WO2020000557A1 - 基于岩溶管道介质特征反演的室内示踪试验*** - Google Patents

基于岩溶管道介质特征反演的室内示踪试验*** Download PDF

Info

Publication number
WO2020000557A1
WO2020000557A1 PCT/CN2018/097475 CN2018097475W WO2020000557A1 WO 2020000557 A1 WO2020000557 A1 WO 2020000557A1 CN 2018097475 W CN2018097475 W CN 2018097475W WO 2020000557 A1 WO2020000557 A1 WO 2020000557A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracer
karst
control system
pipeline
real
Prior art date
Application number
PCT/CN2018/097475
Other languages
English (en)
French (fr)
Inventor
李术才
王欣桐
许振浩
林鹏
潘东东
黄鑫
高斌
王文扬
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/466,787 priority Critical patent/US10989702B2/en
Publication of WO2020000557A1 publication Critical patent/WO2020000557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/40Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for geology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/06Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes for surveying; for geography, e.g. relief models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/08Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of scenic effects, e.g. trees, rocks, water surfaces

Definitions

  • the invention relates to the technical fields of hydrogeology, hydrology and water resources engineering, groundwater and scientific engineering, environmental science and engineering, water resources and environmental engineering, engineering geology and the like, and particularly relates to an indoor display based on the characteristics of karst pipeline medium inversion Trace test system.
  • the karst groundwater tracer test is a hydrogeological test that can accurately detect and analyze karst pipeline media, and is one of the important tools for studying groundwater migration, pollution sources, and karst pipeline morphology.
  • the tracking technology can accurately and economically determine the hydrological parameters of groundwater flow, detect the type and structural characteristics of underground karst pipelines in a relatively short period of time based on the characteristics of the received concentration curve.
  • the present invention provides an indoor trace test system based on karst pipeline medium feature inversion based on simple and convenient operation and monitoring.
  • the present invention adopts the following technical solutions:
  • An indoor tracer test system based on the inversion of karst pipeline medium characteristics is divided into four parts, including a karst medium assembly pipeline model system, a test bench, a water supply system, an automatic tracer release control system, and a wireless real-time fluorescent tracer monitor.
  • System central control system and high-definition camera recording system;
  • the karst medium assembly pipeline model system is composed of a series of karst conceptual model pipelines of design size styles, which are used to simulate different types of underground karst media; the flow velocity is measured at its entrance and traced and placed, and real-time data at the exit Acquisition and monitoring to obtain the characteristics of the trace curves of different karst medium structures;
  • test bench is used to support a karst medium assembly pipeline model system
  • the water supply system is connected to the karst medium assembly pipeline model system to supply water to the karst medium assembly pipeline model system;
  • the full-automatic tracer release control system is connected to the karst medium assembly pipeline model system and inputs the prepared tracer solution into the karst medium assembly pipeline model system;
  • the wireless real-time fluorescent tracer monitoring system is used for real-time monitoring of the concentration and flow rate of the fluorescent tracer, and realizes remote wireless transmission of data;
  • the high-definition camera recording system is used for recording and photographing the entire process of transporting the fluorescent tracer in the pipeline, and wirelessly transmits the images and videos to the central control system in real time, combining the collected tracer concentration and The flow rate is displayed on the display screen to provide basis and help for later data processing and analysis;
  • the central control system controls a full-automatic tracer release control system, a water supply system, a wireless real-time fluorescent tracer monitoring system and a high-definition camera recording system to communicate with the central control system.
  • the pipeline model is a transparent material, and the change of the concentration of the tracer during the tracer test can be visually observed.
  • An opening connected to the automatic tracer release control system is provided at the position of the pipeline model near the entrance.
  • An opening connected to the wireless real-time fluorescent tracer monitoring system is arranged near the exit, and a sealing ring is used to seal to prevent liquid leakage during the test.
  • test rig includes a pedestal base and a support frame, and drainage drains are provided in the middle and surroundings of the pedestal base to discharge excess water into the sewer during the test;
  • Two slide rails are mounted on the two slide rails with a plurality of adjustable height support frames, and the karst medium assembly pipeline model system is installed on the support frames.
  • the full-automatic tracking release control system includes a water supply device, an integrated three-chamber combination box, a central control system, and an online real-time monitoring device;
  • the integrated three-chamber combination box includes a pre-mixing chamber, a mixing chamber, and a storage chamber which are sequentially connected;
  • the premixing chamber is responsible for storing dry powders of rhodamine, sodium fluorescein, and tianlaibao, and a weighing device is arranged at the bottom thereof, and the weighing device is used to detect the dry powder of the tracer. Weight, and sends the detected signal to the central control system; the central control system controls the weight of the tracer dry powder entering the mixing chamber;
  • the mixing chamber is responsible for the configuration of the tracer solvent, and the water supply device supplies water to the mixing chamber;
  • the mixing chamber includes a temperature sensor, a stirring rod, and a cooling base, and the temperature sensor is disposed at the lower part of the mixing chamber;
  • the stirring rod Used to stir the solution to be mixed;
  • the cooling base is located at the bottom of the premixing chamber, the temperature sensor is connected to a central control system, and the central control system controls the cooling base to achieve temperature control in the mixing chamber;
  • the storage chamber is used for storing the prepared solution, and a drain hose connected to the pipeline is arranged on the storage chamber;
  • the on-line real-time monitoring device includes a variety of sensors installed in the mixing room and the storage room for monitoring various parameters of the prepared solution; the data is transmitted to a central control system, and the historical data is kept in time.
  • the stirring rod includes a hollow main rod and a plurality of screw plates installed at the bottom of the main rod; the main rod is provided with an ethanol solution injection hole, and each of the screw rods and the main rod side
  • the wall forms a hollow structure with a triangular cross section, and a plurality of small holes are evenly distributed on the side wall of the screw; the inside of the hollow main rod is in communication with the inside of the screw.
  • Rhodamine B powder In order to prevent Rhodamine B powder from being adsorbed on the screw and screw, in view of the fact that Rhodamine B is easily soluble in ethanol, during the solution configuration process, a small amount of ethanol solution was injected along the opening above the main rod, and ethanol flowed in through the opening above the main rod 3. Flow out along the small holes of the screw, and take out the rhodamine B powder adsorbed on the screw, to ensure the screw is bright and clean, and improve the solution preparation rate.
  • the water supply device includes a water tank, an electric pump and an electric flow regulator, which are responsible for providing a stable water source; the electric pump provides power to continuously pump water from the water tank to the mixing chamber; the electric flow regulator is based on a central control system The signals sent out control the flow rate and the inlet water flow rate, and transmit the flow rate information to the central control system.
  • a temperature sensor is also provided in the mixing chamber; the temperature sensor is arranged at the lower part of the mixing chamber.
  • calculate the required dry powder weight and water amount according to the designed concentration and dose turn on the electric flow regulator and the air pressure regulator, and add the tracer dry powder and water to the mixing chamber.
  • the weight of the tracer or the flow of water is measured by the pressure regulator and the electric flow regulator, and it is sent to the central control system. Or signal to stop adding. Subsequently, the central control system sets the rotation speed and rotation time of the stirring screw to quickly stir the tracer to prevent agglomeration.
  • the cooling base is located at the bottom of the premixing chamber.
  • the temperature control of the premixing system is achieved by combining temperature sensors.
  • the built-in ice-water circulation pipeline can keep the temperature in the premixing chamber between 5 ° -15 ° to prevent the temperature from being too high and the tracer to occur. degradation.
  • the central controller receives the signal from the temperature sensor and sends instructions to the ice water circulation pipeline to start working; when the temperature is low, the ice water circulation pipeline stops working.
  • the online real-time monitoring device includes an online tracer monitor, a turbidity sensor, a PH sensor, a corrosion rate monitor, a photoelectric liquid level sensor, and a temperature sensor; during the launch process, the online real-time monitoring device is responsible for important water quality parameters Real-time monitoring using online sensors and transmission to the central control system to keep historical data in time; turbidity sensors, pH sensors, corrosion rate monitors are arranged in the mixing room and storage room to configure and store the tracer solution Monitor turbidity, pH and corrosion rate during the process;
  • the online trace monitor is installed in the mixing chamber to monitor the concentration of the tracer in the mixing chamber in real time.
  • concentration of the agent is insufficient, the chemical agent can be replenished to the designed concentration in time to ensure that the chemical agent in the system always maintains the best state;
  • the photoelectric liquid level sensor is installed in the storage room and is responsible for real-time monitoring of the liquid level.
  • the sensor transmits the output signal of the liquid level to the release control module of the central control system, and starts the device to perform the solution again.
  • the preparation process when the solution in the storage tank is at a high level, the sensor also sends a signal to stop the solution preparation.
  • the inner walls of the premixing chamber, the mixing chamber and the storage chamber are evenly coated with a black shading paint.
  • a partition wall is arranged around the upper part of the premixing chamber, and a desiccant and iron powder are built in.
  • the iron powder oxidizes and absorbs oxygen, and provides a dry and dark environment for storing the tracer.
  • an air pressure regulating device is provided in the upper part of the premixing chamber, the air pressure regulating device adjusts the pressure in the premixing chamber, and a guide tube is provided in the premixing chamber.
  • One end is inserted in the tracer of the premixing chamber, and the other end is connected to the mixing chamber.
