speed error, pressure error, PE tube unrolled length, coiled turns, coiled layers , Transmission ratio, working time and remaining time.
  • the mobile phone APP client 7 is initialized after booting. Select the SMS mode to enter the user parameter setting interface. The staff sets the nozzle inlet pressure and PE pipe recovery speed according to actual needs, and enters the corresponding SIM card of the GPRS wireless transmission module 6. Click the connection button after the number, and then click the send button after confirming that the information is correct. The information set by the user will be packaged and sent to the GPRS wireless transmission module 6 of the specified number by SMS. As shown in Figure 3, when the reel sprinkler 2 is in operation, the real-time reel sprinkler input pressure collected by the pressure transmitter 5 is input to the pressure PID controller, and is calculated through the PE pipe local and on-line resistance loss model calculation.
  • the current inlet pressure of the sprinkler nozzle and the current recovery speed of the PE tube measured by the encoder 10, the PE tube set recovery speed, the nozzle set inlet pressure, battery current, battery voltage, battery power, recovery speed error, pressure error, PE tube The expansion length, the number of coils, the number of coils, the transmission ratio, the working time and the remaining time are sent to the GPRS wireless transmission module 6 through the serial port 2 of the microprocessor controller module 1.
  • the GPRS wireless transmission module 6 adds a data header and verification. Code and SMS serial number are forwarded to the mobile APP client 7.
  • the mobile APP client 7 parses the packaging information and displays it on the real-time display interface of the operating conditions.
  • the user can control the reel sprinkler 2 in real time through Figure 3. Operation, after a period of operation, you can increase or decrease the nozzle inlet pressure and the set value of the PE pipe recovery speed according to the actual irrigation effect.
  • the nozzle inlet pressure is obtained by subtracting the PE pipe pressure loss from the inlet pressure.
  • the PE pipe pressure loss includes a dynamically changing unrolled portion and a curved coiled portion.
  • the compensation value of the machine pressure and the correction value of the inlet pressure, and the control pressure of the water pump motor inverter is reset by the wireless data transmission module, so as to control the water pump motor to increase the water supply pressure, so that the inlet pressure is compensated and the nozzle pressure is reached.
