WO2019244786A1 - Sputtering method and sputtering device - Google Patents

Sputtering method and sputtering device Download PDF

Info

Publication number
WO2019244786A1
WO2019244786A1 PCT/JP2019/023615 JP2019023615W WO2019244786A1 WO 2019244786 A1 WO2019244786 A1 WO 2019244786A1 JP 2019023615 W JP2019023615 W JP 2019023615W WO 2019244786 A1 WO2019244786 A1 WO 2019244786A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
magnet
substrate
scanning
unit
Prior art date
Application number
PCT/JP2019/023615
Other languages
French (fr)
Japanese (ja)
Inventor
永田 純一
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980006868.3A priority Critical patent/CN111527236B/en
Priority to KR1020207018300A priority patent/KR102334224B1/en
Priority to JP2020525676A priority patent/JP7066841B2/en
Publication of WO2019244786A1 publication Critical patent/WO2019244786A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion

Definitions

  • the present invention relates to a sputtering method and a sputtering apparatus, and more particularly to a technique suitable for sputtering in which a cathode and a magnet swing.
  • a flat panel display such as a liquid crystal display or an organic EL display includes a plurality of thin film transistors for driving a display element.
  • the thin film transistor has a channel layer, and a material for forming the channel layer is, for example, an oxide semiconductor such as indium gallium zinc oxide (IGZO).
  • IGZO indium gallium zinc oxide
  • a substrate on which a channel layer is to be formed has been enlarged, and as a sputtering apparatus for forming a film on a large substrate, for example, as described in Japanese Patent Application Laid-Open No. H11-157, the present invention is intended to suppress the dispersion of the characteristics of a compound film.
  • Applicants have used a sputtering device that the target scans.
  • the magnet 25 in the scanning direction of the target 23 and the magnet 25, with the magnet 25 positioned at a position away from the end Re1 of the substrate S close to the magnet 25, Approaching the substrate S, perform sputtering, and the magnet 25 reciprocates in the scanning direction with respect to the target 23.
  • the magnet 25 starts scanning from a start position distant from the end Re1 of the substrate S of the target 23, and at the end, from the end Re1 of the substrate S of the target 23 which is the same as the start position.
  • the control is performed so that the magnet 25 is located at a remote end position (start position).
  • FIG. 12 shows a forward path of the target 23, and FIG. 13 shows a return path of the target 23.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. Dramatically reduce unevenness in film thickness distribution and film quality distribution.
  • a sputtering method includes a cathode unit having a target capable of emitting sputtered particles toward a formation region where a film is formed on a deposition target substrate; A scanning unit configured to reciprocate the cathode unit with respect to the deposition target substrate in a scanning direction that is an inward direction; a magnet that forms an erosion region on the target in the cathode unit; And a magnet scanning unit that reciprocates the magnet, while the cathode unit is relatively reciprocated with respect to the deposition target substrate in the scanning direction by the scanning unit.
  • the reciprocating operation is performed in the scanning direction, and the speed of the target with respect to the deposition target substrate is reduced.
  • the reciprocating operation of the magnet in the outward movement of the target with respect to the substrate on which the film is to be formed, and the reciprocating operation of the magnet in the backward movement of the target with respect to the substrate on which the film is to be formed are set so as to compensate each other.
  • the magnet is located at an end of the target far from the deposition target substrate in the scanning direction, or Are located at the end of the target closer to the film formation substrate in the scanning direction, and in one reciprocating operation of the target with respect to the film formation substrate, the number of reciprocating operations of the magnet with respect to the target is odd. It may be set.
  • the magnet may be located at a central portion of the target in the scanning direction at a position where the outward movement of the target ends.
  • the magnet at a start position of the target and the magnet, the magnet is located at a central portion of the target in the scanning direction, and the target is positioned at a center with respect to the deposition target substrate.
  • the number of reciprocating operations of the magnet with respect to the target may be set to an even number.
  • a sputtering apparatus wherein a cathode unit that emits sputter particles toward a formation region where a film is formed on a deposition target substrate;
  • a scanning unit capable of reciprocatingly moving the deposition target substrate in a scanning direction that is an in-plane direction of the substrate, a target on which an erosion region is formed, and an opposite side of the target from the target with respect to the target.
  • a magnet that is arranged in the target to form the erosion area on the target; a magnet scanning unit that reciprocates the magnet between ends of the target in the scanning direction; and a magnet that is connected to the scanning unit and the magnet scanning unit.
  • a sputtering apparatus includes a sputtering apparatus, which faces a film formation region where a film is formed on a deposition target substrate, and relatively to the film formation region.
  • An elongated cathode unit that emits sputter particles while moving; and a second unit that is located outside the other end of the film formation region from a first outside film formation position outside one end of the film formation region.
  • a cathode scanning unit that moves in a scanning direction that intersects a long side of the cathode unit so as to reciprocate between the extra-membrane positions, wherein the cathode unit is disposed on an elongated target and a back surface of the target.
  • a magnet scanning unit that reciprocates the magnet in a direction intersecting the long side of the target.
  • a region where a combined speed of a forward movement of the cathode unit and a reciprocating operation of the magnet is a minimum value;
  • the region where the combined speed of the reciprocating motion of the magnet is the minimum value does not have to overlap.
  • the sputtering method includes: a cathode unit having a target capable of emitting sputtered particles toward a formation region where a film is formed on a deposition target substrate; A scanning unit that reciprocates the cathode unit relative to the substrate on which the film is to be formed, a magnet that forms an erosion area on the target in the cathode unit, and a magnet scanning unit that reciprocates the magnet in the scanning direction.
  • the magnet While the cathode unit is relatively reciprocated with respect to the deposition substrate in the scanning direction by the scanning unit, the magnet is reciprocated in the scanning direction by the magnet scanning unit, In response to the speed of the target with respect to the film formation substrate, And reciprocating motion of the magnet in the forward motion of the target that, the and the reciprocating motion of the magnet during the backward motion of the target with respect to the deposition substrate, is set so as mutually compensate each other. Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface. It becomes possible.
  • the speed of the magnet with respect to the substrate on which the film is formed is referred to as a combined speed represented by the sum of the speed of the target with respect to the substrate on which the film is formed and the speed of the magnet with respect to the target.
  • the time at which the synthesis speed has the maximum value is the same as the time at which the synthesis speed has the minimum value. become longer. For this reason, “to compensate each other” means that areas where the combined speed is the maximum value may partially overlap, but areas where the combined speed is the minimum value do not overlap.
  • the magnet is located at an end of the target far from the deposition target substrate in the scanning direction, or Are located at the end of the target closer to the film formation substrate in the scanning direction, and in one reciprocating operation of the target with respect to the film formation substrate, the number of reciprocating operations of the magnet with respect to the target is odd. Is set. This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target. As a result, as shown in FIGS.
  • the unevenness in the film formation characteristics such as the film thickness is reduced to about half or less as compared with the sputtering with the full stroke in which the scanning is performed an even number of times from one end to the other end of the target. It is possible to do.
  • the magnet is located at a central portion of the target in the scanning direction at a position where the outward movement of the target ends.
  • the magnet is located at a central portion of the target in the scanning direction, and the target is positioned at a center with respect to the deposition target substrate.
  • the number of reciprocating operations of the magnet with respect to the target is set to an even number. This makes it possible to set the number of reciprocating motions of the magnet with respect to the target to an odd number, and as a result, it is possible to make the unevenness in the film forming characteristics such as the film thickness uniform about half or less.
  • the end of the target that is close to the substrate in the scanning direction is separated from the end of the substrate that is close to the target in the scanning direction.
  • the end of the target that is close to the substrate in the scanning direction is separated from the end of the substrate that is close to the target in the scanning direction.
  • the speed of the magnet in the forward movement of the target with respect to the target and the speed of the return movement of the magnet with respect to the target are set to be constant and equal to each other.
  • the speed of the magnet on the outward path of the target with respect to the substrate to be processed in the outward path can be made equal to the speed of the magnet on the return path of the target with respect to the substrate to be processed.
  • the speed of the magnet with respect to the deposition target substrate during sputtering can be expressed as the sum of the speed of the target with respect to the deposition target substrate and the speed of the magnet with respect to the target.
  • the region for scanning the deposition target substrate can be set so as to be continuous over the entire length of the deposition target substrate in the scanning direction. This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target, thereby preventing the occurrence of film formation variation due to the position in the substrate in the scanning direction, and The characteristics can be made uniform.
  • a speed of the target with respect to the film formation substrate in a forward movement and a speed of the target with respect to the film formation substrate in a backward movement may be set to be constant and equal to each other. This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target, thereby preventing the occurrence of film formation variation due to the position within the substrate surface in the scanning direction. It is possible to achieve uniform film characteristics.
  • a sputtering apparatus includes a cathode unit that emits sputtered particles toward a formation region where a film is formed on a deposition target substrate, and the cathode unit and the deposition target substrate are relatively positioned.
  • a scanning unit that can reciprocate in a scanning direction that is an in-plane direction of the substrate, a target on which an erosion area is formed, and the erosion area that is disposed on the opposite side of the target with respect to the target and on which the deposition target substrate is formed.
  • a magnet scanning unit capable of reciprocating the magnet between the ends of the target in the scanning direction. The magnet scanning unit is connected to the scanning unit and the magnet scanning unit to perform reciprocating operation of the cathode unit.
  • a control unit for controlling a reciprocating operation of the magnet wherein the control unit controls In accordance with the speed of the target, the reciprocating operation of the magnet in the outward movement of the target with respect to the deposition target substrate and the reciprocating operation of the magnet in the return movement of the target with respect to the deposition target substrate compensate for each other. Set to fit. Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface. It is possible to provide a possible sputtering apparatus.
  • a sputtering apparatus has an elongated shape in which a sputtered particle is emitted while moving relative to the film formation region, facing a film formation region where a film is formed on the film formation substrate. And the cathode unit reciprocates between a first non-deposition position outside one end of the film formation region and a second non-deposition position outside the other end of the film formation region.
  • a cathode scanning unit that moves the cathode unit in a scanning direction that intersects a long side of the cathode unit.
  • the cathode unit includes an elongated target, a magnet disposed on the back surface of the target, and the target And a magnet scanning unit that reciprocates in a direction intersecting the long side of the cathode unit. Operation and the reciprocating operation of the magnet during the backward motion of the cathode unit, the relative speed of the magnet and the deposition target substrate, is controlled to compensate. Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface.
  • a possible sputtering apparatus can be provided.
  • a region where a combined speed of a forward movement of the cathode unit and a reciprocating operation of the magnet is a minimum value;
  • the region where the combined speed of the reciprocating motion of the magnet is the minimum value does not overlap.
  • the region for scanning the deposition target substrate can be set so as to be continuous over the entire length of the deposition target substrate in the scanning direction.
  • the speed of the magnet with respect to the substrate on which the film is to be formed is set to be the minimum of the difference between the speed of the target with respect to the substrate on which the film is to be formed and the speed of the magnet with respect to the target.
  • a region to be scanned as a value may be intermittently arranged in the scanning direction of the deposition target substrate.
  • FIG. 2 is a configuration diagram schematically illustrating a configuration of a sputtering chamber in the sputtering method according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram schematically illustrating a configuration of a cathode unit in the sputtering method according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining sputtering on a target outward path in the sputtering method according to the first embodiment of the present invention, and is a diagram illustrating an operation in sputtering.
  • FIG. 1 is a configuration diagram schematically illustrating a configuration of a sputtering chamber in the sputtering method according to the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram schematically illustrating a configuration of a cathode unit in the sputtering method according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining sputtering on a target outward path in the
  • 4 is a diagram for explaining sputtering in a target return path in the sputtering method according to the first embodiment of the present invention, and is a diagram illustrating an operation in sputtering.
  • 5 is a graph showing a relationship between a position and a time in a scanning direction of a target and a magnet in the sputtering method according to the first embodiment of the present invention.
  • 5 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of the magnet in a substrate in the sputtering method according to the first embodiment of the present invention.
  • FIG. 9 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of a magnet in a substrate in a sputtering method according to a second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining sputtering on a target outward path in a conventional sputtering method, and is a diagram illustrating an operation in sputtering.
  • FIG. 8 is a diagram for explaining sputtering in a target return path in a conventional sputtering method, and is a diagram illustrating an operation in sputtering.
  • 6 is a graph showing a relationship between a position and a time in a scanning direction of a target and a magnet in a conventional sputtering method.
  • FIG. 6 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of a magnet in a substrate in a conventional sputtering method.
  • 3 shows the relationship between the number of reciprocations of the magnet and the film thickness distribution in the sputtering method according to the embodiment of the present invention.
  • 5 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of the magnet in a substrate in the sputtering method according to the first embodiment of the present invention.
  • It is a lineblock diagram showing the whole structure of the sputtering device in the sputtering method concerning other embodiments of the present invention.
  • It is a lineblock diagram showing the whole structure of the sputtering device in the sputtering method concerning other embodiments of the present invention.
  • FIG. 1 is a configuration diagram illustrating an overall configuration of a sputtering apparatus that performs a sputtering method according to the present embodiment.
  • FIG. 2 is a configuration diagram schematically showing the configuration of the sputtering chamber in the present embodiment.
  • FIG. 3 is a configuration diagram schematically showing the configuration of the cathode unit in the present embodiment.
  • reference numeral 10 denotes a sputtering device.
  • the composition of the film formed by the sputtering apparatus 10 is not limited to this.
  • An oxide film such as ITO (indium tin oxide) or IZO (indium oxide / zinc oxide), or a film having another composition such as a metal film such as Ag or Al can also be formed.
  • ITO indium tin oxide
  • IZO indium oxide / zinc oxide
  • a film having another composition such as a metal film such as Ag or Al
  • a carry-in / out chamber 11, a pre-processing chamber 12, and a sputter chamber 13 are arranged along a transport direction, which is one direction.
  • Each of the three chambers is connected to other chambers adjacent to each other by a gate valve 14.
  • Each of the three chambers is connected to an exhaust unit 15 that exhausts gas in the chambers and evacuates the chambers.
  • Each of the three chambers is individually depressurized by driving the exhaust unit 15.
  • a film formation lane 16 and a collection lane 17, which are two mutually parallel lanes extending along the transport direction, are laid.
  • the film formation lane 16 and the collection lane 17 include, for example, a rail extending along the transport direction, a plurality of rollers arranged along the transport direction, a plurality of motors for rotating each of the plurality of rollers, and the like. You.
  • the film formation lane 16 transports the tray T loaded into the sputtering apparatus 10 from the loading / unloading chamber 11 to the sputtering chamber 13, and the collection lane 17 transports the tray T loaded into the sputtering chamber 13 to the sputtering chamber 13. It is transported from the chamber 13 to the loading / unloading chamber 11.
  • a rectangular substrate (substrate to be processed) S extending toward the front of the drawing is fixed to the tray T in an upright state.
  • the width of the substrate S can be, for example, 2200 mm along the transport direction and 2500 mm toward the front of the drawing.
  • the tray T and the substrate S can be transported in a horizontal state.
  • the loading / unloading chamber 11 transports the undeposited substrate S loaded from outside the sputtering apparatus 10 to the pre-processing chamber 12, and transports the deposited film S loaded from the pre-processing chamber 12 to the outside of the sputtering apparatus 10. To be carried out.
