WO2020000342A1 - 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法 - Google Patents

一种废烟气脱硝催化剂再生废水降解小分子有机物的方法 Download PDF

Info

Publication number
WO2020000342A1
WO2020000342A1 PCT/CN2018/093547 CN2018093547W WO2020000342A1 WO 2020000342 A1 WO2020000342 A1 WO 2020000342A1 CN 2018093547 W CN2018093547 W CN 2018093547W WO 2020000342 A1 WO2020000342 A1 WO 2020000342A1
Authority
WO
WIPO (PCT)
Prior art keywords
denitration catalyst
gas denitration
wastewater
reaction
small molecule
Prior art date
Application number
PCT/CN2018/093547
Other languages
English (en)
French (fr)
Inventor
蒋路漫
胡敏娴
周麟儿
张谦林
聂春梅
谢美容
Original Assignee
江苏海容热能环境工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏海容热能环境工程有限公司 filed Critical 江苏海容热能环境工程有限公司
Priority to PCT/CN2018/093547 priority Critical patent/WO2020000342A1/zh
Publication of WO2020000342A1 publication Critical patent/WO2020000342A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2826Anaerobic digestion processes using anaerobic filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of wastewater treatment, in particular to a method for degrading small molecular organic matter by regenerating wastewater from a waste flue gas denitration catalyst.
  • the selective catalytic reduction (SCR) process is the most widely used, most mature and effective flue gas denitration technology in the world.
  • the denitration catalyst is the core of the SCR technology.
  • the service life (ie, deactivation) of the denitration catalyst is generally three years. The state encourages the regeneration of the deactivated denitration catalyst, which can increase or restore the activity of the deactivated catalyst and enable it to be recycled.
  • the deactivated flue gas denitration catalyst also contains heavy metals such as chromium, beryllium, arsenic, and mercury. Improper regeneration of the deactivated catalyst may cause secondary pollution to the environment.
  • the regeneration process of waste flue gas denitration catalyst mainly includes ash blowing, high-pressure water washing, ultrasonic water washing, pickling, active implantation and high temperature roasting, etc. During the regeneration process, a large amount of wastewater containing heavy metals and organic matter is generated.
  • the existing methods for the degradation of organic matter in wastewater have the following disadvantages: it is not conducive to the mineralization of organic pollutants, the process cost is high, and it is not conducive to settling micro-particulate matter in floc, thereby degrading the degradation effect of organic matter; Fully degraded; In view of this defect, it is necessary for us to design a method for degrading small molecular organic matter by using waste gas denitration catalyst to regenerate wastewater.
  • the purpose of the present invention is to provide a method for degrading small molecule organics by regenerating wastewater from a waste flue gas denitration catalyst, so as to solve the problems mentioned in the background art.
  • the present invention provides the following technical solutions:
  • a method for degrading small molecule organics by regenerating wastewater from waste flue gas denitration catalysts includes the following steps: step one, wastewater pretreatment; step two, anaerobic hydrolysis treatment; step three, aerobic treatment; step four, disinfection and drainage;
  • the waste gas denitration catalyst regeneration wastewater is passed into an electrochemical reaction device.
  • the flue gas denitration catalyst regeneration wastewater undergoes an electro-flocculation oxidation coupling reaction.
  • precipitation is performed.
  • the sludge obtained by the precipitation is discharged to the outside, and the supernatant liquid obtained by the precipitation is extracted by a suction pump and discharged into the anaerobic digestion reaction tank;