  • the premixing chamber is pressurized by a pressure regulator, and the dry powder of the tracer enters the mixing through the guide tube under the effect of pressure. room.
  • an air pressure regulating device is provided on the upper part of the mixing chamber, the air pressure regulating device regulates the pressure in the mixing chamber, and a mixing pipe is provided in the mixing chamber, and one end of the guiding pipe is inserted In the mixed solution of the mixing chamber, the other end is connected to the storage chamber.
  • the mixing chamber is pressurized by a pressure regulator. Under pressure, the solution enters the storage room through the material guide tube. After the central control system issues a release instruction, the solution is sent by the metering pump to the specified point through the discharge hose.
  • the wireless real-time fluorescent tracer monitoring system mainly includes a hydraulic self-charging power source, a multifunctional tracer monitoring probe, and a wireless ultrasonic flowmeter;
  • the hydraulic self-charging power supply is composed of a vortex charging device and a lithium battery, and a turbo charging device is connected to the lithium battery by a wire;
  • the vortex charging device is arranged in a drainage channel near a water outlet of an analog pipeline, and the water will drive the turbine Turning, the small generator built in the vortex charging device can convert mechanical energy into electrical energy and store it in a lithium battery;
  • the multifunctional tracing monitoring probe is arranged on the model pipeline, and can monitor the flow velocity, water level, turbidity, conductivity, and concentration of the fluorescent tracer, and the data is wirelessly transmitted to the central controller;
  • the wireless ultrasonic flowmeter includes a clamp-type sensor, a coupling agent, and a connecting line; the coupling agent is applied on the surface of the pipeline, and the clamp-type sensor is clamped on the pipeline and connected to a central control system.
  • the central control system is composed of a central processor and a display screen.
  • the Chinese and English processors include a data storage module, a processing analysis module, and a centralized control module.
  • the data storage module is responsible for recording and storing the tracer concentration, flow rate, and shooting. Photos and images; processing and analysis module, using the collected data and images, to calculate and correct the dynamic flow rate and tracer recovery rate;
  • the centralized control module is divided into the release control module and the collection control module, which are responsible for controlling the fully automatic tracking Release control system and wireless real-time fluorescent tracer monitoring system.
  • the water supply system, the tracer release control system, the wireless real-time fluorescent tracer monitoring system, and the central control system of the present invention can be applied to a field tracer test.
  • Set up water supply system and tracer release control system at the drop point such as drilling holes, rivers, sinkholes, etc.
  • perform fixed-point release of tracer and install wireless real-time fluorescent indicators at exits (such as downstream rivers, sinkholes, etc.)
  • Trace monitoring system which records data and traces the concentration breakthrough curve in real time through the central control system.
  • the invention studies an indoor tracer test system and operation method based on the inversion of karst pipeline medium characteristics, and solves the lack of more systematic indoor tracer exploration tests in the previous studies and the lack of tracing technology analysis for karst pipeline media. This technical problem of related devices and methods. Compared with previous studies, the device of the present invention has the following advantages:
  • the present invention can perform solute transport tracing simulation for a variety of combined karst pipeline models, using a variety of different combined forms such as straight pipelines, underground karst pools, and falling water. To a large extent, the environment of the karst underground medium is truly reduced, and the karst pipeline model adopted can be assembled and disassembled to achieve reuse. It is made of high-strength PVC transparent material and has visibility.
  • the present invention can adjust the height of the threaded lifting pipe, perform multiple indoor trace tests with different head differences, and simulate head differences in a real karst environment.
  • the present invention can realize single shot, multiple intermittent shots, and pulsed shot tracers through programming.
  • the powder tracer can be continuously configured and added. From the powder to the prepared solution, the entire process reaches Fully automatic, safe and continuous operation.
  • the present invention realizes real-time monitoring of fluorescent tracer concentration and flow rate, and remote wireless transmission of data by means of a wireless real-time fluorescent tracer monitoring system, and realizes an uninterrupted self-power supply function through hydropower generation, which can be used in unattended situations Conduct laboratory tests.
  • the present invention uses a high-definition camera to record and photograph the entire process of the transport of the fluorescent tracer in the pipeline, and displays it in real time visually by means of a display screen.
  • FIG. 1 is an overall structural diagram of the present invention
  • FIG. 2 is a structural diagram of a central processing unit module of the present invention.
  • Fig. 3 is a detailed view of a vortex charging device.
  • Figure 4 shows four types of basic pipeline models.
  • FIG. 5 is a structural diagram of a full-automatic tracking release control system.
  • Fig. 6 is a structural diagram of a stirring rod.
  • 11-1 water tank; 11-2, electric pump; 11-3, electric flow regulator; 11-4, premixing chamber; 11-5, mixing chamber; 11-6, storage chamber; 11-7, tracer Agent dry powder; 11-8, stirring screw, 8a, main rod; 8b, screw; 11-9, online tracking monitor; 11-10, photoelectric liquid level sensor; 11-11, a variety of online sensors; 11 -12.
  • this application proposes an indoor tracer test system based on the inversion of karst pipeline medium characteristics; it solves the problems that have not been done in previous studies.
  • an indoor tracer test system based on the inversion of karst pipeline medium characteristics is divided into four parts, including a karst medium assembly pipeline model system, a test bench, Water supply system, fully automatic tracking release control system, wireless real-time fluorescent tracking monitoring system, central control system and high-definition camera recording system.
  • the karst pipeline medium assembly model and test bench are the main test sites. By combining multiple assembly pipeline models, they are used to simulate different types of underground karst media, measure the flow rate at the entrance and trace the release, and perform real-time data at the exit. Sampling and monitoring to obtain tracer characteristics of different karst medium structures.
  • the karst medium assembly pipeline model system consists of a series of karst conceptual model pipelines with design dimensions. By designing and assembling the karst conceptual model pipeline to a certain degree, it can be easily assembled, disassembled, and reused.
  • the pipe model is a rigid high-strength PVC transparent material, which can visually observe the change of the tracer concentration during the tracer test.
  • An opening connected to the tracer release control system and the wireless real-time fluorescent tracer monitoring system is respectively arranged at the position of the pipeline near the entrance and the exit, and sealed with an O-ring to prevent liquid leakage during the test.
  • four basic types of pipeline models including single straight pipelines, branch pipelines, aquifers, and falling water were designed. The number was changed, and various permutations and combinations were obtained.
  • the test bench and the water supply system include a bench base and a water supply device.
  • the test base 2 of the test bench is 20 cm thick and is cast from concrete. It has a length of 12 m and a width of 4 m. A drainage drain of 15 cm is set in the middle and the surroundings to drain excess water into the sewer.
  • the entire test bench is placed on a concrete platform, which can be easily assembled and disassembled. Two slide rails are arranged on both sides of the middle drainage channel, and the slide rails are loaded with multiple adjustable height brackets, which are used to set up a test model for assembling pipelines, loading dosing devices and tracers.
  • the adjustable height bracket 6 is made of high-strength ABS material, and is composed of a modified ABS threaded lifting pipe 6a and a splicing collar 6b, which is responsible for fixing the model pipeline. During the test, the adjustable height bracket is fixed on the slide rail 5, and by adjusting the height of the threaded lifting pipe, tracer tests with different head differences can be performed to simulate the true height difference. The model pipe can be easily changed by sliding the adjustable height bracket.
  • the water supply device is composed of a water storage tank 7, a water pump 8, a water pressure regulator and pressure gauge 9, and a supporting pipeline 10, etc.
  • the required water pressure is provided by the water pump, and the water storage tank can provide constant water supply to achieve Stable water supply.
  • the full-automatic tracer delivery control system continuously configures and adds powdery tracer, from powder to the prepared solution, the entire process is fully automatic, safe and continuous operation; can be achieved Automatically and continuously configure the solution concentration, and strictly control the solution volume of the solution.
  • the method of delivery can be single, multiple, or pulsed according to programming. It has high efficiency and greatly saves the labor cost of tracer delivery.
  • the three-compartment combination box can be operated simultaneously, and the tracer solution can be continuously configured, which is efficient and convenient. To meet the requirements of long-term preparation and storage of the fluorescent tracer rhodamine B, it is considered to be easily photolyzed, oxidized, and strongly adsorbed.
  • the device is also equipped with a cooling base, a special stirring screw and other devices to reduce the adsorption effect during the dissolution process and improve the low-temperature shading preparation and storage environment for the tracer;
  • the invention can monitor and collect the liquid level, concentration, turbidity, PH value and corrosion rate and other information during the configuration and release of the tracer, realize the comprehensive monitoring of the configuration and release process, and can control more accurately and efficiently. This process is highly comprehensive and improves the test efficiency.
  • the specific structure is as follows:
  • the integrated three-chamber combination box includes a pre-mixing chamber, a mixing chamber, and a storage chamber which are sequentially connected;
  • the premixing chamber 11-4 is responsible for storing dry powders 11-7 of rhodamine, sodium fluorescein, and tianlaibao, and a weighing device is arranged at the bottom thereof, and the weighing device is used for detection
  • the weight of the tracer dry powder and sends the detected signal to the central control system; the central control system controls the weight of the tracer dry powder entering the mixing chamber;
  • the mixing chamber 11-5 is responsible for the configuration of the tracer solvent, and the water supply device supplies water to the mixing chamber.
  • the mixing chamber includes a temperature sensor, a stirring rod, and a cooling base 11-15.
  • the temperature sensor is disposed at the lower part of the mixing chamber.
  • the stirring rod is used to stir the solution to be mixed;