  • the inside of the carry-in / out chamber 11 is brought to atmospheric pressure. Increase the pressure.
  • the carry-in / out chamber 11 When the substrate S before film formation is carried in from the carry-in / out chamber 11 to the pre-processing chamber 12, or when the substrate S after film formation is carried out from the pre-processing chamber 12 to the carry-in / out chamber 11, the carry-in / out chamber 11 Is reduced to the same degree as the inside of the pretreatment chamber 12.
  • the preprocessing chamber 12 performs, for example, a heating process, a cleaning process, and the like as processes required for film formation on the substrate S before film formation that has been carried into the pretreatment chamber 12 from the carry-in / out chamber 11.
  • the pre-processing chamber 12 carries the substrate S carried out from the carrying-in / out chamber 11 to the pre-processing chamber 12 into the sputtering chamber 13.
  • the pre-processing chamber 12 carries out the substrate S carried out from the sputtering chamber 13 to the pre-processing chamber 12 to the carry-in / out chamber 11.
  • the sputtering chamber 13 includes a cathode device 18 that emits sputtered particles toward the substrate S, and a lane changing unit 19 disposed between the film formation lane 16 and the collection lane 17.
  • the sputtering chamber 13 uses the cathode device 18 to form an IGZO film on the substrate S before film formation carried into the sputtering chamber 13 from the pretreatment chamber 12.
  • the sputter chamber 13 moves the tray T after film formation from the film formation lane 16 to the collection lane 17 by using the lane changing unit 19.
  • the film formation lane 16 of the sputtering chamber 13 transports the substrate S carried into the sputtering chamber 13 from the pretreatment chamber 12 along the transport direction, and the formation of a thin film on the substrate S is started. From the end to the end, the position of the tray T is fixed in the middle of the film formation lane 16. When the position of the tray T is fixed by the support member that supports the tray T, the position of the edge of the substrate S in the transport direction is also fixed.
  • the gas supply unit 21 a of the sputtering chamber 13 supplies a gas used for sputtering to a gap between the tray T and the cathode device 18.
  • the gas supplied from the gas supply unit 21a can include a sputtering gas such as an argon gas and a reaction gas such as an oxygen gas.
  • the gas supply unit 21b is connected to the cathode unit 22 and is movable together with the cathode unit 22, and supplies a part (for example, oxygen of a reactive gas) or all of the gas. Further, a configuration in which only the gas supply unit 21a is provided without providing the gas supply unit 21b is also possible.
  • the cathode device 18 has one cathode unit 22, and the cathode unit 22 is arranged along a plane facing the surface Sa of the substrate S.
  • the target 23, the backing plate 24, and the magnet (magnetic circuit) 25 are arranged in this order from the side close to the substrate S.
  • the target 23 is formed in a flat plate shape along a plane facing the substrate S, has a width longer than the substrate S in a height direction that is a direction orthogonal to the paper surface, and is smaller than the substrate S in the transport direction. It has a width, for example, about one-fifth.
  • the main component is IGZO.
  • 95% by mass of the material for forming the target 23 is IGZO, and preferably 99% by mass or more is IGZO.
  • the backing plate 24 is formed in a flat plate shape along a plane facing the substrate S, and is joined to a surface of the target 23 that does not face the substrate S.
  • a DC power supply 26D is connected to the backing plate 24. The DC power supplied from the DC power supply 26D is supplied to the target 23 through the backing plate 24.
  • AC An AC power supply may be used as the cathode power supply instead of the DC power supply 26D. In this case, it is preferable to provide one set or two or more targets as a pair of two targets.
  • the magnet (magnetic circuit) 25 is formed of a plurality of magnetic materials having mutually different magnetic poles, and forms a magnetron magnetic field on the surface 23 a of the target 23 and on the side surface of the target 23 facing the substrate S.
  • the density of the plasma generated in the gap between the surface 23a of the target 23 and the surface Sa of the substrate S is determined by the magnet 25. It is highest in a portion where the magnetic field component along the normal direction of the magnetron magnetic field is 0 (B ⁇ 0).
  • a region where the magnetic field component along the normal direction is 0 is a region where the plasma density is high.
  • the cathode device 18 includes a scanning unit 27 that moves the cathode unit 22 along a scanning direction, which is one direction.
  • the scanning direction is a direction parallel to the transport direction.
  • the scanning unit 27 includes, for example, a rail extending along the scanning direction, a roller attached to each of two ends in the height direction of the cathode unit 22, a plurality of motors for rotating each of the rollers, and the like. You.
  • the rail of the scanning unit 27 has a width longer than the substrate S in the scanning direction.
  • the scanning unit 27 may be embodied as another configuration as long as the cathode unit 22 can be moved along the scanning direction.
  • the scanning unit 27 moves the cathode unit 22 along the scanning direction to form a cathode unit in a facing region R2 which is a space facing the IGZO film forming region R1 (the film forming region, the film forming region). Scan 22.
  • the entire surface Sa of the substrate S which is an example of a film formation target, is an example of the IGZO film formation region R1.
  • the scanning unit 27 is, for example, from the start position St, which is one end of the scanning unit 27 in the scanning direction, to the other end in the scanning direction.
  • the cathode unit 22 is moved along the scanning direction toward the turning position En.
  • the scanning unit 27 scans the target 23 of the cathode unit 22 in the facing region R2 facing the formation region R1.
  • the direction in which the formation region R1 and the facing region R2 face each other is the facing direction.
  • the distance between the surface Sa of the substrate S and the surface 23a of the target 23 is, for example, 300 mm or less, and can be, for example, 150 mm.
  • the cathode unit 22 When the cathode unit 22 is disposed at the start position St, of the two ends of the formation region R1 in the scanning direction, the first end Re1 where sputtered particles reach first, and the first end Re1 in the scanning direction.
  • the distance D1 along the scanning direction between the target 23 and the first end 23e1 near Re1 may be 150 mm or more.
  • the distance D1 along the scanning direction between the first end Re1 in the scanning direction and the first end 23e1 of the target 23 is 0 mm to 300 mm. It is.
  • the distance D1 along the scanning direction between the target 23 and the second end 23e2 close to the target 23 may be 150 mm or more.
  • the distance D1 and the distance D2 are symmetrical with respect to the center of the substrate S in the scanning direction, that is, they can be set to be equal.
  • the scanning unit 27 scans the cathode unit 22 along the scanning direction from the start position St to the return position En, and then scans from the return position En to the start position St. One scan along the direction may be performed.
  • the scanning unit 27 scans the cathode unit 22 from the start position St to the return position En, performs one reciprocal scan in the scan direction from the return position En to the start position St, and then performs reciprocal scan. May be.
  • the scanning unit 27 performs two reciprocal scans of the cathode unit 22 in the scanning direction.
  • the scanning unit 27 reciprocates the cathode unit 22 a plurality of times along the scanning direction from the start position St to the start position St via the turn-back position En, thereby moving the cathode unit 22 between the start position St and the turn-back position En. Scanning may be performed reciprocating a plurality of times.
  • the number of times that the scanning unit 27 scans the cathode unit 22 is changed according to the thickness of the IGZO film. If the conditions other than the number of times of scanning of the cathode unit 22 are the same, the larger the thickness of the IGZO film, the more the scanning unit 27 is set to a large value for the number of reciprocating scans of the cathode unit 22.
  • FIG. 3 shows a state where the cathode unit 22 is arranged at the start position St described with reference to FIG.
  • the plane on which the surface Sa of the substrate S is arranged is the virtual plane Pid.
  • a surface 23a, which is a side surface of the target 23 facing the substrate S, is arranged on one plane parallel to the virtual plane Pid.
  • the magnet 25 that forms a magnetron magnetic field on the surface 23a of the target 23 forms two perpendicular magnetic field zero regions in which the magnetic field component along the normal line is 0 (B ⁇ 0) on the surface 23a of the target 23.
  • sputtered particles are mainly emitted from two perpendicular magnetic field zero regions.
  • a vertical magnetic field zero region near the first end Re1 of the formation region R1 in the scanning direction is a first erosion region
  • a vertical magnetic field zero region far from the first end Re1 is a second erosion region.
  • the magnet 25 has a width that is substantially equal to the target 23 in a height direction orthogonal to the paper surface, and has, for example, an elongated shape having a width shorter than the target 23 in the scanning direction.
  • the cathode unit 22 includes a magnet scanning unit 29 that changes the position of the magnet 25 with respect to the target 23.
  • the magnet scanning unit 29 includes, for example, a rail extending along the scanning direction, a roller attached to each of two ends of the magnet 25 in the height direction, a plurality of motors for rotating each of the rollers, and the like. You.
  • the rail of the magnet scanning unit 29 has a width substantially equal to that of the target 23 in the scanning direction.
  • the magnet scanning unit 29 may be embodied as another configuration as long as the magnet 25 can be moved in the scanning direction.
  • the magnet scanning unit 29 includes, for example, a first position P1 where the first end 23e1 of the target 23 and the magnet 25 overlap in a scanning direction, and a second position P2 where the second end 23e2 of the target 23 and the magnet 25 overlap. In between, the magnet 25 can be scanned.
  • the magnet scanning unit 29 moves the magnet 25 from the first position P1 to the second position P2 when the cathode device 18 starts to form an IGZO film by emitting sputtered particles.
  • the scanning unit 27 moves the cathode unit 22 from the start position St to the turnback position En, the magnet scanning unit 29, for example, reciprocates the magnet 25 between the first position P1 and the second position P2.
  • the magnet scanning unit 29 reciprocates the magnet 25 along the scanning direction independently of the moving speed of the cathode unit 22.
  • the scanning unit 27 scans the cathode unit 22 from the start position St toward the turnback position En and returns to the start position St, and causes the target 23 to reciprocate once in the facing region R2. At this time, it is preferable that the magnet scanning unit 29 reciprocates the magnet 25 an odd number of times between the first position P1 and the second position P2.
  • the target 23 reciprocates once in the facing region R2 to form an IGZO film
  • the magnet 25 moves between the first position P1 and the second position P2 a plurality of times
  • the scanning of the magnet 25 in the scanning direction of the target 23 is performed.
  • the relative speed of the magnet 25 with respect to the target 23 changes.
  • the speed of the magnet 25 with respect to the substrate S changes between the sum of the speed of the target 23 and the speed of the magnet 25 and the difference between the speed of the target 23 and the speed of the magnet 25. Also change.
  • the region in the scanning direction in which the magnet 25 moves at a speed that is the sum of the speed of the target 23 and the speed of the magnet 25 covers the entire surface of the substrate S in this scanning direction, that is, the entire region in the scanning direction in the formation region R1. Set to cover.
  • FIGS. 4 and 5 are diagrams for explaining the swing of the target and the magnet in the sputtering according to the present embodiment, and are diagrams illustrating the operation in the sputtering.
  • FIG. 6 is a graph showing the relationship between the position of the target and the magnet in the scanning direction and time in the present embodiment.
  • FIG. 7 is a graph showing the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
  • the cathode unit 22 is arranged at the start position St, as shown in FIG. At this time, of the two ends of the formation region R1 in the scanning direction, the first end Re1 where the sputtered particles reach first, and the two ends of the target 23 in the scanning direction which are closer to the formation region R1.
  • the distance D1 between the first end 23e1 is 0 mm to 300 mm, and the first end Re1 and the first end 23e1 are separated in the scanning direction.
  • the scanning speed at which the cathode unit 22 and the magnet 25 move along the scanning direction is set as follows.
  • the cathode unit 22 When the cathode unit 22 starts to move in the scanning direction, when the magnet 25 also starts to move in the scanning direction, as shown in FIGS. It moves with respect to the substrate S at the speed VCa.
  • the cathode scanning speed VCa is shown by the slope of the graph line Ca in FIG.
  • the magnet 25 moves at a magnet scanning speed VMg with respect to the target 23 of the cathode unit 22.
  • the magnet scanning speed VMg is indicated by the slope of the graph line Mg in FIG.
  • the moving distance of the magnet 25 is shorter than the moving distance of the cathode unit 22.
  • the scanning distance of the cathode unit 22 is LCa
  • the scanning time is VCa
  • the scanning distance of the magnet 25 is LMg
  • the scanning time is VMg
  • the magnet 25 moves halfway between the first position P1 and the second position P2 with respect to the target 23 even number times.
  • the magnet 25 has one of a sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and a difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg.
  • the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
  • the magnet 25 When the outward movement of the target 23 ends and the target 23 reaches the turnback position En, the magnet 25 is located at the center position C between the first position P1 and the second position P2, as shown in FIG. Then, as shown in FIGS. 6 and 7, when the target 23 reaches the turnback position En, the target 23 is immediately started to return to the start position St. At the same time, the magnet 25 continues to move from the center between the first position P1 and the second position P2 toward the first position P1, as shown in FIGS.
  • the magnet 25 is controlled by the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and the difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg.
  • the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
  • the region where the magnet 25 is scanned with respect to the substrate S as the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg is arranged over the entire region of the formation region R1 in the scanning direction, that is, over the entire region of the substrate S. Is set to
  • the variation between the scanning state of the magnet 25 on the outward path of the target 23 and the scanning state of the magnet 25 on the return path of the target 23 is canceled. Accordingly, it is possible to prevent the occurrence of film formation variation due to the position in the substrate S in the scanning direction, to eliminate unevenness, and to achieve uniform film formation characteristics.
  • the magnet 25 is located on the return path of the target 23 on the right side. Moving down.
  • the moving direction of the magnet 25 cancels each other between the forward path and the backward path of the target 23. It is possible to set the moving direction of the magnet 25 in such a manner as to be performed.
  • the magnet 25 in a state where the cathode unit 22 is arranged at the start position St, the magnet 25 is not located on the second end 23e2 side shown in FIG. 23e1.
  • FIG. 17 is a graph showing another example of the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
  • FIG. 17 a region where the magnet 25 moves at the sum speed Vmax in the outward path of the target 23 indicated by the black triangle arrow on the line and a return path of the target 23 indicated by the double line arrow in the line in FIG. 17.
  • the region where the magnet 25 moves at the sum speed Vmax is continuous.
  • the area of the sum velocity Vmax in the forward path of the target 23 and the area of the sum velocity Vmax in the return path of the target 23 overlap each other, but at least the cathode unit 22 During one reciprocation with respect to S, the region where the magnet 25 moves at the sum velocity Vmax can cover the entire substrate S in the scanning direction. As a result, film formation unevenness can be reduced.
  • FIG. 8 and FIG. 9 are diagrams for explaining the swing of the target and the magnet in the sputtering according to the present embodiment, and are diagrams showing the operation in the sputtering.
  • FIG. 10 is a graph showing the relationship between the position of the target and the magnet in the scanning direction and time in the present embodiment.
  • FIG. 11 is a graph showing the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
  • This embodiment is different from the first embodiment described above in terms of the scanning state of the magnet.
  • the other components corresponding to those of the above-described first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the magnet 25 moves to the center position C between the first end 23e1 and the second end 23e2 of the target 23. It is located in.
  • the number of reciprocating operations of the magnet 25 with respect to the target 23 is as shown in FIGS. Is set to an even number of times.
  • the substrate S moves at a constant cathode scanning speed VCa with respect to the substrate S.
  • the cathode scanning speed VCa is indicated by the slope of the graph line Ca in FIG.