  • a biofilm zeolite filler is placed in the anaerobic digestion reaction tank.
  • the filling rate of the biofilm zeolite filler is 45 to 50V%.
  • the biofilm zeolite filler is assembled in a grid frame to form a zeolite filler block.
  • the zeolite packing block is arranged in a layered staggered stack in the anaerobic digestion reaction tank, and the clear liquid enters from the bottom of the anaerobic digestion reaction tank, and undergoes multi-layer anaerobic hydrolysis;
  • the anaerobic hydrolysis-treated supernatant enters the aerobic filter with ceramsite as the carrier for aerobic reaction.
  • the filling rate of ceram in the aerobic filter is 35-48V%.
  • the density of the granules is 0.7 to 0.9 g / cm 3 ;
  • the effluent of the aerobic filter is discharged into the existing drainage channel after being precipitated and disinfected.
  • the electrochemical reaction device uses an iron electrode plate, and the connection method of the iron electrode plate uses a bipolar connection.
  • the reaction conditions of the electro-flocculation-oxidation coupling reaction are: the pH value is 4-9, the water temperature is 5-35 ° C, and the reaction time is 2-50 minutes.
  • the electrochemical reaction device injects 0.5 to 30% by weight of hydrogen peroxide at a rate of 0.5 to 10 L / h.
  • the sludge obtained by the precipitation is discharged to a sludge treatment system for dehydration treatment, and the sludge after the dehydration treatment is recovered.
  • the anaerobic hydrolysis time of the supernatant is 8 h.
  • the ceramsite is packed in a porous columnar container to form a ceramsite filler unit, which is aerated from the bottom, and the ceramsite filler unit is suspended in an aerobic filter to form a fluidized bed.
  • the gas-water ratio is 2 to 4: 1, and the reaction retention time of the clear liquid is 4 to 7 hours.
  • the zeolite packing block is arranged in a layered staggered stack in the anaerobic digestion reaction tank, and the clear liquid enters from the bottom of the anaerobic digestion reaction tank. After multiple layers of anaerobic hydrolysis, the supernatant after the anaerobic hydrolysis treatment enters the The aerobic filter with ceramsite as the carrier performs aerobic reaction, and the organic matter is more fully degraded.
  • FIG. 1 is a flowchart of a method of the present invention.
  • the present invention provides a technical solution: a method for degrading small molecular organic matter by using waste gas denitration catalyst to regenerate wastewater:
  • a method for degrading small molecule organics by regenerating wastewater from waste flue gas denitration catalysts includes the following steps: step one, wastewater pretreatment; step two, anaerobic hydrolysis treatment; step three, aerobic treatment; step four, disinfection and drainage;
  • the waste gas denitration catalyst regeneration wastewater is passed into an electrochemical reaction device.
  • the flue gas denitration catalyst regeneration wastewater undergoes an electro-flocculation oxidation coupling reaction.
  • precipitation is performed.
  • the sludge obtained from the precipitation is drained out, and the supernatant liquid obtained by the precipitation is pumped out by a suction pump and discharged into the anaerobic digestion reaction tank, which greatly improves the mineralization efficiency of organic pollutants, reduces the process cost, and is conducive to making small particles Flocculent settlement
  • a biofilm zeolite filler is placed in the anaerobic digestion reaction tank.
  • the filling rate of the biofilm zeolite filler is 45 to 50V%.
  • the biofilm zeolite filler is assembled in a grid frame to form a zeolite filler block.
