WO2019244993A1 - Multiple camera device and mirror movable mechanism - Google Patents

Multiple camera device and mirror movable mechanism Download PDF

Info

Publication number
WO2019244993A1
WO2019244993A1 PCT/JP2019/024563 JP2019024563W WO2019244993A1 WO 2019244993 A1 WO2019244993 A1 WO 2019244993A1 JP 2019024563 W JP2019024563 W JP 2019024563W WO 2019244993 A1 WO2019244993 A1 WO 2019244993A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
movable member
mirror
movable
rotation
Prior art date
Application number
PCT/JP2019/024563
Other languages
French (fr)
Japanese (ja)
Inventor
壮 石過
Original Assignee
東芝デベロップメントエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝デベロップメントエンジニアリング株式会社 filed Critical 東芝デベロップメントエンジニアリング株式会社
Publication of WO2019244993A1 publication Critical patent/WO2019244993A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to adjustment of a camera position and / or posture in a multi-lens camera.
  • the left camera and the right camera when measuring the distance from a subject by performing stereoscopic vision with a stereo camera, it is common to install the left camera and the right camera at an angle so that their optical axes intersect at the front of both. .
  • the angle formed by the optical axes of the left camera and the right camera is called a convergence angle.
  • the distance between the two optical axes, that is, the optical axis interval affects the measurable distance to the subject and the accuracy thereof.
  • Japanese Patent Application Laid-Open No. 2008-51969 discloses that an imaging unit including an optical lens and a reflecting mirror for reflecting a light beam passing through the optical lens and guiding the reflected light to a CCD (Charge Coupled Device) is appropriately moved or rotated.
  • CCD Charge Coupled Device
  • Patent Document 2 describes a stereo base and a stereo adapter that increases or decreases a convergence angle by rotating a mirror according to a zoom state of a zoom lens. Specifically, when the end 5a of the zoom lens 5 advances toward the object side (telephoto side), the drive levers 17L and 17R engaged with the detection pin 19 rotate around the pivots 17La and 17Ra. The mirror carriages 11L and 11R move in the direction in which the stereo bases spread (the direction in which the stereo base spreads). This movement causes the mirrors 9L and 9R to rotate in the traveling directions (the directions of the arrows aL and aR), and the convergence angle ⁇ decreases. ([0044] to [0050]).
  • the drive levers 17L and 17R rotate in the opposite direction, and the mirror carriages 11L and 11R move via the pins 16L and 16R in the direction in which they narrow.
  • the mirror receivers 10L and 10R move in the direction in which the convergence angle ⁇ increases in the opposite direction ([0051]).
  • Patent Document 3 describes that the convergence angle is changed by driving total reflection mirrors 411aR and 411aL by a step motor 411b based on the distance measurement result of the distance measurement unit 414 ([0048]).
  • Patent Document 2 does not assume that the left and right mirrors are moved independently. Also, since the stereo base and the convergence angle are automatically set according to the zooming state of the zoom lens, for example, it is not possible to set both of them individually. Further, the weight and size of the mechanism for driving the mirror are large, making it difficult to change the angle of the mirror at high speed.
  • a stereo camera with variable parameters such as the convergence angle and the optical axis interval is expected to be mounted on a mobile robot, for example.
  • a stereo camera mounted on the robot may be required to be compact and lightweight due to structural restrictions of the robot.
  • the present invention aims to make at least one of the parameters relating to the multi-lens camera variable.
  • the first light guide system includes a first mirror group that is at least one mirror, and guides a first light beam to the first camera.
  • the first movable member is provided with a first movable mirror, which is one of a first mirror group, and is capable of at least one of rotation and displacement independently of the first camera and the second camera. Accordingly, at least one of the rotation angle and the position of the first movable mirror changes in association with at least one of the rotation and the displacement.
  • the second light guide system includes a second mirror group that is at least one mirror, and guides the second light beam to the second camera.
  • the second movable member is provided with a second movable mirror, which is one of a second mirror group, and is rotated and displaced independently of the first camera, the second camera, and the first movable member. And at least one of the rotation angle and the position of the second movable mirror changes in association with at least one of the rotation and the displacement.
  • the mirror movable mechanism can be attached to a multi-lens camera including the first camera and the second camera.
  • the mirror movable mechanism includes a first light guide system, a first movable member, a second light guide system, and a second movable member.
  • the first light guide system includes a first mirror group that is at least one mirror, and guides the first light beam to the first camera when the mirror moving mechanism is attached to the multi-lens camera.
  • the first movable member has a first movable mirror, which is one of a first group of mirrors, attached thereto.
  • the second light guide system includes a second mirror group that is at least one mirror, and guides the second light beam to the second camera when the mirror moving mechanism is attached to the multi-lens camera.
  • the second movable member has a second movable mirror, which is one of the second mirror group, attached thereto.
  • the first camera, the second camera, At least one of rotation and displacement is possible independently of the camera and the first movable member, and at least one of the rotation angle and the position of the second movable mirror changes in conjunction with at least one of the rotation and displacement. I do.
  • At least one of the parameters relating to the multi-lens camera can be made variable.
  • FIG. 1 is a diagram illustrating a stereo camera according to the embodiment.
  • FIG. 2 is a diagram illustrating a parallax / distance measurement system including the stereo camera of FIG.
  • FIG. 3 is a flowchart illustrating the operation of the parallax / distance measurement system of FIG.
  • FIG. 4 is a front view showing an example of the stereo camera of FIG.
  • FIG. 5 is a bottom view showing an example of the stereo camera of FIG.
  • FIG. 6 is a diagram illustrating a configuration in which a projector is incorporated in the stereo camera of FIG.
  • FIG. 7 is a front view showing a modification of the stereo camera of FIG.
  • FIG. 8 is a side view showing a modification of the stereo camera of FIG.
  • FIG. 1 is a diagram illustrating a stereo camera according to the embodiment.
  • FIG. 2 is a diagram illustrating a parallax / distance measurement system including the stereo camera of FIG.
  • FIG. 3 is a flowchart illustrating the operation of the
  • FIG. 9 is a bottom view showing a modification of the stereo camera of FIG.
  • FIG. 10 is a diagram showing a modified example regarding the arrangement of the movable members in the stereo camera of FIG.
  • FIG. 11 is a diagram showing a modification of FIG.
  • FIG. 12 is an explanatory diagram of a change in a light beam incident on the left camera and the right camera accompanying rotation of the movable mirror.
  • FIG. 13 is an explanatory diagram of a change in a light beam incident on the left camera and the right camera as the movable mirror rotates.
  • FIG. 14 is a diagram illustrating a multi-lens camera device (stereo camera) according to Modification 2.
  • the multi-lens camera device can be incorporated in, for example, the parallax / distance measurement system shown in FIG.
  • This parallax / distance measurement system includes a projector / camera control unit 10, a projector 20, an image processing unit 40, a mechanism control unit 50, and a stereo camera 100.
  • the parallax / distance measurement system can be mounted on a robot, for example, to realize a robot vision.
  • the multi-lens camera device according to the embodiment may include not only the stereo camera 100 but also other elements among the elements in FIG.
  • the stereo camera 100 includes a (left) camera 101, a (right) camera 102, a movable mirror 111, a movable mirror 112, a movable member 121, a movable member 122, and a support member. 131 and a support member 132. Note that the stereo camera 100 may be replaced with a multi-lens camera having three or more eyes.
  • the projector / camera control unit 10 controls the projector 20, the left camera 101, and the right camera 102. Specifically, the projector / camera control unit 10 instructs the projector 20 to project a predetermined measurement pattern. Then, the projector / camera control unit 10 instructs the left camera 101 and the right camera 102 to shoot the subject 30 on which the measurement pattern is projected.
  • the projector / camera control unit 10 may automatically control the focus of the left camera 101 and the right camera 102. Specifically, the projector / camera control unit 10 sets the focus after the movable member 121 and the movable member 122 are rotated by the mechanism control unit 50 described later and the convergence angles of the left camera 101 and the right camera 102 are adjusted. Automatic control may be performed. Alternatively, conversely, after automatically controlling the focus of the left camera 101 and the right camera 102, the projector / camera control unit 10 determines the target convergence angles of the left camera 101 and the right camera 102 based on the controlled focus. Is also good.
  • the measurement pattern may be sent from the projector / camera control unit 10 to the projector 20, or may be stored in a storage device built in or external to the projector 20.
  • the measurement pattern can be generated by a measurement pattern generation device (not shown).
  • the measurement pattern generation device may be implemented in the projector / camera control unit 10, or may be implemented as an external device (not shown). In the latter case, the measurement pattern generated by the measurement pattern generation device is finally delivered to the projector 20 via a communication medium or a recording medium.
  • the measurement pattern generation device includes a pattern generation unit that generates a measurement pattern.
  • the pattern generator may be, for example, a combination of a processor and a memory.
  • the processor is typically a CPU (Central Processing Unit) and / or a GPU (Graphics Processing Unit), but is a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Process), or the like. You may.
  • the projector 20 projects the measurement pattern on the subject 30 according to a command from the projector / camera control unit 10. Then, the left camera 101 captures an image of the subject 30 on which the measurement pattern is projected, and generates a first captured image. Similarly, the right camera 102 captures an image of the subject 30 on which the measurement pattern is projected, and generates a second captured image.
  • the image processing unit 40 acquires the first photographed image from the left camera 101 and acquires the second photographed image from the right camera 102. For example, between the first photographed image and the second photographed image for each pixel, Perform matching at the pixel block level. Then, based on the matching result, the image processing unit 40 performs parallax between the left camera 101 and the right camera 102 at the pixel and / or distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel in the subject 30 from the left camera 101 and the right camera 102. Is calculated. Further, the image processing unit 40 or an external device (not shown) at the subsequent stage may estimate the three-dimensional shape of the subject based on the calculation result of the distance.
  • the image processing unit 40 acquires a first captured image and a second captured image from the left camera 101 and the right camera 102, respectively. Further, the image processing unit 40 performs matching at the pixel block level between the acquired first captured image and the second captured image.
  • the image processing unit 40 first determines one of the pixels in the first captured image as a target pixel.
  • the pixel of interest is determined from the first captured image, that is, the image captured by the left camera 101, but the pixel of interest is determined from the second captured image, that is, the image captured by the right camera 102. It is also possible. In the latter case, the terms “first captured image” and “second captured image” may be appropriately replaced in the following description.
  • the image processing unit 40 extracts the first pixel block including the determined target pixel from the first captured image. Then, the image processing unit 40 searches the second captured image for a second pixel block corresponding to the first pixel block.
  • the image processing unit 40 repeats the above-described search processing for each pixel of the first captured image while changing the pixel of interest.
  • matching of each pixel in the first captured image with the second captured image is performed.
  • the matching result may include, for example, the coordinates (position) of each pixel (a pixel that has been successfully matched) of the first captured image and the coordinates of the pixel searched for as corresponding to the pixel in the second captured image.
  • the image processing unit 40 calculates the parallax between the left camera 101 and the right camera 102 with respect to each pixel (a pixel that has been successfully matched) in the first captured image based on the matching result.
  • the parallax calculation result may include, for example, the coordinates of each pixel of the first captured image and a parallax vector related to the pixel.
  • the image processing unit 40 may send the parallax calculation result to an external device (not shown).
  • the image processing unit 40 determines, for each pixel (pixel that has been successfully matched) in the first captured image, the distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel in the subject 30. Calculate the distance, that is, the depth.
  • the image processing unit 40 may send the distance calculation result to an external device (not shown).
  • the distance calculation result may include, for example, the coordinates of each pixel of the first captured image and the depth of the pixel.
  • the distance calculation result may be a so-called depth map.
  • the image processing unit 40 performs input / output control, communication control, and various types of image processing (for example, matching between the first captured image and the second captured image, calculation of parallax and / or distance, and the like). including.
  • the image processing unit 40 further includes a memory for temporarily storing a program executed by the processor to realize such processing, data used by the program, and the like.
  • the mechanism control unit 50 controls the rotation angle and / or the position of the movable member 121 and the movable member 122. Specifically, the mechanism control unit 50 gives a control signal indicating a desired control value to a small actuator such as a motor, for example, and rotates and / or translates the movable member 121 and the movable member 122 as necessary.
  • a small actuator such as a motor
  • the mechanism control unit 50 may generate the control signal based on at least one of the target convergence angle, the target viewing direction, and the target optical axis interval of the left camera 101 and the right camera 102, for example.
  • the mechanism control unit 50 may control the rotation direction and the rotation amount of the movable member 121 and the movable member 122 based on the target convergence angles or the target viewing directions of the left camera 101 and the right camera 102.
  • the mechanism control unit 50 may rotate the movable member 121 and the movable member 122 by the same amount in directions opposite to each other.
  • the convergence angle can be adjusted without changing the viewing directions of the left camera 101 and the right camera 102.
  • the direction and magnitude of rotation of the movable member 121 and the movable member 122 are determined based on the target convergence angles of the first camera and the second camera.
  • the mechanism control unit 50 may rotate the movable member 121 and the movable member 122 in the same direction by the same amount.
  • the viewing direction can be adjusted without changing the convergence angles of the left camera 101 and the right camera 102.
  • the direction and magnitude of the rotation of the movable member 121 and the movable member 122 are determined based on the target visual field directions of the first camera and the second camera.
  • the mechanism control unit 50 may control the positions of the movable member 121 and the movable member 122 based on the target optical axis interval between the left camera 101 and the right camera 102.
  • the distance between the movable member 121 and the movable member 122 determines the optical axis interval between the left camera 101 and the right camera 102.
  • the movable member 121 has a shaft and a projection, and the movable mirror 111 can be attached to the shaft.
  • the movable member 121 is rotatable and / or displaceable independently of the left camera 101 and the right camera 102 (a supporting member for fixing the same) and the movable member 122 (that is, without interlocking).
  • the rotation angle and / or the position of the movable mirror 111 changes in conjunction with at least one of the rotation and / or the displacement of the movable member 121.
  • the movable member 122 has a shaft and a protrusion, and the movable mirror 112 can be attached to the shaft.
  • the movable member 122 can rotate and / or displace independently of the left camera 101 and the right camera 102 and the movable member 121 (that is, without interlocking).
  • the rotation angle and / or the position of the movable mirror 112 changes in association with at least one of the rotation and / or the displacement of the movable member 122.
  • the rotation angles and / or positions of the movable member 121 and the movable member 122 can be manually adjusted. In this case, the mechanism control unit 50 may not be necessary.
  • the rotation angle and / or position of the movable mirror 111 changes in conjunction with the rotation and / or displacement of the movable member 121 as described above.
  • the rotation angle and / or position of the movable mirror 112 changes in conjunction with the rotation and / or displacement of the movable member 122 as described above.
  • the movable member 121 is attached near the center of the back of the movable mirror 111, and the movable member 122 is attached near the center of the back of the movable mirror 112.
  • the mounting positions of the movable member 121 and the movable member 122 may be mounted on the rear side of the rear surface of the movable mirror 112 as illustrated in FIG.
  • the movable member 121 is configured such that the rotation axis of the movable member 121 is behind the first plane when viewed from the incident direction of the first light beam on the movable mirror 111 over the range in which the movable mirror 111 rotates. May be attached to the movable mirror 111.
  • the first plane refers to a plane that passes through the geometric center of the movable mirror 111 and is substantially perpendicular to the reflection surface (front) of the movable mirror 111.
  • the movable member 122 is positioned such that the rotation axis of the movable member 122 is behind the second plane when viewed from the direction of incidence of the second light beam on the movable mirror 112 over the range in which the movable mirror 112 rotates. May be attached to the movable mirror 112.
  • the second plane refers to a plane that passes through the geometric center of the movable mirror 112 and is substantially perpendicular to the reflection surface of the movable mirror 112.
  • the left camera 101 and the right camera due to the rotation of the movable member 121 and the movable member 122 are compared with the case where the movable member 121 and the movable member 122 are attached near the center of the back of the movable mirror 111 and the movable mirror 112.
  • the displacement of the camera position of the camera 102 can be suppressed. That is, the convergence angle or the viewing direction can be changed without changing the optical axis interval much.
  • the left camera 101 is an imaging unit including an optical lens, light receiving pixels, and an ADC (Analog-to-Digital Converter).
  • the left camera 101 may further include a color filter.
  • the configuration of the right camera 102 can be the same or similar to the left camera 101.
  • the left camera 101 forms an image of incident light from a first light guide system, which will be described later, on a light receiving pixel by a lens, performs analog / digital conversion, and generates a first captured image.
  • the left camera 101 sends the first captured image to the image processing unit 40.
  • the right camera 102 forms incident light from a second light guide system, which will be described later, on a light receiving pixel by a lens, performs analog / digital conversion, and generates a second captured image.
  • the right camera 102 sends the second captured image to the image processing unit 40.
  • the first captured image and the second captured image are transmitted via a wired communication I / F such as a USB (Universal Serial Bus) cable, an optical fiber cable, an HDMI (registered trademark) (High-Definition Multimedia Interface) cable, or the like.
  • a wireless communication I / F using a wireless communication technology such as Bluetooth (registered trademark) or Wi-Fi (registered trademark).
  • the left camera 101 has, for example, a back surface (a back surface with respect to the surface provided with the optical lens) fixed to the support member 131, and is substantially not affected by any of rotation and displacement of the movable members 121 and 122.
  • the right camera 102 has, for example, a back surface fixed to the support member 132, and is substantially unaffected by any of rotation and displacement of the movable members 121 and 122. That is, in the example of FIG. 1, the left camera 101 and the right camera 102 are fixed to the support members 131 and 132, respectively, so as to be back to back.
  • the projector 20 may be disposed between the back of the left camera 101 and the back of the right camera 102. Thereby, the stereo camera 100 and the projector 20 can be housed in the same housing. On the other hand, the stereo camera 100 and the projector 20 may be housed in separate housings from the viewpoint of making the housing housing the stereo camera 100 compact.
  • the first light guide system includes a first mirror group that is at least one mirror, and guides incident light including the first light beam to the left camera 101.
  • the movable mirror 111 is included in the first mirror group.
  • the second light guide system includes a second mirror group that is at least one mirror, and guides incident light including the second light beam to the right camera 102.
  • the movable mirror 112 is included in this second mirror group.