  • the magnet 25 moves at a magnet scanning speed VMg with respect to the target 23 of the cathode unit 22.
  • the magnet scanning speed VMg is indicated by the slope of the graph line Mg in FIG.
  • the scanning distance of the cathode unit 22 is LCa
  • the scanning time is VCa
  • the scanning distance of the magnet 25 is LMg
  • the scanning time is VMg
  • the cathode unit 22 moves from the start position St at the left end of the graph to the turnback position En at the center of the graph as shown by the line Ca in FIG. It reciprocates five times between the first position P1 and the second position P2. That is, on the outward path of the target 23, the magnet 25 reaches the second position P2 three times from the center position C and reaches the first position P1 twice.
  • the magnet 25 has one of a sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and a difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg.
  • the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
  • the change in the position or speed of the target 23 on the outward path is indicated by black triangle arrows on the lines Ca and Mg
  • the change in position or speed of the target 23 on the return path is indicated by the lines Ca and Mg. This is indicated by the double arrow above.
  • the magnet 25 When the forward path of the target 23 is completed and the target 23 reaches the turnback position En, the magnet 25 is located at the center position C between the first position P1 and the second position P2, as shown in FIG. Then, as shown in FIGS. 10 and 11, when the target 23 reaches the turn-back position En, the target 23 is immediately started to return to the start position St. At the same time, the magnet 25 continues to move from the center position C to the first position P1, as shown in FIGS.
  • the cathode unit 22 moves from the folded position En at the center of the graph to the start position St at the right end of the graph as shown by the line Ca in FIG. It reciprocates five times between the first position P1 and the second position P2. That is, on the return path of the target 23, the magnet 25 reaches the second position P2 twice from the center position C and reaches the first position P1 three times.
  • the magnet 25 is controlled by the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg and the difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg.
  • the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
  • the region where the magnet 25 is scanned with respect to the substrate S as the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg is arranged over the entire region of the formation region R1 in the scanning direction, that is, over the entire region of the substrate S. Is set to
  • FIG. 11 a region where the magnet 25 moves at the sum speed Vmax in the outward path of the target 23 indicated by the black triangle arrow on the line and a return path of the target 23 indicated by the double-line arrow on the line in FIG. 11.
  • the region where the magnet 25 moves at the sum speed Vmax is continuous.
  • the area of the sum velocity Vmax in the forward path of the target 23 and the area of the sum velocity Vmax in the return path of the target 23 partially overlap each other.
  • the area where the magnet 25 moves at the sum velocity Vmax covers the entire substrate S in the scanning direction.
  • the magnet 25 is located at the center position C between the first position P1 and the second position P2.
  • the variation between the scanning state of the magnet 25 on the outward path of the target 23 and the scanning state of the magnet 25 on the return path of the target 23 is offset. It is possible to prevent unevenness in film formation due to the position in the substrate S in the scanning direction, to eliminate unevenness, and to achieve uniform film formation characteristics.
  • the magnet 25 is set to start in the direction from the center position C toward the second position P2 and to reciprocate an even number of times, so that the moving direction of the magnet 25 is It is possible to set the moving direction of the magnet 25 so as to cancel each other on the outward path and the return path.
  • the magnet 25 may start in the direction opposite to the scanning direction.
  • the black triangle arrow and the two-line arrow shown in FIG. 11 are reversed. Even in this case, similarly, film formation unevenness can be reduced.
  • one target 23 is connected to the DC power supply 26D.
  • an even number of targets connected to the AC power supply may be used.
  • the speed of the cathode unit 22 may be reduced.
  • the film thickness at the edge of the substrate S is increased by slowing down near the edge of the substrate S.
  • FIG. 18 is a configuration diagram illustrating an overall configuration of a sputtering apparatus according to another embodiment.
  • the sputtering apparatus 100 includes a load / unload chamber 102 for loading / unloading a substrate S to be processed, a film formation chamber (chamber) 104 for forming a predetermined film on the substrate S by a sputtering method, and a film formation chamber 104. And a transfer chamber 103 between the loading / unloading chamber 102.
  • the sputtering apparatus 100 is shown as a side sputtering type in the drawing, it may be a sputtering down type or a sputtering up type.
  • the sputtering apparatus 100 is provided with a film forming chamber 104A and a load / unload chamber 102A.
  • the plurality of chambers 102, 102A, 104, 104A are formed so as to surround the transfer chamber 103.
  • such chambers include two load / unload chambers (chambers) formed adjacent to each other. And a plurality of processing chambers (chambers).
  • one load / unload chamber 102 is a load chamber for carrying the substrate S from the outside toward the sputtering apparatus 100
  • the other load / unload chamber 102A is an unload chamber for carrying the substrate S from the sputtering apparatus 100 to the outside.
  • the load chamber may be used, and the film formation chamber 104 and the film formation chamber 104A may perform different film formation steps.
  • a partition valve may be formed between each of the chambers 102, 102A, 104, 104A and the transfer chamber 103.
  • a positioning member capable of setting and aligning the mounting position of the substrate S carried in from the outside may be arranged.
  • the load / unload chamber 102 is also provided with a rough evacuation unit such as a rotary pump for roughly evacuating the chamber.
  • a transfer device (transfer robot) 103a is disposed inside the transfer chamber 103, as shown in FIG.
  • the transfer device 103a has a rotating shaft, a robot arm attached to the rotating shaft, a robot hand formed at one end of the robot arm, and a vertical moving device.
  • the robot arm includes first and second active arms that can bend with each other, and first and second driven arms.
  • the transfer device 103a can move the substrate S, which is the transfer object, between the chambers 102, 102A, 103, 104, and 104A.
  • the film formation chamber 104 can be configured to perform sputtering using a moving cathode, similarly to the sputtering chambers 13 of the first and second embodiments described above.
  • FIG. 19 is a configuration diagram illustrating an overall configuration of a sputtering apparatus according to another embodiment.
  • the sputtering apparatus 200 is an inter-back type sputtering apparatus, and includes a loading / unloading chamber 202 for loading / unloading a substrate (or a carrier) S, and a pressure-resistant film forming a predetermined coating on the substrate S by a sputtering method. (Vacuum tank) 203.
  • the loading / unloading chamber 202 is provided with a rough evacuation means 204 such as a rotary pump for roughly vacuuming the chamber, and a substrate tray 205 for holding and transporting the substrate is movably disposed in the chamber. ing.
  • a heater 211 for heating the substrate is provided inside the film forming chamber 203.
  • An evacuation unit 209 and a chimney (structure) 210 serving as a shield electrode are provided.
  • the film forming chamber 203 can be configured to perform sputtering by a moving cathode, similarly to the sputtering chambers 13 of the first and second embodiments described above.
  • the sputtering method of the present invention can be applied, and it is possible to prevent unevenness in film formation due to a position in the substrate S in the scanning direction, eliminate unevenness, and achieve uniform film formation characteristics. Becomes possible.
  • the magnet 25 is started from the first position P1 with respect to the target 23 at the start position St, and the magnet 25 is reciprocated an odd number of times with respect to the target 23 to start.
  • the sputtering was performed by reciprocating the target 23 once with respect to the substrate S so as to stop at the center position C with respect to the target 23 at the position St. The specifications at that time are shown.
  • the film was formed with the number of reciprocations of the magnet being 7 pass and 9 pass, and the film thickness was measured at the above-mentioned number of measurement points to calculate the film thickness distribution.
  • the film thickness distribution is obtained from the difference and the sum between the maximum value Max and the minimum value Min of the film thickness. (Max ⁇ Min) / (Max + Min) ⁇ 100 And the film thickness% was calculated.
  • FIG. 16 shows the result.
  • the magnet 25 is started from the first position P1 with respect to the target 23 at the start position St, and the second position P2 with respect to the target 23 at the turnback position En.
  • the magnet 25 is reciprocated an even number of times with respect to the target 23 such that In this state, sputtering was performed such that the target 23 reciprocated once with respect to the substrate S, and the magnet in the target 23 stopped at the start position St stopped at the first position P1.
  • the region scanned by the magnet 25 at the sum velocity Vmax with respect to the substrate S is made to overlap on the forward path and the return path of the target 23, and the magnet is scanned at the differential velocity Vmin.
  • the scanning area 25 overlaps the forward path and the return path of the target 23.
  • film formation was performed with the number of reciprocations of the magnet being 4 pass and 10 pass, and the film thickness was measured at the above-mentioned number of measurement points, and the film thickness distribution was calculated in the same manner.
  • FIG. 16 shows the result.
  • Examples of application of the present invention include the production of a channel layer of a TFT for an OLED, a metal thin film layer of a cathode having a top emission structure, and an ITO layer having an IMI structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A sputtering method according to the present invention uses: a cathode unit having a target that can discharge sputter particles toward a film formation region in which a film is to be formed on a film formation substrate; a scanning unit for reciprocating the cathode unit relative to the film formation substrate in a scanning direction that is an in-plane direction of the substrate; a magnet for forming an erosion region in the target in the cathode unit; and a magnet scanning unit for reciprocating the magnet in the scanning direction. While the cathode unit is reciprocated relative to the film formation substrate in the scanning direction by the scanning unit, the magnet is reciprocated in the scanning direction by the magnet scanning unit. The reciprocal movement of the magnet during the outbound movement of the target from the film formation substrate and the reciprocal movement of the magnet during the return movement of the target to the film formation substrate are set to compensate each other according to the velocity of the target with respect to the film formation substrate.

Description

スパッタリング方法、スパッタリング装置Sputtering method, sputtering equipment
 本発明は、スパッタリング方法、スパッタリング装置に関し、特にカソードとマグネットとが揺動するスパッタリングに用いて好適な技術に関する。
 本願は、2018年6月19日に日本に出願された特願2018-116343号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a sputtering method and a sputtering apparatus, and more particularly to a technique suitable for sputtering in which a cathode and a magnet swing.
Priority is claimed on Japanese Patent Application No. 2018-116343 filed on June 19, 2018, the content of which is incorporated herein by reference.
 液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイは、表示素子を駆動する複数の薄膜トランジスタを備えている。薄膜トランジスタは、チャネル層を有し、チャネル層の形成材料は、例えば、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物半導体である。近年では、チャネル層の形成対象である基板が大型化し、大型の基板に成膜するスパッタリング装置として、例えば、特許文献1に記載のように、化合物膜の特性がばらつくことを抑えるように、本出願人らは、ターゲットが走査するスパッタリング装置を用いていた。 (4) A flat panel display such as a liquid crystal display or an organic EL display includes a plurality of thin film transistors for driving a display element. The thin film transistor has a channel layer, and a material for forming the channel layer is, for example, an oxide semiconductor such as indium gallium zinc oxide (IGZO). In recent years, a substrate on which a channel layer is to be formed has been enlarged, and as a sputtering apparatus for forming a film on a large substrate, for example, as described in Japanese Patent Application Laid-Open No. H11-157, the present invention is intended to suppress the dispersion of the characteristics of a compound film. Applicants have used a sputtering device that the target scans.
 このようなスパッタリング装置では、成膜時にターゲットが基板に対して走査される際、ターゲットの裏側に位置するマグネットも揺動させるように制御していた。 (4) In such a sputtering apparatus, when the target is scanned with respect to the substrate during film formation, the magnet located on the back side of the target is controlled to swing.
 具体的には、図12,図13に示すように、ターゲット23およびマグネット25の走査方向において、マグネット25に近い基板Sの端部Re1から離れた位置にマグネット25が位置した状態で、ターゲット23が基板Sに近づいてゆき、スパッタリングをおこなうとともに、ターゲット23に対してマグネット25が走査方向に往復動作をおこなう。このとき、走査方向において、マグネット25は、ターゲット23の基板Sの端部Re1から離れた開始位置から走査を開始し、また、終了時には、開始位置と同じターゲット23の基板Sの端部Re1から離れた終了位置(開始位置)にマグネット25が位置するように制御していた。 Specifically, as shown in FIGS. 12 and 13, in the scanning direction of the target 23 and the magnet 25, with the magnet 25 positioned at a position away from the end Re1 of the substrate S close to the magnet 25, Approaching the substrate S, perform sputtering, and the magnet 25 reciprocates in the scanning direction with respect to the target 23. At this time, in the scanning direction, the magnet 25 starts scanning from a start position distant from the end Re1 of the substrate S of the target 23, and at the end, from the end Re1 of the substrate S of the target 23 which is the same as the start position. The control is performed so that the magnet 25 is located at a remote end position (start position).
 なお、図12は、ターゲット23の往路を示しており、図13は、ターゲット23の復路を示している。 FIG. 12 shows a forward path of the target 23, and FIG. 13 shows a return path of the target 23.
日本国特許第5801500号公報Japanese Patent No. 5801500
 しかしながら、上記のようにターゲットに対してマグネットを走査(揺動)させる技術では、膜厚分布や膜質分布にムラができてしまうことが、依然として解消されていないという問題があった。 However, the technique of scanning (oscillating) the magnet with respect to the target as described above has a problem that unevenness in film thickness distribution and film quality distribution has not been solved yet.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
 1.膜厚分布や膜質分布におけるムラの発生を劇的に低減すること。
The present invention has been made in view of the above circumstances, and aims to achieve the following objects.
1. Dramatically reduce unevenness in film thickness distribution and film quality distribution.
 上記課題を解決するために、本発明の第1態様に係るスパッタリング方法は、被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出可能なターゲットを有するカソードユニットと、基板面内方向となる走査方向において前記被成膜基板に対して前記カソードユニットを相対的に往復動作させる走査部と、前記カソードユニットにおける前記ターゲットにエロージョン領域を形成するマグネットと、前記走査方向に前記マグネットを往復動作させるマグネット走査部とを用い、前記カソードユニットが前記走査部によって前記走査方向に前記被成膜基板に対して相対的に往復動作される間に、前記マグネットを前記マグネット走査部によって前記走査方向に往復動作させ、前記被成膜基板に対する前記ターゲットの速度に対応して、前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作とが、互いに補償し合うように設定される。
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記被成膜基板から遠い前記ターゲットの端部に位置する、または、前記マグネットが前記走査方向において前記被成膜基板から近い前記ターゲットの端部に位置するとともに、前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が奇数回に設定されてもよい。
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットの往路動作終了位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置してもよい。
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置するとともに、前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が偶数回に設定されてもよい。
 上記課題を解決するために、本発明の第2態様に係るスパッタリング装置であって、被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出するカソードユニットと、前記カソードユニットと前記被成膜基板とを相対的に基板面内方向となる走査方向に往復動作可能な走査部と、エロージョン領域が形成されるターゲットと、前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成するマグネットと、前記マグネットを前記ターゲットの前記走査方向における端部間で往復動作可能なマグネット走査部と、前記走査部と前記マグネット走査部とに接続されて、前記カソードユニットの往復動作及び前記マグネットの往復動作を制御する制御部と、を有し、前記制御部において、前記被成膜基板に対する前記ターゲットの速度に対応して、前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作と、が互いに補償し合うように設定される。
 上記課題を解決するために、本発明の第3態様に係るスパッタリング装置であって、被成膜基板において膜が形成される成膜領域に対向して、前記成膜領域に対して相対的に移動しながらスパッタ粒子を放出する細長形状のカソードユニットと、前記カソードユニットを、前記成膜領域の一端より外側の第一成膜外位置から、前記成膜領域の他端より外側の第二成膜外位置の間で往復移動するように、前記カソードユニットの長辺に交差する走査方向に移動させるカソード走査部と、を有し前記カソードユニットは、細長のターゲットと、前記ターゲットの裏面に配置されるマグネットと、前記マグネットを前記ターゲットの長辺に交差する方向に往復させるマグネット走査部と、を有し、前記成膜領域において、前記カソードユニットの往路動作における前記マグネットの往復動作と、前記カソードユニットの復路動作における前記マグネットの往復動作と、が前記被成膜基板と前記マグネットの相対速度において、補償するように制御される。
 本発明の第3態様に係るスパッタリング装置においては、前記成膜領域において、前記カソードユニットの往路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、前記カソードユニットの復路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、が重ならなくてもよい。
In order to solve the above problem, a sputtering method according to a first aspect of the present invention includes a cathode unit having a target capable of emitting sputtered particles toward a formation region where a film is formed on a deposition target substrate; A scanning unit configured to reciprocate the cathode unit with respect to the deposition target substrate in a scanning direction that is an inward direction; a magnet that forms an erosion region on the target in the cathode unit; And a magnet scanning unit that reciprocates the magnet, while the cathode unit is relatively reciprocated with respect to the deposition target substrate in the scanning direction by the scanning unit. The reciprocating operation is performed in the scanning direction, and the speed of the target with respect to the deposition target substrate is reduced. Then, the reciprocating operation of the magnet in the outward movement of the target with respect to the substrate on which the film is to be formed, and the reciprocating operation of the magnet in the backward movement of the target with respect to the substrate on which the film is to be formed are set so as to compensate each other. You.