  • the zeolite filler block is arranged in a layered staggered stack in the anaerobic digestion reaction tank, and the clear liquid enters from the bottom of the anaerobic digestion reaction tank. After multilayer anaerobic hydrolysis, the organic matter is fully degraded;
  • the anaerobic hydrolysis-treated supernatant enters the aerobic filter with ceramsite as the carrier for aerobic reaction.
  • the filling rate of ceram in the aerobic filter is 35-48V%.
  • the density of the granules is 0.7 ⁇ 0.9g / cm 3 , and the organic matter is more fully degraded;
  • the effluent of the aerobic filter is discharged into the existing drainage channel after being precipitated and disinfected.
  • step 1 the electrochemical reaction device uses an iron electrode plate, and the connection method of the iron electrode plate uses a bipolar connection, which is beneficial to the reaction.
  • the reaction conditions of the electroflocculation-oxidation coupling reaction are: pH value 4 ⁇ 9, water temperature is 5 ⁇ 35 °C, reaction time is 2 ⁇ 50min, improve reaction efficiency; in step one, the electrochemical reaction device injects 0.5 ⁇ 30wt% hydrogen peroxide in water at a rate of 0.5 ⁇ 10L / h. It is beneficial to make the mineralization efficiency of organic matter higher.
  • step 1 the sludge obtained by precipitation is discharged to a sludge treatment system for dehydration treatment, and the sludge after dehydration treatment is recovered, which is beneficial as fertilizer.
  • step two The anaerobic hydrolysis time of the clear liquid is 8 hours to improve the decomposition effect.
  • step three the ceramsite is packed in a porous columnar container to form a ceramsite filler unit, which is aerated from the bottom, and the ceramsite filler unit is suspended in an aerobic filter. The formation of a fluidized bed is beneficial to speed up the reaction rate.
  • the gas-water ratio is 2 to 4: 1, and the reaction residence time of the clear solution is 4 to 7 hours, so that the organic matter is more completely decomposed.
  • the present invention has the advantage that the present invention passes waste flue gas denitration catalyst regeneration wastewater into an electrochemical reaction device, and by adding hydrogen peroxide to the electrochemical reaction device, the flue gas denitration catalyst regeneration wastewater performs an electro-flocculation oxidation coupling reaction, and the reaction ends After the sedimentation, the sludge obtained by the precipitation is drained out, and the supernatant obtained by the precipitation is extracted by a suction pump and discharged into the anaerobic digestion reaction tank.
  • the biofilm zeolite filler and the biofilm zeolite filler are placed in the anaerobic digestion reaction tank The filling rate is 45-50V%.
  • Biofilm zeolite packing is assembled in a grid frame to form a zeolite packing block.
  • the zeolite packing block is arranged in a layered staggered stack in an anaerobic digestion reaction tank.
  • the bottom of the digestion reaction tank enters, and after multiple layers of anaerobic hydrolysis, the supernatant after the anaerobic hydrolysis treatment enters the aerobic filter with ceramsite as the carrier for aerobic reaction.
  • the filling rate of ceram in the aerobic filter is 35 ⁇ 48V%, a density ceramic is 0.7 ⁇ 0.9g / cm 3; the process for the mineralization of organic contaminants greatly improve the efficiency, reduce the process cost, is conducive to the fine particles Floc sedimentation, degradation of organic matter more fully.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,包括如下步骤:步骤一,废水预处理;步骤二,厌氧水解处理;步骤三,好氧处理;步骤四,消毒排水;其中在上述的步骤一中,将废烟气脱硝催化剂再生废水通入电化学反应装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中。