  • the virtual camera position and / or attitude of the left camera 101 depends on the configuration of the first light guide system. Specifically, as illustrated in FIG. 1, the virtual camera position and / or the posture P11 of the left camera 101 is most different from the left camera 101 on the optical path of the first light ray in the first mirror group. It is determined based on a straight line that virtually extends the first light beam as incident light on a distant mirror (the movable mirror 111 in the example of FIG. 1). Similarly, the virtual camera position and / or posture of the right camera 102 depends on the configuration of the second light guide system. Specifically, as illustrated in FIG.
  • the virtual camera position and / or posture P12 of the right camera 102 is the most from the right camera 102 on the optical path of the second light ray of the second mirror group. It is determined based on a straight line virtually extending the second light beam as the incident light on the distant mirror (the movable mirror 111 in the example of FIG. 1).
  • the virtual camera position and / or posture of the left camera 101 changes.
  • the virtual camera position and / or posture of the right camera 102 changes. This means that at least one of the convergence angle, the viewing direction, and the optical axis interval of the left camera 101 and the right camera 102 changes.
  • FIGS. 4 and 5 show a front view and a bottom view of the stereo camera 100 as an example, respectively.
  • the direction from the top to the bottom of the figure corresponds to the vertical direction. That is, in the examples of FIGS. 4 and 5, the subject 30 is arranged below the stereo camera 100.
  • FIG. 4 is a bottom view
  • FIG. 5 is a front view, that is, the subject 30 and the stereo camera 100 do not overlap in the vertical direction.
  • the stereo camera 100 includes a base member 140, a cable 151, and a cable 152 in addition to the elements described in FIG.
  • the base member 140 has a first surface, a second surface, and a slit penetrating between the first surface and the second surface.
  • the first surface and the slit are drawn, the second surface is not drawn because it is the surface on the opposite side of the first surface.
  • the movable member 121 and the movable member 122 are arranged so as to pass through the slits of the base member 140, respectively, and can move in parallel along the slits.
  • the slit through which the movable member 121 penetrates and the slit through which the movable member 122 penetrates are not connected, but they may be connected.
  • the base member 140 may be composed of a first base member having a slit through which the movable member 121 penetrates, and a second base member having a slit through which the movable member 122 penetrates.
  • the base member 140 is formed as a columnar member having an H-shaped cross section.
  • the base member 140 includes a plurality of plate members having slits and a connecting member that connects the plurality of plate members. May be done.
  • the movable member 121 has projections projecting in the circumferential direction at both ends in the longitudinal direction.
  • the movable member 121 is such that a part of the movable member 121 (of the shaft portion) is opposite to the surface (for example, the first surface) of the movable member 121 in a state where the protrusions are hung on the surface (for example, the first surface) of the base member 140.
  • the slit penetrates so as to be exposed from the second surface).
  • the movable member 121 rotates independently of the support member 131, the support member 132, and the movable member 122 around the longitudinal direction of the movable member 121 in a state where the protrusions are hung on the surface of the base member 140. And / or a displacement along the slit is possible.
  • the movable member 122 has projections protruding in the circumferential direction at both ends in the longitudinal direction.
  • the movable member 122 is configured such that a portion (of the shaft portion) of the movable member 122 is opposite to the surface (for example, the shaft portion) of the movable member 122 in a state where the protrusions are hung on the surface (for example, the first surface) of the base member 140.
  • the slit penetrates so as to be exposed from the second surface).
  • the movable member 122 rotates independently of the support member 131, the support member 132, and the movable member 121 around the longitudinal direction of the movable member 122 in a state where the protrusions are hung on the surface of the base member 140. And / or a displacement along the slit is possible.
  • the cable 151 is, for example, a USB cable, and is used for power supply to the left camera 101 and / or data transmission.
  • the cable 152 is, for example, a USB cable, and is used for power supply and / or data transmission to the right camera 102.
  • FIGS. 7, 8 and 9 show a front view, a side view and a bottom view of a stereo camera 100 as a modification, respectively.
  • the direction from the top to the bottom of the figure corresponds to the vertical direction. That is, in the examples of FIGS. 7 to 9, the subject 30 is arranged below the stereo camera 100.
  • FIG. 7 is a bottom view
  • FIG. 9 is a front view, that is, the subject 30 and the stereo camera 100 do not overlap in the vertical direction.
  • the stereo camera 100 includes a base member 140, a gear 161, a gear 162, a motor 171 and a motor 172 in addition to the elements described in FIG.
  • the base member 140 has a first surface, a second surface, and a hole penetrating between the first surface and the second surface.
  • the second surface is a surface opposite to the first surface, and the holes are formed by the movable member 121, the movable member 122, the gear 161, and the gear 162. Not drawn because it is shielded.
  • the movable member 121 and the movable member 122 are arranged so as to pass through holes of the base member 140, respectively.
  • the base member 140 may include a first base member having a hole through which the movable member 121 and the gear 161 penetrate, and a second base member having a hole through which the movable member 122 and the gear 162 penetrate.
  • the base member 140 includes two plate members having slits and a connection member that connects the plurality of plate members.
  • the base member 140 has an H-shaped cross section. May be formed as a columnar member.
  • the movable member 121 has a gear-shaped protrusion protruding in the circumferential direction at one end in the longitudinal direction.
  • the movable member 121 penetrates the hole such that a part of the movable member 121 is exposed from the second surface in a state where the protrusion is hooked on the first surface of the base member 140.
  • the protrusion of the movable member 121 is arranged so as to mesh with the gear 161. Therefore, the movable member 121 is independent of the support member 131, the support member 132, and the movable member 122 in a state where the protrusion is hooked on the first surface of the base member 140, and interlocks with the rotation of the gear 161. The rotation about the longitudinal direction of the movable member 121 is possible.
  • the movable member 122 has a gear-shaped protrusion protruding in the circumferential direction at one end in the longitudinal direction.
  • the movable member 122 penetrates the hole such that a part of the movable member 122 is exposed from the second surface in a state where the protrusion is hung on the first surface of the base member 140.
  • the protrusion of the movable member 122 is arranged so as to mesh with the gear 162. Therefore, the movable member 122 is interlocked with the rotation of the gear 162 independently of the support member 131, the support member 132, and the movable member 121 in a state in which the protrusion is hooked on the first surface of the base member 140. The rotation about the longitudinal direction of the movable member 122 is possible.
  • the gear 161 is attached to the tip of the shaft of the motor 171, and is disposed on the first surface of the base member 140 so as to mesh with the protrusion of the movable member 121.
  • the gear 162 is attached to the distal end of the shaft of the motor 172, and is disposed on the first surface of the base member 140 so as to mesh with the protrusion of the movable member 122.
  • the motor 171 has a shaft penetrated through a hole so that a part of the tip of the shaft is exposed from the first surface of the base member 140, and a gear 161 is attached to the exposed portion.
  • the motor 171 receives the electric signal, converts the electric energy into mechanical energy, and rotationally drives the gear 161 by the mechanical energy.
  • the motor 171 may be arranged so as not to obstruct the optical path of light incident on the left camera 101 including the first light beam.
  • the motor 171 may be arranged such that the first light guide system is located between the motor 171 and the left camera 101.
  • the motor 172 penetrates the hole so that a part of the tip of the shaft is exposed from the first surface of the base member 140, and the gear 162 is attached to the exposed portion.
  • the motor 172 receives the electric signal, converts the electric energy into mechanical energy, and rotationally drives the gear 162 with the mechanical energy.
  • Motor 172 may be positioned so as not to obstruct the optical path of light incident on right camera 102, including the second light beam.
  • the motor 172 may be arranged such that the second light guide system fits between the motor 172 and the right camera 102.
  • the motor 171 and the motor 172 can be controlled by electric signals independent of each other. These electric signals can be supplied from the mechanism control unit 50, for example. According to the stereo camera 100 illustrated in FIGS. 7 to 9, the rotation angles of the movable member 121 and the movable member 122, that is, at least the convergence angle and / or the viewing direction of the left camera 101 and the right camera 102 are electrically controlled. be able to.
  • the various structural components of the stereo camera 100 specifically, the movable member 121, the movable member 122, the support member 131, the support member 132, the base member 140, the gear 161, and the gear 162 include, for example, magnesium or the like.
  • a material excellent in light weight and strength such as a light metal or a resin such as PPS (Polyphenylene sulfide). By appropriately using such a material, it is possible to configure the multi-lens camera device to be lightweight while maintaining practical strength.
  • the projector 20 projects a measurement pattern on the subject 30 according to a command from the projector / camera control unit 10 (step S201).
  • the projector 20 needs to keep projecting the measurement pattern on the subject 30 at least until the next step S202 ends.
  • step S202 the left camera 101 and the right camera 102 respectively capture the image of the subject 30 in accordance with an instruction from the projector / camera control unit 10 to generate a first captured image and a second captured image.
  • the first captured image and the second captured image generated in step S202 are acquired by the image processing unit 40.
  • step S203 the process proceeds to step S203.
  • step S203 the image processing unit 40 determines a target pixel from unprocessed pixels in the first captured image.
  • the pixel of interest may be selected in order, for example, in a raster scan order or other order.
  • the image processing unit 40 extracts a first pixel block including the target pixel determined in step S203 (step S204). For example, the image processing unit 40 may extract the first pixel block so that the target pixel is located at the center.
  • the image processing unit 40 searches for a second pixel block corresponding to the first pixel block extracted in step S204 from the second captured image (step S205).
  • the image processing unit 40 calculates the parallax of the left camera 101 and the right camera 102 with respect to the target pixel determined in step S203 based on the matching result obtained in step S205 (step S206).
  • the image processing unit 40 calculates the distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel of interest in the subject 30, that is, the depth, based on the parallax calculation result obtained in step S206 (step S207). Then, the process proceeds to step S208. Note that an external device (not shown) or the image processing unit 40 may further estimate the three-dimensional shape of the subject 30 based on the distance calculation result.
  • step S208 if the processing of steps S203 to S207 has been completed for each pixel of the first captured image, the operation in FIG. 3 ends, and if unprocessed pixels remain, the processing returns to step S203.
  • Steps S206 and S207 may be performed collectively after matching (steps S203 to S205) is completed for each pixel of the first captured image.
  • the multi-lens camera device includes two movable members that can rotate and / or displace independently of the two cameras and the other movable members.
  • the rotation angle and / or position of the mirror attached to the movable member changes in conjunction with at least one of the displacement and the displacement. Then, based on the change, at least one of the convergence angle, the viewing direction, and the interval between the two cameras changes. Therefore, according to this multi-lens camera device, by moving limited parts such as a movable member and a mirror, the camera, that is, the multi-lens camera can be moved without moving the entire imaging unit including the lens, the light receiving pixels and the ADC.
  • At least one of the parameters can be made variable. That is, according to the present embodiment, a parameter-variable multi-lens camera is realized by a compact mechanism, and the movable mirror can be driven, that is, the parameter can be changed at high speed. Further, in this multi-lens camera device, it is not necessary to move the camera for changing the parameters, so that the cable connected to the camera is hardly worn or broken.
  • a mirror movable mechanism In the stereo camera 100, some or all of the components other than the left camera 101 and the right camera 102 may be collectively referred to as a mirror movable mechanism.
  • This mirror movable mechanism may be an attachment of a multi-lens camera. For example, by attaching a mirror movable mechanism including the movable mirror 111, the movable mirror 112, the movable member 121, and the movable member 122 to a normal stereo camera, it is possible to configure parameters of a stereo camera having variable parameters.
  • the left camera 101 and the right camera 102 may be arranged so that the optical axes are substantially parallel. This makes it possible to configure the width of the stereo camera 100 to be smaller.
  • the mirrors 181 and 182 for further bending the optical path of the incident light of both cameras are provided with the first light guide system and the second light guide system in accordance with the change in the directions of the left camera 101 and the right camera 102. Each is added to the light guide system.
  • the mirror 181 is arranged on the optical path of the first light beam, and further reflects the first light beam reflected by the movable mirror 111 and guides the first light beam to the left camera 101.
  • the mirror 182 is arranged on the optical path of the second light beam, and further reflects the second light beam reflected by the movable mirror 112 and guides the second light beam to the right camera 102.
  • the mirror 181 and the mirror 182 may be fixed or movable.
  • Modification 2 In the above embodiment, a multi-lens camera with variable parameters is realized without moving the left camera and the right camera. However, if the rotation angles of the movable mirror 111 and the movable mirror 112 are changed without moving the left camera 101 and the right camera 102 as illustrated in, for example, FIGS. 12 and 13, the light enters the left camera 101 and the right camera 102. The luminous flux changes. Therefore, depending on the rotation angles of the movable mirror 111 and the movable mirror 112, the luminous flux incident on the left camera 101 and the right camera 102 may be significantly reduced, and the image quality of a captured image may be degraded beyond an allowable range.
  • a movable member for rotating the support member 131 and the support member 132 for fixing the left camera 101 and the right camera 102 is further provided. You may be.
  • FIG. 14 illustrates a multi-lens camera device (stereo camera) according to the second modification.
  • This multi-view camera device is different from the multi-view camera device (stereo camera) illustrated in FIG. 1 in that it includes a movable member 191 and a movable member 192.
  • the movable member 191 and the movable member 192 can have any configuration for rotating the support member 131 and the support member 132.
  • the movable member 191 and the movable member 192 have the same configuration as the movable member 121 and the movable member 122.
  • the rotation angles of the movable member 191 and the movable member 192 can be controlled by the mechanism control unit 50, similarly to the rotation angles of the movable member 121 and the movable member 122. It is also possible to adjust with.
  • the movable member 191 has a shaft and a protrusion, and the support member 131 is attached to the shaft.
  • the movable member 191 can rotate independently of the movable member 121, the movable member 122, and the movable member 192 (that is, without interlocking), and the rotation angle of the support member 131 changes in conjunction with the rotation. .
  • the rotation angle of the movable member 191 can be determined based on the rotation angle of the movable member 121.
  • the rotation angle of the movable member 191 can be determined such that the larger the rotation angle of the movable mirror 111 ( ⁇ 1 in FIG. 14), the larger the rotation angle of the support member 131 ( ⁇ 3 in FIG. 14).
  • the movable member 192 has a shaft and a projection, and the support member 132 can be attached to the shaft.
  • the movable member 192 can rotate independently of the movable member 121, the movable member 122, and the movable member 191 (that is, without interlocking), and the rotation angle of the support member 132 changes in conjunction with the rotation. .
  • the rotation angle of the movable member 192 can be determined based on the rotation angle of the movable member 122. For example, the rotation angle of the movable member 192 can be determined such that the larger the rotation angle of the movable mirror 112 ( ⁇ 2 in FIG. 14), the larger the rotation angle of the support member 132 ( ⁇ 4 in FIG. 14).
  • the optical axis of the left camera 101 also rotates.
  • the optical axis of the right camera 102 also rotates.
  • the left and right it is possible to alleviate a decrease in the luminous flux incident on the camera 101 and the right camera 102.
  • the required dimensions of the movable mirror 111 and the movable mirror 112 can be reduced, their weight and moment can be suppressed, and the responsiveness can be improved.
  • variable range of the rotation angle of the support members 131 and 132 the larger the variable range of the rotation angle of the support members 131 and 132 is, the more the above effect can be expected.
  • increasing the variable range of the rotation angles of the support members 131 and 132 causes an increase in the size of the mirror moving mechanism. Therefore, for example, the variable range of the rotation angles of the support members 131 and 132 may be limited to, for example, 10 degrees or less.
  • the movable members 191 and 192 are attached to the support members 131 and 132 of the left camera 101 and the right camera 102, respectively, so that the optical axes of the left camera 101 and the right camera 102 can be tilted.
  • the movable member 191 and the movable member 192 are used by arranging the left camera 101 and the right camera 102 and their support members 131 and 132 in an inclined manner as illustrated in FIG.
  • the optical axes of the left camera 101 and the right camera 102 may be inclined.
  • the left camera 101 and the support member 131 are arranged at a first angle (corresponding to ⁇ 3 in FIG. 14) as compared with the case where the left camera 101 and the right camera 102 are arranged back to back (FIG. 1). Can be done.
  • the right camera 102 and the support member 132 can be arranged at a first angle (corresponding to ⁇ 4 in FIG. 14) as compared to the case where the left camera 101 and the right camera 102 are arranged back to back (FIG. 1).
  • each of the first angle and the second angle may be limited to, for example, 10 degrees or less.
  • the same effect as that of the second modification can be obtained without increasing the size of the mirror movable mechanism. That is, it is possible to alleviate a decrease in the light flux incident on the left camera 101 and the right camera 102 due to the rotation of the movable mirror 111 and the movable mirror 112. Furthermore, since the required dimensions of the movable mirror 111 and the movable mirror 112 can be reduced, their weight and moment can be suppressed, and the responsiveness can be improved.
  • a plurality of functional units described as being mounted on one device may be mounted on a plurality of separate devices, and conversely, a description may be made on a plurality of separate devices.
  • the function unit described above may be mounted on one device.
  • the various functional units described in each of the above embodiments may be realized by using a circuit.
  • the circuit may be a dedicated circuit for realizing a specific function or a general-purpose circuit such as a processor.
  • a program for realizing the above processing may be provided by being stored in a computer-readable recording medium.
  • the program is stored in a recording medium as a file in an installable format or a file in an executable format. Examples of the recording medium include a magnetic disk, an optical disk (CD-ROM, CD-R, DVD, etc.), a magneto-optical disk (MO, etc.), a semiconductor memory, and the like.
  • the recording medium may be any as long as it can store a program and can be read by a computer.
  • a program for implementing the above processing may be stored on a computer (server) connected to a network such as the Internet, and downloaded to a computer (client) via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Measurement Of Optical Distance (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

This multiple camera device comprises first and second cameras, first and second light guiding systems, and first and second movable members. The first light guiding system includes a first movable mirror and guides a first light beam to the first camera. The first movable member is rotatable/displaceable independently of the first and second cameras while the first movable mirror is attached thereto, and the rotation angle/position of the first movable mirror changes in conjunction with the rotation/displacement. The second light guiding system includes a second movable mirror and guides a second light beam to the second camera. The second movable member is rotatable/displaceable independently of the first and second cameras and the first movable member while the second movable mirror is attached thereto, and the rotation angle/position of the second movable mirror changes in conjunction with the rotation/displacement.