  • the wireless data transmission module so as to control the water pump motor to increase the water supply pressure, so that the inlet pressure is compensated and the nozzle pressure is reached.
  • FIG. 4 The operation flow chart of a wireless interconnection control system for an electrically driven reel-type sprinkler irrigation machine that improves the uniformity of sprinkler irrigation is shown in Figure 4.
  • the user After setting the speed and pressure value on the mobile APP client 7, the user realizes the high uniformity sprinkler irrigation operation of the reel sprinkler 2 through the closed loop of the PE pipe and the PID closed loop of the reel sprinkler irrigation pressure. .
  • the microprocessor controller module 1 sends the pressure calculation result to the STC microcontroller module 12 remotely through the wireless data transmission module 13.
  • the STC microcontroller module 12 forwards the pressure calculation result to the inverter 3 and controls the pump motor 4. Speed adjustment of the reel sprinkler irrigation machine pressure;
  • Step 5) The real-time nozzle inlet pressure and the speed of the brushless DC motor are sent to the mobile phone APP client 7 in a short message mode via the GPRS wireless transmission module 6, and the user realizes the wireless remote control of the reel sprinkler 2 during the whole period;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Selective Calling Equipment (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种提高喷灌均匀性的电驱动卷盘式喷灌机(2)无线互联控制***及方法,***包括由微处理控制器模块(1)、无线数传模块(13)、单片机模块(12)、变频器(3)组成的压力PID控制器以及水泵电机(4)、压力变送器(5)、无线传输模块(6)、手机APP客户端(7)、编码器(10),压力PID控制器通过控制卷盘式喷灌机(2)入机压力的变压间接控制喷头入口压力的恒定,微处理控制器模块(1)与无刷直流电机(9)、电机控制器(8)组成速度PID控制器直接控制PE管回收速度,无线传输模块(6)将喷头入口压力、PE管回收速度值与手机APP客户端(7)通过短信模式交互通信,在设置相应的参数后实现作业工况的自动调整,提高了卷盘式喷灌机(2)喷灌作业的均匀性,实现了卷盘式喷灌机(2)作业工况的远程实时、精确控制,为智慧灌溉提供了前台保障。

Description

一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法 技术领域
本发明涉及无线控制与电机控制领域,具体涉及一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法。
背景技术
卷盘式喷灌机是重要的高效、节水灌溉装备,喷灌均匀系数是反映喷灌质量的重要指标之一。根据GB 50085-2007《喷灌工程技术规范第4部分:喷灌技术参数》中的要求,行喷式喷灌***喷灌均匀系数不应低于0.85。
影响卷盘式喷灌机喷灌均匀性的重要因素是喷头入口压力和喷头车回收速度。专利(CN 105961152A)公开了基于无刷直流电机与APP的速度控制***,采用无刷直流电机代替水涡轮实现了喷头车均速回收,但没有考虑PE管的阻力损失所造成的喷头入口压力变化对喷灌均匀性的影响。专利(CN106171864A)公开了一种智能电动卷盘喷灌机,设置了入机压力检测装置,但未对喷头入口压力进行控制。如果将压力变送器安装在喷头入口处,并在压力变送器与控制水泵电机转速的变频器之间采用无线数传模块进行通信,则需要为压力变送器和无线数传模块提供额外的电源,继而带来附加的成本和使用中的麻烦。目前,尚未发现通过控制卷盘式喷灌机入机压力的改变来达到喷头入口压力恒定从而提高喷灌均匀性的文献报道。