  • the cooling base is located at the bottom of the premixing chamber, the temperature sensor is connected to a central control system, and the central control system controls the cooling base to achieve temperature control;
  • the storage chamber 11-6 is used for storing the prepared solution, and a drain hose 11-13 connected to the pipeline is provided on the storage chamber 11-6.
  • the on-line real-time monitoring device includes a variety of sensors installed in the mixing room and the storage room for monitoring various parameters of the prepared solution; the data is transmitted to a central control system, and the historical data is kept in time.
  • the stirring rod includes a hollow main rod 8a and a plurality of screw pieces 8b installed at the bottom of the main rod; the main rod is provided with an ethanol solution injection hole, and each of the screw rods
  • the sheet is a hollow structure with a triangular cross-section, and a plurality of controllable small holes are evenly distributed on the screw; the inside of the hollow main rod communicates with the inside of the screw; in order to prevent Rhodamine B powder from adsorbing on the screw and On the screw, in view of the fact that rhodamine B is easily soluble in ethanol, during the solution configuration process, a small amount of ethanol solution was injected along the hole above the main rod, and the ethanol flowed in along the hole above the main rod and flowed out along the small hole of the screw to adsorb The rhodamine B powder on the screw is taken out to ensure that the screw is smooth and to improve the solution preparation rate.
  • the water supply device includes a water tank 11-1, an electric pump 11-2, and an electric flow regulator 11-3, which are responsible for providing a stable water source; the electric pump provides power to continuously pump water from the water tank to the mixing chamber ; The electric flow regulator controls the flow rate and the inlet water flow rate according to the signal from the central control system, and transmits the flow information to the central control system.
  • a temperature sensor is also provided in the mixing chamber; the temperature sensor is arranged at the lower part of the mixing chamber.
  • calculate the required dry powder weight and water amount according to the designed concentration and dose turn on the electric flow regulator and the air pressure regulator, and add the tracer dry powder and water to the mixing chamber.
  • the weight of the tracer or the flow of water is measured by the pressure regulator and the electric flow regulator, and it is sent to the central control system. Or signal to stop adding. Subsequently, the central control system sets the rotation speed and rotation time of the stirring screw to quickly stir the tracer to prevent agglomeration.
  • the cooling base is located at the bottom of the premixing chamber.
  • the temperature control of the premixing system is achieved by combining temperature sensors.
  • the built-in ice-water circulation pipeline can keep the temperature in the premixing chamber between 5 ° -15 ° to prevent the temperature from being too high and the tracer to occur. degradation.
  • the central controller receives the signal from the temperature sensor and sends instructions to the ice water circulation pipeline to start working; when the temperature is low, the ice water circulation pipeline stops working.
  • the online real-time monitoring device includes an online tracer monitor 11-9, a turbidity sensor, a PH sensor, a corrosion rate monitor, a photoelectric liquid level sensor 11-10, and a temperature sensor; during the launch process, the online real-time monitoring The device is responsible for real-time monitoring of important water quality parameters in the form of online sensors, and transmits it to the central control system to retain historical data in time.
  • a turbidity sensor, a pH sensor, and a corrosion rate monitor are arranged in the mixing room and the storage room to monitor the turbidity, pH, and corrosion rate during the configuration and storage of the tracer solution;
  • the on-line trace monitor is installed in the mixing chamber to monitor the concentration of the tracer in the mixing chamber in real time.
  • concentration of the agent is insufficient, the chemical agent can be replenished to the designed concentration in time to ensure that the chemical agent in the system always maintains the best state;
  • the photoelectric liquid level sensor is installed in the storage room and is responsible for real-time monitoring of the liquid level.
  • the sensor transmits the output signal of the liquid level to the release control module of the central control system, and starts the device to perform the solution again.
  • the preparation process when the solution in the storage tank is at a high level, the sensor also sends a signal to stop the solution preparation.
  • the inner walls of the premixing chamber, the mixing chamber and the storage chamber are evenly coated with a black shading paint.
  • a partition wall is arranged around the upper part of the premixing chamber, and a desiccant and iron powder are built in. The iron powder oxidizes and absorbs oxygen, and provides a dry and dark environment for storing the tracer.
  • an air pressure regulating device 11-14 is provided in the upper part of the premixing chamber, the air pressure regulating device regulates the pressure in the premixing chamber, and a guide tube is provided in the premixing chamber.
  • One end of the feeding tube is inserted into the tracer in the premixing chamber, and the other end is connected to the mixing chamber.
  • the premixing chamber is pressurized by a pressure regulator, and the dry powder of the tracer passes through the guide under the action of pressure. The tube enters the mixing chamber.
  • an air pressure regulating device 11-14 is provided on the upper part of the mixing chamber, the air pressure regulating device adjusts the pressure in the mixing chamber, and a mixing pipe 11-16 is provided in the mixing chamber.
  • One end of the feeding tube 11-16 is inserted in the mixing liquid of the mixing chamber, and the other end is connected to the storage chamber.
  • the pressure device pressurizes the mixing chamber, and the solution enters the storage chamber through the guide tube under the effect of the pressure.
  • the central control system issues a release instruction, the solution is sent by the metering pump to the specified amount through the drain hose. point.
  • the wireless real-time fluorescent tracer monitoring system mainly includes a hydraulic self-charging power source, a multifunctional tracer monitoring probe, and a wireless ultrasonic flowmeter. It realizes the real-time monitoring of the concentration and flow rate of the fluorescent tracer, and the function of remote wireless data transmission. Use unattended.
  • the hydraulic self-charging power source of the present invention is composed of a vortex charging device and a lithium battery, and a turbine charging device and the lithium battery are connected by a wire.
  • the vortex charging device is thrown into a drainage channel near the water outlet, and the water will drive the turbine to rotate.
  • the small generator built in the vortex charging device can convert mechanical energy into electrical energy and store it in a lithium battery.
  • the hydraulic self-charging power supply is responsible for powering the multifunctional tracking probe and wireless ultrasonic flowmeter.
  • the multifunctional tracer monitoring probe can monitor the flow velocity, water level, turbidity, electrical conductivity, and concentration of the fluorescent tracer, and the data is wirelessly transmitted to the central controller.
  • the wireless ultrasonic flowmeter includes a clamp sensor, a coupling agent, and a connection line.
  • the coupling agent is coated on the surface of the pipe, the sensor is clamped on the pipe, and the host is connected to measure.
  • the wireless ultrasonic flowmeter avoids the traditional pipe breaking operation, saves time and effort, and ensures the tightness of the pipeline.
  • the clamp sensor can match pipes with a diameter of 15mm-6000mm, and the measurement accuracy is 0.1m / s.
  • the central controller is composed of a central processor and a display screen, and includes a data storage module, a processing analysis module, and a centralized control module.
  • the data storage module is responsible for recording and storing the tracer concentration, flow rate, photos and images taken; the processing and analysis module uses the collected data and images to calculate and correct the dynamic flow rate and tracer recovery rate; the centralized control module is divided into release control
  • the module and the collection control module are respectively responsible for controlling the fully automatic tracking release control system and the wireless real-time fluorescence tracking monitoring system.
  • the delivery control module can be programmed and input according to the needs of the experiment, and can achieve three effects of single delivery, multiple intermittent delivery and pulse delivery.
  • the display shows the density, flow rate and image in real time.
  • the high-definition camera recording system can record and shoot the entire process of transporting the fluorescent tracer in the pipeline. Through wireless transmission, the images and videos are transmitted to the central processor in real time. Combined with the collected tracer concentration and flow rate, The display screen provides an intuitive display, which provides basis and help for later data processing and analysis.
  • the water supply system, the tracer release control system, the wireless real-time fluorescent tracer monitoring system, and the central control system of the present invention can be applied to a field tracer test.
  • Set up water supply system and tracer release control system at the drop point such as drilling holes, rivers, sinkholes, etc.
  • perform fixed-point release of tracer and install wireless real-time fluorescent indicators at exits (such as downstream rivers, sinkholes, etc.)
  • Trace monitoring system which records data and traces the concentration breakthrough curve in real time through the central control system.
  • the device of the present invention has the following advantages:
  • the invention can perform solute migration and tracing simulation for multiple combined karst pipeline models, and adopts various different combined forms such as straight pipelines, underground karst pools, and falling water.
  • the karst underground medium environment is truly reduced, and the karst pipeline model adopted can be assembled and disassembled to achieve reuse. It is made of high-strength PVC transparent material and has visibility.
  • the invention can realize adjusting the height of the screw lifting pipe, performing multiple indoor trace tests with different head differences, and simulating the head differences in the real karst environment.
  • the invention can realize single injection, multiple intermittent injection and pulse injection of tracer through programming.
  • the powdery tracer is continuously configured and added. From powder to prepared solution, the entire process is fully automatic. , Safe, continuous operation.
  • the invention uses a wireless real-time fluorescent tracer monitoring system to realize real-time monitoring of fluorescent tracer concentration and flow rate, remote wireless transmission of data, and realizes an uninterrupted self-power supply function through hydropower generation, which can be performed indoors without an attendant. test.
  • the invention adopts a high-definition camera to record and photograph the entire process of the transport of the fluorescent tracer in the pipeline, and displays it in real time visually by means of a display screen.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种基于岩溶管道介质特征反演的室内示踪试验***,包括岩溶介质装配管道模型***,用于模拟不同类型地下岩溶介质;试验台架用于支撑岩溶介质装配管道模型***;供水***连接岩溶介质装配管道模型***为岩溶介质装配管道模型***供水;全自动示踪投放控制***连接岩溶介质装配管道模型***向岩溶介质装配管道模型***内投入配制好的示踪溶液;无线实时荧光示踪监测***,用于对荧光示踪剂浓度及流速的实时监控、实现数据的远程无线传输;中央控制***控制全自动示踪投放控制***、供水***,无线实时荧光示踪监测***和高清摄像记录***与中央控制***通讯。