Description

多眼カメラ装置およびミラー可動機構Multi-lens camera device and mirror movable mechanism
 本発明は、多眼カメラにおけるカメラ位置および/または姿勢の調整に関する。 The present invention relates to adjustment of a camera position and / or posture in a multi-lens camera.
 例えばステレオカメラにおいて立体視を行って被写体との間の距離を計測する場合に、左カメラおよび右カメラをそれらの光軸が両者の前面で交差するように傾けて設置することが一般的である。左カメラおよび右カメラの光軸がなす角は輻輳角と呼ばれる。また、両者の光軸間の距離、すなわち光軸間隔は、計測可能な対被写体距離やその精度に影響を与える。 For example, when measuring the distance from a subject by performing stereoscopic vision with a stereo camera, it is common to install the left camera and the right camera at an angle so that their optical axes intersect at the front of both. . The angle formed by the optical axes of the left camera and the right camera is called a convergence angle. Further, the distance between the two optical axes, that is, the optical axis interval affects the measurable distance to the subject and the accuracy thereof.
 日本国特開2008-51969号公報には、光学レンズと、この光学レンズを通過した光線を反射してCCD(Charge Coupled Device)へと導く反射ミラーとを含む撮像ユニットを適宜移動または回動させることで光軸間隔または輻輳角を可変とする技法が開示されている(段落[0025]~[0029])。 Japanese Patent Application Laid-Open No. 2008-51969 discloses that an imaging unit including an optical lens and a reflecting mirror for reflecting a light beam passing through the optical lens and guiding the reflected light to a CCD (Charge Coupled Device) is appropriately moved or rotated. Thus, a technique for changing the optical axis interval or the convergence angle has been disclosed (paragraphs [0025] to [0029]).
 特許文献2には、ズームレンズの変倍状態に応じてミラーを回転させることで、ステレオベースおよび輻輳角を増減させるステレオアダプターが記載されている。具体的には、ズームレンズ5の端部5aが物体側(望遠側)に前進すると検出ピン19と係合している駆動レバー17L,17Rが枢軸17La,17Raを軸に回転すること、この回転によってミラーキャリッジ11L,11Rが広がる方向(ステレオベースが広がる方向)へ移動すること、この移動によりミラー9L,9Rが各々進行方向(矢印aL,aRの方向)へ向けて回転し、輻輳角θが減少する、といった記載がある([0044]~[0050])。また、ズームレンズをワイド側に操作して移動させると駆動レバー17L,17Rは先程と逆の方向に回動し、ミラーキャリッジ11L,11Rがピン16L,16Rを介してお互いが狭まる方向へ移動し、ミラー受け10L,10Rは前記したのと逆に輻輳角θが大きくなる方向へ動く、との記載もある([0051])。 Patent Document 2 describes a stereo base and a stereo adapter that increases or decreases a convergence angle by rotating a mirror according to a zoom state of a zoom lens. Specifically, when the end 5a of the zoom lens 5 advances toward the object side (telephoto side), the drive levers 17L and 17R engaged with the detection pin 19 rotate around the pivots 17La and 17Ra. The mirror carriages 11L and 11R move in the direction in which the stereo bases spread (the direction in which the stereo base spreads). This movement causes the mirrors 9L and 9R to rotate in the traveling directions (the directions of the arrows aL and aR), and the convergence angle θ decreases. ([0044] to [0050]). Also, when the zoom lens is operated and moved to the wide side, the drive levers 17L and 17R rotate in the opposite direction, and the mirror carriages 11L and 11R move via the pins 16L and 16R in the direction in which they narrow. There is also a statement that the mirror receivers 10L and 10R move in the direction in which the convergence angle θ increases in the opposite direction ([0051]).
 特許文献3には、測距手段414の測距結果に基づいてステップモータ411bにより全反射ミラー411aR,411aLを駆動して輻輳角の変更を行う、ことが記載されている([0048])。 Patent Document 3 describes that the convergence angle is changed by driving total reflection mirrors 411aR and 411aL by a step motor 411b based on the distance measurement result of the distance measurement unit 414 ([0048]).
日本国特開2008-51969号公報Japanese Patent Application Laid-Open No. 2008-51969 日本国特開平8-36229号公報Japanese Patent Application Laid-Open No. 8-36229 日本国特開2001-16615号公報Japanese Patent Application Laid-Open No. 2001-16615
 日本国特開2008-51969号公報に記載の技法では、光学レンズおよび反射ミラーを含む複数の部品からなる撮像ユニット全体を移動または回動させる必要があるので、撮像ユニット全体の可動範囲を確保するために十分な余剰スペースが必要となる。さらに、給電用または通信用のケーブルが撮像ユニットに接続されている場合には、当該ケーブルも必然的に撮像ユニットに連動して引っ張られたり撓んだりする。これにより、ケーブルの摩耗、断線が生じやすくなるという問題もある。加えて、一般に、対象および/またはその駆動機構の重量や寸法が大きくなるほど高速に対象を駆動することは困難となる。 According to the technique described in Japanese Patent Application Laid-Open No. 2008-51969, it is necessary to move or rotate the entire imaging unit including a plurality of components including an optical lens and a reflection mirror, and therefore, a movable range of the entire imaging unit is secured. Therefore, sufficient extra space is required. Further, when a power supply or communication cable is connected to the imaging unit, the cable is inevitably pulled or bent in conjunction with the imaging unit. As a result, there is also a problem that the cable is liable to be worn and disconnected. In addition, in general, it becomes more difficult to drive an object at a higher speed as the weight and / or size of the object and / or its driving mechanism increases.
 特許文献2に記載の技法では、左右のミラーを独立に動かすことは想定されていない。また、ズームレンズの変倍状態に応じてステレオベースおよび輻輳角が自動的に設定されるので、例えば両者を個別に設定することもできない。さらに、ミラーを駆動する機構の重量および寸法が大きいので、ミラーの角度を高速に変更することは困難となる。 技法 The technique described in Patent Document 2 does not assume that the left and right mirrors are moved independently. Also, since the stereo base and the convergence angle are automatically set according to the zooming state of the zoom lens, for example, it is not possible to set both of them individually. Further, the weight and size of the mechanism for driving the mirror are large, making it difficult to change the angle of the mirror at high speed.
 特許文献3の技法では、左右の全反射ミラーを1つのステップモータにより駆動しているので、両者を独立に動かすことは想定されていない。また、被写体との間に、シャッタ機能を有する液晶素子が配置されている。故に、全反射ミラーを回転させると、この液晶素子に対する入射角が変化し、当該液晶素子のシャッタとしての性能が悪化するという問題がある。また、液晶素子の開口により画角が制限される、という問題もある。 In the technique of Patent Document 3, since the left and right total reflection mirrors are driven by one step motor, it is not assumed that both mirrors are moved independently. Further, a liquid crystal element having a shutter function is arranged between the camera and the subject. Therefore, when the total reflection mirror is rotated, the angle of incidence on the liquid crystal element changes, and the performance of the liquid crystal element as a shutter deteriorates. Another problem is that the angle of view is limited by the aperture of the liquid crystal element.
 輻輳角、光軸間隔などのパラメータが可変のステレオカメラは、例えば可動ロボットへの搭載が期待される。ただし、かかるロボットの構造上の制約などにより、当該ロボットに搭載されるステレオカメラにはコンパクト性および軽量性を求められることがある。 ス テ レ オ A stereo camera with variable parameters such as the convergence angle and the optical axis interval is expected to be mounted on a mobile robot, for example. However, a stereo camera mounted on the robot may be required to be compact and lightweight due to structural restrictions of the robot.
 本発明は、多眼カメラに関するパラメータの少なくとも1つを可変とすることを目的とする。 The present invention aims to make at least one of the parameters relating to the multi-lens camera variable.
 本発明の第1の態様によれば、第1のカメラと、第2のカメラと、第1の導光系と、第1の可動部材と、第2の導光系と、第2の可動部材とを含む。第1の導光系は、少なくとも1枚のミラーである第1のミラー群を含み、第1のカメラへ第1の光線を導く。第1の可動部材は、第1のミラー群のうちの1枚である第1の可動ミラーを取り付けられ、第1のカメラおよび第2のカメラと独立して回転および変位の少なくとも1つが可能であって、回転および変位の少なくとも1つに連動して第1の可動ミラーの回転角および位置の少なくとも1つが変化する。第2の導光系は、少なくとも1枚のミラーである第2のミラー群を含み、第2のカメラへ第2の光線を導く。第2の可動部材は、第2のミラー群のうちの1枚である第2の可動ミラーを取り付けられ、第1のカメラ、第2のカメラおよび第1の可動部材と独立して回転および変位の少なくとも1つが可能であって、回転および変位の少なくとも1つに連動して第2の可動ミラーの回転角および位置の少なくとも1つが変化する。 According to the first aspect of the present invention, a first camera, a second camera, a first light guide system, a first movable member, a second light guide system, and a second movable And a member. The first light guide system includes a first mirror group that is at least one mirror, and guides a first light beam to the first camera. The first movable member is provided with a first movable mirror, which is one of a first mirror group, and is capable of at least one of rotation and displacement independently of the first camera and the second camera. Accordingly, at least one of the rotation angle and the position of the first movable mirror changes in association with at least one of the rotation and the displacement. The second light guide system includes a second mirror group that is at least one mirror, and guides the second light beam to the second camera. The second movable member is provided with a second movable mirror, which is one of a second mirror group, and is rotated and displaced independently of the first camera, the second camera, and the first movable member. And at least one of the rotation angle and the position of the second movable mirror changes in association with at least one of the rotation and the displacement.
 本発明の第2の態様によれば、ミラー可動機構は、第1のカメラおよび第2のカメラを含む多眼カメラに取り付け可能である。ミラー可動機構は、第1の導光系と、第1の可動部材と、第2の導光系と、第2の可動部材とを含む。第1の導光系は、少なくとも1枚のミラーである第1のミラー群を含み、ミラー可動機構が多眼カメラに取り付けられている時に第1のカメラへ第1の光線を導く。第1の可動部材は、第1のミラー群のうちの1枚である第1の可動ミラーを取り付けられ、ミラー可動機構が多眼カメラに取り付けられている時に、第1のカメラおよび第2のカメラと独立して回転および変位の少なくとも1つが可能であって、かつ回転および変位の少なくとも1つに連動して第1の可動ミラーの回転角および位置の少なくとも1つが変化する。第2の導光系は、少なくとも1枚のミラーである第2のミラー群を含み、ミラー可動機構が多眼カメラに取り付けられている時に第2のカメラへ第2の光線を導く。第2の可動部材は、第2のミラー群のうちの1枚である第2の可動ミラーを取り付けられ、ミラー可動機構が多眼カメラに取り付けられている時に、第1のカメラ、第2のカメラおよび第1の可動部材と独立して回転および変位の少なくとも1つが可能であって、かつ回転および変位の少なくとも1つに連動して第2の可動ミラーの回転角および位置の少なくとも1つが変化する。 According to the second aspect of the present invention, the mirror movable mechanism can be attached to a multi-lens camera including the first camera and the second camera. The mirror movable mechanism includes a first light guide system, a first movable member, a second light guide system, and a second movable member. The first light guide system includes a first mirror group that is at least one mirror, and guides the first light beam to the first camera when the mirror moving mechanism is attached to the multi-lens camera. The first movable member has a first movable mirror, which is one of a first group of mirrors, attached thereto. When the mirror movable mechanism is attached to the multi-lens camera, the first camera and the second camera are attached to the first movable member. At least one of rotation and displacement is possible independently of the camera, and at least one of the rotation angle and the position of the first movable mirror changes in conjunction with at least one of the rotation and displacement. The second light guide system includes a second mirror group that is at least one mirror, and guides the second light beam to the second camera when the mirror moving mechanism is attached to the multi-lens camera. The second movable member has a second movable mirror, which is one of the second mirror group, attached thereto. When the mirror movable mechanism is attached to the multi-lens camera, the first camera, the second camera, At least one of rotation and displacement is possible independently of the camera and the first movable member, and at least one of the rotation angle and the position of the second movable mirror changes in conjunction with at least one of the rotation and displacement. I do.
 本発明によれば、多眼カメラに関するパラメータの少なくとも1つを可変とすることができる。 According to the present invention, at least one of the parameters relating to the multi-lens camera can be made variable.
図1は、実施形態に係るステレオカメラを例示する図である。FIG. 1 is a diagram illustrating a stereo camera according to the embodiment. 図2は、図1のステレオカメラを含む、視差/距離計測システムを例示する図である。FIG. 2 is a diagram illustrating a parallax / distance measurement system including the stereo camera of FIG. 図3は、図2の視差/距離計測システムの動作を例示するフローチャートである。FIG. 3 is a flowchart illustrating the operation of the parallax / distance measurement system of FIG. 図4は、図1のステレオカメラの一例を示す正面図である。FIG. 4 is a front view showing an example of the stereo camera of FIG. 図5は、図1のステレオカメラの一例を示す底面図である。FIG. 5 is a bottom view showing an example of the stereo camera of FIG. 図6は、図1のステレオカメラにプロジェクターを内蔵させた構成を例示する図である。FIG. 6 is a diagram illustrating a configuration in which a projector is incorporated in the stereo camera of FIG. 図7は、図1のステレオカメラの変形例を示す正面図である。FIG. 7 is a front view showing a modification of the stereo camera of FIG. 図8は、図1のステレオカメラの変形例を示す側面図である。FIG. 8 is a side view showing a modification of the stereo camera of FIG. 図9は、図1のステレオカメラの変形例を示す底面図である。FIG. 9 is a bottom view showing a modification of the stereo camera of FIG. 図10は、図1のステレオカメラにおける可動部材の配置に関する変形例を示す図である。FIG. 10 is a diagram showing a modified example regarding the arrangement of the movable members in the stereo camera of FIG. 図11は、図6の変形例を示す図である。FIG. 11 is a diagram showing a modification of FIG. 図12は、可動ミラーの回転に伴う、左カメラおよび右カメラへ入射する光束の変化の説明図である。FIG. 12 is an explanatory diagram of a change in a light beam incident on the left camera and the right camera accompanying rotation of the movable mirror. 図13は、可動ミラーの回転に伴う、左カメラおよび右カメラへ入射する光束の変化の説明図である。FIG. 13 is an explanatory diagram of a change in a light beam incident on the left camera and the right camera as the movable mirror rotates. 図14は、変形例2に係る多眼カメラ装置(ステレオカメラ)を例示する図である。FIG. 14 is a diagram illustrating a multi-lens camera device (stereo camera) according to Modification 2.
 以下、図面を参照しながら実施形態の説明を述べる。なお、以降、説明済みの要素と同一または類似の要素には同一または類似の符号を付し、重複する説明については基本的に省略する。 Hereinafter, the embodiment will be described with reference to the drawings. Hereinafter, the same or similar elements as those already described are denoted by the same or similar reference numerals, and duplicate description will be basically omitted.
 (実施形態)
 実施形態に係る多眼カメラ装置は、例えば図2に示す視差/距離計測システムに組み込むことができる。この視差/距離計測システムは、プロジェクター/カメラ制御部10と、プロジェクター20と、画像処理部40と、機構制御部50と、ステレオカメラ100とを含む。具体的には、この視差/距離計測システムは、例えばロボットビジョンを実現するために、ロボットに搭載され得る。ここで、実施形態に係る多眼カメラ装置は、図2の要素のうちステレオカメラ100に限らず、その他の要素を含み得る。
(Embodiment)
The multi-lens camera device according to the embodiment can be incorporated in, for example, the parallax / distance measurement system shown in FIG. This parallax / distance measurement system includes a projector / camera control unit 10, a projector 20, an image processing unit 40, a mechanism control unit 50, and a stereo camera 100. Specifically, the parallax / distance measurement system can be mounted on a robot, for example, to realize a robot vision. Here, the multi-lens camera device according to the embodiment may include not only the stereo camera 100 but also other elements among the elements in FIG.
 ステレオカメラ100は、図1に例示されるように、(左)カメラ101と、(右)カメラ102と、可動ミラー111と、可動ミラー112と、可動部材121と、可動部材122と、支持部材131と、支持部材132とを含む。なお、ステレオカメラ100は、3眼以上の多眼カメラに置き換えられてもよい。 As illustrated in FIG. 1, the stereo camera 100 includes a (left) camera 101, a (right) camera 102, a movable mirror 111, a movable mirror 112, a movable member 121, a movable member 122, and a support member. 131 and a support member 132. Note that the stereo camera 100 may be replaced with a multi-lens camera having three or more eyes.
 プロジェクター/カメラ制御部10は、プロジェクター20、左カメラ101および右カメラ102を制御する。具体的には、プロジェクター/カメラ制御部10は、プロジェクター20に既定の計測用パターンの投射を命令する。それから、プロジェクター/カメラ制御部10は、左カメラ101および右カメラ102に、計測用パターンが投射された被写体30の撮影を命令する。 The projector / camera control unit 10 controls the projector 20, the left camera 101, and the right camera 102. Specifically, the projector / camera control unit 10 instructs the projector 20 to project a predetermined measurement pattern. Then, the projector / camera control unit 10 instructs the left camera 101 and the right camera 102 to shoot the subject 30 on which the measurement pattern is projected.
 また、プロジェクター/カメラ制御部10は、左カメラ101および右カメラ102の焦点を自動制御してもよい。具体的には、プロジェクター/カメラ制御部10は、後述される機構制御部50などにより可動部材121および可動部材122が回転され左カメラ101および右カメラ102の輻輳角が調整された後に、焦点を自動制御してもよい。或いは、逆に、プロジェクター/カメラ制御部10は、左カメラ101および右カメラ102の焦点を自動制御した後に、制御後の焦点に基づいて左カメラ101および右カメラ102の目標輻輳角を決定してもよい。 The projector / camera control unit 10 may automatically control the focus of the left camera 101 and the right camera 102. Specifically, the projector / camera control unit 10 sets the focus after the movable member 121 and the movable member 122 are rotated by the mechanism control unit 50 described later and the convergence angles of the left camera 101 and the right camera 102 are adjusted. Automatic control may be performed. Alternatively, conversely, after automatically controlling the focus of the left camera 101 and the right camera 102, the projector / camera control unit 10 determines the target convergence angles of the left camera 101 and the right camera 102 based on the controlled focus. Is also good.
 ここで、計測用パターンは、プロジェクター/カメラ制御部10からプロジェクター20へ送られてもよいし、プロジェクター20に内蔵または外付けされた記憶装置に保存されていてもよい。 Here, the measurement pattern may be sent from the projector / camera control unit 10 to the projector 20, or may be stored in a storage device built in or external to the projector 20.
 また、計測用パターンは、計測用パターン生成装置(図示されない)によって生成され得る。計測用パターン生成装置は、プロジェクター/カメラ制御部10において実装されてもよいし、図示されない外部装置として実装されてもよい。後者の場合には、計測用パターン生成装置によって生成された計測用パターンが、通信媒体または記録媒体を経由して、最終的にプロジェクター20に届けられる。 The measurement pattern can be generated by a measurement pattern generation device (not shown). The measurement pattern generation device may be implemented in the projector / camera control unit 10, or may be implemented as an external device (not shown). In the latter case, the measurement pattern generated by the measurement pattern generation device is finally delivered to the projector 20 via a communication medium or a recording medium.
 計測用パターン生成装置は、計測用パターンを生成するパターン生成部を含む。パターン生成部は、例えば、プロセッサおよびメモリの組み合わせであり得る。ここで、プロセッサは、典型的にはCPU(Central Processing Unit)および/またはGPU(Graphics Processing Unit)であるが、マイコン、FPGA(Field Programmable Gate Array)、またはDSP(Digital Signal Processor)、などであってもよい。 The measurement pattern generation device includes a pattern generation unit that generates a measurement pattern. The pattern generator may be, for example, a combination of a processor and a memory. Here, the processor is typically a CPU (Central Processing Unit) and / or a GPU (Graphics Processing Unit), but is a microcomputer, an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Process), or the like. You may.
 プロジェクター20は、プロジェクター/カメラ制御部10からの命令に従って、計測用パターンを被写体30に投射する。そして、左カメラ101は、計測用パターンが投射された被写体30を撮影し、第1の撮影画像を生成する。同様に、右カメラ102は、計測用パターンが投射された被写体30を撮影し、第2の撮影画像を生成する。 The projector 20 projects the measurement pattern on the subject 30 according to a command from the projector / camera control unit 10. Then, the left camera 101 captures an image of the subject 30 on which the measurement pattern is projected, and generates a first captured image. Similarly, the right camera 102 captures an image of the subject 30 on which the measurement pattern is projected, and generates a second captured image.