发明内容
针对现有技术中卷盘式喷灌机喷头入口压力变化导致喷灌均匀性降低的不足之处,本发明提供了一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***。
本发明是通过以下技术手段实现上述技术目的的。
一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,包括微处理控制器模块、无线数传模块、STC单片机模块、变频器、水泵电机、压力变送器、GPRS无线传输模块、手机APP客户端、编码器,所述微处理控制器模块通过USART串口与无线数传模块通讯,无线数传模块使用USART串口与STC单片机模块通讯,STC单片机模块通过I/O口与变频器连接,水泵通过输水管分别连接水源和盘式喷灌机,所述微处理控制器模块的输入端与压力变送器相连,压力变送器安装在卷盘式喷灌机入水管外壁,所述微处理控制器模块通过串口与GPRS无线传输模块相连,GPRS无线传输模块与手机APP客户端进行 通讯,所述微处理控制器模块还通过I/O口依次连接无刷直流电机控制器、无刷直流电机,所述无刷直流电机的输出轴上安装用于检测无刷直流电机转速的编码器,编码器与微处理控制器模块输入端相连。
进一步,所述微处理控制器模块包括串口收发模块、速度控制信号调理模块及报警监测模块,所述串口收发模块用于实现微处理控制器模块与变频器、GPRS无线传输模块之间的通信,所述速度控制信号调理模块与无刷直流电机控制器、无刷直流电机组成速度PID控制器,调整无刷直流电机转速;所述报警监测模块监测卷盘式喷灌机作业时PE管状态、喷头入口压力,异常情况发生时报警提醒用户,所述PE管状态包括展开长度、盘绕层数以及盘绕圈数,所述喷头入口压力由入机压力减去PE管压力损失所得,PE管压力损失包括动态变化的展开部分和弯曲盘绕部分组成,由试验获得,由于现有计算模型不能完全准确计算PE盘管的压力损失,所以,采用事先实测不同规格不同长度PE管的压力损失数据的方法更加可靠;试验时,在入机测压口和喷头入口分别安装好压力表,在供水泵与卷盘式喷灌机入口之间安装好流量计;首先,将PE管完全拉出展开,盘绕圈数C=0,实测不同工作流量Q i(i=0,1,2…)下的入机压力p 10和入机压力与喷头入口压力的差值△p 10,获得p 10=f(Q i),△p 10=f(Q i);其次,将PE管盘绕一圈(C=1)到卷盘上,实测不同流量Q i(i=0,1,2…)下的入机压力p 11和入机压力与喷头入口压力数据的差值△p 11,获得p 11=f(Q i),△p 11=f(Q i);第三,盘绕2圈C=2、3圈C=3,…,直至完全盘绕到卷盘上,这样就获得了某种特定规格PE管在盘绕不同圈数时压力损失数据p 1C=f(Q i),△p 1C=f(Q i)。采用同样方法可以建立不同规格的PE管的动态压力损失数据库。实际使用时,由PE管当前盘绕圈数下的入机压力值p 1C,通过p 1C=f(Q i),确定当时对应的流量Q,再由△p 1C=f(Q i)确定入机压力的补偿值和入机压力的修正值,并通过无线数传模块将水泵电机变频器的控制压力重新设定,进而控制水泵电机提升供水压力,使入机压力得到补偿,从而达到喷头压力的恒定。
进一步,所述无线数传模块、STC单片机模块、变频器与微处理控制器模块组成压力PID控制器,控制卷盘式喷灌机的入机压力。
进一步,所述GPRS无线传输模块包括短信收发模块,短信收发模块与手机APP客户端交互卷盘式喷灌机作业时的各种工况信息。
进一步,所述手机APP客户端包括卷盘式喷灌机参数设置界面、卷盘式喷灌机作业工况实时显示界面。
进一步,所述微处理控制器模块为STM32F103RBT6处理器,所述压力变送器为AS-131系列扩散硅压力变送器,所述GPRS无线传输模块采用ATK-SIM800C模块,所述无线数 传模块为WSN-02无线数传模块。
一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制方法,包括以下步骤:
1),打开手机APP客户端,选择短信模式进入卷盘式喷灌机设置界面,设置喷头入口压力、PE管回收速度、GPRS无线传输模块SIM***码,手机APP客户端将设置好的信息发送到指定号码的GPRS无线传输模块;
2),GPRS无线传输模块接收到手机APP客户端的信息后将压力、速度值传输到微处理控制器模块,微处理控制器模块启动卷盘式喷灌机运行;
3),压力变送器将压力信号发送到微处理控制器模块,微处理控制器模块通过无线数传模块将压力控制控制信号远程发送到STC单片机模块,STC单片机模块转发压力控制信号到变频器,微处理控制器模块、无线数传模块、STC单片机模块、变频器组成的压力PID控制器将压力信号与设定压力值进行压力PID运算,控制水泵电机的转速控制卷盘式喷灌机入机压力;
4),设定的PE管回收速度值与速度监测模块的无刷直流电机实时速度在微处理控制器模块进行PID运算并调整无刷直流电机转速;
5),微处理控制器模块将接收到的压力变送器实时压力信号、编码器实时速度信号,通过GPRS无线传输模块转发到手机APP客户端,相关参数显示在卷盘式喷灌机工况实时显示界面上,用户实时监测运行工况并可以做出相应的调整。
本发明与现有技术相比有益效果如下:
1.设计了一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,通过实测获得的PE管压力损失规律控制卷盘式喷灌机入机压力来间接达到控制喷头入口压力的恒定,突破了传统直接控制喷头入口压力的限制,为卷盘式喷灌机测控领域提供了一种新的思路,降低了设备维护以及更换频率,大大节省了农业灌溉成本。在使用无刷直流电机保证PE管匀速带动喷头车回收的前提下,提高了卷盘式喷灌机的喷灌均匀性。