Description

基于岩溶管道介质特征反演的室内示踪试验*** 技术领域
本发明涉及水文地质学、水文与水资源工程、地下水与科学工程、环境科学与工程、水资源与环境工程、工程地质等技术领域,特别是涉及一种基于岩溶管道介质特征反演的室内示踪试验***。
背景技术
在中国的西南地区存在着大量的喀斯特岩溶地层,地质条件极端复杂,形成了许多暗河、管道、落水洞、溶沟溶槽等喀斯特地貌。现阶段,随着经济建设的飞速发展,大批水利水电工程、铁路公路交通工程等重大基础工程正向这些岩溶地区转移,位于地表以下的暗河、管道不容易被发现,在地下工程施工时存在着极大安全隐患。因此,为保证工程施工安全,探明查清西南地区岩溶管道介质发育程度及构造条件是刻不容缓的。岩溶地下水示踪试验是一种能够准确地探测和分析岩溶管道介质的水文地质试验,是研究地下水运移、污染源、岩溶管道形态的重要工具之一。示踪技术根据接收的浓度曲线特征,能在较短时间内准确、经济地确定地下水流的水文参数、探测地下岩溶管道介质类型及结构特征。
目前,国内外学者针对水库、大坝、油田和煤层气井等工程开展了一系列现场示踪监测试验,对工程现场的岩溶地下水补给源和途径进行探查,但尚未进行过较为***的室内示踪探查试验,缺乏针对岩溶管道介质的示踪技术分析相关装置设备及方法,尚未能提出对于室内示踪探查试验的切实可行的技术手段。综上所述,有必要开发一种基于岩溶管道介质特征反演的室内示踪试验***及操作方法,以解决以上问题。
发明内容
本发明为克服上述技术的不足,提供一种操作简便、方便监测的基于岩溶管道介质特征反演的室内示踪试验***。
为实现上述目的,本发明采用下述技术方案:
一种基于岩溶管道介质特征反演的室内示踪试验***分为四个部分,包括岩溶介质装配管道模型***、试验台架、供水***、全自动示踪投放控制***、无线实时荧光示踪监测***、中央控制***及高清摄像记录***;
所述的岩溶介质装配管道模型***,由一系列设计尺寸样式的岩溶概念模型管道组成,用于模拟不同类型地下岩溶介质;在其入口处测定流速并进行示踪投放,在出 口处进行实时数据采集和监测,获取不同岩溶介质结构的示踪曲线特征;
所述的试验台架用于支撑岩溶介质装配管道模型***;
所述的供水***连接岩溶介质装配管道模型***为所述的岩溶介质装配管道模型***供水;
所述的全自动示踪投放控制***连接岩溶介质装配管道模型***向岩溶介质装配管道模型***内投入配制好的示踪溶液;
所述的无线实时荧光示踪监测***,用于对荧光示踪剂浓度及流速的实时监控、实现数据的远程无线传输;
所述的高清摄像记录***,用于对荧光示踪剂在管道中运移全过程进行记录和拍摄,通过无线传输,将图像及视频实时传输到中央控制***,结合收集到的示踪浓度及流速,在显示屏进行直观展示,为后期数据的处理和分析提供依据和帮助;
所述的中央控制***控制全自动示踪投放控制***、供水***,无线实时荧光示踪监测***和高清摄像记录***与中央控制***通讯。
进一步的,所述管道模型为透明材料,可以对示踪试验过程中示踪剂浓度的变化进行直观观察;在管道模型靠近入口的位置设置了一个与全自动示踪投放控制***相连接的开口,、在靠近其出口处设有与无线实时荧光示踪监测***相接的开口,采用密封圈进行密封,防止试验时液体的泄露。
进一步的,所述试验台架,包括台架底座和支撑架,所述台架底座的中间及四周均设置排水水渠,以便将试验中多余的水排进下水道;在中间排水渠两侧设置有两条滑轨,在所述的两条滑轨上装载多个可调高支撑架,所述的岩溶介质装配管道模型***安装在该支撑架上。
进一步的,所述的全自动示踪投放控制***,包括供水装置、一体化三室组合箱体、中央控制***和在线实时监测装置;
所述的一体化三室组合箱体包括依次连通的预混室、混合室和储存室;
所述的预混室负责储存罗丹明、荧光素钠、天来宝这三种示踪剂的干粉,在其底部设有称重装置,所述的称重装置用于检测示踪剂干粉的重量,且将检测的信号发给所述的中央控制***;中央控制***控制进入到混合室内的示踪剂干粉的重量;
所述的混合室负责示踪溶剂的配置,供水装置向混合室内供水;所述的混合室包括温度传感器、搅拌杆、降温底座,所述的温度传感器安置在混合室下部;所述的搅拌杆用于搅拌待混合的溶液;所述的降温底座位于预混室底部,所述的温度传感器与 中央控制***相连,所述的中央控制***控制降温底座实现对混合室内的温度控制;
所述的储存室用于存储配好的溶液,其上设置有与管道相连通的排液软管;
所述的在线实时监测装置包括安装在混合室和储存室内的多种传感器,用于对配制溶液的各种参数进行监测;并将数据传输至中央控制***,将历史数据及时保留。
进一步的,所述的搅拌杆包括一个中空的主杆和安装在主杆底部的多个螺片;所述的主杆上开设有乙醇溶液注入孔,每个所述的螺片与主杆侧壁形成截面呈三角形的中空结构,且在所述的螺片侧壁上均布多个小孔;所述的中空主杆的内部与螺片的内部连通。
为防止罗丹明B粉末吸附在螺杆及螺片上,鉴于罗丹明B极易溶解于乙醇的特性,在配置溶液过程中,沿主杆上方开孔注入少量乙醇溶液,乙醇顺主杆上方开孔流入、沿螺片小孔流出,将吸附在螺片上的罗丹明B粉末带出,保证螺杆光洁,提高溶液配制速率。
进一步的,所述的供水装置包括一个水箱、电泵和电动流量调节器,负责提供稳定水源;电泵提供动力,将水箱里的水不断地抽至混合室;电动流量调节器根据中央控制***发出的信号控制流量及进水流速,并将流量信息传递至中央控制***。
进一步的,所述混合室内还设有温度传感器;温度传感器安置在混合室下部。预混时,根据设计浓度及剂量,计算所需干粉重量和水量,依次打开电动流量调节器和气压调压装置,向混合室内加入示踪剂干粉和水。当示踪剂按设计浓度所需的投加量倒入混合室时,通过气压调压装置和电动流量调节器测得投加示踪剂重量或水的流量,向中央控制***发出继续投加或停止投加的信号。随后,通过中央控制***设定搅拌螺杆转速及转动时间,对示踪剂进行快速搅拌,防止出现结块。降温底座位于预混室底部,结合温度传感器实现对预混***的温度控制,内置冰水循环管路,可保持预混室内温度在5°-15°之间,防止温度过高,示踪剂发生降解。当温度升高时,中央控制器收到温度传感器的信号,并对冰水循环管路发出指令,开始工作;当温度较低时,冰水循环管路停止工作。
进一步的,所述在线实时监测装置包括在线示踪监控器、浊度传感器、PH传感器、腐蚀率监控器、光电式液位传感器和温度传感器;投放过程中,在线实时监测装置负责对重要水质参数采用在线传感器形式进行实时监控,并传输至中央控制***,将历史数据及时保留;在混合室和储存室内布置有浊度传感器、PH传感器、腐蚀率监控器,对示踪溶液的配置过程和储存过程进行浊度、PH及腐蚀率的监测;
所述在线示踪监控器安装在混合室内,对混合室示踪剂浓度进行实时监测,当药剂浓度不足时,能及时补充化学药剂至设计浓度,确保***中的化学药剂始终维持最佳状态;
所述光电式液位传感器安装在储存室内,负责实时监测液位;当储存室的溶液处于低液位时,传感器将液位输出信号传递至中央控制***的投放控制模块,启动设备重新进行溶液配制过程;当储存槽的溶液处于高液位时,传感器同样发出信号,停止溶液配制。
进一步的,在所述的预混室、混合室和储存室的内壁上均匀均涂黑色遮光涂料。
进一步的,在所述预混室上部四周有置物隔板,内置干燥剂和铁粉,铁粉氧化吸收氧气,为存放示踪剂提供一个干燥避光环境。
进一步的,在所述的预混室的上部设有气压调压装置,所述的气压调节装置调节预混室内的压力,且预混室内设有一个导料管,所述的导料管的一端插装在预混室的示踪剂内,另一端连通混合室;试验时,通过气压调压装置对预混室进行加压,示踪剂干粉在压力作用下,通过导料管进入混合室。
进一步的,在所述的混合室的上部设有气压调压装置,所述的气压调节装置调节混合室内的压力,且混合室内设有一个导料管,所述的导料管的一端插装在混合室的混合液内,另一端连通储存室;验时,示踪剂干粉和水在混合室进行拌匀,并调配成设计浓度的溶液;通过气压调压装置对混合室进行加压,溶液在压力作用下,通过导料管进入储存室内,当中央控制***发出投放指令后,溶液由计量泵将一定量的药液通过排液软管送至指定点。
进一步的,所述无线实时荧光示踪监测***主要包括水力自充电电源、多功能示踪监测探头、无线超声波流量计;
所述水力自充电电源由漩涡充电装置和锂电池组成,由一根导线将涡轮充电装置和锂电池连接;所述的漩涡充电装置设置在模拟管道出水口附近的排水通道中,水流将带动涡轮转动,漩涡充电装置内置的小型发电机就能够将机械能转化为电能,储存到锂电池内;
所述多功能示踪监测探头,设置在模型管道上,可对流速、水位、浊度、电导率及荧光示踪剂浓度进行监测,数据经无线传输至中央控制器;