 画像処理部40は、左カメラ101第1の撮影画像を取得し、右カメラ102から第2の撮影画像を取得し、例えば画素毎に第1の撮影画像と第2の撮影画像との間で画素ブロックレベルでのマッチングを行う。そして、画像処理部40は、かかるマッチング結果に基づいて当該画素における左カメラ101および右カメラ102の視差、および/または左カメラ101および右カメラ102から被写体30における当該画素に対応する点までの距離を算出する。さらに、画像処理部40または図示されない後段の外部装置が、距離の算出結果に基づいて被写体の3次元形状を推定してもよい。 The image processing unit 40 acquires the first photographed image from the left camera 101 and acquires the second photographed image from the right camera 102. For example, between the first photographed image and the second photographed image for each pixel, Perform matching at the pixel block level. Then, based on the matching result, the image processing unit 40 performs parallax between the left camera 101 and the right camera 102 at the pixel and / or distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel in the subject 30 from the left camera 101 and the right camera 102. Is calculated. Further, the image processing unit 40 or an external device (not shown) at the subsequent stage may estimate the three-dimensional shape of the subject based on the calculation result of the distance.
 具体的には、画像処理部40は、左カメラ101および右カメラ102からそれぞれ第1の撮影画像および第2の撮影画像を取得する。また、画像処理部40は、取得した第1の撮影画像および第2の撮影画像の画素ブロックレベルでのマッチングを行う。 Specifically, the image processing unit 40 acquires a first captured image and a second captured image from the left camera 101 and the right camera 102, respectively. Further, the image processing unit 40 performs matching at the pixel block level between the acquired first captured image and the second captured image.
 画像処理部40は、まず、第1の撮影画像における画素の1つを注目画素として決定する。なお、以降の説明では、第1の撮影画像、すなわち左カメラ101による撮影画像から注目画素を決定することとするが、第2の撮影画像、すなわち右カメラ102による撮影画像から注目画素を決定することも可能である。後者の場合には、以降の説明において「第1の撮影画像」および「第2の撮影画像」の用語を適宜読み替えれば良い。 The image processing unit 40 first determines one of the pixels in the first captured image as a target pixel. In the following description, the pixel of interest is determined from the first captured image, that is, the image captured by the left camera 101, but the pixel of interest is determined from the second captured image, that is, the image captured by the right camera 102. It is also possible. In the latter case, the terms “first captured image” and “second captured image” may be appropriately replaced in the following description.
 画像処理部40は、決定した注目画素を含む第1の画素ブロックを第1の撮影画像から抽出する。それから、画像処理部40は、第1の画素ブロックに対応する第2の画素ブロックを第2の撮影画像から探索する。 The image processing unit 40 extracts the first pixel block including the determined target pixel from the first captured image. Then, the image processing unit 40 searches the second captured image for a second pixel block corresponding to the first pixel block.
 画像処理部40は、注目画素を変更しながら第1の撮影画像の各画素について上記探索処理を繰り返す。これにより、第1の撮影画像内の各画素について、第2の撮影画像とのマッチングが行われる。マッチング結果は、例えば第1の撮影画像の各画素(マッチングに成功した画素)の座標(位置)と、第2の撮影画像において当該画素に対応するとして探索された画素の座標とを含み得る。 The image processing unit 40 repeats the above-described search processing for each pixel of the first captured image while changing the pixel of interest. Thus, matching of each pixel in the first captured image with the second captured image is performed. The matching result may include, for example, the coordinates (position) of each pixel (a pixel that has been successfully matched) of the first captured image and the coordinates of the pixel searched for as corresponding to the pixel in the second captured image.
 画像処理部40は、マッチング結果に基づいて、第1の撮影画像内の各画素(マッチングに成功した画素)に関する左カメラ101および右カメラ102の視差を算出する。視差算出結果は、例えば第1の撮影画像の各画素の座標と当該画素に関する視差ベクトルとを含み得る。また、画像処理部40は、視差算出結果を図示されない外部装置へ送ってもよい。 The image processing unit 40 calculates the parallax between the left camera 101 and the right camera 102 with respect to each pixel (a pixel that has been successfully matched) in the first captured image based on the matching result. The parallax calculation result may include, for example, the coordinates of each pixel of the first captured image and a parallax vector related to the pixel. In addition, the image processing unit 40 may send the parallax calculation result to an external device (not shown).
 画像処理部40は、視差算出結果に基づいて、第1の撮影画像内の画素(マッチングに成功した画素)毎に、左カメラ101および右カメラ102から被写体30における当該画素に対応する点までの距離、すなわち深度を算出する。画像処理部40は、距離算出結果を図示されない外部装置へ送ってもよい。距離算出結果は、例えば第1の撮影画像の各画素の座標と当該画素の深度とを含み得る。距離算出結果は、いわゆる深度マップであってもよい。 Based on the parallax calculation result, the image processing unit 40 determines, for each pixel (pixel that has been successfully matched) in the first captured image, the distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel in the subject 30. Calculate the distance, that is, the depth. The image processing unit 40 may send the distance calculation result to an external device (not shown). The distance calculation result may include, for example, the coordinates of each pixel of the first captured image and the depth of the pixel. The distance calculation result may be a so-called depth map.
 画像処理部40は、入出力制御、通信制御、および種々の画像処理(例えば、第1の撮影画像および第2の撮影画像の間のマッチング、視差および/または距離の算出、など)を行うプロセッサを含む。画像処理部40は、さらに、かかる処理を実現するためにプロセッサによって実行されるプログラムおよび当該プログラムによって使用されるデータなどを一時的に格納するメモリを含んでいる。 The image processing unit 40 performs input / output control, communication control, and various types of image processing (for example, matching between the first captured image and the second captured image, calculation of parallax and / or distance, and the like). including. The image processing unit 40 further includes a memory for temporarily storing a program executed by the processor to realize such processing, data used by the program, and the like.
 機構制御部50は、可動部材121および可動部材122の回転角および/または位置を制御する。具体的には、機構制御部50は、例えばモーターなどの小型のアクチュエーターに所望の制御値を示す制御信号を与え、可動部材121および可動部材122を必要な分、回転および/または平行移動させる。 The mechanism control unit 50 controls the rotation angle and / or the position of the movable member 121 and the movable member 122. Specifically, the mechanism control unit 50 gives a control signal indicating a desired control value to a small actuator such as a motor, for example, and rotates and / or translates the movable member 121 and the movable member 122 as necessary.
 機構制御部50は、例えば、左カメラ101および右カメラ102の目標輻輳角、目標視野方向および目標光軸間隔のうち少なくとも1つに基づいて、制御信号を生成してもよい。一例として、機構制御部50は、左カメラ101および右カメラ102の目標輻輳角または目標視野方向に基づいて、可動部材121および可動部材122の回転方向および回転量を制御してもよい。 The mechanism control unit 50 may generate the control signal based on at least one of the target convergence angle, the target viewing direction, and the target optical axis interval of the left camera 101 and the right camera 102, for example. As an example, the mechanism control unit 50 may control the rotation direction and the rotation amount of the movable member 121 and the movable member 122 based on the target convergence angles or the target viewing directions of the left camera 101 and the right camera 102.
 例えば、機構制御部50は、可動部材121および可動部材122を互いに逆の方向に同量回転させてもよい。これにより、左カメラ101および右カメラ102の視野方向を変えることなく輻輳角を調整することができる。ここで、可動部材121および可動部材122の回転の方向および大きさは、第1のカメラおよび第2のカメラの目標輻輳角に基づいて定められる。 For example, the mechanism control unit 50 may rotate the movable member 121 and the movable member 122 by the same amount in directions opposite to each other. Thus, the convergence angle can be adjusted without changing the viewing directions of the left camera 101 and the right camera 102. Here, the direction and magnitude of rotation of the movable member 121 and the movable member 122 are determined based on the target convergence angles of the first camera and the second camera.
 また、機構制御部50は、可動部材121および可動部材122を同方向に同量回転させてもよい。これにより、左カメラ101および右カメラ102の輻輳角を変えることなく視野方向を調整することができる。ここで、可動部材121および可動部材122の回転の方向および大きさは、第1のカメラおよび第2のカメラの目標視野方向に基づいて定められる。 The mechanism control unit 50 may rotate the movable member 121 and the movable member 122 in the same direction by the same amount. Thus, the viewing direction can be adjusted without changing the convergence angles of the left camera 101 and the right camera 102. Here, the direction and magnitude of the rotation of the movable member 121 and the movable member 122 are determined based on the target visual field directions of the first camera and the second camera.
 さらに、機構制御部50は、左カメラ101および右カメラ102の目標光軸間隔に基づいて、可動部材121および可動部材122の位置を制御してもよい。可動部材121および可動部材122の間の距離により、左カメラ101および右カメラ102の光軸間隔が決まる。 Further, the mechanism control unit 50 may control the positions of the movable member 121 and the movable member 122 based on the target optical axis interval between the left camera 101 and the right camera 102. The distance between the movable member 121 and the movable member 122 determines the optical axis interval between the left camera 101 and the right camera 102.
 ここで、可動部材121は、軸部と突起部とを有し、その軸部に可動ミラー111を取り付けられる。可動部材121は、左カメラ101および右カメラ102(を固定する支持部材)ならびに可動部材122とは独立して(すなわち連動することなく)回転および/または変位が可能である。可動部材121の回転および/または変位の少なくとも1つに連動して、可動ミラー111の回転角および/または位置が変化する。同様に、可動部材122は、軸部と突起部とを有し、その軸部に可動ミラー112を取り付けられる。可動部材122は、左カメラ101および右カメラ102ならびに可動部材121とは独立して(すなわち連動することなく)回転および/または変位が可能である。可動部材122の回転および/または変位の少なくとも1つに連動して、可動ミラー112の回転角および/または位置が変化する。なお、可動部材121および可動部材122の回転角および/または位置を手動で調整することも可能である。この場合に、機構制御部50は不要となり得る。 Here, the movable member 121 has a shaft and a projection, and the movable mirror 111 can be attached to the shaft. The movable member 121 is rotatable and / or displaceable independently of the left camera 101 and the right camera 102 (a supporting member for fixing the same) and the movable member 122 (that is, without interlocking). The rotation angle and / or the position of the movable mirror 111 changes in conjunction with at least one of the rotation and / or the displacement of the movable member 121. Similarly, the movable member 122 has a shaft and a protrusion, and the movable mirror 112 can be attached to the shaft. The movable member 122 can rotate and / or displace independently of the left camera 101 and the right camera 102 and the movable member 121 (that is, without interlocking). The rotation angle and / or the position of the movable mirror 112 changes in association with at least one of the rotation and / or the displacement of the movable member 122. Note that the rotation angles and / or positions of the movable member 121 and the movable member 122 can be manually adjusted. In this case, the mechanism control unit 50 may not be necessary.
 可動ミラー111の回転角および/または位置は、前述のように、可動部材121の回転および/または変位に連動して変化する。同様に、可動ミラー112の回転角および/または位置は、前述のように、可動部材122の回転および/または変位に連動して変化する。 The rotation angle and / or position of the movable mirror 111 changes in conjunction with the rotation and / or displacement of the movable member 121 as described above. Similarly, the rotation angle and / or position of the movable mirror 112 changes in conjunction with the rotation and / or displacement of the movable member 122 as described above.
 ここで、図1の例では、可動部材121は可動ミラー111の背面の中心付近に取り付けられ、可動部材122は可動ミラー112の背面の中心付近に取り付けられる。しかしながら、これは実装例の1つに過ぎない。可動部材121および可動部材122の取り付け位置は、図11に例示されるように、可動ミラー112の背面の後方側に取り付けられてよい。 Here, in the example of FIG. 1, the movable member 121 is attached near the center of the back of the movable mirror 111, and the movable member 122 is attached near the center of the back of the movable mirror 112. However, this is only one implementation. The mounting positions of the movable member 121 and the movable member 122 may be mounted on the rear side of the rear surface of the movable mirror 112 as illustrated in FIG.
 具体的には、可動部材121は、可動ミラー111の回転する範囲に亘って、可動部材121の回転軸が第1の光線の可動ミラー111への入射方向から見て第1の平面よりも後方に位置するように可動ミラー111に取り付けられてよい。ここで、第1の平面とは、可動ミラー111の幾何中心を通り、かつ可動ミラー111の反射面(正面)に略垂直な平面を指す。同様に、可動部材122は、可動ミラー112の回転する範囲に亘って、可動部材122の回転軸が第2の光線の可動ミラー112への入射方向から見て第2の平面よりも後方に位置するように可動ミラー112に取り付けられてよい。ここで、第2の平面とは、可動ミラー112の幾何中心を通り、かつ可動ミラー112の反射面に略垂直な平面を指す。 Specifically, the movable member 121 is configured such that the rotation axis of the movable member 121 is behind the first plane when viewed from the incident direction of the first light beam on the movable mirror 111 over the range in which the movable mirror 111 rotates. May be attached to the movable mirror 111. Here, the first plane refers to a plane that passes through the geometric center of the movable mirror 111 and is substantially perpendicular to the reflection surface (front) of the movable mirror 111. Similarly, the movable member 122 is positioned such that the rotation axis of the movable member 122 is behind the second plane when viewed from the direction of incidence of the second light beam on the movable mirror 112 over the range in which the movable mirror 112 rotates. May be attached to the movable mirror 112. Here, the second plane refers to a plane that passes through the geometric center of the movable mirror 112 and is substantially perpendicular to the reflection surface of the movable mirror 112.
 可動部材121および可動部材122をこのように取り付けることで、可動ミラー111および可動ミラー112の背面の中心付近に取り付けた場合に比べて、可動部材121および可動部材122の回転による左カメラ101および右カメラ102のカメラ位置のずれを抑制することができる。すなわち、光軸間隔をあまり変化させずに、輻輳角または視野方向を変化させることが可能となる。 By attaching the movable member 121 and the movable member 122 in this way, the left camera 101 and the right camera due to the rotation of the movable member 121 and the movable member 122 are compared with the case where the movable member 121 and the movable member 122 are attached near the center of the back of the movable mirror 111 and the movable mirror 112. The displacement of the camera position of the camera 102 can be suppressed. That is, the convergence angle or the viewing direction can be changed without changing the optical axis interval much.
 図11において、左カメラ101の仮想的なカメラ位置および/または姿勢P11と、左カメラ101の仮想的なカメラ位置および/または姿勢P21とを比べると、仮想的なカメラ姿勢は変化しているが仮想的なカメラ位置は殆ど変化していない。同様に、図11において、右カメラ102の仮想的なカメラ位置および/または姿勢P12と、右カメラ102の仮想的なカメラ位置および/または姿勢P22とを比べると、仮想的なカメラ姿勢は変化しているが仮想的なカメラ位置は殆ど変化していない。 In FIG. 11, when the virtual camera position and / or posture P11 of the left camera 101 is compared with the virtual camera position and / or posture P21 of the left camera 101, the virtual camera posture has changed. The virtual camera position has hardly changed. Similarly, in FIG. 11, when the virtual camera position and / or posture P12 of the right camera 102 is compared with the virtual camera position and / or posture P22 of the right camera 102, the virtual camera posture changes. However, the virtual camera position has hardly changed.
 左カメラ101は、光学レンズと、受光画素と、ADC(Analog-to-Digital Converter)とを含む撮像ユニットである。左カメラ101は、さらに色フィルタを含んでもよい。右カメラ102の構成は、左カメラ101と同一または類似であり得る。 The left camera 101 is an imaging unit including an optical lens, light receiving pixels, and an ADC (Analog-to-Digital Converter). The left camera 101 may further include a color filter. The configuration of the right camera 102 can be the same or similar to the left camera 101.
 左カメラ101は、後述される第1の導光系からの入射光をレンズにより受光画素に結像し、アナログ/デジタル変換を行って、第1の撮影画像を生成する。左カメラ101は、第1の撮影画像を画像処理部40へ送る。同様に、右カメラ102は、後述される第2の導光系からの入射光をレンズにより受光画素に結像し、アナログ/デジタル変換を行って、第2の撮影画像を生成する。右カメラ102は、第2の撮影画像を画像処理部40へ送る。 (5) The left camera 101 forms an image of incident light from a first light guide system, which will be described later, on a light receiving pixel by a lens, performs analog / digital conversion, and generates a first captured image. The left camera 101 sends the first captured image to the image processing unit 40. Similarly, the right camera 102 forms incident light from a second light guide system, which will be described later, on a light receiving pixel by a lens, performs analog / digital conversion, and generates a second captured image. The right camera 102 sends the second captured image to the image processing unit 40.
 第1の撮影画像および第2の撮影画像は、例えばUSB(Universal Serial Bus)ケーブル、光ファイバケーブル、HDMI(登録商標)(High-Definition Multimedia Interface)ケーブル、などの有線通信I/Fを介して、または例えばBluetooth(登録商標)、Wi-Fi(登録商標)などの無線通信技術を利用する無線通信I/Fを介して送信され得る。 The first captured image and the second captured image are transmitted via a wired communication I / F such as a USB (Universal Serial Bus) cable, an optical fiber cable, an HDMI (registered trademark) (High-Definition Multimedia Interface) cable, or the like. Or, for example, via a wireless communication I / F using a wireless communication technology such as Bluetooth (registered trademark) or Wi-Fi (registered trademark).
 左カメラ101は、例えばその背面(光学レンズの備え付けられた面に対する裏面)が支持部材131に固定されており、可動部材121および可動部材122の回転および変位のいずれによる影響も実質的に受けない。同様に、右カメラ102は、例えばその背面が支持部材132に固定されており、可動部材121および可動部材122の回転および変位のいずれによる影響も実質的に受けない。すなわち、図1の例では、左カメラ101および右カメラ102は、互いに背中合わせとなるように支持部材131および支持部材132にそれぞれ固定されている。なお、図6に例示されるように、左カメラ101の背面と右カメラ102の背面との間に、プロジェクター20が配置されてもよい。これにより、ステレオカメラ100およびプロジェクター20を同一の筐体に収容することができる。他方、ステレオカメラ100を収容する筐体をコンパクト化する観点から、ステレオカメラ100およびプロジェクター20を別々の筐体に収容してもよい。 The left camera 101 has, for example, a back surface (a back surface with respect to the surface provided with the optical lens) fixed to the support member 131, and is substantially not affected by any of rotation and displacement of the movable members 121 and 122. . Similarly, the right camera 102 has, for example, a back surface fixed to the support member 132, and is substantially unaffected by any of rotation and displacement of the movable members 121 and 122. That is, in the example of FIG. 1, the left camera 101 and the right camera 102 are fixed to the support members 131 and 132, respectively, so as to be back to back. As illustrated in FIG. 6, the projector 20 may be disposed between the back of the left camera 101 and the back of the right camera 102. Thereby, the stereo camera 100 and the projector 20 can be housed in the same housing. On the other hand, the stereo camera 100 and the projector 20 may be housed in separate housings from the viewpoint of making the housing housing the stereo camera 100 compact.