2.通过手机APP客户端作业工况显示界面将现场参数实时、精确地呈现给操作人员,用户能远程集中地完成对多组喷灌机喷灌作业的控制,为实现喷灌机智慧灌溉提供了前台保障。
附图说明
图1为本发明所述控制***的连接框图。
图2为***的手机APP客户端参数设置界面。
图3为***的手机APP客户端作业工况实时显示界面。
图4无线控制***作业流程图。
附图标记说明如下:1-微处理控制器模块,2-卷盘式喷灌机,3-变频器,4-水泵电机,5-压力变送器,6-GPRS无线传输模块,7-手机APP客户端,8-无刷直流电机控制器,9-无刷直流电机,10-编码器,11-水源地,12-STC单片机模块,13-无线数传模块。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***总体结构如图1所示,包括微处理控制器模块1、卷盘式喷灌机2、无线数传模块13(WSN-02无线数传模块)、STC单片机模块12、变频器3、水泵电机4、压力变送器5(AS-131系列扩散硅压力变送器)、GPRS无线传输模块6(ATK-SIM800C模块)、手机APP客户端7、无刷直流电机控制器8、无刷直流电机9、编码器10以及水源地11;微处理控制器模块1、GPRS无线传输模块6安装在卷盘式喷灌机2底架上,卷盘式喷灌机2中采用STM32F103RBT6的微处理控制器模块1作为主控制器,微处理控制器模块1通过USART串口(采用TTL协议)无线数传模块13通讯,无线数传模块13通过USART串口(采用TTL协议)与STC单片机模块12通讯,STC单片机模块12通过I/O口与变频器3连接通讯,水泵电机4通过输水管分别连接水源地11和卷盘式喷灌机2,变频器3通过改变输入频率来控制水泵电机4的转速,卷盘式喷灌机入机压力通过安装在卷盘式喷灌机2入水管外壁的压力变送器5测定,压力变送器5与微处理控制器模块1的输入端相连,将压力信号实时传输到微处理控制器模块1;卷盘式喷灌机2采用无刷直流电机9代替水涡轮作为驱动装置,带动卷盘转动控制PE管回收速度;变频器3、无线数传模块13、STC单片机模块12与微处理控制器模块1组成压力PID控制器,压力PID控制器接收来自压力变送器5的压力信号并根据设定值进行PID运算,发送指令给变频器3调整水泵电机4的输入电压来改变水泵电机4转速,控制卷盘式喷灌机入机压力;GPRS无线传输模块6包括短信收发模块,短信收发模块与手机APP客户端7交互卷盘式喷灌机2作业时的各种工况信息。
微处理控制器1包括速度控制信号调理模块、串口数据收发模块、报警监测模块,串口收发模块用于实现微处理控制器模块1与无线数传模块13的通信、微处理控制器模块1与GPRS无线传输模块6之间的通信;微处理控制器模块1通过串口收数据收发模块的串行口3(采用TTL协议)与无线数传模块13通讯,无线数传模块13与STC单片机模块12的串行口(采用TTL协议)通讯,STC单片机模块12通过I/O口与变频器3通信,变频 器3、无线数传模块13、STC单片机模块12与微处理控制器模块1一起构成压力PID控制器,压力变送器5测定卷盘式喷灌机入水口的实时压力值,压力变送器5输出的4-20mA模拟信号在微处理控制器1内部的ADC模块转换为数字信号,转换成的数字信号在微处理控制器1的算术模块内与PE管局部和沿程阻力损失模型的设定压力值做差并计算出相对于设定压力值的百分比,当计算出的百分比超过给定压力误差带(±2%)时,微处理控制器1将实时压力值与设定压力值通过串行口3(采用TTL协议)传送到无线数传模块13,无线数传模块13将收到的信号通过串行口(采用TTL协议)传送到STC单片机模块12,STC单片机模块12将受到的数字信号解析为模拟信号通过I/O口输入到变频器3,变频器3内置的算术模块将压力变送器5发送过来的的实际压力与PE管局部和沿程阻力损失模型的设定压力做差值运算,得出压力偏差以及偏差随时间的变化率作为输入,压力PID控制器通过控制水泵电机4的输入电压频率调整水泵电机输出转速实现卷盘式喷灌机入机压力的在线调整。速度控制信号调理模块与无刷直流电机9、无刷直流电机控制器8组成速度PID控制器,根据手机APP客户端7设置的速度值与无刷直流电机9的实时速度进行PID运算,改变无刷直流电机9的输入电压来调整无刷直流电机转速。报警监测模块监测卷盘式喷灌机2作业时PE管状态、喷头入口压力,PE管状态包括展开长度、盘绕层数以及盘绕圈数,卷盘式喷灌机PE管接近全部展开或接近全部盘绕时、PE管在作业区域遇到阻碍物无法正常回收、卷盘式喷灌机输水管阻塞导致喷头入口压力异常,报警监测模块通过串口数据收发模块发出报警信息到GPRS无线数据传输模块,再转发到手机APP客户端7发出短信报警提醒用户。
安装在无刷直流电机9输出轴上的编码器10,测定的转速会转化为稳定的脉冲电压模拟信号,速度PID控制器配置相应的I/O口为输入捕获模式实时监测PE管回收速度,通过串口收数据收发模块的串行口1对输出转速作出相应调整维持回收速度的稳定。
GPRS无线传输模块6与微处理控制器1串口数据收发模块通过串行口2相互连接完成数据的交换,用户在手机APP客户端7操作界面设置好相关参数后以短信打包的方式将控制指令发送到GPRS无线传输模块6,再经串口2到达微处理控制器模块1,完成相应的控制功能;卷盘式喷灌机2作业时的实时卷盘式喷灌机入机压力、无刷直流电机9转速数据经串口2通过GPRS无线传输模块6发送到手机APP客户端7,实现作业状态的实时显示。