In the sputtering method according to the first aspect of the present invention, at a start position of the target and the magnet, the magnet is located at an end of the target far from the deposition target substrate in the scanning direction, or Are located at the end of the target closer to the film formation substrate in the scanning direction, and in one reciprocating operation of the target with respect to the film formation substrate, the number of reciprocating operations of the magnet with respect to the target is odd. It may be set.
In the sputtering method according to the first aspect of the present invention, the magnet may be located at a central portion of the target in the scanning direction at a position where the outward movement of the target ends.
In the sputtering method according to the first aspect of the present invention, at a start position of the target and the magnet, the magnet is located at a central portion of the target in the scanning direction, and the target is positioned at a center with respect to the deposition target substrate. In the reciprocating operation, the number of reciprocating operations of the magnet with respect to the target may be set to an even number.
In order to solve the above problem, a sputtering apparatus according to a second aspect of the present invention, wherein a cathode unit that emits sputter particles toward a formation region where a film is formed on a deposition target substrate; A scanning unit capable of reciprocatingly moving the deposition target substrate in a scanning direction that is an in-plane direction of the substrate, a target on which an erosion region is formed, and an opposite side of the target from the target with respect to the target. A magnet that is arranged in the target to form the erosion area on the target; a magnet scanning unit that reciprocates the magnet between ends of the target in the scanning direction; and a magnet that is connected to the scanning unit and the magnet scanning unit. And a control unit for controlling the reciprocating operation of the cathode unit and the reciprocating operation of the magnet. Corresponding to a speed of the target with respect to the film formation substrate, a reciprocating operation of the magnet in a forward movement of the target with respect to the film formation substrate, and a magnet in a return movement of the target with respect to the film formation substrate. Are set to compensate for each other.
In order to solve the above-mentioned problem, a sputtering apparatus according to a third aspect of the present invention includes a sputtering apparatus, which faces a film formation region where a film is formed on a deposition target substrate, and relatively to the film formation region. An elongated cathode unit that emits sputter particles while moving; and a second unit that is located outside the other end of the film formation region from a first outside film formation position outside one end of the film formation region. A cathode scanning unit that moves in a scanning direction that intersects a long side of the cathode unit so as to reciprocate between the extra-membrane positions, wherein the cathode unit is disposed on an elongated target and a back surface of the target. And a magnet scanning unit that reciprocates the magnet in a direction intersecting the long side of the target. And reciprocating motion of the magnet in the operation, the reciprocating motion of the magnet during the backward motion of the cathode unit, the relative speed of the magnet and the deposition target substrate, is controlled to compensate.
In the sputtering apparatus according to a third aspect of the present invention, in the film formation region, a region where a combined speed of a forward movement of the cathode unit and a reciprocating operation of the magnet is a minimum value; The region where the combined speed of the reciprocating motion of the magnet is the minimum value does not have to overlap.
 本発明の第1態様に係るスパッタリング方法は、被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出可能なターゲットを有するカソードユニットと、基板面内方向となる走査方向において前記被成膜基板に対して前記カソードユニットを相対的に往復動作させる走査部と、前記カソードユニットにおける前記ターゲットにエロージョン領域を形成するマグネットと、前記走査方向に前記マグネットを往復動作させるマグネット走査部とを用い、前記カソードユニットが前記走査部によって前記走査方向に前記被成膜基板に対して相対的に往復動作される間に、前記マグネットを前記マグネット走査部によって前記走査方向に往復動作させ、前記被成膜基板に対する前記ターゲットの速度に対応して、前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作とが、互いに補償し合うように設定される。
 これにより、マグネットの往復動作がターゲットの往復動作全体にわたって均一化される。従って、マグネットにより発生するプラズマが被処理基板に対して均一に走査されることになり、被処理基板に成膜される膜厚等の膜特性を基板面内の走査方向において均一化することが可能となる。
The sputtering method according to the first aspect of the present invention includes: a cathode unit having a target capable of emitting sputtered particles toward a formation region where a film is formed on a deposition target substrate; A scanning unit that reciprocates the cathode unit relative to the substrate on which the film is to be formed, a magnet that forms an erosion area on the target in the cathode unit, and a magnet scanning unit that reciprocates the magnet in the scanning direction. While the cathode unit is relatively reciprocated with respect to the deposition substrate in the scanning direction by the scanning unit, the magnet is reciprocated in the scanning direction by the magnet scanning unit, In response to the speed of the target with respect to the film formation substrate, And reciprocating motion of the magnet in the forward motion of the target that, the and the reciprocating motion of the magnet during the backward motion of the target with respect to the deposition substrate, is set so as mutually compensate each other.
Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface. It becomes possible.
 ここで、「互いに補償し合うように」について説明する。前記被成膜基板に対する前記マグネットの速さを、前記被成膜基板に対する前記ターゲットの速さと、前記ターゲットに対する前記マグネットの速さとの和で表された合成速度と称される。この合成速度に関し、合成速度が最大値となる時間も、合成速度が最小値となる時間も同じとなるので、合成速度が最大値となる領域の方が、合成速度が最小値となる領域より長くなる。このため、「互いに補償し合うように」とは、合成速度が最大値となる領域が一部重複する場合があるが、合成速度が最小値となる領域は重複しないことを意味する。 Here, "to compensate each other" will be described. The speed of the magnet with respect to the substrate on which the film is formed is referred to as a combined speed represented by the sum of the speed of the target with respect to the substrate on which the film is formed and the speed of the magnet with respect to the target. Regarding the synthesis speed, the time at which the synthesis speed has the maximum value is the same as the time at which the synthesis speed has the minimum value. become longer. For this reason, “to compensate each other” means that areas where the combined speed is the maximum value may partially overlap, but areas where the combined speed is the minimum value do not overlap.
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記被成膜基板から遠い前記ターゲットの端部に位置する、または、前記マグネットが前記走査方向において前記被成膜基板から近い前記ターゲットの端部に位置するとともに、前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が奇数回に設定される。
 これにより、ターゲットの往路におけるマグネットの走査状態と、ターゲットの復路におけるマグネットの走査状態とのバラツキが相殺される。結果的に、図12,図13に示すように、ターゲットの一端から他端まで偶数回走査するフルストロークでのスパッタリングに比べて、膜厚等の成膜特性におけるムラが半分程度以下に均一化することが可能となる。
In the sputtering method according to the first aspect of the present invention, at a start position of the target and the magnet, the magnet is located at an end of the target far from the deposition target substrate in the scanning direction, or Are located at the end of the target closer to the film formation substrate in the scanning direction, and in one reciprocating operation of the target with respect to the film formation substrate, the number of reciprocating operations of the magnet with respect to the target is odd. Is set.
This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target. As a result, as shown in FIGS. 12 and 13, the unevenness in the film formation characteristics such as the film thickness is reduced to about half or less as compared with the sputtering with the full stroke in which the scanning is performed an even number of times from one end to the other end of the target. It is possible to do.
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットの往路動作終了位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置する。
 これにより、ターゲットの一端から他端まで偶数回走査するフルストロークでのスパッタリングに比べて、膜厚等の成膜特性におけるムラが半分程度以下に均一化することが可能となる。
In the sputtering method according to the first aspect of the present invention, the magnet is located at a central portion of the target in the scanning direction at a position where the outward movement of the target ends.
As a result, unevenness in film forming characteristics such as film thickness can be reduced to about half or less as compared to sputtering with a full stroke in which scanning is performed an even number of times from one end to the other end of the target.
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置するとともに、前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が偶数回に設定される。
 これにより、ターゲットに対するマグネットの往復動作の回数を奇数回に設定することが可能となり、結果的に、膜厚等の成膜特性におけるムラが半分程度以下に均一化することができる。
In the sputtering method according to the first aspect of the present invention, at a start position of the target and the magnet, the magnet is located at a central portion of the target in the scanning direction, and the target is positioned at a center with respect to the deposition target substrate. In the reciprocating operation, the number of reciprocating operations of the magnet with respect to the target is set to an even number.
This makes it possible to set the number of reciprocating motions of the magnet with respect to the target to an odd number, and as a result, it is possible to make the unevenness in the film forming characteristics such as the film thickness uniform about half or less.
 また、前記ターゲットの開始位置において、前記走査方向における前記被成膜基板に近接する前記ターゲット端部と、前記走査方向における前記ターゲットに近接する前記被成膜基板端部とが、離間する。これにより、ターゲットに対するマグネットの走査開始を、ターゲットが被処理基板に重ならない位置から開始するように設定することが可能となり、被処理基板全面で、均一な膜特性としてスパッタリング成膜をおこなうことが可能となる。 In addition, at the start position of the target, the end of the target that is close to the substrate in the scanning direction is separated from the end of the substrate that is close to the target in the scanning direction. This makes it possible to set the start of scanning of the magnet with respect to the target so as to start from a position where the target does not overlap with the substrate to be processed, and to perform sputtering film formation with uniform film characteristics over the entire surface of the substrate to be processed. It becomes possible.
 また、前記ターゲットの折り返し位置において、前記走査方向における前記被成膜基板に近接する前記ターゲット端部と、前記走査方向における前記ターゲットに近接する前記被成膜基板端部とが、離間する。これにより、ターゲットに対するマグネットの走査終了を、ターゲットが被処理基板に重ならない位置として設定することが可能となり、被処理基板全面で、均一な膜特性としてスパッタリング成膜をおこなうことが可能となる。 In addition, at the turnback position of the target, the end of the target that is close to the substrate in the scanning direction is separated from the end of the substrate that is close to the target in the scanning direction. This makes it possible to set the end of scanning of the magnet with respect to the target as a position where the target does not overlap with the substrate to be processed, and it is possible to perform sputtering film formation with uniform film characteristics over the entire surface of the substrate to be processed.
 本発明の第1態様に係るスパッタリング方法においては、前記ターゲットに対する前記マグネットの往路動作における速さと、前記ターゲットに対する前記マグネットの復路動作における速さとが、一定かつ互いに等しく設定される。これにより、ターゲットの往路におけるマグネットの往路での被処理基板に対する速さと、ターゲットの復路におけるマグネットの復路での被処理基板に対する速さとを同じにすることができる。また、スパッタリング時における被成膜基板に対するマグネットの速さを、被成膜基板に対するターゲットの速さと、ターゲットに対するマグネットの速さとの和として表すことができる。この2つの速さの和であるマグネットの速さで、被成膜基板を走査する領域が、走査方向における被成膜基板の全長にわたって連続するように設定することができる。これにより、ターゲットの往路におけるマグネットの走査状態と、ターゲットの復路におけるマグネットの走査状態とのバラツキを相殺して、走査方向における基板内位置による成膜バラツキが発生することを防止して、成膜特性の均一化を図ることが可能となる。 In the sputtering method according to the first aspect of the present invention, the speed of the magnet in the forward movement of the target with respect to the target and the speed of the return movement of the magnet with respect to the target are set to be constant and equal to each other. Thus, the speed of the magnet on the outward path of the target with respect to the substrate to be processed in the outward path can be made equal to the speed of the magnet on the return path of the target with respect to the substrate to be processed. Further, the speed of the magnet with respect to the deposition target substrate during sputtering can be expressed as the sum of the speed of the target with respect to the deposition target substrate and the speed of the magnet with respect to the target. At the speed of the magnet, which is the sum of the two speeds, the region for scanning the deposition target substrate can be set so as to be continuous over the entire length of the deposition target substrate in the scanning direction. This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target, thereby preventing the occurrence of film formation variation due to the position in the substrate in the scanning direction, and The characteristics can be made uniform.
 また、前記被成膜基板に対する前記ターゲットの往路動作における速さと、前記被成膜基板に対する前記ターゲットの復路動作における速さとが、一定かつ互いに等しく設定されることができる。これにより、ターゲットの往路におけるマグネットの走査状態と、ターゲットの復路におけるマグネットの走査状態とのバラツキを相殺して、走査方向における基板面内位置による成膜バラツキが発生することを防止して、成膜特性の均一化を図ることが可能となる。 In addition, a speed of the target with respect to the film formation substrate in a forward movement and a speed of the target with respect to the film formation substrate in a backward movement may be set to be constant and equal to each other. This cancels out the variation between the scanning state of the magnet on the outward path of the target and the scanning state of the magnet on the return path of the target, thereby preventing the occurrence of film formation variation due to the position within the substrate surface in the scanning direction. It is possible to achieve uniform film characteristics.
 本発明の第2態様に係るスパッタリング装置は、被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出するカソードユニットと、前記カソードユニットと前記被成膜基板とを相対的に基板面内方向となる走査方向に往復動作可能な走査部と、エロージョン領域が形成されるターゲットと、前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成するマグネットと、前記マグネットを前記ターゲットの前記走査方向における端部間で往復動作可能なマグネット走査部と、前記走査部と前記マグネット走査部とに接続されて、前記カソードユニットの往復動作及び前記マグネットの往復動作を制御する制御部と、を有し、前記制御部において、前記被成膜基板に対する前記ターゲットの速度に対応して、前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作と、が互いに補償し合うように設定される。
 これにより、マグネットの往復動作がターゲットの往復動作全体にわたって均一化される。従って、マグネットにより発生するプラズマが被処理基板に対して均一に走査されることになり、被処理基板に成膜される膜厚等の膜特性を基板面内の走査方向において均一化することが可能なスパッタリング装置を提供することが可能となる。
A sputtering apparatus according to a second aspect of the present invention includes a cathode unit that emits sputtered particles toward a formation region where a film is formed on a deposition target substrate, and the cathode unit and the deposition target substrate are relatively positioned. A scanning unit that can reciprocate in a scanning direction that is an in-plane direction of the substrate, a target on which an erosion area is formed, and the erosion area that is disposed on the opposite side of the target with respect to the target and on which the deposition target substrate is formed. And a magnet scanning unit capable of reciprocating the magnet between the ends of the target in the scanning direction. The magnet scanning unit is connected to the scanning unit and the magnet scanning unit to perform reciprocating operation of the cathode unit. A control unit for controlling a reciprocating operation of the magnet, wherein the control unit controls In accordance with the speed of the target, the reciprocating operation of the magnet in the outward movement of the target with respect to the deposition target substrate and the reciprocating operation of the magnet in the return movement of the target with respect to the deposition target substrate compensate for each other. Set to fit.
Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface. It is possible to provide a possible sputtering apparatus.
 本発明の第3態様に係るスパッタリング装置は、被成膜基板において膜が形成される成膜領域に対向して、前記成膜領域に対して相対的に移動しながらスパッタ粒子を放出する細長形状のカソードユニットと、前記カソードユニットを、前記成膜領域の一端より外側の第一成膜外位置から、前記成膜領域の他端より外側の第二成膜外位置の間で往復移動するように、前記カソードユニットの長辺に交差する走査方向に移動させるカソード走査部と、を有し前記カソードユニットは、細長のターゲットと、前記ターゲットの裏面に配置されるマグネットと、前記マグネットを前記ターゲットの長辺に交差する方向に往復させるマグネット走査部と、を有し、前記成膜領域において、前記カソードユニットの往路動作における前記マグネットの往復動作と、前記カソードユニットの復路動作における前記マグネットの往復動作と、が前記被成膜基板と前記マグネットの相対速度において、補償するように制御される。
 これにより、マグネットの往復動作がターゲットの往復動作全体にわたって均一化される。従って、マグネットにより発生するプラズマが被処理基板に対して均一に走査されることになり、被処理基板に成膜される膜厚等の膜特性を基板面内の走査方向において均一化することが可能なスパッタリング装置を提供することができる。
A sputtering apparatus according to a third aspect of the present invention has an elongated shape in which a sputtered particle is emitted while moving relative to the film formation region, facing a film formation region where a film is formed on the film formation substrate. And the cathode unit reciprocates between a first non-deposition position outside one end of the film formation region and a second non-deposition position outside the other end of the film formation region. A cathode scanning unit that moves the cathode unit in a scanning direction that intersects a long side of the cathode unit. The cathode unit includes an elongated target, a magnet disposed on the back surface of the target, and the target And a magnet scanning unit that reciprocates in a direction intersecting the long side of the cathode unit. Operation and the reciprocating operation of the magnet during the backward motion of the cathode unit, the relative speed of the magnet and the deposition target substrate, is controlled to compensate.
Thereby, the reciprocating motion of the magnet is made uniform over the entire reciprocating motion of the target. Therefore, the plasma generated by the magnet is uniformly scanned on the substrate to be processed, and the film characteristics such as the film thickness formed on the substrate to be processed can be made uniform in the scanning direction on the substrate surface. A possible sputtering apparatus can be provided.
 本発明の第3態様に係るスパッタリング装置においては、前記成膜領域において、前記カソードユニットの往路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、前記カソードユニットの復路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、が重ならない。
 これにより、マグネットの往復動作により変動する被処理基板への成膜レートを均一化することになり、被処理基板に成膜される膜厚等の膜特性を基板面内の走査方向全長となる領域において均一化することが可能となる。
In the sputtering apparatus according to a third aspect of the present invention, in the film formation region, a region where a combined speed of a forward movement of the cathode unit and a reciprocating operation of the magnet is a minimum value; The region where the combined speed of the reciprocating motion of the magnet is the minimum value does not overlap.
As a result, the film formation rate on the substrate to be processed, which fluctuates due to the reciprocating operation of the magnet, is made uniform, and the film characteristics such as the film thickness formed on the substrate to be processed become the entire length in the scanning direction within the substrate surface. It is possible to make the area uniform.
 本発明の第4態様に係るスパッタリング方法においては、前記ターゲットおよび前記マグネットの往復動作において、前記被成膜基板に対する前記マグネットの速さを、前記被成膜基板に対する前記ターゲットの速さと、前記ターゲットに対する前記マグネットの速さとの和として表すことができる。この2つの速さの和であるマグネットの速さで、被成膜基板を走査する領域が、前記走査方向における前記被成膜基板の全長にわたって連続するように設定することができる。これにより、被処理基板に対して速さの和で速い速度でマグネットが走査する状態を走査方向における基板全体で実現し、マグネットの早い状態と遅い状態との領域が重なって、成膜ムラを散らすことが可能となる。 In the sputtering method according to a fourth aspect of the present invention, in the reciprocating operation of the target and the magnet, the speed of the magnet with respect to the substrate on which the film is formed, the speed of the target with respect to the substrate on which the film is formed, and the target And the speed of the magnet with respect to At the speed of the magnet, which is the sum of the two speeds, the region for scanning the deposition target substrate can be set so as to be continuous over the entire length of the deposition target substrate in the scanning direction. As a result, a state in which the magnet scans at a high speed at the sum of the speeds with respect to the substrate to be processed is realized for the entire substrate in the scanning direction. It becomes possible to scatter.
 ここで、前記ターゲットおよび前記マグネットの往復動作において、前記被成膜基板に対する前記マグネットの速さを、前記被成膜基板に対する前記ターゲットの速さと、前記ターゲットに対する前記マグネットの速さとの差の最小値として走査する領域が、前記被成膜基板の前記走査方向において断続的に配置されてもよい。 Here, in the reciprocating operation of the target and the magnet, the speed of the magnet with respect to the substrate on which the film is to be formed is set to be the minimum of the difference between the speed of the target with respect to the substrate on which the film is to be formed and the speed of the magnet with respect to the target. A region to be scanned as a value may be intermittently arranged in the scanning direction of the deposition target substrate.
 本発明によれば、被処理基板に対してカソードが走査され、カソードに対してマグネットが走査されるスパッタリングにおいて、成膜特性にムラが発生してしまうことを劇的に低減することが可能となるという効果を奏することが可能となる。 According to the present invention, it is possible to dramatically reduce the occurrence of unevenness in film formation characteristics in sputtering in which a cathode is scanned on a substrate to be processed and a magnet is scanned on the cathode. It is possible to achieve the effect of becoming.
本発明の第1実施形態に係るスパッタリング方法におけるスパッタリング装置の全体構成を示す構成図である。It is a lineblock diagram showing the whole structure of the sputtering device in the sputtering method concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るスパッタリング方法におけるスパッタチャンバの構成を模式的に示す構成図である。FIG. 2 is a configuration diagram schematically illustrating a configuration of a sputtering chamber in the sputtering method according to the first embodiment of the present invention. 本発明の第1実施形態に係るスパッタリング方法におけるカソードユニットの構成を模式的に示す構成図である。FIG. 2 is a configuration diagram schematically illustrating a configuration of a cathode unit in the sputtering method according to the first embodiment of the present invention. 本発明の第1実施形態に係るスパッタリング方法におけるターゲット往路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。FIG. 4 is a diagram for explaining sputtering on a target outward path in the sputtering method according to the first embodiment of the present invention, and is a diagram illustrating an operation in sputtering. 本発明の第1実施形態に係るスパッタリング方法におけるターゲット復路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。FIG. 4 is a diagram for explaining sputtering in a target return path in the sputtering method according to the first embodiment of the present invention, and is a diagram illustrating an operation in sputtering. 本発明の第1実施形態に係るスパッタリング方法におけるターゲットとマグネットとの走査方向における位置と時間との関係を示すグラフである。5 is a graph showing a relationship between a position and a time in a scanning direction of a target and a magnet in the sputtering method according to the first embodiment of the present invention. 本発明の第1実施形態に係るスパッタリング方法におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。5 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of the magnet in a substrate in the sputtering method according to the first embodiment of the present invention. 本発明の第2実施形態に係るスパッタリング方法におけるターゲット往路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。It is a figure for explaining sputtering in a target outward course in a sputtering method concerning a 2nd embodiment of the present invention, and is a figure showing an operation in sputtering. 本発明の第2実施形態に係るスパッタリング方法におけるターゲット復路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。It is a figure for explaining sputtering in a target return way in a sputtering method concerning a 2nd embodiment of the present invention, and is a figure showing an operation in sputtering. 本発明の第2実施形態に係るスパッタリング方法におけるターゲットとマグネットとの走査方向における位置と時間との関係を示すグラフである。6 is a graph showing a relationship between a position and a time in a scanning direction of a target and a magnet in a sputtering method according to a second embodiment of the present invention. 本発明の第2実施形態に係るスパッタリング方法におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。9 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of a magnet in a substrate in a sputtering method according to a second embodiment of the present invention. 従来のスパッタリング方法におけるターゲット往路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。FIG. 9 is a diagram for explaining sputtering on a target outward path in a conventional sputtering method, and is a diagram illustrating an operation in sputtering. 従来のスパッタリング方法におけるターゲット復路でのスパッタリングを説明するための図であって、スパッタリングにおける作用を示す図である。FIG. 8 is a diagram for explaining sputtering in a target return path in a conventional sputtering method, and is a diagram illustrating an operation in sputtering. 従来のスパッタリング方法におけるターゲットとマグネットとの走査方向における位置と時間との関係を示すグラフである。6 is a graph showing a relationship between a position and a time in a scanning direction of a target and a magnet in a conventional sputtering method. 従来のスパッタリング方法におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。6 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of a magnet in a substrate in a conventional sputtering method. 本発明の実施例に係るスパッタリング方法におけるマグネットの往復回数と膜厚分布との関係を示すものである。3 shows the relationship between the number of reciprocations of the magnet and the film thickness distribution in the sputtering method according to the embodiment of the present invention. 本発明の第1実施形態に係るスパッタリング方法におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。5 is a graph showing a relationship between a synthesis speed of a target and a magnet and a position of the magnet in a substrate in the sputtering method according to the first embodiment of the present invention. 本発明の他の実施形態に係るスパッタリング方法におけるスパッタリング装置の全体構成を示す構成図である。It is a lineblock diagram showing the whole structure of the sputtering device in the sputtering method concerning other embodiments of the present invention. 本発明の他の実施形態に係るスパッタリング方法におけるスパッタリング装置の全体構成を示す構成図である。It is a lineblock diagram showing the whole structure of the sputtering device in the sputtering method concerning other embodiments of the present invention.
 以下、本発明の第1実施形態に係るスパッタリング方法、スパッタリング装置を、図面に基づいて説明する。
 図1は、本実施形態に係るスパッタリング方法を行うスパッタリング装置の全体構成を示す構成図である。図2は、本実施形態におけるスパッタチャンバの構成を模式的に示す構成図である。図3は、本実施形態におけるカソードユニットの構成を模式的に示す構成図である。図1において、符号10は、スパッタリング装置である。
Hereinafter, a sputtering method and a sputtering apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram illustrating an overall configuration of a sputtering apparatus that performs a sputtering method according to the present embodiment. FIG. 2 is a configuration diagram schematically showing the configuration of the sputtering chamber in the present embodiment. FIG. 3 is a configuration diagram schematically showing the configuration of the cathode unit in the present embodiment. In FIG. 1, reference numeral 10 denotes a sputtering device.
 本実施形態に係るスパッタリング装置10としては、一例として、基板に形成される化合物膜がインジウムガリウム亜鉛酸化物膜(IGZO膜)である場合を説明する。しかしながら、スパッタリング装置10によって成膜される膜の組成に関しては、これに限られない。ITO(酸化インジウムスズ)、IZO(酸化インジウム・酸化亜鉛)等の酸化膜、あるいは、Ag、Alなどの金属膜などの他の組成の成膜をおこなうこともできる。
 以下では、スパッタリング装置の全体構成、スパッタチャンバの構成、カソードユニットの構成、および、スパッタチャンバの作用を順に説明する。
As an example of the sputtering apparatus 10 according to the present embodiment, a case where a compound film formed on a substrate is an indium gallium zinc oxide film (IGZO film) will be described. However, the composition of the film formed by the sputtering apparatus 10 is not limited to this. An oxide film such as ITO (indium tin oxide) or IZO (indium oxide / zinc oxide), or a film having another composition such as a metal film such as Ag or Al can also be formed.
Hereinafter, the overall configuration of the sputtering apparatus, the configuration of the sputtering chamber, the configuration of the cathode unit, and the operation of the sputtering chamber will be described in order.
[スパッタリング装置の全体構成]
 本実施形態に係るスパッタリング装置10は、図1に示すように、搬出入チャンバ11、前処理チャンバ12、および、スパッタチャンバ13が、1つの方向である搬送方向に沿って配列されている。3つのチャンバの各々は、相互に隣り合う他のチャンバとゲートバルブ14によって連結されている。3つのチャンバの各々には、チャンバ内のガスを排気してチャンバ内を真空状態とする排気部15が連結され、3つのチャンバの各々は、排気部15の駆動によって個別に減圧される。3つのチャンバの各々の底面には、搬送方向に沿って延びる相互に平行な2つのレーンである成膜レーン16と回収レーン17とが敷かれている。
[Overall configuration of sputtering apparatus]
In the sputtering apparatus 10 according to the present embodiment, as shown in FIG. 1, a carry-in / out chamber 11, a pre-processing chamber 12, and a sputter chamber 13 are arranged along a transport direction, which is one direction. Each of the three chambers is connected to other chambers adjacent to each other by a gate valve 14. Each of the three chambers is connected to an exhaust unit 15 that exhausts gas in the chambers and evacuates the chambers. Each of the three chambers is individually depressurized by driving the exhaust unit 15. On the bottom surface of each of the three chambers, a film formation lane 16 and a collection lane 17, which are two mutually parallel lanes extending along the transport direction, are laid.
 成膜レーン16と回収レーン17とは、例えば、搬送方向に沿って延びるレールと、搬送方向に沿って配置された複数のローラーと、複数のローラーの各々を自転させる複数のモーター等から構成される。成膜レーン16は、スパッタリング装置10の内部に搬入されたトレイTを搬出入チャンバ11からスパッタチャンバ13に向けて搬送し、回収レーン17は、スパッタチャンバ13の内部に搬入されたトレイTをスパッタチャンバ13から搬出入チャンバ11に向けて搬送する。 The film formation lane 16 and the collection lane 17 include, for example, a rail extending along the transport direction, a plurality of rollers arranged along the transport direction, a plurality of motors for rotating each of the plurality of rollers, and the like. You. The film formation lane 16 transports the tray T loaded into the sputtering apparatus 10 from the loading / unloading chamber 11 to the sputtering chamber 13, and the collection lane 17 transports the tray T loaded into the sputtering chamber 13 to the sputtering chamber 13. It is transported from the chamber 13 to the loading / unloading chamber 11.
 トレイTには、紙面の手前に向かって延びる矩形状をなす基板(被処理基板)Sが立てられた状態で固定されている。基板Sの幅は、例えば、搬送方向に沿って2200mmであり、紙面の手前に向かって2500mmであることができる。なお、トレイT、基板Sを水平状態として搬送することもできる。 A rectangular substrate (substrate to be processed) S extending toward the front of the drawing is fixed to the tray T in an upright state. The width of the substrate S can be, for example, 2200 mm along the transport direction and 2500 mm toward the front of the drawing. The tray T and the substrate S can be transported in a horizontal state.