 第1の導光系は、少なくとも1枚のミラーである第1のミラー群を含み、左カメラ101へ第1の光線を含む入射光を導く。可動ミラー111は、この第1のミラー群に含まれる。同様に、第2の導光系は、少なくとも1枚のミラーである第2のミラー群を含み、右カメラ102へ第2の光線を含む入射光を導く。可動ミラー112は、この第2のミラー群に含まれる。 The first light guide system includes a first mirror group that is at least one mirror, and guides incident light including the first light beam to the left camera 101. The movable mirror 111 is included in the first mirror group. Similarly, the second light guide system includes a second mirror group that is at least one mirror, and guides incident light including the second light beam to the right camera 102. The movable mirror 112 is included in this second mirror group.
 左カメラ101の仮想的なカメラ位置および/または姿勢は、第1の導光系の構成に依存する。具体的には、図1に例示されるように、左カメラ101の仮想的なカメラ位置および/または姿勢P11は、第1のミラー群のうち第1の光線の光路上で左カメラ101から最も遠いミラー(図1の例では可動ミラー111)における入射光としての第1の光線を仮想的に延長した直線に基づいて決まる。同様に、右カメラ102の仮想的なカメラ位置および/または姿勢は、第2の導光系の構成に依存する。具体的には、図1に例示されるように、右カメラ102の仮想的なカメラ位置および/または姿勢P12は、第2のミラー群のうち第2の光線の光路上で右カメラ102から最も遠いミラー(図1の例では可動ミラー111)における入射光としての第2の光線を仮想的に延長した直線に基づいて決まる。 仮 想 The virtual camera position and / or attitude of the left camera 101 depends on the configuration of the first light guide system. Specifically, as illustrated in FIG. 1, the virtual camera position and / or the posture P11 of the left camera 101 is most different from the left camera 101 on the optical path of the first light ray in the first mirror group. It is determined based on a straight line that virtually extends the first light beam as incident light on a distant mirror (the movable mirror 111 in the example of FIG. 1). Similarly, the virtual camera position and / or posture of the right camera 102 depends on the configuration of the second light guide system. Specifically, as illustrated in FIG. 1, the virtual camera position and / or posture P12 of the right camera 102 is the most from the right camera 102 on the optical path of the second light ray of the second mirror group. It is determined based on a straight line virtually extending the second light beam as the incident light on the distant mirror (the movable mirror 111 in the example of FIG. 1).
 可動ミラー111の位置または回転角が変化すると、左カメラ101の仮想的なカメラ位置および/または姿勢が変化する。同様に、可動ミラー112の位置または回転角が変化すると、右カメラ102の仮想的なカメラ位置および/または姿勢が変化する。これは、左カメラ101および右カメラ102の輻輳角、視野方向および光軸間隔の少なくとも1つが変化することを意味する。 When the position or rotation angle of the movable mirror 111 changes, the virtual camera position and / or posture of the left camera 101 changes. Similarly, when the position or rotation angle of the movable mirror 112 changes, the virtual camera position and / or posture of the right camera 102 changes. This means that at least one of the convergence angle, the viewing direction, and the optical axis interval of the left camera 101 and the right camera 102 changes.
 図4および図5に一例としてのステレオカメラ100の正面図および底面図をそれぞれ示す。図4において、図の上から下へ向かう方向が鉛直方向に相当する。すなわち、図4および図5の例では、ステレオカメラ100の下に被写体30が配置されていることになる。しかしながら、これは実装例の1つに過ぎず、図4が底面図かつ図5が正面図である、すなわち被写体30およびステレオカメラ100は鉛直方向上で重なり合っていない、と解することもできる。 FIGS. 4 and 5 show a front view and a bottom view of the stereo camera 100 as an example, respectively. In FIG. 4, the direction from the top to the bottom of the figure corresponds to the vertical direction. That is, in the examples of FIGS. 4 and 5, the subject 30 is arranged below the stereo camera 100. However, this is only one example of an implementation, and it can be understood that FIG. 4 is a bottom view and FIG. 5 is a front view, that is, the subject 30 and the stereo camera 100 do not overlap in the vertical direction.
 図4および図5の例では、ステレオカメラ100は、図1において説明した要素に加えて、ベース部材140と、ケーブル151と、ケーブル152とを含む。 4 and 5, the stereo camera 100 includes a base member 140, a cable 151, and a cable 152 in addition to the elements described in FIG.
 ベース部材140は、第1の面と、第2の面と、第1の面および第2の面の間を貫くスリットとを有する。図4では、第1の面およびスリットが描かれているものの、第2の面は第1の面の反対側の面であるため描かれていない。可動部材121および可動部材122は、それぞれベース部材140のスリットを貫通するように配置されており、当該スリットに沿って平行移動することができる。 The base member 140 has a first surface, a second surface, and a slit penetrating between the first surface and the second surface. In FIG. 4, although the first surface and the slit are drawn, the second surface is not drawn because it is the surface on the opposite side of the first surface. The movable member 121 and the movable member 122 are arranged so as to pass through the slits of the base member 140, respectively, and can move in parallel along the slits.
 なお、図4では、可動部材121が貫通するスリットと可動部材122が貫通するスリットとはつながっていないが、両者がつながっていてもよい。或いは、ベース部材140は、可動部材121が貫通するスリットを有する第1のベース部材と、可動部材122が貫通するスリットを有する第2のベース部材とで構成されてもよい。また、図5の例では、ベース部材140は断面がH字型の柱状部材として形成されているが、スリットを有する複数の板状部材と当該複数の板状部材を接続する接続部材とで構成されてもよい。 In FIG. 4, the slit through which the movable member 121 penetrates and the slit through which the movable member 122 penetrates are not connected, but they may be connected. Alternatively, the base member 140 may be composed of a first base member having a slit through which the movable member 121 penetrates, and a second base member having a slit through which the movable member 122 penetrates. In the example of FIG. 5, the base member 140 is formed as a columnar member having an H-shaped cross section. However, the base member 140 includes a plurality of plate members having slits and a connecting member that connects the plurality of plate members. May be done.
 可動部材121は、その長手方向の両端にその周方向へ突出した突起部を有している。可動部材121は、この突起部をそれぞれベース部材140の面(例えば第1の面)に掛けた状態で、当該可動部材121の(軸部の)一部が当該面の反対側の面(例えば第2の面)から露出するようにスリットを貫通している。さらに、可動部材121は、この突起部がベース部材140の面に掛かった状態で、支持部材131および支持部材132ならびに可動部材122と独立して、当該可動部材121の長手方向を軸とした回転および/またはスリットに沿った変位が可能である。 The movable member 121 has projections projecting in the circumferential direction at both ends in the longitudinal direction. The movable member 121 is such that a part of the movable member 121 (of the shaft portion) is opposite to the surface (for example, the first surface) of the movable member 121 in a state where the protrusions are hung on the surface (for example, the first surface) of the base member 140. The slit penetrates so as to be exposed from the second surface). Furthermore, the movable member 121 rotates independently of the support member 131, the support member 132, and the movable member 122 around the longitudinal direction of the movable member 121 in a state where the protrusions are hung on the surface of the base member 140. And / or a displacement along the slit is possible.
 同様に、可動部材122は、その長手方向の両端に周方向へ突出した突起部を有している。可動部材122は、この突起部をそれぞれベース部材140の面(例えば第1の面)に掛けた状態で、当該可動部材122の(軸部の)一部が当該面の反対側の面(例えば第2の面)から露出するようにスリットを貫通している。さらに、可動部材122は、この突起部がベース部材140の面に掛かった状態で、支持部材131および支持部材132ならびに可動部材121と独立して、当該可動部材122の長手方向を軸とした回転および/またはスリットに沿った変位が可能である。 Similarly, the movable member 122 has projections protruding in the circumferential direction at both ends in the longitudinal direction. The movable member 122 is configured such that a portion (of the shaft portion) of the movable member 122 is opposite to the surface (for example, the shaft portion) of the movable member 122 in a state where the protrusions are hung on the surface (for example, the first surface) of the base member 140. The slit penetrates so as to be exposed from the second surface). Further, the movable member 122 rotates independently of the support member 131, the support member 132, and the movable member 121 around the longitudinal direction of the movable member 122 in a state where the protrusions are hung on the surface of the base member 140. And / or a displacement along the slit is possible.
 ケーブル151は、例えばUSBケーブルであって、左カメラ101への電源供給および/またはデータ伝送に用いられる。同様に、ケーブル152は、例えばUSBケーブルであって、右カメラ102への電源供給および/またはデータ伝送に用いられる。 The cable 151 is, for example, a USB cable, and is used for power supply to the left camera 101 and / or data transmission. Similarly, the cable 152 is, for example, a USB cable, and is used for power supply and / or data transmission to the right camera 102.
 次に、図7、図8および図9に変形例としてのステレオカメラ100の正面図、側面図および底面図をそれぞれ示す。図7において、図の上から下へ向かう方向が鉛直方向に相当する。すなわち、図7乃至図9の例では、ステレオカメラ100の下に被写体30が配置されていることになる。しかしながら、これは実装例の1つに過ぎず、図7が底面図かつ図9が正面図である、すなわち被写体30およびステレオカメラ100は鉛直方向上で重なり合っていない、と解することもできる。 Next, FIGS. 7, 8 and 9 show a front view, a side view and a bottom view of a stereo camera 100 as a modification, respectively. In FIG. 7, the direction from the top to the bottom of the figure corresponds to the vertical direction. That is, in the examples of FIGS. 7 to 9, the subject 30 is arranged below the stereo camera 100. However, this is only one of the implementation examples, and it can be understood that FIG. 7 is a bottom view and FIG. 9 is a front view, that is, the subject 30 and the stereo camera 100 do not overlap in the vertical direction.
 図7乃至図9の例では、ステレオカメラ100は、図1において説明した要素に加えて、ベース部材140と、ギア161と、ギア162と、モーター171と、モーター172とを含む。 7 to 9, the stereo camera 100 includes a base member 140, a gear 161, a gear 162, a motor 171 and a motor 172 in addition to the elements described in FIG.
 ベース部材140は、第1の面と、第2の面と、第1の面および第2の面の間を貫く孔とを有する。図7では、第1の面が描かれているものの、第2の面は第1の面の反対側の面であるため、また孔は可動部材121、可動部材122、ギア161およびギア162によって遮蔽されているため、描かれていない。可動部材121および可動部材122は、それぞれベース部材140の孔を貫通するように配置されている。 The base member 140 has a first surface, a second surface, and a hole penetrating between the first surface and the second surface. In FIG. 7, although the first surface is drawn, the second surface is a surface opposite to the first surface, and the holes are formed by the movable member 121, the movable member 122, the gear 161, and the gear 162. Not drawn because it is shielded. The movable member 121 and the movable member 122 are arranged so as to pass through holes of the base member 140, respectively.
 なお、ベース部材140は、可動部材121およびギア161が貫通する孔を有する第1のベース部材と、可動部材122およびギア162が貫通する孔を有する第2のベース部材とで構成されてもよい。また、図9の例では、ベース部材140は、スリットを有する2つの板状部材と当該複数の板状部材を接続する接続部材とで構成されているが、ベース部材140は断面がH字型の柱状部材として形成されてもよい。 The base member 140 may include a first base member having a hole through which the movable member 121 and the gear 161 penetrate, and a second base member having a hole through which the movable member 122 and the gear 162 penetrate. . Further, in the example of FIG. 9, the base member 140 includes two plate members having slits and a connection member that connects the plurality of plate members. However, the base member 140 has an H-shaped cross section. May be formed as a columnar member.
 可動部材121は、その長手方向の一端に周方向へ突出したギア状の突起部を有している。可動部材121は、この突起部をベース部材140の第1の面に掛けた状態で、当該可動部材121の一部が第2の面から露出するように孔を貫通している。また、可動部材121の突起部は、ギア161と噛み合うように配置される。故に、可動部材121は、この突起部がベース部材140の第1の面に掛かった状態で、支持部材131および支持部材132ならびに可動部材122と独立して、ギア161の回転に連動して当該可動部材121の長手方向を軸とした回転が可能である。 The movable member 121 has a gear-shaped protrusion protruding in the circumferential direction at one end in the longitudinal direction. The movable member 121 penetrates the hole such that a part of the movable member 121 is exposed from the second surface in a state where the protrusion is hooked on the first surface of the base member 140. Further, the protrusion of the movable member 121 is arranged so as to mesh with the gear 161. Therefore, the movable member 121 is independent of the support member 131, the support member 132, and the movable member 122 in a state where the protrusion is hooked on the first surface of the base member 140, and interlocks with the rotation of the gear 161. The rotation about the longitudinal direction of the movable member 121 is possible.
 同様に、可動部材122は、その長手方向の一端に周方向へ突出したギア状の突起部を有している。可動部材122は、この突起部をベース部材140の第1の面に掛けた状態で、当該可動部材122の一部が第2の面から露出するように孔を貫通している。また、可動部材122の突起部は、ギア162と噛み合うように配置される。故に、可動部材122は、この突起部がベース部材140の第1の面に掛かった状態で、支持部材131および支持部材132ならびに可動部材121と独立して、ギア162の回転に連動して当該可動部材122の長手方向を軸とした回転が可能である。 Similarly, the movable member 122 has a gear-shaped protrusion protruding in the circumferential direction at one end in the longitudinal direction. The movable member 122 penetrates the hole such that a part of the movable member 122 is exposed from the second surface in a state where the protrusion is hung on the first surface of the base member 140. Further, the protrusion of the movable member 122 is arranged so as to mesh with the gear 162. Therefore, the movable member 122 is interlocked with the rotation of the gear 162 independently of the support member 131, the support member 132, and the movable member 121 in a state in which the protrusion is hooked on the first surface of the base member 140. The rotation about the longitudinal direction of the movable member 122 is possible.
 ギア161は、モーター171のシャフトの先端に取り付けられ、可動部材121の突起部と噛み合うように、ベース部材140の第1の面上に配置される。同様に、ギア162は、モーター172のシャフトの先端に取り付けられ、可動部材122の突起部と噛み合うように、ベース部材140の第1の面上に配置される。 The gear 161 is attached to the tip of the shaft of the motor 171, and is disposed on the first surface of the base member 140 so as to mesh with the protrusion of the movable member 121. Similarly, the gear 162 is attached to the distal end of the shaft of the motor 172, and is disposed on the first surface of the base member 140 so as to mesh with the protrusion of the movable member 122.
 モーター171は、そのシャフトの先端の一部がベース部材140の第1の面から露出するように孔を貫通しており、その露出部分にはギア161が取り付けられる。モーター171は、電気信号を受け取り、その電気的エネルギーを力学的エネルギーに変換し、この力学的エネルギーによってギア161を回転駆動する。モーター171は、第1の光線を含む左カメラ101への入射光の光路を妨げないように配置され得る。例えば、モーター171は、左カメラ101との間に第1の導光系が収まるように配置され得る。 The motor 171 has a shaft penetrated through a hole so that a part of the tip of the shaft is exposed from the first surface of the base member 140, and a gear 161 is attached to the exposed portion. The motor 171 receives the electric signal, converts the electric energy into mechanical energy, and rotationally drives the gear 161 by the mechanical energy. The motor 171 may be arranged so as not to obstruct the optical path of light incident on the left camera 101 including the first light beam. For example, the motor 171 may be arranged such that the first light guide system is located between the motor 171 and the left camera 101.
 同様に、モーター172は、そのシャフトの先端の一部がベース部材140の第1の面から露出するように孔を貫通しており、その露出部分にはギア162が取り付けられる。モーター172は、電気信号を受け取り、その電気的エネルギーを力学的エネルギーに変換し、この力学的エネルギーによってギア162を回転駆動する。モーター172は、第2の光線を含む右カメラ102への入射光の光路を妨げないように配置され得る。例えば、モーター172は、右カメラ102との間に第2の導光系が収まるように配置され得る。 Similarly, the motor 172 penetrates the hole so that a part of the tip of the shaft is exposed from the first surface of the base member 140, and the gear 162 is attached to the exposed portion. The motor 172 receives the electric signal, converts the electric energy into mechanical energy, and rotationally drives the gear 162 with the mechanical energy. Motor 172 may be positioned so as not to obstruct the optical path of light incident on right camera 102, including the second light beam. For example, the motor 172 may be arranged such that the second light guide system fits between the motor 172 and the right camera 102.
 モーター171およびモーター172は、互いに独立の電気信号により制御され得る。これらの電気信号は、例えば機構制御部50から供給され得る。図7乃至図9に例示されるステレオカメラ100によれば、可動部材121および可動部材122の回転角、すなわち左カメラ101および右カメラ102の少なくとも輻輳角および/または視野方向を電気的に制御することができる。 The motor 171 and the motor 172 can be controlled by electric signals independent of each other. These electric signals can be supplied from the mechanism control unit 50, for example. According to the stereo camera 100 illustrated in FIGS. 7 to 9, the rotation angles of the movable member 121 and the movable member 122, that is, at least the convergence angle and / or the viewing direction of the left camera 101 and the right camera 102 are electrically controlled. be able to.
 ステレオカメラ100における各種構造部品、具体的には、可動部材121、可動部材122、支持部材131、支持部材132、ベース部材140、ギア161、およびギア162の一部または全部には、例えばマグネシウムなどの軽金属、またはPPS(Polyphenylene sulfide)などの樹脂、といった軽量性および強度に優れた素材が用いられ得る。かかる素材を適切に用いることで、多眼カメラ装置を実用的な強度を維持しながらも軽量に構成することが可能である。 Some or all of the various structural components of the stereo camera 100, specifically, the movable member 121, the movable member 122, the support member 131, the support member 132, the base member 140, the gear 161, and the gear 162 include, for example, magnesium or the like. And a material excellent in light weight and strength, such as a light metal or a resin such as PPS (Polyphenylene sulfide). By appropriately using such a material, it is possible to configure the multi-lens camera device to be lightweight while maintaining practical strength.
 以下、図3を用いて、図2の視差/距離計測システムの動作を説明する。
 まず、プロジェクター20が、プロジェクター/カメラ制御部10からの命令に従って、被写体30に計測用パターンを投射する(ステップS201)。プロジェクター20は、少なくとも次のステップS202が終了するまで、被写体30に計測用パターンを投射し続ける必要がある。
Hereinafter, the operation of the parallax / distance measurement system of FIG. 2 will be described with reference to FIG.
First, the projector 20 projects a measurement pattern on the subject 30 according to a command from the projector / camera control unit 10 (step S201). The projector 20 needs to keep projecting the measurement pattern on the subject 30 at least until the next step S202 ends.
 次に、左カメラ101および右カメラ102がそれぞれ、プロジェクター/カメラ制御部10からの命令に従って、被写体30を撮影し、第1の撮影画像および第2の撮影画像を生成する(ステップS202)。ステップS202において生成された第1の撮影画像および第2の撮影画像は、画像処理部40によって取得される。ステップS202の後に処理はステップS203へと進む。 Next, the left camera 101 and the right camera 102 respectively capture the image of the subject 30 in accordance with an instruction from the projector / camera control unit 10 to generate a first captured image and a second captured image (step S202). The first captured image and the second captured image generated in step S202 are acquired by the image processing unit 40. After step S202, the process proceeds to step S203.
 ステップS203において、画像処理部40は、第1の撮影画像内の未処理の画素の中から注目画素を決定する。注目画素は、例えばラスタスキャン順、またはその他の順序で順番に選定され得る。 In step S203, the image processing unit 40 determines a target pixel from unprocessed pixels in the first captured image. The pixel of interest may be selected in order, for example, in a raster scan order or other order.