手机APP客户端7包括卷盘式喷灌机参数设置界面(图2)、卷盘式喷灌机作业工况实时显示界面(图3),卷盘式喷灌机参数设置界面用于设置卷盘式喷灌机喷头入口压力、PE 管回收速度、与手机APP客户端7通信的GPRS无线传输模块6的号码;卷盘式喷灌机作业工况实时显示界面用于显示GPRS无线传输模块6发送来的喷头当前入口压力、PE管当前回收速度、PE管设定回收速度、喷头设定入口压力、电池电流、电池电压、电池电量、回收速度误差、压力误差、PE管展开长度、盘绕圈数、盘绕层数、传动比、工作时长和剩余时长。如图2,手机APP客户端7开机后完成初始化,选择短信模式进入用户参数设置界面,工作人员根据实际需要设定喷头入口压力、PE管回收速度,输入对应的GPRS无线传输模块6的SIM***码后点击连接按钮,随后确认无误后点击发送键,用户设置好的信息将通过短信的方式打包发送到指定号码的GPRS无线传输模块6。如图3,卷盘式喷灌机2作业时,压力变送器5采集的实时卷盘式喷灌机入机压力输入到在压力PID控制器,通过PE管局部和沿程阻力损失模型计算后得到喷灌机喷头当前入口压力,与编码器10测量的PE管当前回收速度、PE管设定回收速度、喷头设定入口压力、电池电流、电池电压、电池电量、回收速度误差、压力误差、PE管展开长度、盘绕圈数、盘绕层数、传动比、工作时长和剩余时长这些参数通过微处理控制器模块1的串口2发送到GPRS无线传输模块6,GPRS无线传输模块6加入数据头、校验码、短信序号后转发到手机APP客户端7,手机APP客户端7收到短信后解析出打包信息并显示在作业工况实时显示界面,用户可以通过图3实时控制卷盘式喷灌机2的作业,在作业一段时间后可以根据实际灌溉效果增大或减小喷头入口压力、PE管回收速度的设定值。
根据卷盘式喷灌机PE管局部和沿程阻力损失模型,所述喷头入口压力由入机压力减去PE管压力损失所得,PE管压力损失包括动态变化的展开部分和弯曲盘绕部分组成,由试验获得,由于现有计算模型不能完全准确计算PE盘管的压力损失,所以,采用事先实测不同规格不同长度PE管的压力损失数据的方法更加可靠。试验时,在入机测压口和喷头入口分别安装好压力表,在供水泵与卷盘式喷灌机入口之间安装好流量计。首先,将PE管完全拉出展开,盘绕圈数C=0,实测不同工作流量Q i(i=0,1,2…)下的入机压力p 10和入机压力与喷头入口压力的差值△p 10,获得p 10=f(Q i),△p 10=f(Q i);其次,将PE管盘绕一圈(C=1)到卷盘上,实测不同流量Q i(i=0,1,2…)下的入机压力p 11和入机压力与喷头入口压力数据的差值△p 11,获得p 11=f(Q i),△p 11=f(Q i);第三,盘绕2圈C=2、3圈C=3,…,直至完全盘绕到卷盘上,这样就获得了某种特定规格PE管在盘绕不同圈数时压力损失数据p 1C=f(Q i),△p 1C=f(Q i)。采用同样方法可以建立不同规格的PE管的动态压力损失数据库。实际使用时,由PE管当前盘绕圈数下的入机压力值p 1C,通过p 1C=f(Q i),确定当时对应的流量Q,再由△p 1C=f(Q i)确定入机压力的补偿值和入机压力的修正值,并通过无线数传模块将水泵电机变 频器的控制压力重新设定,进而控制水泵电机提升供水压力,使入机压力得到补偿,从而达到喷头压力的恒定。
一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***作业流程图如图4。用户在手机APP客户端7设置好速度以及压力值后,通过PE管回收速度PID闭环和卷盘式喷灌机入机压力PID闭环的作用下,实现卷盘式喷灌机2的高均匀性喷灌作业。
本***具体实施步骤如下:
步骤1):手机APP客户端7在初始化以后选择短信模式,进入卷盘式喷灌机运行参数设置界面,用户根据需要设置好PE管回收速度、喷头入口压力,输入对应的GPRS无线传输模块6内的SIM***码,设置完成后建立GPRS无线传输模块6与手机APP客户端7的连接;
步骤2):手机APP进入实施工况显示界面,微处理控制器模块1获得当前的速度、压力等数据后,开始执行喷灌作业;
步骤3):微处理控制器模块1根据设置的喷头入口压力根据PE管局部和沿程阻力损失模型计算出对应的卷盘式喷灌机入机压力,在对比压力变送器5传输来的实时压力值采样进行压力PID运算,微处理控制器模块1通过无线数传模块13将压力运算结果远程发送到STC单片机模块12,STC单片机模块12转发压力运算结果到变频器3,控制水泵电机4的转速调整卷盘式喷灌机入机压力的大小;
步骤4):微处理控制器模块1获得无刷直流电机9转速后,根据手机APP客户端7设置的速度值与编码器10测定的无刷直流电机实时转速进行PID运算,并运算结果通过速度PID控制器调整PE管的回收速度;
步骤5):实时的喷头入口压力、无刷直流电机转速数据经GPRS无线传输模块6以短信模式发送到手机APP客户端7,用户实现卷盘式喷灌机2作业的全时段无线远程控制;
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,包括微处理控制器模块(1)、无线数传模块(13)、STC单片机模块(12)、变频器(3)、水泵电机(4)、压力变送器(5)、GPRS无线传输模块(6)、手机APP客户端(7)、编码器(10),所述微处理控制器模块(1)通过USART串口与无线数传模块(13)通讯,无线数传模块(13)使用USART串口与STC单片机模块(12)通讯,STC单片机模块(12)通过I/O口与变频器(3)连接,变频器(3)竖直安装在水泵电机(4)启动装置的金属底座上,水泵电机(4)通过输水管分别连接水源地(11)和盘式喷灌机(2),所述微处理控制器模块(1)的输入端与压力变送器(5)相连,压力变送器(5)安装在卷盘式喷灌机(2)入水管外壁,所述微处理控制器模块(1)通过串口与GPRS无线传输模块(6)相连,GPRS无线传输模块(6)与手机APP客户端(7)进行通讯,所述微处理控制器模块(1)还通过I/O口依次连接无刷直流电机控制器(8)、无刷直流电机(9),所述无刷直流电机(9)的输出轴上安装编码器(10),编码器(10)与处理控制器模块(1)相连。