所述无线超声波流量计包括夹持式传感器、耦合剂、连接线;所述的耦合剂涂抹在管道表面,夹持式传感器夹持在管道上连接中央控制***。
进一步的,所述中央控制***由中央处理器、显示屏组成,所述的中英处理器包括数据存储模块、处理分析模块、集中控制模块;数据存储模块负责记录存储示踪浓度、流速、拍摄的照片及影像;处理分析模块,利用收集到的数据及图像,对动态流量及示踪剂回收率进行计算校正;集中控制模块分为投放控制模块和收集控制模块,分别负责控制全自动示踪投放控制***和无线实时荧光示踪监测***。
应用上述装置模拟真实岩溶地下介质环境,并借助示踪技术反演岩溶地下介质结构,包括以下步骤:
1)在室内试验开始前,将流速仪、加药***、示踪仪等装置安置、组装好;
2)通过供水***给进出水管道注满水,并打开排水阀,保持注水持续,检查是否有漏水现象。如有渗水将装置中水排空,对漏水处进行封堵,重复此步,直至确信没有渗漏现象。给管道中注满水后,进一步检查,确保进出管道中没有气泡残留,才能进行实验;
3)在进行正式实验之前,使用示踪剂在同一条件下进行一次均匀场模拟实验,测取自来水示踪的背景值,并估算掌握实验用时;
4)开始试验,将示踪剂通过加药***一次性或连续性注入管道中,通过示踪仪及计算机实时进行监测记录和处理,等到监测到的示踪浓度可忽略时,关闭进水阀,结束本次试验;
5)一次试验结束后,将出水口阀门完全打开,用自来水将整个装置冲洗10min左右,并将相关实验用具洗净以备进行下一次实验。通过上述步骤,即完成了一次完整的实验,更换不同组合的管道,并控制不同流速来改变水力条件的方式,重复1)~4)操作过程,得到多组示踪浓度穿破曲线。通过中央处理器对这些曲线及数据进行存储,并通过神经网络等人工智能算法进行学习记忆。
6)在实际工程中,可将本发明的供水***、示踪投放控制***、无线实时荧光示踪监测***及中央控制***应用在现场示踪试验中。在投放点(如钻孔、河流、落水洞等)安置好供水***、示踪投放控制***,进行示踪剂定点投放,并在出口处(如河流下游、落水洞等)安装无线实时荧光示踪监测***,通过中央控制***实时记录数据及示踪浓度穿破曲线。
7)最终,通过中央处理器将现场实验得到的曲线及数据输入人工智能算法,与室内试验结果进行对比分析,实现对地下岩溶介质结构的推测及相关结构参数的反演。
本发明研究了一种基于岩溶管道介质特征反演的室内示踪试验***及操作方法, 解决了以往研究中尚未进行过较为***的室内示踪探查试验、缺乏针对岩溶管道介质的示踪技术分析相关装置设备及方法的这一技术难题。与前人研究相比,本发明装置具有以下优点:
1)本发明可针对多种组合岩溶管道模型进行溶质运移示踪模拟,采用直管道、地下溶潭、跌水等多种不同组合形式,并通过改变流速、管道的截面尺寸及长度,极大程度上真实还原岩溶地下介质环境,且采用的岩溶管道模型可拼装、拆卸,实现重复利用,采用高强PVC透明材料,具有可视性。
2)本发明可实现调节螺纹升降管的高度,进行不同水头差的多次室内示踪试验,模拟真实岩溶环境下的水头差。
3)本发明通过编程可实现单次投放、多次间断式投放和脉冲式投放示踪剂,将粉状示踪剂进行连续配置并投加,从粉剂到配制好的溶液,整个过程均达到全自动、安全、连续运行。
4)本发明借助无线实时荧光示踪监测***,实现对荧光示踪剂浓度及流速的实时监控、数据远程无线传输,且通过水力发电实现无间断自供电功能,能够在无人值守的情况下进行室内试验。
5)本发明采用高清摄像仪对荧光示踪剂在管道中运移全过程进行记录和拍摄,并借助显示屏进行实时直观展示。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的整体结构图;
图2为本发明的中央处理器模块结构图。
图3为漩涡充电装置细部图。
图4为四类基本管道模型。
图5为全自动示踪投放控制***的结构图。
图6为搅拌杆的结构图。
图中:1、管道模型;2、O型密封圈;3、试验底座;4、排水水渠;5、滑轨;6、可调高支架(包括6a、螺纹升降管;6b、拼接套环);7、储水箱;8、水泵;9、水压调节器及压力仪表;10、配套管路;11、示踪投放控制装置及水箱;12、水力自充电锂电池;13、漩涡充电装置;14、多功能示踪监测探头;15、无线超声波流量计;16、 中央处理器;17、显示屏;18、高清摄像仪;
A、单一直管道模型;B、含支管道的管道模型;C、含水潭管道模型;D、含跌水管道模型;
11-1、水箱;11-2、电泵;11-3、电动流量调节器;11-4、预混室;11-5、混合室;11-6、储存室;11-7、示踪剂干粉;11-8、搅拌螺杆、8a、主杆;8b、螺片;11-9、在线示踪监控器;11-10、光电式液位传感器;11-11、多种在线传感器;11-12、计量泵;11-13、排液软管;11-14、气压调压阀;11-15、降温底座;11-16、导料管;11-18、电子称重***。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
正如背景技术所介绍的,现有技术中存在不足,为了解决如上的技术问题,本申请提出了一种基于岩溶管道介质特征反演的室内示踪试验***;解决了以往研究中尚未进行过较为***的室内示踪探查试验、缺乏针对岩溶管道介质的示踪技术分析相关装置设备及方法的这一技术难题。
本申请的一种典型的实施方式中,如图1所示,一种基于岩溶管道介质特征反演的室内示踪试验***分为四个部分,包括岩溶介质装配管道模型***、试验台架、供水***、全自动示踪投放控制***、无线实时荧光示踪监测***、中央控制***及高清摄像记录***。
其中:岩溶管道介质装配模型及试验台架为主要试验场所,通过组合多种装配管道模型,用于模拟不同类型地下岩溶介质,在入口处测定流速并进行示踪投放,在出口处进行实时数据采集和监测,获取不同岩溶介质结构的示踪曲线特征。
岩溶介质装配管道模型***由一系列设计尺寸样式的岩溶概念模型管道组成。通过对岩溶概念模型管道进行一定规律进行设计、组合装配,可进行方便的拼装、拆卸,重复利用。
管道模型为硬质的高强PVC透明材料,可以对示踪试验过程中示踪剂浓度的变化进行直观观察。在管道靠近入口和出口的位置分别设置了一个与示踪投放控制***、无线实时荧光示踪监测***相接的开口,采用O型密封圈进行密封,防止试验时液体的泄露。依据西南地区常见的地下岩溶管道类型,总结其特点,设计了单一直管道、含支管道、含水潭、含跌水的四大类基本管道模型,改变其数量,进行多种排列组合,得到多种管道模型;具体的如图4所示,管道模型的种类包括四种,即单一直管道模型A;含支管道的管道模型B;含水潭管道模型C、;含跌水管道模型D;
如图1所示,所述试验台架及供水***,包括台架底座和供水装置。
所述试验台架的试验底座2厚20cm,由混凝土浇筑而成,长12m,宽4m,中间及四周均设置15cm的排水水渠,以便将试验中多余的水排进下水道。整个试验台架置于混凝土平台上,可实现方便的拼装、拆卸。中间排水渠两侧设置有两条滑轨,滑轨上装载多个可调高支架,用于安置装配管道试验模型、装载加药装置和示踪仪。
所述可调高支架6为高强ABS材料,由改装的ABS螺纹升降管6a、拼接套环6b组成,负责固定模型管道。试验时,将可调高支架固定于滑轨5上,通过调节螺纹升降管的高度,可进行不同水头差的示踪试验,模拟真实高差。通过滑动可调高支架可便捷地更换模型管道。
如图1所示,供水装置由储水箱7、水泵8、水压调节器及压力仪表9、配套管路10等组成,通过水泵提供所需水压,储水箱可提供恒定的水源补给,实现稳定供水。
如图5所示,所述全自动示踪投放控制***将粉状示踪剂进行连续配置并投加,从粉剂到配制好的溶液,整个过程均达到全自动、安全、连续运行;可实现全自动准确连续配置溶液浓度,并严格控制投放的溶液容量,投放方式可根据编程选择单次投放、多次投放或脉冲式投放,效率高,极大节约了示踪投放的劳动成本;采用一体化三室组合箱体,三个箱室可同时作业、连续配置示踪溶液,高效方便;针对长时间配制、存放荧光示踪剂罗丹明B的要求,考虑其易光解、氧化、吸附性强等性质,该装置还设置了降温底座、特制搅拌螺杆等装置,降低溶解过程中的吸附作用,并为示踪剂提高了一个低温遮光的配制、存放环境;
本发明可以对示踪剂配置及投放过程中的液位、浓度、浊度、PH值及腐蚀率等信息进行监测和收集,实现对配置及投放过程的全面监测,能更准确更高效的控制着整个过程,综合性强,提高了试验效率;具体的结构如下:
包括供水装置、一体化三室组合箱体、中央控制***、在线实时监测装置;
所述的一体化三室组合箱体包括依次连通的预混室、混合室和储存室;