Description

一种废烟气脱硝催化剂再生废水降解小分子有机物的方法 技术领域
本发明涉及废水处理技术领域,具体为一种废烟气脱硝催化剂再生废水降解小分子有机物的方法。
背景技术
选择性催化还原(SCR)工艺是世界上应用最多、最为成熟有效的一种烟气脱硝技术,脱硝催化剂是SCR技术的核心。脱硝催化剂的使用寿命(即失活)一般为三年,国家鼓励对失活脱硝催化剂进行再生,可提高或者恢复失活催化剂的活性,使其能够循环利用。失活烟气脱硝催化剂除了二氧化钛、五氧化二钒、三氧化钨外,还含有铬、铍、砷和汞等重金属,失活催化剂再生处置不当会造成对环境的二次污染。目前,废烟气脱硝催化剂再生工艺主要包括吹灰、高压水冲洗、超声水洗、酸洗、活性植入和高温焙烧等过程,再生过程中会产生大量含有重金属和有机物的废水。
现有的对于废水中有机物降解方法存在以下缺陷:不利于机污染物的矿化,工艺成本高,不利于使微小颗粒物呈絮状沉降,从而使有机物的降解效果变差;有机物得不到更充分的降解;针对这种缺陷,所以我们设计一种废烟气脱硝催化剂再生废水降解小分子有机物的方法很有必要。
发明内容
本发明的目的在于提供一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,包括如下步骤:步骤一,废水预处理;步骤二,厌氧水解处理;步骤三,好氧处理;步骤四,消毒排水;
其中在上述的步骤一中,将废烟气脱硝催化剂再生废水通入电化学反应 装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中;
其中在上述的步骤二中,厌氧消化反应池中放置有生物膜沸石填料,生物膜沸石填料的充填率为45~50V%,生物膜沸石填料集装于网格框中形成沸石填料组块,沸石填料组块以层状交错叠排布置于厌氧消化反应池中,清液从厌氧消化反应池的底部进入,经过多层厌氧水解;
其中在上述的步骤三中,厌氧水解处理后的清液进入以陶粒为载体的好氧滤池进行好氧反应,陶粒于好氧滤池中的充填率为35~48V%,陶粒的密度为0.7~0.9g/cm 3
其中在上述的步骤四中,好氧滤池出水经沉淀消毒处理后排入现有排水渠。
根据上述技术方案,在所述步骤一中,电化学反应装置采用铁电极板,铁电极板的连接方式采用双极式连接。
根据上述技术方案,在所述步骤一中,电絮凝氧化耦合反应的反应条件为:pH值为4~9,水温为5~35℃,反应时间为2~50min。
根据上述技术方案,在所述步骤一中,电化学反应装置以0.5~10L/h的速率向内投加0.5~30wt%双氧水。
根据上述技术方案,在所述步骤一中,沉淀所得的污泥外排至污泥处理***进行脱水处理,经脱水处理后的泥渣进行回收。
根据上述技术方案,在所述步骤二中,清液的厌氧水解时间为8h。
根据上述技术方案,在所述步骤三中,陶粒集装于多孔的柱状容器中形成陶粒填料单元,并从底部充气,陶粒填料单元悬浮于好氧滤池中而形成流化床。
根据上述技术方案,在所述步骤三中,气水比为2~4∶1,清液的反应停 留时间为4~7小时。
与现有技术相比,本发明的有益效果是:
1.将废烟气脱硝催化剂再生废水通入电化学反应装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中,对有机污染物的矿化效率大大提高,降低工艺成本,有利于使微小颗粒物呈絮状沉降;
2.沸石填料组块以层状交错叠排布置于厌氧消化反应池中,清液从厌氧消化反应池的底部进入,经过多层厌氧水解,厌氧水解处理后的清液进入以陶粒为载体的好氧滤池进行好氧反应,有机物得到更充分的降解。
附图说明
图1是本发明的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种废烟气脱硝催化剂再生废水降解小分子有机物的方法:
实施例1:
一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,包括如下步骤:步骤一,废水预处理;步骤二,厌氧水解处理;步骤三,好氧处理;步骤四,消毒排水;
其中在上述的步骤一中,将废烟气脱硝催化剂再生废水通入电化学反应装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电 絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中,对有机污染物的矿化效率大大提高,降低工艺成本,有利于使微小颗粒物呈絮状沉降;
其中在上述的步骤二中,厌氧消化反应池中放置有生物膜沸石填料,生物膜沸石填料的充填率为45~50V%,生物膜沸石填料集装于网格框中形成沸石填料组块,沸石填料组块以层状交错叠排布置于厌氧消化反应池中,清液从厌氧消化反应池的底部进入,经过多层厌氧水解,有机物得到充分的降解;
其中在上述的步骤三中,厌氧水解处理后的清液进入以陶粒为载体的好氧滤池进行好氧反应,陶粒于好氧滤池中的充填率为35~48V%,陶粒的密度为0.7~0.9g/cm 3,有机物得到更充分的降解;
其中在上述的步骤四中,好氧滤池出水经沉淀消毒处理后排入现有排水渠。