  2. 如权利要求1所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述微处理控制器模块(1)包括串口收发模块、速度控制信号调理模块及报警监测模块,所述串口收发模块用于实现微处理控制器模块(1)与变频器(3)、GPRS无线传输模块(6)之间的通信,所述速度控制信号调理模块与无刷直流电机(9)、无刷直流电机控制器(8)组成速度PID控制器,调整电机转速;所述报警监测模块监测卷盘式喷灌机作业时PE管状态、喷头入口压力,异常情况发生时报警提醒用户。
  3. 如权利要求2所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述PE管状态包括展开长度、盘绕层数以及盘绕圈数。
  4. 如权利要求2所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述喷头入口压力由入机压力减去PE管压力损失所得,PE管压力损失包括动态变化的展开部分和弯曲盘绕部分组成,由试验获得;试验时,在入机测压口和喷头入口分别安装好压力表,在供水泵与卷盘式喷灌机入口之间安装好流量计;首先,将PE管完全拉出展开,盘绕圈数C=0,实测不同工作流量Q i(i=0,1,2…)下的入机压力p 10和入机压力与喷头入口压力的差值△p 10,获得p 10=f(Q i),△p 10=f(Q i);其次,将PE管盘绕一圈绕到卷盘上,即C=1,实测不同流量Q i下的入机压力p 11和入机压力与喷头入口压力数据的差值△p 11,获得p 11=f(Q i),△p 11=f(Q i);然后,盘绕2圈C=2、3圈C=3,…,直至完全盘 绕到卷盘上,这样就获得了某种特定规格PE管在盘绕不同圈数时压力损失数据p 1C=f(Q i),△p 1C=f(Q i);采用同样方法可以建立不同规格的PE管的动态压力损失数据库;实际使用时,由PE管当前盘绕圈数下的入机压力值p 1C,通过p 1C=f(Q i),确定当时对应的流量Q,再由△p 1C=f(Q i)确定入机压力的补偿值和入机压力的修正值,并通过无线数传模块将水泵电机变频器的控制压力重新设定,进而控制水泵电机提升供水压力,使入机压力得到补偿,从而达到喷头压力的恒定。
  5. 如权利要求1所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述无线数传模块(13)、STC单片机模块(12)、变频器(3)与微处理控制器模块(1)组成压力PID控制器,控制卷盘式喷灌机(2)的入机压力。
  6. 如权利要求1所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述GPRS无线传输模块(6)包括短信收发模块,短信收发模块与手机APP客户端(7)交互卷盘式喷灌机作业时的各种工况信息。
  7. 如权利要求1所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述手机APP客户端(7)包括卷盘式喷灌机参数设置界面、卷盘式喷灌机作业工况实时显示界面。
  8. 如权利要求1所述的提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***,其特征在于,所述微处理控制器模块(1)为STM32F103RBT6处理器,所述压力变送器(5)为AS-131系列扩散硅压力变送器,所述GPRS无线传输模块(6)采用ATK-SIM800C模块,所述无线数传模块(13)为WSN-02无线数传模块。
  9. 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制方法,其特征在于,包括以下步骤:
    1),打开手机APP客户端(7),选择短信模式进入卷盘式喷灌机设置界面,设置喷头入口压力、PE管回收速度、GPRS无线传输模块(6)SIM***码,手机APP客户端(7)将设置好的信息发送到指定号码的GPRS无线传输模块(6);
    2),GPRS无线传输模块(6)接收到手机APP客户端(7)的信息后将压力、速度值传输到微处理控制器模块(1),微处理控制器模块(1)启动卷盘式喷灌机(2)运行;
    3),压力变送器(5)将压力信号发送到微处理控制器模块(1),微处理控制器模块(1)通过无线数传模块(13)将压力控制信号远程发送到STC单片机模块(12),STC单片机模块(12)转发压力控制信号到变频器(3),微处理控制器模块(1)、无线数传模块(13)、STC单片机模块(12)、变频器(3)组成的压力PID控制器将压力信号与设定压力值进行 压力PID运算,控制水泵电机(4)的转速控制卷盘式喷灌机入机压力;
    4),设定的PE管回收速度值与速度监测模块的无刷直流电机(9)实时速度在微处理控制器模块(1)进行PID运算并调整无刷直流电机转速;
    5),微处理控制器模块(1)将接收到的压力变送器(5)实时压力信号、编码器(10)实时速度信号,通过GPRS无线传输模块(6)转发到手机APP客户端(7),相关参数显示在卷盘式喷灌机工况实时显示界面上,用户实时监测运行工况并可以做出相应的调整。
PCT/CN2018/115815 2018-06-27 2018-11-16 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法 WO2020000871A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/623,688 US11382285B2 (en) 2018-06-27 2018-11-16 Wireless interconnection control system and method for improving sprinkler irrigation uniformity of hose reel irrigator with electric drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810674523.2 2018-06-27