 画像処理部40は、ステップS203において決定した注目画素を含む第1の画素ブロックを抽出する(ステップS204)。例えば、画像処理部40は、注目画素が中心に位置するように第1の画素ブロックを抽出してよい。画像処理部40は、ステップS204において抽出した第1の画素ブロックに対応する第2の画素ブロックを第2の撮影画像から探索する(ステップS205)。 The image processing unit 40 extracts a first pixel block including the target pixel determined in step S203 (step S204). For example, the image processing unit 40 may extract the first pixel block so that the target pixel is located at the center. The image processing unit 40 searches for a second pixel block corresponding to the first pixel block extracted in step S204 from the second captured image (step S205).
 画像処理部40は、ステップS205において得られたマッチング結果に基づいて、ステップS203において決定した注目画素に関する左カメラ101および右カメラ102の視差を算出する(ステップS206)。 The image processing unit 40 calculates the parallax of the left camera 101 and the right camera 102 with respect to the target pixel determined in step S203 based on the matching result obtained in step S205 (step S206).
 画像処理部40は、ステップS206において得られた視差算出結果に基づいて、左カメラ101および右カメラ102から被写体30における注目画素に対応する点までの距離、すなわち深度を算出する(ステップS207)。そして、処理はステップS208へ進む。なお、さらに、図示されない外部装置、または画像処理部40が距離算出結果に基づいて被写体30の3次元形状を推定してもよい。 The image processing unit 40 calculates the distance from the left camera 101 and the right camera 102 to a point corresponding to the pixel of interest in the subject 30, that is, the depth, based on the parallax calculation result obtained in step S206 (step S207). Then, the process proceeds to step S208. Note that an external device (not shown) or the image processing unit 40 may further estimate the three-dimensional shape of the subject 30 based on the distance calculation result.
 ステップS208において、第1の撮影画像の各画素についてステップS203乃至ステップS207の処理が済んでいれば図3の動作は終了し、未処理の画素が残存していれば処理はステップS203に戻る。 In step S208, if the processing of steps S203 to S207 has been completed for each pixel of the first captured image, the operation in FIG. 3 ends, and if unprocessed pixels remain, the processing returns to step S203.
 なお、ステップS206およびステップS207は、第1の撮影画像の各画素についてマッチング(ステップS203乃至ステップS205)が完了した後にまとめて行われてもよい。 Steps S206 and S207 may be performed collectively after matching (steps S203 to S205) is completed for each pixel of the first captured image.
 以上説明したように、実施形態に係る多眼カメラ装置は、2つのカメラおよび他の可動部材と独立して回転および/または変位が可能な可動部材を2つ備えており、この可動部材の回転および変位の少なくとも1つに連動して当該可動部材に取り付けられたミラーの回転角および/または位置が変化する。そして、かかる変化に基づいて、2つのカメラの輻輳角、視野方向および間隔の少なくとも1つが変化する。故に、この多眼カメラ装置によれば、可動部材およびミラーという限られた部品を動かすことで、カメラ、すなわちレンズ、受光画素およびADCなどを含む撮像ユニット全体を何ら動かすことなく、多眼カメラに関するパラメータ、例えば、輻輳角、視野方向、および光軸間隔など、の少なくとも1つを可変とすることができる。すなわち、本実施形態によれば、パラメータ可変の多眼カメラをコンパクトな機構により実現し、可動ミラーの駆動、すなわちパラメータの変更を高速に行うことができる。また、この多眼カメラ装置において、パラメータの変更のためにカメラを動かす必要がないので、当該カメラに接続されたケーブルの摩耗、断線が生じにくい。 As described above, the multi-lens camera device according to the embodiment includes two movable members that can rotate and / or displace independently of the two cameras and the other movable members. The rotation angle and / or position of the mirror attached to the movable member changes in conjunction with at least one of the displacement and the displacement. Then, based on the change, at least one of the convergence angle, the viewing direction, and the interval between the two cameras changes. Therefore, according to this multi-lens camera device, by moving limited parts such as a movable member and a mirror, the camera, that is, the multi-lens camera can be moved without moving the entire imaging unit including the lens, the light receiving pixels and the ADC. At least one of the parameters, such as the convergence angle, the viewing direction, and the optical axis interval, can be made variable. That is, according to the present embodiment, a parameter-variable multi-lens camera is realized by a compact mechanism, and the movable mirror can be driven, that is, the parameter can be changed at high speed. Further, in this multi-lens camera device, it is not necessary to move the camera for changing the parameters, so that the cable connected to the camera is hardly worn or broken.
 なお、ステレオカメラ100のうち、左カメラ101および右カメラ102以外の要素の一部または全部をまとめて、ミラー可動機構と呼ぶこともできる。このミラー可動機構は、多眼カメラのアタッチメントであってよい。例えば、可動ミラー111、可動ミラー112、可動部材121、および可動部材122を含むミラー可動機構を、通常のステレオカメラに取り付けることでパラメータ可変のステレオカメラのパラメータを構成することができる。 In the stereo camera 100, some or all of the components other than the left camera 101 and the right camera 102 may be collectively referred to as a mirror movable mechanism. This mirror movable mechanism may be an attachment of a multi-lens camera. For example, by attaching a mirror movable mechanism including the movable mirror 111, the movable mirror 112, the movable member 121, and the movable member 122 to a normal stereo camera, it is possible to configure parameters of a stereo camera having variable parameters.
 (変形例1)
 図1、図2、図5、図6、図9および図10の例では、いずれも左カメラ101および右カメラ102は互いに背中合わせとなるように配置されている。しかしながら、左カメラ101および右カメラ102の寸法、特に正面から背面までの奥行きが大きい場合には、両者を背中合わせに配置すると、ステレオカメラ100の幅が許容範囲を超えて大きくなるおそれがある。
(Modification 1)
In the examples of FIGS. 1, 2, 5, 6, 9, and 10, the left camera 101 and the right camera 102 are arranged so as to be back to back. However, if the dimensions of the left camera 101 and the right camera 102, particularly the depth from the front to the back, are large, arranging them back-to-back may increase the width of the stereo camera 100 beyond an allowable range.
 そこで、図11に例示されるように、左カメラ101および右カメラ102は、光軸が略平行となるように配置されてもよい。これにより、ステレオカメラ100の幅をより小さくに構成することが可能となる。 Therefore, as illustrated in FIG. 11, the left camera 101 and the right camera 102 may be arranged so that the optical axes are substantially parallel. This makes it possible to configure the width of the stereo camera 100 to be smaller.
 なお、図11の例では、左カメラ101および右カメラ102の向きの変更に伴い、両カメラの入射光の光路をさらに曲げるためのミラー181およびミラー182が第1の導光系および第2の導光系にそれぞれ追加されている。 Note that, in the example of FIG. 11, the mirrors 181 and 182 for further bending the optical path of the incident light of both cameras are provided with the first light guide system and the second light guide system in accordance with the change in the directions of the left camera 101 and the right camera 102. Each is added to the light guide system.
 具体的には、ミラー181は、第1の光線の光路上に配置され、可動ミラー111によって反射された第1の光線をさらに反射して左カメラ101へ導く。同様に、ミラー182は、第2の光線の光路上に配置され、可動ミラー112によって反射された第2の光線をさらに反射して右カメラ102へ導く。ミラー181およびミラー182は、固定であってもよいし、可動であってもよい。 Specifically, the mirror 181 is arranged on the optical path of the first light beam, and further reflects the first light beam reflected by the movable mirror 111 and guides the first light beam to the left camera 101. Similarly, the mirror 182 is arranged on the optical path of the second light beam, and further reflects the second light beam reflected by the movable mirror 112 and guides the second light beam to the right camera 102. The mirror 181 and the mirror 182 may be fixed or movable.
 (変形例2)
 前述の実施形態では、左カメラおよび右カメラを動かすことなく、パラメータ可変の多眼カメラを実現する。しかしながら、例えば図12および図13に例示されるように、左カメラ101および右カメラ102を動かすことなく可動ミラー111および可動ミラー112の回転角を変化させると、左カメラ101および右カメラ102へ入射する光束が変化する。故に、可動ミラー111および可動ミラー112の回転角次第では、左カメラ101および右カメラ102へ入射する光束が大幅に減少し撮影画像の画質が許容範囲を超えて劣化するおそれがある。
(Modification 2)
In the above embodiment, a multi-lens camera with variable parameters is realized without moving the left camera and the right camera. However, if the rotation angles of the movable mirror 111 and the movable mirror 112 are changed without moving the left camera 101 and the right camera 102 as illustrated in, for example, FIGS. 12 and 13, the light enters the left camera 101 and the right camera 102. The luminous flux changes. Therefore, depending on the rotation angles of the movable mirror 111 and the movable mirror 112, the luminous flux incident on the left camera 101 and the right camera 102 may be significantly reduced, and the image quality of a captured image may be degraded beyond an allowable range.
 そこで、上記実施形態に係る多眼カメラ装置または上記変形例1に係るミラー可動機構において、左カメラ101および右カメラ102を固定する支持部材131および支持部材132を回転させるための可動部材がさらに設けられてもよい。 Therefore, in the multi-lens camera device according to the above-described embodiment or the mirror movable mechanism according to the first modification, a movable member for rotating the support member 131 and the support member 132 for fixing the left camera 101 and the right camera 102 is further provided. You may be.
 図14にこの変形例2に係る多眼カメラ装置(ステレオカメラ)を例示する。この多眼カメラ装置は、可動部材191および可動部材192を備えている点で、図1に例示された多眼カメラ装置(ステレオカメラ)とは異なる。 FIG. 14 illustrates a multi-lens camera device (stereo camera) according to the second modification. This multi-view camera device is different from the multi-view camera device (stereo camera) illustrated in FIG. 1 in that it includes a movable member 191 and a movable member 192.
 可動部材191および可動部材192は、支持部材131および支持部材132を回転させるための任意の構成を採り得るが、ここでは可動部材121および可動部材122と同様の構成であることとする。また、可動部材191および可動部材192の回転角は、可動部材121および可動部材122の回転角と同様に、機構制御部50によって制御され得るが、可動部材191および可動部材192の回転角を手動で調整することも可能である。 The movable member 191 and the movable member 192 can have any configuration for rotating the support member 131 and the support member 132. Here, the movable member 191 and the movable member 192 have the same configuration as the movable member 121 and the movable member 122. The rotation angles of the movable member 191 and the movable member 192 can be controlled by the mechanism control unit 50, similarly to the rotation angles of the movable member 121 and the movable member 122. It is also possible to adjust with.
 具体的には、可動部材191は、軸部と突起部とを有し、その軸部に支持部材131を取り付けられる。可動部材191は、可動部材121、可動部材122および可動部材192とは独立して(すなわち連動することなく)回転が可能であり、この回転に連動して、支持部材131の回転角が変化する。可動部材191の回転角は、可動部材121の回転角に基づいて決定され得る。例えば、可動ミラー111の回転角(図14のθ1)が大きくなるほど、支持部材131の回転角(図14のθ3)も大きくなるように、可動部材191の回転角は決定され得る。 Specifically, the movable member 191 has a shaft and a protrusion, and the support member 131 is attached to the shaft. The movable member 191 can rotate independently of the movable member 121, the movable member 122, and the movable member 192 (that is, without interlocking), and the rotation angle of the support member 131 changes in conjunction with the rotation. . The rotation angle of the movable member 191 can be determined based on the rotation angle of the movable member 121. For example, the rotation angle of the movable member 191 can be determined such that the larger the rotation angle of the movable mirror 111 (θ1 in FIG. 14), the larger the rotation angle of the support member 131 (θ3 in FIG. 14).
 同様に、可動部材192は、軸部と突起部とを有し、その軸部に支持部材132を取り付けられる。可動部材192は、可動部材121、可動部材122および可動部材191とは独立して(すなわち連動することなく)回転が可能であり、この回転に連動して、支持部材132の回転角が変化する。可動部材192の回転角は、可動部材122の回転角に基づいて決定され得る。例えば、可動ミラー112の回転角(図14のθ2)が大きくなるほど、支持部材132の回転角(図14のθ4)も大きくなるように、可動部材192の回転角は決定され得る。 Similarly, the movable member 192 has a shaft and a projection, and the support member 132 can be attached to the shaft. The movable member 192 can rotate independently of the movable member 121, the movable member 122, and the movable member 191 (that is, without interlocking), and the rotation angle of the support member 132 changes in conjunction with the rotation. . The rotation angle of the movable member 192 can be determined based on the rotation angle of the movable member 122. For example, the rotation angle of the movable member 192 can be determined such that the larger the rotation angle of the movable mirror 112 (θ2 in FIG. 14), the larger the rotation angle of the support member 132 (θ4 in FIG. 14).
 支持部材131の回転に伴って、左カメラ101の光軸も回転する。同様に、同様に、支持部材132の回転に伴って、右カメラ102の光軸も回転する。図14のように可動ミラー111および可動ミラー112の回転角の増減に応じて、支持部材131および支持部材132の回転角も増減させることで、可動ミラー111および可動ミラー112の回転に伴う、左カメラ101および右カメラ102へ入射する光束の減少を緩和することができる。さらに、可動ミラー111および可動ミラー112の要求寸法を小さくすることができるので、これらの重量およびモーメントを抑え、応答性を高めることが可能となる。 光 With the rotation of the support member 131, the optical axis of the left camera 101 also rotates. Similarly, with the rotation of the support member 132, the optical axis of the right camera 102 also rotates. As shown in FIG. 14, by increasing and decreasing the rotation angles of the support member 131 and the support member 132 according to the increase and decrease of the rotation angle of the movable mirror 111 and the movable mirror 112, the left and right It is possible to alleviate a decrease in the luminous flux incident on the camera 101 and the right camera 102. Furthermore, since the required dimensions of the movable mirror 111 and the movable mirror 112 can be reduced, their weight and moment can be suppressed, and the responsiveness can be improved.
 なお、支持部材131および支持部材132の回転角の可変範囲を大きくするほど、上記効果の向上が期待できる。反面、支持部材131および支持部材132の回転角の可変範囲を大きくすることは、ミラー可動機構の大型化を招く。そこで、例えば、支持部材131および支持部材132の回転角の可変範囲が、例えば10度以内などに制限されてもよい。 Note that the larger the variable range of the rotation angle of the support members 131 and 132 is, the more the above effect can be expected. On the other hand, increasing the variable range of the rotation angles of the support members 131 and 132 causes an increase in the size of the mirror moving mechanism. Therefore, for example, the variable range of the rotation angles of the support members 131 and 132 may be limited to, for example, 10 degrees or less.
 (変形例3)
 前述の変形例2では、左カメラ101および右カメラ102の支持部材131および支持部材132に可動部材191および可動部材192をそれぞれ取り付け、左カメラ101および右カメラ102の光軸を傾けることを可能にした。さらなる変形例として、左カメラ101および右カメラ102とその支持部材131および支持部材132を図14に例示されるように予め傾けて固定配置することで、かかる可動部材191および可動部材192を利用することなく、左カメラ101および右カメラ102の光軸を傾けてもよい。
(Modification 3)
In the second modification, the movable members 191 and 192 are attached to the support members 131 and 132 of the left camera 101 and the right camera 102, respectively, so that the optical axes of the left camera 101 and the right camera 102 can be tilted. did. As a further modified example, the movable member 191 and the movable member 192 are used by arranging the left camera 101 and the right camera 102 and their support members 131 and 132 in an inclined manner as illustrated in FIG. Alternatively, the optical axes of the left camera 101 and the right camera 102 may be inclined.
 具体的には、左カメラ101および支持部材131は、左カメラ101および右カメラ102を互いに背中合わせに配置した場合(図1)に比べて第1の角度(図14のθ3に相当)傾けて配置され得る。また、右カメラ102および支持部材132は、左カメラ101および右カメラ102を互いに背中合わせに配置した場合(図1)に比べて第1の角度(図14のθ4に相当)傾けて配置され得る。ここで、第1の角度および第2の角度は、それぞれ例えば10度以内などに制限されてもよい。 Specifically, the left camera 101 and the support member 131 are arranged at a first angle (corresponding to θ3 in FIG. 14) as compared with the case where the left camera 101 and the right camera 102 are arranged back to back (FIG. 1). Can be done. Further, the right camera 102 and the support member 132 can be arranged at a first angle (corresponding to θ4 in FIG. 14) as compared to the case where the left camera 101 and the right camera 102 are arranged back to back (FIG. 1). Here, each of the first angle and the second angle may be limited to, for example, 10 degrees or less.
 かかる構成によっても、可動ミラー111および可動ミラー112の回転角次第では、ミラー可動機構の大型化を招くことなく変形例2と同様の効果を得ることができる。すなわち、可動ミラー111および可動ミラー112の回転に伴う、左カメラ101および右カメラ102へ入射する光束の減少を緩和することができる。さらに、可動ミラー111および可動ミラー112の要求寸法を小さくすることができるので、これらの重量およびモーメントを抑え、応答性を高めることが可能となる。 構成 With such a configuration as well, depending on the rotation angles of the movable mirror 111 and the movable mirror 112, the same effect as that of the second modification can be obtained without increasing the size of the mirror movable mechanism. That is, it is possible to alleviate a decrease in the light flux incident on the left camera 101 and the right camera 102 due to the rotation of the movable mirror 111 and the movable mirror 112. Furthermore, since the required dimensions of the movable mirror 111 and the movable mirror 112 can be reduced, their weight and moment can be suppressed, and the responsiveness can be improved.
 上述の実施形態は、本発明の概念の理解を助けるための具体例を示しているに過ぎず、本発明の範囲を限定することを意図されていない。実施形態は、本発明の要旨を逸脱しない範囲で、様々な構成要素の付加、削除または転換をすることができる。 The above embodiments are merely specific examples for helping to understand the concept of the present invention, and are not intended to limit the scope of the present invention. In the embodiment, various components can be added, deleted, or changed without departing from the gist of the present invention.
 上述の実施形態では、いくつかの機能部を説明したが、これらは各機能部の実装の一例に過ぎない。例えば、1つの装置に実装されると説明された複数の機能部が複数の別々の装置に亘って実装されることもあり得るし、逆に複数の別々の装置に亘って実装されると説明された機能部が1つの装置に実装されることもあり得る。 In the above embodiment, some functional units have been described, but these are merely examples of implementation of each functional unit. For example, a plurality of functional units described as being mounted on one device may be mounted on a plurality of separate devices, and conversely, a description may be made on a plurality of separate devices. The function unit described above may be mounted on one device.
 上記各実施形態において説明された種々の機能部は、回路を用いることで実現されてもよい。回路は、特定の機能を実現する専用回路であってもよいし、プロセッサのような汎用回路であってもよい。 The various functional units described in each of the above embodiments may be realized by using a circuit. The circuit may be a dedicated circuit for realizing a specific function or a general-purpose circuit such as a processor.
 上記各実施形態の処理の少なくとも一部は、例えば汎用のコンピュータに搭載されたプロセッサを基本ハードウェアとして用いることでも実現可能である。上記処理を実現するプログラムは、コンピュータで読み取り可能な記録媒体に格納して提供されてもよい。プログラムは、インストール可能な形式のファイルまたは実行可能な形式のファイルとして記録媒体に記憶される。記録媒体としては、磁気ディスク、光ディスク(CD-ROM、CD-R、DVD等)、光磁気ディスク(MO等)、半導体メモリなどである。記録媒体は、プログラムを記憶でき、かつ、コンピュータが読み取り可能であれば、何れであってもよい。また、上記処理を実現するプログラムを、インターネットなどのネットワークに接続されたコンピュータ(サーバ)上に格納し、ネットワーク経由でコンピュータ(クライアント)にダウンロードさせてもよい。 少 な く と も At least a part of the processing of each of the above embodiments can also be realized by using, for example, a processor mounted on a general-purpose computer as basic hardware. A program for realizing the above processing may be provided by being stored in a computer-readable recording medium. The program is stored in a recording medium as a file in an installable format or a file in an executable format. Examples of the recording medium include a magnetic disk, an optical disk (CD-ROM, CD-R, DVD, etc.), a magneto-optical disk (MO, etc.), a semiconductor memory, and the like. The recording medium may be any as long as it can store a program and can be read by a computer. Further, a program for implementing the above processing may be stored on a computer (server) connected to a network such as the Internet, and downloaded to a computer (client) via the network.