 搬出入チャンバ11は、スパッタリング装置10の外部から搬入される成膜前の基板Sを前処理チャンバ12へ搬送し、前処理チャンバ12から搬入される成膜後の基板Sをスパッタリング装置10の外部に搬出する。成膜前の基板Sが外部から搬出入チャンバ11へ搬入されるとき、また、成膜後の基板Sが搬出入チャンバ11から外部へ搬出されるとき、搬出入チャンバ11の内部を大気圧まで昇圧する。成膜前の基板Sが搬出入チャンバ11から前処理チャンバ12へ搬入されるとき、また、成膜後の基板Sが前処理チャンバ12から搬出入チャンバ11へ搬出されるとき、搬出入チャンバ11の内部は、前処理チャンバ12の内部と同じ程度にまで減圧される。 The loading / unloading chamber 11 transports the undeposited substrate S loaded from outside the sputtering apparatus 10 to the pre-processing chamber 12, and transports the deposited film S loaded from the pre-processing chamber 12 to the outside of the sputtering apparatus 10. To be carried out. When the substrate S before film formation is carried into the carry-in / out chamber 11 from the outside, or when the substrate S after film formation is carried out from the carry-in / out chamber 11 to the outside, the inside of the carry-in / out chamber 11 is brought to atmospheric pressure. Increase the pressure. When the substrate S before film formation is carried in from the carry-in / out chamber 11 to the pre-processing chamber 12, or when the substrate S after film formation is carried out from the pre-processing chamber 12 to the carry-in / out chamber 11, the carry-in / out chamber 11 Is reduced to the same degree as the inside of the pretreatment chamber 12.
 前処理チャンバ12は、搬出入チャンバ11から前処理チャンバ12へ搬入された成膜前の基板Sに、成膜に必要とされる処理として、例えば、加熱処理や洗浄処理等を行う。
 前処理チャンバ12は、搬出入チャンバ11から前処理チャンバ12へ搬出された基板Sをスパッタチャンバ13へ搬入する。また、前処理チャンバ12は、スパッタチャンバ13から前処理チャンバ12へ搬出された基板Sを搬出入チャンバ11へ搬出する。
The preprocessing chamber 12 performs, for example, a heating process, a cleaning process, and the like as processes required for film formation on the substrate S before film formation that has been carried into the pretreatment chamber 12 from the carry-in / out chamber 11.
The pre-processing chamber 12 carries the substrate S carried out from the carrying-in / out chamber 11 to the pre-processing chamber 12 into the sputtering chamber 13. The pre-processing chamber 12 carries out the substrate S carried out from the sputtering chamber 13 to the pre-processing chamber 12 to the carry-in / out chamber 11.
 スパッタチャンバ13は、基板Sに向けてスパッタ粒子を放出するカソード装置18、および、成膜レーン16と回収レーン17との間に配置されたレーン変更部19を備えている。スパッタチャンバ13は、前処理チャンバ12からスパッタチャンバ13へ搬入された成膜前の基板Sに対し、カソード装置18を用いてIGZO膜を形成する。
 スパッタチャンバ13は、レーン変更部19を用いて成膜後のトレイTを成膜レーン16から回収レーン17へ移動させる。
The sputtering chamber 13 includes a cathode device 18 that emits sputtered particles toward the substrate S, and a lane changing unit 19 disposed between the film formation lane 16 and the collection lane 17. The sputtering chamber 13 uses the cathode device 18 to form an IGZO film on the substrate S before film formation carried into the sputtering chamber 13 from the pretreatment chamber 12.
The sputter chamber 13 moves the tray T after film formation from the film formation lane 16 to the collection lane 17 by using the lane changing unit 19.
[スパッタチャンバの構成]
 スパッタチャンバ13の成膜レーン16は、図2に示すように、前処理チャンバ12からスパッタチャンバ13へ搬入された基板Sを搬送方向に沿って搬送し、基板Sへの薄膜の形成が開始されてから終了されるまでの間は、成膜レーン16の途中でトレイTの位置を固定する。トレイTの位置がトレイTを支持する支持部材によって固定されるとき、基板Sにおける搬送方向の縁の位置も固定される。
[Structure of sputter chamber]
As shown in FIG. 2, the film formation lane 16 of the sputtering chamber 13 transports the substrate S carried into the sputtering chamber 13 from the pretreatment chamber 12 along the transport direction, and the formation of a thin film on the substrate S is started. From the end to the end, the position of the tray T is fixed in the middle of the film formation lane 16. When the position of the tray T is fixed by the support member that supports the tray T, the position of the edge of the substrate S in the transport direction is also fixed.
 スパッタチャンバ13のガス供給部21aは、トレイTとカソード装置18との間の隙間に、スパッタに用いられるガスを供給する。ガス供給部21aから供給されるガスには、アルゴンガス等のスパッタガスと酸素ガス等の反応ガスとが含まれることができる。
 ガス供給部21bは、カソードユニット22に接続されて、カソードユニット22とともに移動可能とされており、ガスの一部(例えば、反応性ガスの酸素)、あるいは全部を供給する。
 また、ガス供給部21bを設けずに、ガス供給部21aのみとする構成も可能である。
The gas supply unit 21 a of the sputtering chamber 13 supplies a gas used for sputtering to a gap between the tray T and the cathode device 18. The gas supplied from the gas supply unit 21a can include a sputtering gas such as an argon gas and a reaction gas such as an oxygen gas.
The gas supply unit 21b is connected to the cathode unit 22 and is movable together with the cathode unit 22, and supplies a part (for example, oxygen of a reactive gas) or all of the gas.
Further, a configuration in which only the gas supply unit 21a is provided without providing the gas supply unit 21b is also possible.
 カソード装置18は、1つのカソードユニット22を有し、カソードユニット22は、基板Sの表面Saと対向する平面に沿って配置されている。カソードユニット22では、ターゲット23、バッキングプレート24、および、マグネット(磁気回路)25が、基板Sに近い側からこの順に配置されている。 The cathode device 18 has one cathode unit 22, and the cathode unit 22 is arranged along a plane facing the surface Sa of the substrate S. In the cathode unit 22, the target 23, the backing plate 24, and the magnet (magnetic circuit) 25 are arranged in this order from the side close to the substrate S.
 ターゲット23は、基板Sと対向する平面に沿った平板状に形成され、紙面と直交する方向である高さ方向において基板Sよりも長い幅を有し、また、搬送方向において基板Sよりも小さい幅、例えば、5分の1程度の幅を有する。ターゲット23の形成材料では主たる成分がIGZOであり、例えば、ターゲット23の形成材料のうちの95質量%がIGZOであり、好ましくは99質量%以上がIGZOであることができる。 The target 23 is formed in a flat plate shape along a plane facing the substrate S, has a width longer than the substrate S in a height direction that is a direction orthogonal to the paper surface, and is smaller than the substrate S in the transport direction. It has a width, for example, about one-fifth. In the material for forming the target 23, the main component is IGZO. For example, 95% by mass of the material for forming the target 23 is IGZO, and preferably 99% by mass or more is IGZO.
 バッキングプレート24は、基板Sと対向する平面に沿った平板状に形成され、ターゲット23にて基板Sと向かい合わない面に接合されている。バッキングプレート24には、直流電源26Dが接続している。直流電源26Dから供給される直流電力は、バッキングプレート24を通じてターゲット23に供給される。 The backing plate 24 is formed in a flat plate shape along a plane facing the substrate S, and is joined to a surface of the target 23 that does not face the substrate S. A DC power supply 26D is connected to the backing plate 24. The DC power supplied from the DC power supply 26D is supplied to the target 23 through the backing plate 24.
 カソードの電源として直流電源26Dに変えて、AC電源を用いてもよい。この場合、ターゲットは2枚を1対として、一組、あるいは、あるいはそれ以上設けることが好ましい。 AC An AC power supply may be used as the cathode power supply instead of the DC power supply 26D. In this case, it is preferable to provide one set or two or more targets as a pair of two targets.
 マグネット(磁気回路)25は、相互に異なる磁極を有した複数の磁性体によって構成され、ターゲット23の表面23aであって、基板Sと向かい合うターゲット23の側面にマグネトロン磁場を形成する。ターゲット23の表面23aに対する法線に沿った方向が法線方向であるとき、ターゲット23の表面23aと基板Sの表面Saとの間の隙間で生成されるプラズマの密度は、マグネット25が形成するマグネトロン磁場のうち法線方向に沿った磁場成分が0(B⊥0)である部分において最も高くなる。以下では、マグネット25の形成するマグネトロン磁場のうち、法線方向に沿った磁場成分が0である領域がプラズマ密度の高い領域である。 The magnet (magnetic circuit) 25 is formed of a plurality of magnetic materials having mutually different magnetic poles, and forms a magnetron magnetic field on the surface 23 a of the target 23 and on the side surface of the target 23 facing the substrate S. When the direction along the normal line to the surface 23a of the target 23 is the normal direction, the density of the plasma generated in the gap between the surface 23a of the target 23 and the surface Sa of the substrate S is determined by the magnet 25. It is highest in a portion where the magnetic field component along the normal direction of the magnetron magnetic field is 0 (B⊥0). Hereinafter, in the magnetron magnetic field formed by the magnet 25, a region where the magnetic field component along the normal direction is 0 is a region where the plasma density is high.
 カソード装置18は、カソードユニット22を1つの方向である走査方向に沿って移動させる走査部27を備える。走査方向は、搬送方向と平行な方向である。走査部27は、例えば、走査方向に沿って延びるレールと、カソードユニット22における高さ方向の2つの端部の各々に取り付けられたローラーと、ローラーの各々を自転させる複数のモーター等から構成される。走査部27のレールは、走査方向において基板Sよりも長い幅を有する。なお、走査部27は、走査方向に沿ってカソードユニット22を移動させることが可能であれば、他の構成として具体化されてもよい。 The cathode device 18 includes a scanning unit 27 that moves the cathode unit 22 along a scanning direction, which is one direction. The scanning direction is a direction parallel to the transport direction. The scanning unit 27 includes, for example, a rail extending along the scanning direction, a roller attached to each of two ends in the height direction of the cathode unit 22, a plurality of motors for rotating each of the rollers, and the like. You. The rail of the scanning unit 27 has a width longer than the substrate S in the scanning direction. The scanning unit 27 may be embodied as another configuration as long as the cathode unit 22 can be moved along the scanning direction.
 走査部27は、カソードユニット22を走査方向に沿って移動させることによって、IGZO膜の形成領域R1(膜が形成される形成領域、成膜領域)と対向する空間である対向領域R2でカソードユニット22を走査する。成膜対象物の一例である基板Sにおける表面Saの全体が、IGZO膜の形成領域R1の一例である。走査部27は、カソード装置18がスパッタ粒子を放出してIGZO膜の形成を開始するとき、例えば、走査部27における走査方向の一端部である開始位置Stから、走査方向の他端部である折り返し位置Enに向けて走査方向に沿ってカソードユニット22を移動させる。これにより、走査部27は、カソードユニット22のターゲット23を形成領域R1と対向する対向領域R2で走査する。 The scanning unit 27 moves the cathode unit 22 along the scanning direction to form a cathode unit in a facing region R2 which is a space facing the IGZO film forming region R1 (the film forming region, the film forming region). Scan 22. The entire surface Sa of the substrate S, which is an example of a film formation target, is an example of the IGZO film formation region R1. When the cathode device 18 starts to form the IGZO film by emitting the sputtered particles, the scanning unit 27 is, for example, from the start position St, which is one end of the scanning unit 27 in the scanning direction, to the other end in the scanning direction. The cathode unit 22 is moved along the scanning direction toward the turning position En. Thus, the scanning unit 27 scans the target 23 of the cathode unit 22 in the facing region R2 facing the formation region R1.
 形成領域R1と対向領域R2とが対向する方向が対向方向である。対向方向にて、基板Sの表面Saと、ターゲット23の表面23aとの間の距離は、例えば、300mm以下であり、例えば、150mmであることができる。 方向 The direction in which the formation region R1 and the facing region R2 face each other is the facing direction. In the facing direction, the distance between the surface Sa of the substrate S and the surface 23a of the target 23 is, for example, 300 mm or less, and can be, for example, 150 mm.
 カソードユニット22が開始位置Stに配置されるとき、走査方向での形成領域R1の2つの端部のうち、スパッタ粒子が先に到達する第1端部Re1と、走査方向にて第1端部Re1に近いターゲット23の第1端部23e1との間の走査方向に沿った距離D1が、150mm以上であることができる。
 なお、カソードユニット22が開始位置Stに配置されるとき、走査方向での第1端部Re1と、ターゲット23の第1端部23e1との間の走査方向に沿った距離D1は、0mm~300mmである。
When the cathode unit 22 is disposed at the start position St, of the two ends of the formation region R1 in the scanning direction, the first end Re1 where sputtered particles reach first, and the first end Re1 in the scanning direction. The distance D1 along the scanning direction between the target 23 and the first end 23e1 near Re1 may be 150 mm or more.
When the cathode unit 22 is arranged at the start position St, the distance D1 along the scanning direction between the first end Re1 in the scanning direction and the first end 23e1 of the target 23 is 0 mm to 300 mm. It is.
 カソードユニット22が折り返し位置Enに位置するとき、走査方向での形成領域R1の2つの端部のうち、スパッタ粒子が後に到達する第2端部Re2と、走査方向にて、第2端部Re2に近いターゲット23の第2端部23e2との間の走査方向に沿った距離D1が、150mm以上であることができる。 When the cathode unit 22 is located at the turnback position En, of the two ends of the formation region R1 in the scanning direction, a second end Re2 to which sputtered particles reach later, and a second end Re2 in the scanning direction. The distance D1 along the scanning direction between the target 23 and the second end 23e2 close to the target 23 may be 150 mm or more.
 これら距離D1と距離D2とは、走査方向において基板Sの中心に対して対称、つまり、これらは等しくなるよう設定されることができる。 The distance D1 and the distance D2 are symmetrical with respect to the center of the substrate S in the scanning direction, that is, they can be set to be equal.
 なお、形成領域R1にIGZO膜等が形成されるとき、走査部27は、カソードユニット22を開始位置Stから折り返し位置Enまで走査方向に沿って走査した後、折り返し位置Enから開始位置Stまで走査方向に沿って一回走査してもよい。 When an IGZO film or the like is formed in the formation region R1, the scanning unit 27 scans the cathode unit 22 along the scanning direction from the start position St to the return position En, and then scans from the return position En to the start position St. One scan along the direction may be performed.
 あるいは、走査部27は、カソードユニット22を開始位置Stから折り返し位置Enまで走査し、折り返し位置Enから開始位置Stに向けて走査方向に沿って一往復走査した後、さらに、往復して走査してもよい。これにより、走査部27は、カソードユニット22を走査方向に沿って2往復走査する。 Alternatively, the scanning unit 27 scans the cathode unit 22 from the start position St to the return position En, performs one reciprocal scan in the scan direction from the return position En to the start position St, and then performs reciprocal scan. May be. Thus, the scanning unit 27 performs two reciprocal scans of the cathode unit 22 in the scanning direction.