CN201810674523.2A CN108628224B (zh) 2018-06-27 2018-06-27 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法

Publications (1)

Publication Number Publication Date
WO2020000871A1 true WO2020000871A1 (zh) 2020-01-02

Family

ID=63688368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115815 WO2020000871A1 (zh) 2018-06-27 2018-11-16 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法

Country Status (3)

Country Link
US (1) US11382285B2 (zh)
CN (1) CN108628224B (zh)
WO (1) WO2020000871A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111990231A (zh) * 2020-04-01 2020-11-27 秋点兵(河北)科技有限公司 一种高尔夫球场灌溉***
GR1009981B (el) * 2020-04-15 2021-04-22 Σταματιος Αθανασιου Καρρος Συστημα ελεγχου ποτιστικου μηχανηματος

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628224B (zh) * 2018-06-27 2021-12-21 江苏大学 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法
CN111176204A (zh) * 2020-01-03 2020-05-19 江苏德源制泵有限公司 一种无人值守电动绞盘式喷灌机物联网控制***
CN111220870A (zh) * 2020-02-28 2020-06-02 成都领派科技有限公司 一种气体灭火设备监测电路
USD959961S1 (en) * 2020-06-22 2022-08-09 Jian Yu Waterwheel
CN114568060A (zh) * 2022-03-08 2022-06-03 新疆中泰创新技术研究院有限责任公司 一种防冻浇灌***及对土壤进行洗盐的方法
CN114600741A (zh) * 2022-03-23 2022-06-10 河南锐利特计算机科技有限公司 一种大田智能压调式喷灌***
CN115517160B (zh) * 2022-10-24 2023-09-15 中国农业科学院农田灌溉研究所 一种基于气象信息的智能灌溉指导计量***及方法
CN116147950B (zh) * 2023-01-03 2023-10-20 石河子大学 供水方法及滴灌***性能测试平台
CN117837361B (zh) * 2024-01-15 2024-05-31 中国农业科学院农业环境与可持续发展研究所 一种中心支轴式喷灌机水肥同步控制***及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004371A1 (en) * 1978-03-24 1979-10-03 Eaton Corporation Overwatering prevention control system
EP2147592A1 (en) * 2008-07-21 2010-01-27 Comer Industries S.p.A. Reel irrigation assembly and associated control method
CN102487789A (zh) * 2011-12-27 2012-06-13 浙江大学 基于ZigBee与GPRS的变频灌溉远程监控***
CN204539835U (zh) * 2015-04-10 2015-08-12 山东农业大学 一种水肥药一体化灌溉***
CN205124336U (zh) * 2015-11-22 2016-04-06 西北农林科技大学 太阳能驱动自动控制施肥打药装置
CN105961152A (zh) * 2016-06-03 2016-09-28 江苏大学 基于无刷直流电机与安卓app的卷盘喷灌机速度控制***及控制方法
CN108628224A (zh) * 2018-06-27 2018-10-09 江苏大学 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017095A1 (fr) * 1999-08-31 2001-03-08 Ebara Corporation Bati de moteur, moteur utilisant ledit bati et motopompe
CN103776614B (zh) * 2014-02-27 2016-08-17 江苏大学 一种卷盘直径可调的螺旋输水盘管水力特性试验装置
CN105875362A (zh) * 2014-09-05 2016-08-24 福建亚润农业综合开发有限公司 智能远程水泵控制器和电磁阀调控***
CN204650245U (zh) * 2015-01-13 2015-09-16 河北农哈哈机械集团有限公司 一种卷盘式喷灌机传输速度数据采集装置及监控***
CN205483378U (zh) * 2015-12-31 2016-08-17 山东佰测仪表有限公司 超低功耗数字压力变送器