Claims (17)

  1.  第1のカメラと、
     第2のカメラと、
     少なくとも1枚のミラーである第1のミラー群を含み、前記第1のカメラへ第1の光線を導く第1の導光系と、
     前記第1のミラー群のうちの1枚である第1の可動ミラーを取り付けられ、前記第1のカメラおよび前記第2のカメラと独立して回転および変位の少なくとも1つが可能であって、前記回転および変位の少なくとも1つに連動して当該第1の可動ミラーの回転角および位置の少なくとも1つが変化する第1の可動部材と、
     少なくとも1枚のミラーである第2のミラー群を含み、前記第2のカメラへ第2の光線を導く第2の導光系と、
     前記第2のミラー群のうちの1枚である第2の可動ミラーを取り付けられ、前記第1のカメラ、前記第2のカメラおよび前記第1の可動部材と独立して回転および変位の少なくとも1つが可能であって、前記回転および変位の少なくとも1つに連動して当該第2の可動ミラーの回転角および位置の少なくとも1つが変化する第2の可動部材と
     を具備する、多眼カメラ装置。
    A first camera,
    A second camera,
    A first light guide system that includes a first mirror group that is at least one mirror and guides a first light beam to the first camera;
    A first movable mirror that is one of the first mirror group is attached, and is capable of at least one of rotation and displacement independently of the first camera and the second camera; A first movable member that changes at least one of a rotation angle and a position of the first movable mirror in conjunction with at least one of rotation and displacement;
    A second light guide system that includes a second mirror group that is at least one mirror and guides a second light beam to the second camera;
    A second movable mirror, which is one of the second mirror group, is attached, and at least one of rotation and displacement is independent of the first camera, the second camera, and the first movable member. And a second movable member that changes at least one of a rotation angle and a position of the second movable mirror in conjunction with at least one of the rotation and the displacement.
  2.  前記第1のカメラの仮想的なカメラ位置および姿勢の少なくとも1つは、前記第1のミラー群のうち前記第1の光線の光路上で前記第1のカメラから最も遠いミラーにおける入射光としての前記第1の光線を仮想的に延長した直線に基づいて決まり、
     前記第2のカメラの仮想的なカメラ位置および姿勢の少なくとも1つは、前記第2のミラー群のうち前記第2の光線の光路上で前記第2のカメラから最も遠いミラーにおける入射光としての当該第2の光線を仮想的に延長した直線に基づいて決まる、
     請求項1に記載の多眼カメラ装置。
    At least one of the virtual camera position and orientation of the first camera is defined as incident light at a mirror farthest from the first camera on the optical path of the first light beam in the first mirror group. The first light ray is determined based on a virtually extended straight line,
    At least one of the virtual camera position and orientation of the second camera is determined as incident light on a mirror farthest from the second camera on the optical path of the second light ray in the second mirror group. Determined based on a straight line virtually extending the second ray,
    The multi-view camera device according to claim 1.
  3.  前記第1の可動部材の位置および回転角の少なくとも1つを前記第1のカメラおよび前記第2のカメラの目標輻輳角、目標視野方向および目標光軸間隔の少なくとも1つに基づいて制御する機構制御部をさらに具備する、請求項1または請求項2に記載の多眼カメラ装置。 A mechanism for controlling at least one of a position and a rotation angle of the first movable member based on at least one of a target convergence angle, a target viewing direction, and a target optical axis interval of the first camera and the second camera. The multi-view camera device according to claim 1, further comprising a control unit.
  4.  第1の面と、第2の面と、前記第1の面および前記第2の面の間を貫く第1のスリットとを有する第1のベース部材と、
     第1の面と、第2の面と、前記第1の面および前記第2の面の間を貫く第2のスリットとを有する第2のベース部材と
     をさらに具備し、
     前記第1の可動部材は、突起部を有し、当該突起部を前記第1のベース部材の前記第1の面に掛けた状態で当該第1の可動部材の一部が前記第2の面から露出するように前記第1のスリットを貫通しており、当該突起部を前記第1のベース部材の前記第1の面に掛けた状態で(a)当該第1の可動部材の長手方向を軸とした回転、および(b)前記第1のスリットに沿った変位、の少なくとも1つが可能であり、
     前記第2の可動部材は、突起部を有し、当該突起部を前記第2のベース部材の前記第1の面に掛けた状態で当該第2の可動部材の一部が前記第2の面から露出するように前記第2のスリットを貫通しており、当該突起部を前記第2のベース部材の前記第1の面に掛けた状態で(a)当該第2の可動部材の長手方向を軸とした回転、および(b)前記第2のスリットに沿った変位、の少なくとも1つが可能である、
     請求項1乃至請求項3のいずれか1項に記載の多眼カメラ装置。
    A first base member having a first surface, a second surface, and a first slit extending between the first surface and the second surface;
    A second base member having a first surface, a second surface, and a second slit penetrating between the first surface and the second surface;
    The first movable member has a projection, and a part of the first movable member is provided on the second surface in a state where the projection is hung on the first surface of the first base member. (A) in a state where the projection is hung on the first surface of the first base member and the longitudinal direction of the first movable member is At least one of: rotation about an axis; and (b) displacement along the first slit;
    The second movable member has a projection, and a part of the second movable member is provided on the second surface in a state where the projection is hung on the first surface of the second base member. The second slit is penetrated through the second slit so as to be exposed from the second movable member. At least one of: rotation about an axis; and (b) displacement along the second slit.
    The multi-view camera device according to claim 1.
  5.  前記第1の可動部材および前記第2の可動部材の位置を前記第1のカメラおよび前記第2のカメラの目標光軸間隔に基づいて制御する機構制御部をさらに具備する、請求項4に記載の多眼カメラ装置。 5. The apparatus according to claim 4, further comprising a mechanism control unit configured to control positions of the first movable member and the second movable member based on a target optical axis interval between the first camera and the second camera. 6. Multi-lens camera device.
  6.  前記第1のカメラおよび前記第2のカメラは、互いに背中合わせとなるように配置され、
     前記第1の可動部材の突起部は、ギア状に形成されており、
     前記第2の可動部材の突起部は、ギア状に形成されており、
     前記多眼カメラ装置は、前記第1の可動部材の突起部と噛み合うように配置された第1のギアと、前記第1のギアを回転駆動する第1のモーターと、前記第2の可動部材の突起部と噛み合うように配置された第2のギアと、前記第2のギアを回転駆動する第2のモーターとをさらに具備し、
     前記第1の可動部材は、前記第1のギアに連動して回転し、
     前記第2の可動部材は、前記第2のギアに連動して回転し、
     前記第1の可動部材および前記第1の導光系は、前記第1のカメラと前記第1のモーターとの間に配置され、
     前記第2の可動部材および前記第2の導光系は、前記第2のカメラと前記第2のモーターとの間に配置される、
     請求項1乃至請求項5のいずれか1項に記載の多眼カメラ装置。
    The first camera and the second camera are arranged back to back with each other;
    The projection of the first movable member is formed in a gear shape,
    The projection of the second movable member is formed in a gear shape,
    The multi-lens camera device includes a first gear arranged to mesh with a projection of the first movable member, a first motor for rotating the first gear, and a second movable member. A second gear disposed so as to mesh with the protrusion of the second gear; and a second motor that rotationally drives the second gear.
    The first movable member rotates in conjunction with the first gear,
    The second movable member rotates in conjunction with the second gear,
    The first movable member and the first light guide system are disposed between the first camera and the first motor,
    The second movable member and the second light guide system are disposed between the second camera and the second motor.
    The multi-lens camera device according to claim 1.
  7.  前記第1の可動部材の位置および回転角の少なくとも1つと、前記第2の可動部材の位置および回転角の少なくとも1つとを前記第1のカメラおよび前記第2のカメラの目標輻輳角、目標視野方向および目標光軸間隔の少なくとも1つに基づいて制御する機構制御部をさらに具備する、請求項1乃至請求項4のいずれか1項に記載の多眼カメラ装置。 At least one of the position and the rotation angle of the first movable member and at least one of the position and the rotation angle of the second movable member are set to a target convergence angle and a target visual field of the first camera and the second camera. The multi-lens camera device according to any one of claims 1 to 4, further comprising a mechanism control unit configured to perform control based on at least one of a direction and a target optical axis interval.
  8.  前記機構制御部は、前記第1の可動部材および前記第2の可動部材を互いに逆の方向に同量回転し、
     前記第1の可動部材および前記第2の可動部材の回転方向および回転量は、前記第1のカメラおよび前記第2のカメラの目標輻輳角に基づく、
     請求項7に記載の多眼カメラ装置。
    The mechanism control unit rotates the first movable member and the second movable member by the same amount in directions opposite to each other,
    The rotation direction and the rotation amount of the first movable member and the second movable member are based on target convergence angles of the first camera and the second camera.
    A multi-lens camera device according to claim 7.
  9.  前記第1の可動部材および前記第2の可動部材が回転された後に前記第1のカメラおよび前記第2のカメラの焦点を自動制御するカメラ制御部をさらに具備する、請求項8に記載の多眼カメラ装置。 9. The multi-function device according to claim 8, further comprising a camera control unit that automatically controls the focus of the first camera and the second camera after the first movable member and the second movable member are rotated. Eye camera device.
  10.  第1のカメラおよび第2のカメラの焦点を自動制御し、制御後の焦点に基づいて前記第1のカメラおよび前記第2のカメラの目標輻輳角を決定するカメラ制御部をさらに具備する、請求項8に記載の多眼カメラ装置。 A camera control unit that automatically controls the focus of the first camera and the second camera, and determines a target convergence angle of the first camera and the second camera based on the focus after the control. Item 9. A multi-view camera device according to item 8.
  11.  前記機構制御部は、前記第1の可動部材および前記第2の可動部材を同方向に同量回転し、
     前記第1の可動部材および前記第2の可動部材の回転方向および回転量は、前記第1のカメラおよび前記第2のカメラの目標視野方向に基づく、
     請求項7に記載の多眼カメラ装置。
    The mechanism control unit rotates the first movable member and the second movable member by the same amount in the same direction,
    The rotation direction and the rotation amount of the first movable member and the second movable member are based on target visual field directions of the first camera and the second camera.
    A multi-lens camera device according to claim 7.
  12.  前記第1の可動部材は、前記第1の可動ミラーの回転する範囲に亘って、前記第1の可動部材の回転軸が前記第1の光線の前記第1の可動ミラーへの入射方向から見て第1の平面に比べてよりも位置するように前記第1の可動ミラーに取り付けられ、
     前記第1の平面は、前記第1の可動ミラーの幾何中心を通り、かつ前記第1の可動ミラーの反射面に略垂直であり、
     前記第2の可動部材は、前記第2の可動ミラーの回転する範囲に亘って、前記第2の可動部材の回転軸が前記第2の光線の前記第2の可動ミラーへの入射方向から見て第2の平面よりも後方に位置するように前記第2の可動ミラーに取り付けられ、
     前記第2の平面は、前記第2の可動ミラーの幾何中心を通り、かつ前記第2の可動ミラーの反射面に略垂直である、
     請求項1乃至請求項11のいずれか1項に記載の多眼カメラ装置。
    The first movable member is configured such that a rotation axis of the first movable member is viewed from a direction in which the first light beam enters the first movable mirror over a range in which the first movable mirror rotates. Attached to the first movable mirror so as to be positioned higher than the first plane,
    The first plane passes through a geometric center of the first movable mirror and is substantially perpendicular to a reflection surface of the first movable mirror;
    The second movable member is configured such that a rotation axis of the second movable member is viewed from a direction in which the second light ray enters the second movable mirror over a range in which the second movable mirror rotates. And is attached to the second movable mirror so as to be located behind the second plane.
    The second plane passes through a geometric center of the second movable mirror and is substantially perpendicular to a reflection surface of the second movable mirror.
    The multi-view camera device according to claim 1.
  13.  前記第1のカメラおよび前記第2のカメラは、光軸が略平行となるように配置され、
     前記第1のミラー群は、前記第1の光線の光路上に配置され前記第1の可動ミラーによって反射された前記第1の光線をさらに反射して前記第1のカメラに導く第1のミラーを含み、
     前記第2のミラー群は、前記第2の光線の光路上に配置され前記第2の可動ミラーによって反射された前記第2の光線をさらに反射して前記第2のカメラへ導く第2のミラーを含む、
     請求項1乃至請求項5および請求項7乃至請求項12のいずれか1項に記載の多眼カメラ装置。
    The first camera and the second camera are arranged such that optical axes are substantially parallel,
    A first mirror group disposed on an optical path of the first light beam, the first mirror group further reflecting the first light beam reflected by the first movable mirror, and guiding the first light beam to the first camera; Including
    A second mirror group disposed on an optical path of the second light beam and further reflecting the second light beam reflected by the second movable mirror to guide the second light beam to the second camera; including,
    The multi-lens camera device according to any one of claims 1 to 5 and 7 to 12.
  14.  前記第1のカメラおよび前記第2のカメラは、互いに背中合わせとなるように配置される、
     請求項1乃至請求項5および請求項7乃至請求項12のいずれか1項に記載の多眼カメラ装置。
    The first camera and the second camera are arranged back to back to each other;
    The multi-lens camera device according to any one of claims 1 to 5 and 7 to 12.
  15.  前記第1のカメラを支持する第1の支持部材と、
     前記第2のカメラを支持する第2の支持部材と、
     前記第1の支持部材を取り付けられ、前記第1の可動部材および前記第2の可動部材と独立して回転が可能であって、前記回転に連動して前記第1の支持部材の回転角が変化する第3の可動部材と、
     前記第2の支持部材を取り付けられ、前記第1の可動部材、前記第2の可動部材および前記第3の可動部材と独立して回転が可能であって、前記回転に連動して前記第2の支持部材の回転角が変化する第4の可動部材と
     をさらに具備する、請求項1乃至請求項14のいずれか1項に記載の多眼カメラ装置。
    A first support member that supports the first camera;
    A second support member for supporting the second camera;
    The first support member is attached, and can rotate independently of the first movable member and the second movable member, and the rotation angle of the first support member is linked to the rotation. A third movable member that changes,
    The second support member is attached, the first movable member, the second movable member, and the third movable member can rotate independently of each other. The multi-lens camera device according to any one of claims 1 to 14, further comprising: a fourth movable member that changes a rotation angle of the supporting member.
  16.  前記第1のカメラは、前記第1のカメラおよび前記第2のカメラを互いに背中合わせに配置した場合に比べて第1の角度傾けて配置され、
     前記第2のカメラは、前記第1のカメラおよび前記第2のカメラを互いに背中合わせに配置した場合に比べて第2の角度傾けて配置される、
     請求項1乃至請求項5および請求項7乃至請求項12のいずれか1項に記載の多眼カメラ装置。
    The first camera is disposed at a first angle with respect to a case where the first camera and the second camera are disposed back to back to each other;
    The second camera is disposed at a second angle with respect to a case where the first camera and the second camera are disposed back to back to each other,
    The multi-lens camera device according to any one of claims 1 to 5 and 7 to 12.
  17.  第1のカメラおよび第2のカメラを含む多眼カメラに取り付け可能なミラー可動機構であって、
     少なくとも1枚のミラーである第1のミラー群を含み、前記ミラー可動機構が前記多眼カメラに取り付けられている時に前記第1のカメラへ第1の光線を導く第1の導光系と、
     前記第1のミラー群のうちの1枚である第1の可動ミラーを取り付けられ、前記ミラー可動機構が前記多眼カメラに取り付けられている時に、前記第1のカメラおよび前記第2のカメラと独立して回転および変位の少なくとも1つが可能であって、かつ前記回転および変位の少なくとも1つに連動して当該第1の可動ミラーの回転角および位置の少なくとも1つが変化する第1の可動部材と、
     少なくとも1枚のミラーである第2のミラー群を含み、前記ミラー可動機構が前記多眼カメラに取り付けられている時に前記第2のカメラへ第2の光線を導く第2の導光系と、
     前記第2のミラー群のうちの1枚である第2の可動ミラーを取り付けられ、前記ミラー可動機構が前記多眼カメラに取り付けられている時に、前記第1のカメラ、前記第2のカメラおよび前記第1の可動部材と独立して回転および変位の少なくとも1つが可能であって、かつ前記回転および変位の少なくとも1つに連動して当該第2の可動ミラーの回転角および位置の少なくとも1つが変化する第2の可動部材と
     を具備する、ミラー可動機構。
    A mirror movable mechanism attachable to a multi-lens camera including a first camera and a second camera,
    A first light guide system that includes a first mirror group that is at least one mirror, and guides a first light beam to the first camera when the mirror movable mechanism is attached to the multi-lens camera;
    A first movable mirror that is one of the first mirror group is attached, and when the mirror movable mechanism is attached to the multi-lens camera, the first camera and the second camera A first movable member capable of at least one of rotation and displacement independently, and changing at least one of a rotation angle and a position of the first movable mirror in conjunction with at least one of the rotation and displacement; When,
    A second light guide system that includes a second mirror group that is at least one mirror, and guides a second light beam to the second camera when the mirror movable mechanism is attached to the multi-lens camera;
    A second movable mirror, which is one of the second mirror group, is attached, and when the mirror movable mechanism is attached to the multi-lens camera, the first camera, the second camera and At least one of rotation and displacement is possible independently of the first movable member, and at least one of the rotation angle and position of the second movable mirror is linked to at least one of the rotation and displacement. And a second movable member that changes.
PCT/JP2019/024563 2018-06-21 2019-06-20 Multiple camera device and mirror movable mechanism WO2019244993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-117777 2018-06-21
JP2018117777A JP7102246B2 (en) 2018-06-21 2018-06-21 Multi-lens camera device and mirror movable mechanism