 さらに、走査部27は、カソードユニット22を走査方向に沿って開始位置Stから折り返し位置Enを経て開始位置Stまで複数回往復移動させることによって、カソードユニット22を開始位置Stと折り返し位置Enとの間で複数回往復して走査してもよい。
 走査部27がカソードユニット22を走査する回数は、IGZO膜の厚さに合わせて変更され、カソードユニット22の走査回数以外の条件が同じであれば、IGZO膜の厚さが大きいほど、走査部27がカソードユニット22を往復走査する回数が大きい値に設定される。
Further, the scanning unit 27 reciprocates the cathode unit 22 a plurality of times along the scanning direction from the start position St to the start position St via the turn-back position En, thereby moving the cathode unit 22 between the start position St and the turn-back position En. Scanning may be performed reciprocating a plurality of times.
The number of times that the scanning unit 27 scans the cathode unit 22 is changed according to the thickness of the IGZO film. If the conditions other than the number of times of scanning of the cathode unit 22 are the same, the larger the thickness of the IGZO film, the more the scanning unit 27 is set to a large value for the number of reciprocating scans of the cathode unit 22.
[カソードユニットの構成]
 次に、カソードユニット22の構成をより詳しく説明する。なお、図3には、図2で説明された開始位置Stにカソードユニット22が配置された状態が示されている。
[Configuration of cathode unit]
Next, the configuration of the cathode unit 22 will be described in more detail. FIG. 3 shows a state where the cathode unit 22 is arranged at the start position St described with reference to FIG.
 基板Sは、図3に示すように、その表面Saが配置される平面が仮想平面Pidである。ターゲット23にて基板Sと向かい合う側面である表面23aは、仮想平面Pidと平行な1つの平面上に配置されている。 As shown in FIG. 3, the plane on which the surface Sa of the substrate S is arranged is the virtual plane Pid. A surface 23a, which is a side surface of the target 23 facing the substrate S, is arranged on one plane parallel to the virtual plane Pid.
 ターゲット23の表面23a上にマグネトロン磁場を形成するマグネット25は、法線に沿った磁場成分が0(B⊥0)である2つの垂直磁場ゼロ領域をターゲット23の表面23aに形成する。ターゲット23の表面23aでは、主に2つの垂直磁場ゼロ領域からスパッタ粒子が放出される。2つのゼロ磁場領域のうち、走査方向にて形成領域R1の第1端部Re1に近い垂直磁場ゼロ領域が第1エロージョン領域であり、第1端部Re1から遠い垂直磁場ゼロ領域が第2エロージョン領域である。 (4) The magnet 25 that forms a magnetron magnetic field on the surface 23a of the target 23 forms two perpendicular magnetic field zero regions in which the magnetic field component along the normal line is 0 (B⊥0) on the surface 23a of the target 23. On the surface 23a of the target 23, sputtered particles are mainly emitted from two perpendicular magnetic field zero regions. Of the two zero magnetic field regions, a vertical magnetic field zero region near the first end Re1 of the formation region R1 in the scanning direction is a first erosion region, and a vertical magnetic field zero region far from the first end Re1 is a second erosion region. Area.
 マグネット25は、紙面と直交する高さ方向においてターゲット23と略等しい幅を有し、走査方向において例えば、ターゲット23よりも短い幅を有する細長い形状とされる。 (4) The magnet 25 has a width that is substantially equal to the target 23 in a height direction orthogonal to the paper surface, and has, for example, an elongated shape having a width shorter than the target 23 in the scanning direction.
 カソードユニット22は、ターゲット23に対するマグネット25の位置を変えるマグネット走査部29を備える。マグネット走査部29は、例えば、走査方向に沿って延びるレールと、マグネット25における高さ方向の2つの端部の各々に取り付けられたローラーと、ローラーの各々を自転させる複数のモーター等から構成される。マグネット走査部29のレールは、走査方向においてターゲット23と略等しい幅を有する。なお、マグネット走査部29は、走査方向に沿ってマグネット25を移動させることが可能であれば、他の構成として具体化されてもよい。 The cathode unit 22 includes a magnet scanning unit 29 that changes the position of the magnet 25 with respect to the target 23. The magnet scanning unit 29 includes, for example, a rail extending along the scanning direction, a roller attached to each of two ends of the magnet 25 in the height direction, a plurality of motors for rotating each of the rollers, and the like. You. The rail of the magnet scanning unit 29 has a width substantially equal to that of the target 23 in the scanning direction. The magnet scanning unit 29 may be embodied as another configuration as long as the magnet 25 can be moved in the scanning direction.
 マグネット走査部29は、例えば、走査方向において、ターゲット23の第1端部23e1とマグネット25とが重なる第1位置P1と、ターゲット23の第2端部23e2とマグネット25とが重なる第2位置P2との間で、マグネット25を走査することができる。 The magnet scanning unit 29 includes, for example, a first position P1 where the first end 23e1 of the target 23 and the magnet 25 overlap in a scanning direction, and a second position P2 where the second end 23e2 of the target 23 and the magnet 25 overlap. In between, the magnet 25 can be scanned.
 マグネット走査部29は、カソード装置18がスパッタ粒子を放出してIGZO膜の形成を開始するとき、マグネット25を第1位置P1から第2位置P2に向けて移動させる。マグネット走査部29は、走査部27がカソードユニット22を開始位置Stから折り返し位置Enに向けて移動させるとき、例えば、マグネット25を第1位置P1と第2位置P2との間で往復動作させる。 The magnet scanning unit 29 moves the magnet 25 from the first position P1 to the second position P2 when the cathode device 18 starts to form an IGZO film by emitting sputtered particles. When the scanning unit 27 moves the cathode unit 22 from the start position St to the turnback position En, the magnet scanning unit 29, for example, reciprocates the magnet 25 between the first position P1 and the second position P2.
 すなわち、マグネット25は、カソードユニット22が開始位置Stから折り返し位置Enへの移動を開始するとき、第1位置P1から第2位置P2への移動を開始し、カソードユニット22が折り返し位置Enを経て開始位置Stに戻って再度到達したとき、第1位置P1と第2位置P2との間に位置する。このように、マグネット走査部29は、走査方向に沿ってカソードユニット22の移動速度とは独立してマグネット25を往復動作させる。 That is, when the cathode unit 22 starts moving from the start position St to the turning position En, the magnet 25 starts moving from the first position P1 to the second position P2, and the cathode unit 22 passes through the turning position En. When it returns to the start position St and reaches again, it is located between the first position P1 and the second position P2. Thus, the magnet scanning unit 29 reciprocates the magnet 25 along the scanning direction independently of the moving speed of the cathode unit 22.
 本実施形態においては、後述するように、走査部27がカソードユニット22を開始位置Stから折り返し位置Enに向けて走査してまた開始位置Stに戻り、ターゲット23に対向領域R2を1回往復させるとき、マグネット走査部29は、マグネット25を第1位置P1と第2位置P2との間で奇数回往復させることが好ましい。 In the present embodiment, as described later, the scanning unit 27 scans the cathode unit 22 from the start position St toward the turnback position En and returns to the start position St, and causes the target 23 to reciprocate once in the facing region R2. At this time, it is preferable that the magnet scanning unit 29 reciprocates the magnet 25 an odd number of times between the first position P1 and the second position P2.
 ターゲット23が対向領域R2を1回往復してIGZO膜を形成するとき、マグネット25が第1位置P1と第2位置P2との間を複数回行き来すると、ターゲット23の走査方向に対するマグネット25の走査方向が変わるたびに、ターゲット23に対するマグネット25の相対速度が変わる。後述するように、マグネット25の相対速度が変わると、基板Sに対するマグネット25の速度は、ターゲット23の速度とマグネット25の速度との和となる速度、および、差となる速度の間でその状態も変化する。 When the target 23 reciprocates once in the facing region R2 to form an IGZO film, when the magnet 25 moves between the first position P1 and the second position P2 a plurality of times, the scanning of the magnet 25 in the scanning direction of the target 23 is performed. Each time the direction changes, the relative speed of the magnet 25 with respect to the target 23 changes. As described later, when the relative speed of the magnet 25 changes, the speed of the magnet 25 with respect to the substrate S changes between the sum of the speed of the target 23 and the speed of the magnet 25 and the difference between the speed of the target 23 and the speed of the magnet 25. Also change.
 本実施形態では、ターゲット23の速度とマグネット25の速度との和となる速度でマグネット25が移動する走査方向における領域が、この走査方向における基板S全面、つまり、形成領域R1における走査方向全域を覆うように設定される。これにより、ターゲット23およびマグネット25の走査方向において、IGZO膜の厚さにばらつきが生じることを低減できる。 In the present embodiment, the region in the scanning direction in which the magnet 25 moves at a speed that is the sum of the speed of the target 23 and the speed of the magnet 25 covers the entire surface of the substrate S in this scanning direction, that is, the entire region in the scanning direction in the formation region R1. Set to cover. Thus, it is possible to reduce the occurrence of variations in the thickness of the IGZO film in the scanning direction of the target 23 and the magnet 25.
[スパッタリング方法]
 次に、スパッタチャンバ13におけるターゲット23とマグネット25との揺動について説明する。
[Sputtering method]
Next, the swing of the target 23 and the magnet 25 in the sputtering chamber 13 will be described.
 ここでは、カソードユニット22が開始位置Stから折り返し位置Enを経て開始位置Stまで走査方向に沿って一往復する場合の作用を、図4~図7に基づいて説明する。
 図4,図5は、本実施形態におけるスパッタリングにおけるターゲットとマグネットとの揺動を説明するための図であって、スパッタリングにおける作用を示す図である。図6は、本実施形態におけるターゲットとマグネットとの走査方向における位置と時間との関係を示すグラフである。図7は、本実施形態におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。
Here, the operation when the cathode unit 22 makes one reciprocation along the scanning direction from the start position St to the start position St via the turnback position En will be described with reference to FIGS.
4 and 5 are diagrams for explaining the swing of the target and the magnet in the sputtering according to the present embodiment, and are diagrams illustrating the operation in the sputtering. FIG. 6 is a graph showing the relationship between the position of the target and the magnet in the scanning direction and time in the present embodiment. FIG. 7 is a graph showing the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
 カソード装置18がIGZO膜の形成領域R1(成膜領域)に向けてスパッタ粒子の放出を開始するとき、図4に示すように、カソードユニット22は、開始位置Stに配置される。このとき、走査方向における形成領域R1の2つの端部のうち、スパッタ粒子が先に到達する第1端部Re1と、走査方向におけるターゲット23の2つの端部のうち、形成領域R1に近い第1端部23e1との間の距離D1は0mm~300mmであり、走査方向において第1端部Re1と第1端部23e1とは離間している。 (4) When the cathode device 18 starts emitting sputtered particles toward the IGZO film formation region R1 (film formation region), the cathode unit 22 is arranged at the start position St, as shown in FIG. At this time, of the two ends of the formation region R1 in the scanning direction, the first end Re1 where the sputtered particles reach first, and the two ends of the target 23 in the scanning direction which are closer to the formation region R1. The distance D1 between the first end 23e1 is 0 mm to 300 mm, and the first end Re1 and the first end 23e1 are separated in the scanning direction.
 また、カソードユニット22が開始位置Stに配置された状態で、マグネット25は、図4に示すように、ターゲット23の第2端部23e2の近くに位置している。 (4) With the cathode unit 22 arranged at the start position St, the magnet 25 is located near the second end 23e2 of the target 23 as shown in FIG.
 そして、カソードユニット22が走査方向に沿って移動すると、まず、ターゲット23から放出されるスパッタ粒子のうち、第1エロージョン領域E1からカソードユニット22の向かう方向に放出されるスパッタ粒子が、基板Sに到達する。
 この際、カソードユニット22およびマグネット25が走査方向に沿って移動する走査速度は、次のように設定される。
When the cathode unit 22 moves in the scanning direction, first, among the sputtered particles emitted from the target 23, the sputtered particles emitted from the first erosion region E1 in the direction toward the cathode unit 22 are deposited on the substrate S. To reach.
At this time, the scanning speed at which the cathode unit 22 and the magnet 25 move along the scanning direction is set as follows.
 走査方向にカソードユニット22が移動をはじめると、マグネット25も走査方向に移動しはじめたとき、図6,図7に示すように、カソードユニット22は、瞬間的に加速した後、一定なカソード走査速度VCaで基板Sに対して移動する。カソード走査速度VCaは、図6におけるグラフ線Caの傾きで示される。
 同時に、マグネット25は、カソードユニット22のターゲット23に対してマグネット走査速度VMgで移動する。マグネット走査速度VMgは、図6におけるグラフ線Mgの傾きで示される。
When the cathode unit 22 starts to move in the scanning direction, when the magnet 25 also starts to move in the scanning direction, as shown in FIGS. It moves with respect to the substrate S at the speed VCa. The cathode scanning speed VCa is shown by the slope of the graph line Ca in FIG.
At the same time, the magnet 25 moves at a magnet scanning speed VMg with respect to the target 23 of the cathode unit 22. The magnet scanning speed VMg is indicated by the slope of the graph line Mg in FIG.
 ここで、カソードユニット22の移動距離よりマグネット25の移動距離のほうが短い状態となっている。
 カソードユニット22の走査距離をLCa、走査時間をVCaとし、マグネット25の走査距離をLMg、走査時間をVMgとした際に、
 LCa/VCa > LMg/VMg
 を満たす関係とされている。
 つまり、カソードユニット22が走査開始する位置から反対側まで移動する前に、マグネット25が走査開始する位置と反対側へ到達する関係とされている。
Here, the moving distance of the magnet 25 is shorter than the moving distance of the cathode unit 22.
When the scanning distance of the cathode unit 22 is LCa, the scanning time is VCa, the scanning distance of the magnet 25 is LMg, and the scanning time is VMg,
LCa / VCa> LMg / VMg
The relationship is satisfied.
In other words, the relationship is such that the magnet 25 reaches the side opposite to the scanning start position before the cathode unit 22 moves from the scanning start position to the opposite side.
 カソードユニット22が開始位置Stから折り返し位置Enに到達する往路において、マグネット25は、ターゲット23に対して第1位置P1と第2位置P2との間を偶数回と半分行き来する。 On the outward path in which the cathode unit 22 reaches the turnback position En from the start position St, the magnet 25 moves halfway between the first position P1 and the second position P2 with respect to the target 23 even number times.
 つまり、カソードユニット22が、図6に線Caで示すように、グラフ左端の開始位置Stからグラフ中央の折り返し位置Enまで移動する間に、マグネット25は、図6に線Mgで示すように、4回と半分第1位置P1と第2位置P2との間を往復する。つまり、ターゲット23の往路で、マグネット25は、第1位置P1から第2位置P2に2回到達する。 In other words, while the cathode unit 22 moves from the start position St at the left end of the graph to the turning position En at the center of the graph as shown by the line Ca in FIG. Four times and a half reciprocates between the first position P1 and the second position P2. That is, on the outward path of the target 23, the magnet 25 reaches the second position P2 twice from the first position P1.