US20170211285A1 (en) * 2016-01-22 2017-07-27 Hayward Industries, Inc. Systems and Methods for Providing Network Connectivity and Remote Monitoring, Optimization, and Control of Pool/Spa Equipment
CN109122235B (zh) * 2016-03-17 2020-07-28 江苏华源节水股份有限公司 一种智能反馈式水涡轮驱动装置
CN105717951B (zh) * 2016-03-24 2018-05-29 山东省农业机械科学研究院 卷盘式喷灌机灌水量智能精准控制***及控制方法
CN106171864A (zh) * 2016-08-31 2016-12-07 河北农哈哈机械集团有限公司 一种智能电动卷盘喷灌机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004371A1 (en) * 1978-03-24 1979-10-03 Eaton Corporation Overwatering prevention control system
EP2147592A1 (en) * 2008-07-21 2010-01-27 Comer Industries S.p.A. Reel irrigation assembly and associated control method
CN102487789A (zh) * 2011-12-27 2012-06-13 浙江大学 基于ZigBee与GPRS的变频灌溉远程监控***
CN204539835U (zh) * 2015-04-10 2015-08-12 山东农业大学 一种水肥药一体化灌溉***
CN205124336U (zh) * 2015-11-22 2016-04-06 西北农林科技大学 太阳能驱动自动控制施肥打药装置
CN105961152A (zh) * 2016-06-03 2016-09-28 江苏大学 基于无刷直流电机与安卓app的卷盘喷灌机速度控制***及控制方法
CN108628224A (zh) * 2018-06-27 2018-10-09 江苏大学 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111990231A (zh) * 2020-04-01 2020-11-27 秋点兵(河北)科技有限公司 一种高尔夫球场灌溉***
GR1009981B (el) * 2020-04-15 2021-04-22 Σταματιος Αθανασιου Καρρος Συστημα ελεγχου ποτιστικου μηχανηματος

Also Published As

Publication number Publication date
US11382285B2 (en) 2022-07-12
US20210329860A1 (en) 2021-10-28
CN108628224A (zh) 2018-10-09
CN108628224B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2020000871A1 (zh) 一种提高喷灌均匀性的电驱动卷盘式喷灌机无线互联控制***及方法
EP2147592B1 (en) Reel irrigation assembly and associated control method
CN202843344U (zh) 一种即热式饮水机
CN107178493B (zh) 一种尿素泵检测***
CN107654387A (zh) 一种智慧水泵及其控制方法
CN114788449A (zh) 水肥一体机吸肥量调节控制装置及控制方法
CN105961152A (zh) 基于无刷直流电机与安卓app的卷盘喷灌机速度控制***及控制方法
KR101074603B1 (ko) 원격 제어 전원 공급 장치 및 방법
JP2002233255A (ja) 散水システム
CN112051729A (zh) 一种pid控制方法及田间供水***
US20200029515A1 (en) Surge valve assembly
CN110155949B (zh) 一种制氧装置、制氧装置的流量采购计费***及方法
CN107943127B (zh) 果园管道喷雾药液压力控制装置及控制方法
CN212256127U (zh) 一种混凝土养护监控***
CN201913034U (zh) 一种淋浴出水***
CN209994868U (zh) 一种水肥一体化灌溉装置
CN112523796B (zh) 基于粉尘在线监测的降尘喷雾控制***及其控制方法
CN210675805U (zh) 一种具有反馈功能的点胶控制检测***
CN207541449U (zh) 液肥变量深施控制***
CN105911894A (zh) 一种智能螺栓紧固器的控制装置及其控制方法
CN111156711A (zh) 一种空气能装备智能控制***
CN219239283U (zh) 一种污水处理加药装置
CN112109895A (zh) 基于温度和压力监测的无人机喷雾控制方法
CN105987214A (zh) 角阀开关控制***、方法以及角阀
CN112132531B (zh) 架空线路施工进度计量装置及架线施工进度可视化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924664

Country of ref document: EP

Kind code of ref document: A1