所述的预混室11-4负责储存罗丹明、荧光素钠、天来宝这三种示踪剂干粉11-7,在其底部设有称重装置,所述的称重装置用于检测示踪剂干粉的重量,且将检测的信号发给所述的中央控制***;中央控制***控制进入到混合室内的示踪剂干粉的重量;
所述的混合室11-5负责示踪溶剂的配置,供水装置向混合室内供水;所述的混合室包括温度传感器、搅拌杆、降温底座11-15,所述的温度传感器安置在混合室下部;所述的搅拌杆用于搅拌待混合的溶液;所述的降温底座位于预混室底部,所述的温度传感器与中央控制***相连,所述的中央控制***控制降温底座实现对混合室内的温度控制;
所述的储存室11-6用于存储配好的溶液,其上设置有与管道相连通的排液软管11-13。
所述的在线实时监测装置包括安装在混合室和储存室内的多种传感器,用于对配制溶液的各种参数进行监测;并将数据传输至中央控制***,将历史数据及时保留。
如图6所示,所述的搅拌杆包括一个中空的主杆8a和安装在主杆底部的多个螺片8b;所述的主杆上开设有乙醇溶液注入孔,每个所述的螺片为截面呈三角形的中空结构,且在所述的螺片上均布多个可控小孔;所述的中空主杆的内部与螺片的内部连通;为防止罗丹明B粉末吸附在螺杆及螺片上,鉴于罗丹明B极易溶解于乙醇的特性,在配置溶液过程中,沿主杆上方开孔注入少量乙醇溶液,乙醇顺主杆上方开孔流入、沿螺片小孔流出,将吸附在螺片上的罗丹明B粉末带出,保证螺杆光洁,提高溶液配制速率。
进一步的,所述的供水装置包括一个水箱11-1、电泵11-2和电动流量调节器11-3,负责提供稳定水源;电泵提供动力,将水箱里的水不断地抽至混合室;电动流量调节器根据中央控制***发出的信号控制流量及进水流速,并将流量信息传递至中央控制***。
进一步的,所述混合室内还设有温度传感器;温度传感器安置在混合室下部。预混时,根据设计浓度及剂量,计算所需干粉重量和水量,依次打开电动流量调节器和气压调压装置,向混合室内加入示踪剂干粉和水。当示踪剂按设计浓度所需的投加量倒入混合室时,通过气压调压装置和电动流量调节器测得投加示踪剂重量或水的流量,向中央控制***发出继续投加或停止投加的信号。随后,通过中央控制***设定搅拌螺杆转速及转动时间,对示踪剂进行快速搅拌,防止出现结块。降温底座位于预混室 底部,结合温度传感器实现对预混***的温度控制,内置冰水循环管路,可保持预混室内温度在5°-15°之间,防止温度过高,示踪剂发生降解。当温度升高时,中央控制器收到温度传感器的信号,并对冰水循环管路发出指令,开始工作;当温度较低时,冰水循环管路停止工作。
进一步的,所述在线实时监测装置包括在线示踪监控器11-9、浊度传感器、PH传感器、腐蚀率监控器、光电式液位传感器11-10和温度传感器;投放过程中,在线实时监测装置负责对重要水质参数采用在线传感器形式进行实时监控,并传输至中央控制***,将历史数据及时保留。在混合室和储存室内布置有浊度传感器、PH传感器、腐蚀率监控器,对示踪溶液的配置过程和储存过程进行浊度、PH及腐蚀率的监测;
所述在线示踪监控器安装在混合室内,对混合室示踪剂浓度进行实时监测,当药剂浓度不足时,能及时补充化学药剂至设计浓度,确保***中的化学药剂始终维持最佳状态;
所述光电式液位传感器安装在储存室内,负责实时监测液位;当储存室的溶液处于低液位时,传感器将液位输出信号传递至中央控制***的投放控制模块,启动设备重新进行溶液配制过程;当储存槽的溶液处于高液位时,传感器同样发出信号,停止溶液配制。
进一步的,在所述的预混室、混合室和储存室的内壁上均匀均涂黑色遮光涂料。在所述预混室上部四周有置物隔板,内置干燥剂和铁粉,铁粉氧化吸收氧气,为存放示踪剂提供一个干燥避光环境。
进一步的,在所述的预混室的上部设有气压调压装置11-14,所述的气压调节装置调节预混室内的压力,且预混室内设有一个导料管,所述的导料管的一端插装在预混室的示踪剂内,另一端连通混合室;试验时,通过气压调压装置对预混室进行加压,示踪剂干粉在压力作用下,通过导料管进入混合室。
进一步的,在所述的混合室的上部设有气压调压装置11-14,所述的气压调节装置调节混合室内的压力,且混合室内设有一个导料管11-16,所述的导料管11-16的一端插装在混合室的混合液内,另一端连通储存室;验时,示踪剂干粉和水在混合室进行拌匀,并调配成设计浓度的溶液;通过气压调压装置对混合室进行加压,溶液在压力作用下,通过导料管进入储存室内,当中央控制***发出投放指令后,溶液由计量泵将一定量的药液通过排液软管送至指定点。
本发明的无线实时荧光示踪监测***主要包括水力自充电电源、多功能示踪监测探 头、无线超声波流量计,实现对荧光示踪剂浓度及流速的实时监控、数据远程无线传输功能,可在无人值守的情况下使用。
本发明的水力自充电电源由漩涡充电装置和锂电池组成,由一根导线将涡轮充电装置和锂电池连接。在进行示踪试验时,将漩涡充电装置扔进出水口附近的排水通道中,水流将带动涡轮转动,漩涡充电装置内置的小型发电机就能够将机械能转化为电能,储存到锂电池内。水力自充电电源负责对多功能示踪探头和无线超声波流量计进行供电。
所述多功能示踪监测探头,可对流速、水位、浊度、电导率及荧光示踪剂浓度进行监测,数据经无线传输至中央控制器。
所述无线超声波流量计包括夹持式传感器、耦合剂、连接线。试验时,将耦合剂涂抹在管道表面,将传感器夹持在管道上,连接主机,即可进行测量。无线超声波流量计避免了传统的破管操作,更加省时省力,也保证了管道的密闭性。夹持式传感器可匹配直径在15mm-6000mm的管道,测量精度为0.1m/s。
所述中央控制器由中央处理器、显示屏组成,包括数据存储模块、处理分析模块、集中控制模块。数据存储模块负责记录存储示踪浓度、流速、拍摄的照片及影像;处理分析模块,利用收集到的数据及图像,对动态流量及示踪剂回收率进行计算校正;集中控制模块分为投放控制模块和收集控制模块,分别负责控制全自动示踪投放控制***和无线实时荧光示踪监测***。具体的,投放控制模块可根据实验需要进行编程输入,可实现单次投放、多次间断式投放和脉冲式投放三种效果。显示屏实时对浓度、流速及图像进行展示。
所述高清摄像记录***可对荧光示踪剂在管道中运移全过程进行记录和拍摄,通过无线传输,将图像及视频实时传输到中央处理器,结合收集到的示踪浓度及流速,在显示屏进行直观展示,为后期数据的处理和分析提供依据和帮助。
应用上述装置模拟真实岩溶地下介质环境,并借助示踪技术反演岩溶地下介质结构,包括以下步骤:
1)在室内试验开始前,将流速仪、加药***、示踪仪等装置安置、组装好;
2)通过供水***给进出水管道注满水,并打开排水阀,保持注水持续,检查是否有漏水现象。如有渗水将装置中水排空,对漏水处进行封堵,重复此步,直至确信没有渗漏现象。给管道中注满水后,进一步检查,确保进出管道中没有气泡残留,才能进行实验;
3)在进行正式实验之前,使用示踪剂在同一条件下进行一次均匀场模拟实验,测取自来水示踪的背景值,并估算掌握实验用时;
4)开始试验,将示踪剂通过加药***一次性或连续性注入管道中,通过示踪仪及计算机实时进行监测记录和处理,等到监测到的示踪浓度可忽略时,关闭进水阀,结束本次试验;
5)一次试验结束后,将出水口阀门完全打开,用自来水将整个装置冲洗10min左右,并将相关实验用具洗净以备进行下一次实验。通过上述步骤,即完成了一次完整的实验,更换不同组合的管道,并控制不同流速来改变水力条件的方式,重复1)~4)操作过程,得到多组示踪浓度穿破曲线。通过中央处理器对这些曲线及数据进行存储,并通过神经网络等人工智能算法进行学习记忆。
6)在实际工程中,可将本发明的供水***、示踪投放控制***、无线实时荧光示踪监测***及中央控制***应用在现场示踪试验中。在投放点(如钻孔、河流、落水洞等)安置好供水***、示踪投放控制***,进行示踪剂定点投放,并在出口处(如河流下游、落水洞等)安装无线实时荧光示踪监测***,通过中央控制***实时记录数据及示踪浓度穿破曲线。
7)最终,通过中央处理器将现场实验得到的曲线及数据输入人工智能算法,与室内试验结果进行对比分析,实现对地下岩溶介质结构的推测及相关结构参数的反演。
与前人研究相比,本发明装置具有以下优点:
本发明可针对多种组合岩溶管道模型进行溶质运移示踪模拟,采用直管道、地下溶潭、跌水等多种不同组合形式,并通过改变流速、管道的截面尺寸及长度,极大程度上真实还原岩溶地下介质环境,且采用的岩溶管道模型可拼装、拆卸,实现重复利用,采用高强PVC透明材料,具有可视性。
本发明可实现调节螺纹升降管的高度,进行不同水头差的多次室内示踪试验,模拟真实岩溶环境下的水头差。