Publications (1)

Publication Number Publication Date
WO2019244993A1 true WO2019244993A1 (en) 2019-12-26

Family

ID=68983715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024563 WO2019244993A1 (en) 2018-06-21 2019-06-20 Multiple camera device and mirror movable mechanism

Country Status (2)

Country Link
JP (1) JP7102246B2 (en)
WO (1) WO2019244993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090026A1 (en) * 2022-10-25 2024-05-02 パナソニックIpマネジメント株式会社 Imaging device and distance measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695276A (en) * 1992-09-14 1994-04-08 Olympus Optical Co Ltd Stereoscopic camera
JPH07152096A (en) * 1993-11-30 1995-06-16 Canon Inc Plural-lens image pickup system
JPH0926635A (en) * 1995-07-11 1997-01-28 Wakomu Eng:Kk Stereoscopic camera and stereoscopic video camera
JP2009063838A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Lens apparatus
JP2012185397A (en) * 2011-03-07 2012-09-27 Sony Corp Imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695276A (en) * 1992-09-14 1994-04-08 Olympus Optical Co Ltd Stereoscopic camera
JPH07152096A (en) * 1993-11-30 1995-06-16 Canon Inc Plural-lens image pickup system
JPH0926635A (en) * 1995-07-11 1997-01-28 Wakomu Eng:Kk Stereoscopic camera and stereoscopic video camera
JP2009063838A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Lens apparatus
JP2012185397A (en) * 2011-03-07 2012-09-27 Sony Corp Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090026A1 (en) * 2022-10-25 2024-05-02 パナソニックIpマネジメント株式会社 Imaging device and distance measuring device

Also Published As

Publication number Publication date
JP2019219553A (en) 2019-12-26
JP7102246B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
EP2593835B1 (en) Variable three-dimensional camera assembly for still photography
US20110280564A1 (en) Interchangeable lens unit, imaging device, method for controlling interchangeable lens unit, program, and storage medium storing program
CN105100573A (en) Image pickup module set and electronic device
RU2554299C2 (en) Apparatus for generating stereoscopic images
KR20220035970A (en) Optical image stabilization device and control method
WO2018171537A1 (en) Optical adapter for microscope and method for adjusting direction of optical image
WO2019244993A1 (en) Multiple camera device and mirror movable mechanism
TWM521202U (en) Imaging rotation calibration device with linear and rotating synchronous linkage
US10890780B2 (en) Anti-vibration device and binocle
KR100986748B1 (en) Apparatus for photographing three-dimensional stereoscopic video and photographing method using the same
US10261336B2 (en) Anti-vibration optical system, telephoto optical system, binocle, and anti-vibration unit
JP2012002974A (en) Optical convergence angle adjustment three-dimensional image pickup device and optical convergence angle adjustment three-dimensional image pickup method
CN112584053A (en) Binocular vision laser emission system and method
JP7229719B2 (en) Image processing system
US11002981B2 (en) Anti-vibration device and binocle
CN101395519B (en) 3-D photographing lens system
JP2012083685A (en) Video camera with zoom lens
JP2020071395A (en) Universal head system
JP3520197B2 (en) 3D camera device
JP2020071477A (en) Universal head system
JP3332091B2 (en) 3D camera device
CN109218705B (en) Stereo camera device
CN111385487A (en) Debugging method and device of multi-lens camera and storage medium
CN112636647B (en) Motor accurate control method and device for enlarging projection movement range
CN214756613U (en) Binocular vision laser emission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822494

Country of ref document: EP

Kind code of ref document: A1