其中,在步骤一中,电化学反应装置采用铁电极板,铁电极板的连接方式采用双极式连接,有利于反应;在步骤一中,电絮凝氧化耦合反应的反应条件为:pH值为4~9,水温为5~35℃,反应时间为2~50min,提高反应效率;在步骤一中,电化学反应装置以0.5~10L/h的速率向内投加0.5~30wt%双氧水,有利于使有机物矿化效率更高;在步骤一中,沉淀所得的污泥外排至污泥处理***进行脱水处理,经脱水处理后的泥渣进行回收,有利于作为肥料;在步骤二中,清液的厌氧水解时间为8h,提高分解效果;在步骤三中,陶粒集装于多孔的柱状容器中形成陶粒填料单元,并从底部充气,陶粒填料单元悬浮于好氧滤池中而形成流化床,有利于加快反应速率;在步骤三中,气水比为2~4∶1,清液的反应停留时间为4~7小时,使有机物分解更彻底。
基于上述,本发明的优点在于,本发明将废烟气脱硝催化剂再生废水通入电化学反应装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外 排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中,厌氧消化反应池中放置有生物膜沸石填料,生物膜沸石填料的充填率为45~50V%,生物膜沸石填料集装于网格框中形成沸石填料组块,沸石填料组块以层状交错叠排布置于厌氧消化反应池中,清液从厌氧消化反应池的底部进入,经过多层厌氧水解,厌氧水解处理后的清液进入以陶粒为载体的好氧滤池进行好氧反应,陶粒于好氧滤池中的充填率为35~48V%,陶粒的密度为0.7~0.9g/cm 3;该过程,对有机污染物的矿化效率大大提高,降低工艺成本,有利于使微小颗粒物呈絮状沉降,有机物得到更充分的降解。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,包括如下步骤:步骤一,废水预处理;步骤二,厌氧水解处理;步骤三,好氧处理;步骤四,消毒排水;其特征在于:
    其中在上述的步骤一中,将废烟气脱硝催化剂再生废水通入电化学反应装置,通过向电化学反应装置添加双氧水,烟气脱硝催化剂再生废水进行电絮凝氧化耦合反应,反应结束后进行沉淀,沉淀所得的污泥外排,沉淀所得上清液通过抽水泵进行抽出,排入到厌氧消化反应池中;
    其中在上述的步骤二中,厌氧消化反应池中放置有生物膜沸石填料,生物膜沸石填料的充填率为45~50V%,生物膜沸石填料集装于网格框中形成沸石填料组块,沸石填料组块以层状交错叠排布置于厌氧消化反应池中,清液从厌氧消化反应池的底部进入,经过多层厌氧水解;
    其中在上述的步骤三中,厌氧水解处理后的清液进入以陶粒为载体的好氧滤池进行好氧反应,陶粒于好氧滤池中的充填率为35~48V%,陶粒的密度为0.7~0.9g/cm 3
    其中在上述的步骤四中,好氧滤池出水经沉淀消毒处理后排入现有排水渠。
  2. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤一中,电化学反应装置采用铁电极板,铁电极板的连接方式采用双极式连接。
  3. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤一中,电絮凝氧化耦合反应的反应条件为:pH值为4~9,水温为5~35℃,反应时间为2~50min。
  4. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤一中,电化学反应装置以0.5~10L/h的速率向内投加0.5~30wt%双氧水。
  5. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤一中,沉淀所得的污泥外排至污泥处理***进行脱水处理,经脱水处理后的泥渣进行回收。
  6. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤二中,清液的厌氧水解时间为8h。
  7. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤三中,陶粒集装于多孔的柱状容器中形成陶粒填料单元,并从底部充气,陶粒填料单元悬浮于好氧滤池中而形成流化床。
  8. 根据权利要求1的一种废烟气脱硝催化剂再生废水降解小分子有机物的方法,其特征在于:在所述步骤三中,气水比为2~4∶1,清液的反应停留时间为4~7小时。
PCT/CN2018/093547 2018-06-29 2018-06-29 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法 WO2020000342A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093547 WO2020000342A1 (zh) 2018-06-29 2018-06-29 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093547 WO2020000342A1 (zh) 2018-06-29 2018-06-29 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Publications (1)