本发明通过编程可实现单次投放、多次间断式投放和脉冲式投放示踪剂,将粉状示踪剂进行连续配置并投加,从粉剂到配制好的溶液,整个过程均达到全自动、安全、连续运行。
本发明借助无线实时荧光示踪监测***,实现对荧光示踪剂浓度及流速的实时监控、数据远程无线传输,且通过水力发电实现无间断自供电功能,能够在无人值守的情况下进行室内试验。
本发明采用高清摄像仪对荧光示踪剂在管道中运移全过程进行记录和拍摄,并借助显示屏进行实时直观展示。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,包括岩溶介质装配管道模型***、试验台架、供水***、全自动示踪投放控制***、无线实时荧光示踪监测***、中央控制***及高清摄像记录***;
    所述的岩溶介质装配管道模型***,由一系列设计尺寸样式的岩溶概念模型管道组成,用于模拟不同类型地下岩溶介质;在其入口处测定流速并进行示踪投放,在出口处进行实时数据采集和监测,获取不同岩溶介质结构的示踪曲线特征;
    所述的试验台架用于支撑岩溶介质装配管道模型***;
    所述的供水***连接岩溶介质装配管道模型***为所述的岩溶介质装配管道模型***供水;
    所述的全自动示踪投放控制***连接岩溶介质装配管道模型***向岩溶介质装配管道模型***内投入配制好的示踪溶液;
    所述的无线实时荧光示踪监测***,用于对荧光示踪剂浓度及流速的实时监控、实现数据的远程无线传输;
    所述的高清摄像记录***,用于对荧光示踪剂在管道中运移全过程进行记录和拍摄,通过无线传输,将图像及视频实时传输到中央控制***,结合收集到的示踪浓度及流速,在显示屏进行直观展示,为后期数据的处理和分析提供依据和帮助;
    所述的中央控制***控制全自动示踪投放控制***、供水***,无线实时荧光示踪监测***和高清摄像记录***与中央控制***通讯。
  2. 如权利要求1所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述管道模型为透明材料;在管道模型靠近入口的位置设置了一个与全自动示踪投放控制***相连接的开口,在靠近其出口处设有与无线实时荧光示踪监测***相接的开口,两个开口采用密封圈进行密封。
  3. 如权利要求1所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述试验台架,包括台架底座和支撑架,所述台架底座的中间及四周均设置排水水渠;在中间排水渠两侧设置有两条滑轨,在所述的两条滑轨上装载多个可调高支撑架,所述的岩溶介质装配管道模型***安装在该支撑架上。
  4. 如权利要求1所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述的全自动示踪投放控制***,包括供水装置、一体化三室组合箱体、中央控制***和在线实时监测装置;
    所述的一体化三室组合箱体包括依次连通的预混室、混合室和储存室;
    所述的预混室负责储存罗丹明、荧光素钠、天来宝这三种示踪剂的干粉,在其底部设有称重装置,所述的称重装置用于检测示踪剂干粉的重量,且将检测的信号发给所述的中央控制***;中央控制***控制进入到混合室内的示踪剂干粉的重量;
    所述的混合室负责示踪溶剂的配置,供水装置向混合室内供水;所述的混合室包括温度传感器、搅拌杆、降温底座,所述的温度传感器安置在混合室下部;所述的搅拌杆用于搅拌待混合的溶液;所述的降温底座位于预混室底部,所述的温度传感器与中央控制***相连,所述的中央控制***控制降温底座实现对混合室内的温度控制;
    所述的储存室用于存储配好的溶液;其上设置有与管道相连通的排液软管;
    所述的在线实时监测装置包括安装在混合室和储存室内的多种传感器,用于对配制溶液的各种参数进行监测;并将数据传输至中央控制***,将历史数据及时保留。
  5. 如权利要求4所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述的搅拌杆包括一个中空的主杆和安装在主杆底部的多个螺片;所述的主杆上开设有乙醇溶液注入孔,每个所述的螺片与主杆侧壁形成截面呈三角形的中空结构,且在所述的螺片侧壁上均布多个小孔;所述的中空主杆的内部与螺片的内部连通。
  6. 如权利要求4所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述的供水装置包括一个水箱、电泵和电动流量调节器,负责提供稳定水源;电泵提供动力,将水箱里的水不断地抽至混合室;电动流量调节器根据中央控制***发出的信号控制流量及进水流速,并将流量信息传递至中央控制***。
  7. 如权利要求4所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述在线实时监测装置包括在线示踪监控器、浊度传感器、PH 传感器、腐蚀率监控器、光电式液位传感器和温度传感器;投放过程中,在线实时监测装置负责对重要水质参数采用在线传感器形式进行实时监控,并传输至中央控制***,将历史数据及时保留;在混合室和储存室内布置有浊度传感器、PH传感器、腐蚀率监控器,对示踪溶液的配置过程和储存过程进行浊度、PH及腐蚀率的监测;
    所述在线示踪监控器安装在混合室内,对混合室示踪剂浓度进行实时监测,当药剂浓度不足时,能及时补充化学药剂至设计浓度,确保***中的化学药剂始终维持最佳状态;
    所述光电式液位传感器安装在储存室内,负责实时监测液位;当储存室的溶液处于低液位时,传感器将液位输出信号传递至中央控制***的投放控制模块,启动设备重新进行溶液配制过程;当储存槽的溶液处于高液位时,传感器同样发出信号,停止溶液配制。
  8. 如权利要求4所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,在所述的预混室的上部设有气压调压装置,所述的气压调节装置调节预混室内的压力,且预混室内设有一个导料管,所述的导料管的一端插装在预混室的示踪剂内,另一端连通混合室;在所述的混合室的上部设有气压调压装置,所述的气压调节装置调节混合室内的压力,且混合室内设有一个导料管,所述的导料管的一端插装在混合室的混合液内,另一端连通储存室。
  9. 如权利要求1所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述无线实时荧光示踪监测***主要包括水力自充电电源、多功能示踪监测探头、无线超声波流量计;
    所述水力自充电电源由漩涡充电装置和锂电池组成,由一根导线将涡轮充电装置和锂电池连接;所述的漩涡充电装置设置在模拟管道出水口附近的排水通道中,水流将带动涡轮转动,漩涡充电装置内置的小型发电机就能够将机械能转化为电能,储存到锂电池内;
    所述多功能示踪监测探头,设置在模型管道上,可对流速、水位、浊度、电导率及荧光示踪剂浓度进行监测,数据经无线传输至中央控制器;
    所述无线超声波流量计包括夹持式传感器、耦合剂、连接线;所述的耦合剂涂抹在管道表面,夹持式传感器夹持在管道上连接中央控制***。
  10. 如权利要求1所述的一种基于岩溶管道介质特征反演的室内示踪试验***,其特征在于,所述中央控制***由中央处理器、显示屏组成,所述的中英处理器包括数据存储模块、处理分析模块、集中控制模块;数据存储模块负责记录存储示踪浓度、流速、拍摄的照片及影像;处理分析模块,利用收集到的数据及图像,对动态流量及示踪剂回收率进行计算校正;集中控制模块分为投放控制模块和收集控制模块,分别负责控制全自动示踪投放控制***和无线实时荧光示踪监测***。
PCT/CN2018/097475 2018-06-25 2018-07-27 基于岩溶管道介质特征反演的室内示踪试验*** WO2020000557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/466,787 US10989702B2 (en) 2018-06-25 2018-07-27 Laboratory tracer experiment system for medium characteristic inversion of karst conduit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810659975.3 2018-06-25
CN201810659975.3A CN108827833B (zh) 2018-06-25 2018-06-25 基于岩溶管道介质特征反演的室内示踪试验***

Publications (1)

Publication Number Publication Date
WO2020000557A1 true WO2020000557A1 (zh) 2020-01-02

Family

ID=64138457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097475 WO2020000557A1 (zh) 2018-06-25 2018-07-27 基于岩溶管道介质特征反演的室内示踪试验***

Country Status (3)

Country Link
US (1) US10989702B2 (zh)
CN (1) CN108827833B (zh)
WO (1) WO2020000557A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257191A (zh) * 2020-01-23 2020-06-09 中铁第四勘察设计院集团有限公司 一种土工布化学淤堵量测方法
CN112782056A (zh) * 2021-01-12 2021-05-11 河海大学 一种模拟覆盖岩溶区水径流的试验装置及方法
CN112986616A (zh) * 2021-02-22 2021-06-18 中国科学院亚热带农业生态研究所 一种确定喀斯特岩溶管道淤泥流速的装置和方法
CN112986064A (zh) * 2021-02-04 2021-06-18 山东大学 一种模拟岩溶管道网络涌水封堵实验装置
CN114034334A (zh) * 2021-09-15 2022-02-11 青岛理工大学 岩溶管道污染源和流量的识别方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047368B (zh) * 2019-04-15 2020-05-26 山东大学 充填溶洞沉积与隧道间歇型突水突泥灾变一体化试验装置及方法
CN110017869B (zh) * 2019-05-21 2021-02-09 山东大学 一种用于示踪试验的多参数实时监测***与方法
CN110426504B (zh) * 2019-07-30 2020-07-31 山东大学 基于示踪水力层析反演的岩溶含水层砂箱试验***及方法
CN111122114B (zh) * 2020-01-08 2022-02-11 河海大学 一种潜流带野外示踪实验示踪剂自动投放装置及其实施方法
CN111474143A (zh) * 2020-04-22 2020-07-31 山东省交通规划设计院有限公司 岩溶区水环境激光衰减特性试验装置及方法
CN112198283A (zh) * 2020-09-30 2021-01-08 三门核电有限公司 一种主蒸汽湿度试验的化学加药***及其使用方法
CN112924535B (zh) * 2021-01-29 2021-11-30 中国科学院地质与地球物理研究所 饱和介质下溶质运移中磁信号检测的大型实验装置及方法
CN113376401B (zh) * 2021-04-28 2022-12-09 西安交通大学 一种流量可控式的示踪分子添加装置及其添加方法
CN113718864B (zh) * 2021-09-18 2022-09-06 四川大学 岩溶坡地与石漠化边坡地表和地下水土流失一体化试验模型
CN114646755B (zh) * 2022-03-24 2023-04-07 中交四航工程研究院有限公司 一种模拟水泥土搅拌桩现场成桩施工的试验装置
CN115170974B (zh) * 2022-09-08 2022-12-20 深圳市勘察研究院有限公司 基于ai智能检测溶洞连通性的方法及装置
CN115792178B (zh) * 2022-11-04 2024-07-16 山东大学 一种高温环境下不同离子浓度突涌水封堵模拟装置及方法
CN115662261B (zh) * 2022-12-12 2023-03-17 昆明理工大学 一种模拟多种工况下尾矿库溃坝模型实验装置
CN117058962B (zh) * 2023-10-12 2024-02-06 华北有色工程勘察院有限公司 岩溶通道动水注浆堵水试验装置
CN117727226B (zh) * 2023-11-28 2024-07-23 泰山学院 一种熔解热实验一体化测量方法
CN118032608A (zh) * 2023-12-11 2024-05-14 山东大学 一种考虑温度的可视化动水管道注浆模拟试验装置及方法
CN117705948A (zh) * 2023-12-20 2024-03-15 华南理工大学 一种不同条件下岩石损伤超声试验装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807697A (en) * 1996-04-19 1998-09-15 Lockheed Martin Energy Systems, Inc. Biological tracer method
CN103335989A (zh) * 2013-06-16 2013-10-02 桂林理工大学 一种模拟岩溶地下河污染物迁移与归宿的方法
CN104282214A (zh) * 2014-10-29 2015-01-14 安徽理工大学 一种承压岩溶含水层***的管道流示踪试验综合装置
CN108020489A (zh) * 2017-11-17 2018-05-11 山东大学 充填型岩溶渗透破坏全过程模拟试验***与方法
CN108169413A (zh) * 2017-11-30 2018-06-15 河海大学 一种监测岩溶介质水流运动机理的立方体试验装置及其实验方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682629B2 (en) * 2010-05-25 2014-03-25 Schlumberger Technology Corporation Multi-phasic dynamic karst reservoir numerical simulator
CN204204302U (zh) * 2014-10-29 2015-03-11 安徽理工大学 一种承压岩溶含水层***的管道流示踪试验综合装置
CN105136983A (zh) * 2015-08-05 2015-12-09 河海大学 一种监测裂隙-管道介质溶质运移规律的试验装置
CN106693733A (zh) * 2015-11-16 2017-05-24 扬州绿都环境工程设备有限公司 一种连续式全自动加药装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807697A (en) * 1996-04-19 1998-09-15 Lockheed Martin Energy Systems, Inc. Biological tracer method
CN103335989A (zh) * 2013-06-16 2013-10-02 桂林理工大学 一种模拟岩溶地下河污染物迁移与归宿的方法
CN104282214A (zh) * 2014-10-29 2015-01-14 安徽理工大学 一种承压岩溶含水层***的管道流示踪试验综合装置
CN108020489A (zh) * 2017-11-17 2018-05-11 山东大学 充填型岩溶渗透破坏全过程模拟试验***与方法
CN108169413A (zh) * 2017-11-30 2018-06-15 河海大学 一种监测岩溶介质水流运动机理的立方体试验装置及其实验方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111257191A (zh) * 2020-01-23 2020-06-09 中铁第四勘察设计院集团有限公司 一种土工布化学淤堵量测方法
CN112782056A (zh) * 2021-01-12 2021-05-11 河海大学 一种模拟覆盖岩溶区水径流的试验装置及方法
CN112986064A (zh) * 2021-02-04 2021-06-18 山东大学 一种模拟岩溶管道网络涌水封堵实验装置
CN112986064B (zh) * 2021-02-04 2023-08-25 山东大学 一种模拟岩溶管道网络涌水封堵实验装置
CN112986616A (zh) * 2021-02-22 2021-06-18 中国科学院亚热带农业生态研究所 一种确定喀斯特岩溶管道淤泥流速的装置和方法
CN112986616B (zh) * 2021-02-22 2023-11-10 中国科学院亚热带农业生态研究所 一种确定喀斯特岩溶管道淤泥流速的装置和方法
CN114034334A (zh) * 2021-09-15 2022-02-11 青岛理工大学 岩溶管道污染源和流量的识别方法
CN114034334B (zh) * 2021-09-15 2023-11-07 青岛理工大学 岩溶管道污染源和流量的识别方法

Also Published As

Publication number Publication date
CN108827833B (zh) 2020-07-31
US20200400644A1 (en) 2020-12-24
US10989702B2 (en) 2021-04-27
CN108827833A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020000557A1 (zh) 基于岩溶管道介质特征反演的室内示踪试验***
WO2021017195A1 (zh) 基于示踪水力层析反演的岩溶含水层砂箱试验***及方法
CN101504351B (zh) 砂层渗流淤堵模拟装置
CN201593407U (zh) 盐岩储气库造腔模拟装置
CN102520131B (zh) 基于多层含水层地下水流***的地下水污染模拟仪
CN107328897A (zh) 一种模拟岩溶管道涌水的注浆封堵试验装置及方法
CN109975140B (zh) 超临界二氧化碳脉冲致裂与渗透率测试一体化的实验装置及方法
CN111411934B (zh) 水平井砂水协同产出与控制及开采完井多功能实验***及其实验方法
CN110487508B (zh) 一种用于研究水平管气液两相螺旋流的实验装置
KR101210838B1 (ko) 물을 이용한 시료의 투과율 측정 장치 및 그 방법
CN111624327B (zh) 一种岩溶管道注浆封堵试验装置
CN206161492U (zh) 一种可实现变水压力作用的渗透装置
CN115266233A (zh) 一种轻便智能化低扰动采样设备
CN114002408A (zh) 岩石裂隙渗流-温度耦合的可视化试验***及试验方法
CN107589047A (zh) 一种室内动水注浆模拟的简易试验装置及试验方法
CN108760232A (zh) 一种探究表面减阻机理的试验装置及试验方法
CN107725028A (zh) 一种水平井aicd智能控水筛管性能试验***
CN108905842B (zh) 罗丹明b荧光示踪剂全自动配置投放控制装置与操作方法
CN112546982A (zh) 一种动态长期评价添加剂对水合物影响的装置及方法
CN205719795U (zh) 复杂地下水环境下的基坑开挖模型试验装置
CN115792178B (zh) 一种高温环境下不同离子浓度突涌水封堵模拟装置及方法
CN207701124U (zh) 一种水平井aicd智能控水筛管性能试验***
CN209858203U (zh) 一种测量不同硫酸盐浓度对油管结垢影响的试验装置
CN113125203B (zh) 一种模拟井筒内地下流体取样可视化实验装置和方法
CN115266018A (zh) 一种实现流场折射率匹配的循环水槽实验装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924229

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18924229

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924229

Country of ref document: EP

Kind code of ref document: A1