Publication Number Publication Date
WO2020000342A1 true WO2020000342A1 (zh) 2020-01-02

Family

ID=68985485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093547 WO2020000342A1 (zh) 2018-06-29 2018-06-29 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Country Status (1)

Country Link
WO (1) WO2020000342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196814A (zh) * 2022-05-23 2022-10-18 陕西化工研究院有限公司 一种垃圾渗滤液的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163615A (ja) * 1999-12-08 2001-06-19 Kurita Water Ind Ltd アンモニア回生装置
CN104528893A (zh) * 2014-12-05 2015-04-22 华南理工大学 一种烟气脱硝催化剂再生工艺废水的电化学处理方法
CN105152459A (zh) * 2015-07-21 2015-12-16 安徽省元琛环保科技有限公司 一种再生scr脱硝催化剂废水处理工艺
CN105906161A (zh) * 2016-06-15 2016-08-31 江苏海容热能环境工程有限公司 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺
CN108101299A (zh) * 2017-12-12 2018-06-01 浙江东发环保工程有限公司 一种高钒scr脱硝催化剂再生废水处理方法
CN108911374A (zh) * 2018-06-29 2018-11-30 江苏海容热能环境工程有限公司 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163615A (ja) * 1999-12-08 2001-06-19 Kurita Water Ind Ltd アンモニア回生装置
CN104528893A (zh) * 2014-12-05 2015-04-22 华南理工大学 一种烟气脱硝催化剂再生工艺废水的电化学处理方法
CN105152459A (zh) * 2015-07-21 2015-12-16 安徽省元琛环保科技有限公司 一种再生scr脱硝催化剂废水处理工艺
CN105906161A (zh) * 2016-06-15 2016-08-31 江苏海容热能环境工程有限公司 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺
CN108101299A (zh) * 2017-12-12 2018-06-01 浙江东发环保工程有限公司 一种高钒scr脱硝催化剂再生废水处理方法
CN108911374A (zh) * 2018-06-29 2018-11-30 江苏海容热能环境工程有限公司 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196814A (zh) * 2022-05-23 2022-10-18 陕西化工研究院有限公司 一种垃圾渗滤液的处理方法

Similar Documents

Publication Publication Date Title
CN108101299B (zh) 一种高钒scr脱硝催化剂再生废水处理方法
CN104528893B (zh) 一种烟气脱硝催化剂再生工艺废水的电化学处理方法
CN104016547A (zh) 一种焦化污水深度处理零排放工艺
CN104556494B (zh) 污水深度处理工艺
CN107986538A (zh) 一种光声电耦合能场多级氧化-膜分离协同水处理***及工艺
CN104710058A (zh) 一种造纸废水的处理方法
CN102432127B (zh) 一种难生化降解有机废水的深度处理***及方法
CN104710059A (zh) 一种造纸废水的深度处理方法
CN110894125A (zh) N-甲基吡咯烷酮回收的污水处理工艺
CN113429073A (zh) 水产养殖废水的原位处理***和原位处理方法
CN110902907A (zh) 一种去除垃圾渗滤液超滤出水中难降解有机物的方法
CN105152459B (zh) 一种再生scr脱硝催化剂废水处理工艺
CN104710057A (zh) 一种造纸废水的处理装置
WO2020000342A1 (zh) 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法
CN204265477U (zh) 一种光导介质负载催化剂的光催化水处理设备
CN110813087B (zh) 一种处理高浓度VOCs废气的方法及处理***
CN104118949A (zh) 一种冷轧废水处理工艺
CN206624737U (zh) 一种有机废水反渗透浓水氧化及脱盐***
CN206858341U (zh) 一种微波辅助臭氧光催化污水处理***
CN104710060A (zh) 一种造纸废水的深度处理装置
CN215102679U (zh) 一种城镇污水厂提标改造的污水处理***
CN205398351U (zh) 一种化工污水处理装置
CN212403797U (zh) 一种经济型循环水排污水回用处理***
CN210140512U (zh) 一种循环再利用的环保型ro反渗透废水处理装置
CN108911374A (zh) 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924877

Country of ref document: EP

Kind code of ref document: A1