 このため、マグネット25は、図7に示すように、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxと、カソード走査速度VCaとマグネット走査速度VMgとの差速度Vminとのいずれかで、一定速度として基板Sに対して走査される。さらに、これら、和速度Vmaxと差速度Vminとの切替時には、なるべく短い時間および距離で加速するように設定される。 For this reason, as shown in FIG. 7, the magnet 25 has one of a sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and a difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg. The substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
 なお、図6,図7においては、ターゲット23の往路における位置または速度の変化を線Caおよび線Mg上の黒三角矢印で示し、ターゲット23の復路における位置または速度の変化を線Caおよび線Mg上の二本線の矢印で示している。 6 and 7, the change in the position or speed of the target 23 on the outward path is indicated by black triangle arrows on the lines Ca and Mg, and the change in position or speed of the target 23 on the return path is indicated by the lines Ca and Mg. This is indicated by the double arrow above.
 ターゲット23の往路が終了し、ターゲット23が折り返し位置Enに到達した際に、図4に示すように、マグネット25は、第1位置P1と第2位置P2との中央位置Cに位置する。
 そして、ターゲット23は、図6,図7に示すように、折り返し位置Enに到達すると即座に開始位置Stに向けて復路をスタートされる。同時に、マグネット25は、図6,図7に示すように、第1位置P1と第2位置P2との中央からの第1位置P1に向かう動きを継続する。
When the outward movement of the target 23 ends and the target 23 reaches the turnback position En, the magnet 25 is located at the center position C between the first position P1 and the second position P2, as shown in FIG.
Then, as shown in FIGS. 6 and 7, when the target 23 reaches the turnback position En, the target 23 is immediately started to return to the start position St. At the same time, the magnet 25 continues to move from the center between the first position P1 and the second position P2 toward the first position P1, as shown in FIGS.
 カソードユニット22が折り返し位置Enから開始位置Stに到達する復路においても、マグネット25は、ターゲット23に対して第1位置P1と第2位置P2との間を偶数回と半分行き来する。 {Circle around (2)} Even on the return path in which the cathode unit 22 reaches the start position St from the turnback position En, the magnet 25 travels halfway between the first position P1 and the second position P2 with respect to the target 23 even number times.
 つまり、カソードユニット22が、図6に線Caで示すように、グラフ中央の折り返し位置Enからグラフ右端の開始位置Stまで移動する間に、マグネット25は、図6に線Mgで示すように、4回と半分第1位置P1と第2位置P2との間を往復する。つまり、ターゲット23の復路で、マグネット25は第2位置P2から第1位置P1に2回到達する。 In other words, while the cathode unit 22 moves from the folded position En at the center of the graph to the start position St at the right end of the graph as shown by the line Ca in FIG. Four times and a half reciprocates between the first position P1 and the second position P2. That is, on the return path of the target 23, the magnet 25 reaches the first position P1 twice from the second position P2.
 ターゲット23の復路においても、マグネット25は、図7に示すように、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxと、カソード走査速度VCaとマグネット走査速度VMgとの差速度Vminとのいずれかで、一定速度として基板Sに対して走査される。さらに、これら、和速度Vmaxと差速度Vminとの切替時には、なるべく短い時間および距離で加速するように設定される。 Also on the return path of the target 23, as shown in FIG. 7, the magnet 25 is controlled by the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and the difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg. At any time, the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
 これにより、マグネット25が、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxとして基板Sに対して走査される領域は、走査方向における形成領域R1の全域、すなわち、基板Sの全域にわたって配置するように設定される。 Accordingly, the region where the magnet 25 is scanned with respect to the substrate S as the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg is arranged over the entire region of the formation region R1 in the scanning direction, that is, over the entire region of the substrate S. Is set to
 具体的には、図7において線上の黒三角矢印で示したターゲット23の往路におけるマグネット25が和速度Vmaxで移動する領域と、図7において線上の二本線の矢印で示したターゲット23の復路におけるマグネット25が和速度Vmaxで移動する領域とが、連続する。これにより開始位置Stから折り返し位置Enを介して開始位置Stまで一往復カソードユニット22が移動する間に、走査方向における形成領域R1の全域で、マグネット25が和速度Vmaxで移動した部分が連続する。 Specifically, in FIG. 7, a region where the magnet 25 moves at the sum speed Vmax in the outward path of the target 23 indicated by the black triangle arrow on the line and a return path of the target 23 indicated by the double line arrow in FIG. The region where the magnet 25 moves at the sum speed Vmax is continuous. As a result, while the reciprocating cathode unit 22 moves from the start position St to the start position St via the turnback position En, the portion where the magnet 25 moves at the sum velocity Vmax is continuous over the entire formation region R1 in the scanning direction. .
 実際には、図7に示すように、ターゲット23の往路における和速度Vmaxの領域と、ターゲット23の復路における和速度Vmaxの領域とは、互いに重なる部分もある。少なくとも、カソードユニット22が基板Sに対して一往復する間において、マグネット25が和速度Vmaxで移動する領域が、走査方向における基板Sの全体を覆うようになっている。 Actually, as shown in FIG. 7, the area of the sum velocity Vmax on the outward path of the target 23 and the area of the sum velocity Vmax on the return path of the target 23 overlap each other. At least while the cathode unit 22 makes one reciprocation with respect to the substrate S, the region where the magnet 25 moves at the sum velocity Vmax covers the entire substrate S in the scanning direction.
 ターゲット23の復路が終了し、ターゲット23が開始位置Stに到達した際に、図5に示すように、マグネット25は、第1位置P1と第2位置P2との中央位置Cに位置する。 (5) When the return path of the target 23 ends and the target 23 reaches the start position St, as shown in FIG. 5, the magnet 25 is located at the center position C between the first position P1 and the second position P2.
 これにより、ターゲット23の往復動作を一回終了する。 This completes the reciprocating operation of the target 23 once.
 本実施形態においては、ターゲット23の往路におけるマグネット25の走査状態と、ターゲット23の復路におけるマグネット25の走査状態とのバラツキを相殺する。これにより、走査方向における基板S内位置による成膜バラツキが発生することを防止してムラをなくし、成膜特性の均一化を図ることが可能となる。 In the present embodiment, the variation between the scanning state of the magnet 25 on the outward path of the target 23 and the scanning state of the magnet 25 on the return path of the target 23 is canceled. Accordingly, it is possible to prevent the occurrence of film formation variation due to the position in the substrate S in the scanning direction, to eliminate unevenness, and to achieve uniform film formation characteristics.
 また、図6に破線で囲んだように、基板S中央において、左側のターゲット23往路においてマグネット25が図で上向きに移動している部分では、右側のターゲット23の復路においてマグネット25は、図で下向きに移動している。 Also, as surrounded by a broken line in FIG. 6, in the center of the substrate S, in a portion where the magnet 25 is moving upward in the figure on the outward path of the target 23 on the left side, the magnet 25 is located on the return path of the target 23 on the right side. Moving down.
 このように、マグネット25をターゲット23の往復動作において、第1位置P1からスタートし、奇数回往復するように設定することで、マグネット25の移動方向が、ターゲット23の往路と復路とにおいて互いにキャンセルされるようにマグネット25の移動方向を設定することが可能となる。 By setting the magnet 25 so as to start from the first position P1 and reciprocate an odd number of times in the reciprocating operation of the target 23, the moving direction of the magnet 25 cancels each other between the forward path and the backward path of the target 23. It is possible to set the moving direction of the magnet 25 in such a manner as to be performed.
 これにより、走査方向における基板S内位置による成膜バラツキが発生することを防止してムラをなくし、成膜特性の均一化を図ることが可能となる。 (4) This prevents the occurrence of film formation variation due to the position in the substrate S in the scanning direction, eliminates unevenness, and makes it possible to achieve uniform film formation characteristics.
 本実施形態においては、上記のようにカソードユニット22(ターゲット23)およびマグネット25の走査速度および方向を設定したことで、成膜ムラを低減することができる。 In the present embodiment, by setting the scanning speed and direction of the cathode unit 22 (the target 23) and the magnet 25 as described above, it is possible to reduce film formation unevenness.
 また、本実施形態において、カソードユニット22が開始位置Stに配置された状態で、マグネット25は、図4に示した第2端部23e2側ではなく、ターゲット23の基板Sに近い第1端部23e1の近くに位置していてもよい。 In the present embodiment, in a state where the cathode unit 22 is arranged at the start position St, the magnet 25 is not located on the second end 23e2 side shown in FIG. 23e1.
 この場合、図17に示すように、図7における黒三角矢印と二本線の矢印とが逆になった状態で走査が行われる。
 図17は、本実施形態におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係の他の例を示すグラフである。
In this case, as shown in FIG. 17, scanning is performed in a state where the black triangle arrow and the two-line arrow in FIG. 7 are reversed.
FIG. 17 is a graph showing another example of the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
 具体的には、図17において線上の黒三角矢印で示したターゲット23の往路におけるマグネット25が和速度Vmaxで移動する領域と、図17において線上の二本線の矢印で示したターゲット23の復路におけるマグネット25が和速度Vmaxで移動する領域とが、連続する。これにより開始位置Stから折り返し位置Enを介して開始位置Stまで一往復カソードユニット22が移動する間に、走査方向における形成領域R1の全域で、マグネット25が和速度Vmaxで移動した部分が連続することができる。 Specifically, in FIG. 17, a region where the magnet 25 moves at the sum speed Vmax in the outward path of the target 23 indicated by the black triangle arrow on the line and a return path of the target 23 indicated by the double line arrow in the line in FIG. 17. The region where the magnet 25 moves at the sum speed Vmax is continuous. As a result, while the reciprocating cathode unit 22 moves from the start position St to the start position St via the turnback position En, the portion where the magnet 25 moves at the sum velocity Vmax is continuous over the entire formation region R1 in the scanning direction. be able to.
 実際には、図17に示すように、ターゲット23の往路における和速度Vmaxの領域と、ターゲット23の復路における和速度Vmaxの領域とは、互いに重なる部分もあるが、少なくとも、カソードユニット22が基板Sに対して一往復する間において、マグネット25が和速度Vmaxで移動する領域が、走査方向における基板Sの全体を覆うようになることができる。
 これにより、成膜ムラを低減することができる。
Actually, as shown in FIG. 17, the area of the sum velocity Vmax in the forward path of the target 23 and the area of the sum velocity Vmax in the return path of the target 23 overlap each other, but at least the cathode unit 22 During one reciprocation with respect to S, the region where the magnet 25 moves at the sum velocity Vmax can cover the entire substrate S in the scanning direction.
As a result, film formation unevenness can be reduced.
 以下、本発明の第2実施形態に係るスパッタリング方法、スパッタリング装置を、図面に基づいて説明する。
 図8,図9は、本実施形態におけるスパッタリングにおけるターゲットとマグネットとの揺動を説明するための図であって、スパッタリングにおける作用を示す図である。図10は、本実施形態におけるターゲットとマグネットとの走査方向における位置と時間との関係を示すグラフである。図11は、本実施形態におけるターゲットとマグネットとの合成速度と基板内のマグネットの位置との関係を示すグラフである。
 マグネットの走査状態に関する点で、本実施形態は、上述した第1実施形態と異なる。これ以外の上述した第1実施形態と対応する構成には同一の符号を付してその説明を省略する。
Hereinafter, a sputtering method and a sputtering apparatus according to a second embodiment of the present invention will be described with reference to the drawings.
FIG. 8 and FIG. 9 are diagrams for explaining the swing of the target and the magnet in the sputtering according to the present embodiment, and are diagrams showing the operation in the sputtering. FIG. 10 is a graph showing the relationship between the position of the target and the magnet in the scanning direction and time in the present embodiment. FIG. 11 is a graph showing the relationship between the synthesis speed of the target and the magnet and the position of the magnet in the substrate in the present embodiment.
This embodiment is different from the first embodiment described above in terms of the scanning state of the magnet. The other components corresponding to those of the above-described first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 本実施形態においては、カソードユニット22が開始位置Stに配置された状態で、マグネット25は、図8に示すように、ターゲット23の第1端部23e1と第2端部23e2との中央位置Cに位置している。 In the present embodiment, in a state where the cathode unit 22 is disposed at the start position St, as shown in FIG. 8, the magnet 25 moves to the center position C between the first end 23e1 and the second end 23e2 of the target 23. It is located in.
 また、基板Sに対するターゲット23の開始位置Stから折り返し位置Enを介して開始位置Stまで戻るまでの1往復動作において、ターゲット23に対するマグネット25の往復動作の回数が、図10,図11に示すように、偶数回に設定される。 Further, in one reciprocating operation from the start position St of the target 23 to the substrate S to return to the start position St via the turnback position En, the number of reciprocating operations of the magnet 25 with respect to the target 23 is as shown in FIGS. Is set to an even number of times.
 詳細に説明すると、本実施形態において、走査方向にカソードユニット22が移動をはじめると、マグネット25も走査方向に移動しはじめたとき、図10,図11に示すように、カソードユニット22は、瞬間的に加速した後、一定なカソード走査速度VCaで基板Sに対して移動する。カソード走査速度VCaは、図10におけるグラフ線Caの傾きで示される。
 同時に、マグネット25は、カソードユニット22のターゲット23に対してマグネット走査速度VMgで移動する。マグネット走査速度VMgは、図10におけるグラフ線Mgの傾きで示される。
More specifically, in the present embodiment, when the cathode unit 22 starts moving in the scanning direction, and when the magnet 25 also starts moving in the scanning direction, as shown in FIGS. Thereafter, the substrate S moves at a constant cathode scanning speed VCa with respect to the substrate S. The cathode scanning speed VCa is indicated by the slope of the graph line Ca in FIG.
At the same time, the magnet 25 moves at a magnet scanning speed VMg with respect to the target 23 of the cathode unit 22. The magnet scanning speed VMg is indicated by the slope of the graph line Mg in FIG.
 ここで、カソードユニット22の走査距離をLCa、走査時間をVCaとし、マグネット25の走査距離をLMg、走査時間をVMgとした際に、
 LCa/VCa > LMg/VMg
 を満たす関係とされている。
Here, when the scanning distance of the cathode unit 22 is LCa, the scanning time is VCa, the scanning distance of the magnet 25 is LMg, and the scanning time is VMg,
LCa / VCa> LMg / VMg
The relationship is satisfied.
 カソードユニット22が開始位置Stから折り返し位置Enに到達する往路において、マグネット25は、ターゲット23に対して第1位置P1と第2位置P2との間を奇数回行き来する。 (4) On the outward path where the cathode unit 22 reaches the turnback position En from the start position St, the magnet 25 moves back and forth between the first position P1 and the second position P2 with respect to the target 23 an odd number of times.
 つまり、カソードユニット22が、図10に線Caで示すように、グラフ左端の開始位置Stからグラフ中央の折り返し位置Enまで移動する間に、マグネット25は、図10に線Mgで示すように、第1位置P1と第2位置P2との間を5回往復する。つまり、ターゲット23の往路で、マグネット25は、中央位置Cから第2位置P2に3回、および第1位置P1に2回到達する。 That is, while the cathode unit 22 moves from the start position St at the left end of the graph to the turnback position En at the center of the graph as shown by the line Ca in FIG. It reciprocates five times between the first position P1 and the second position P2. That is, on the outward path of the target 23, the magnet 25 reaches the second position P2 three times from the center position C and reaches the first position P1 twice.
 このため、マグネット25は、図11に示すように、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxと、カソード走査速度VCaとマグネット走査速度VMgとの差速度Vminとのいずれかで、一定速度として基板Sに対して走査される。さらに、これら、和速度Vmaxと差速度Vminとの切替時には、なるべく短い時間および距離で加速するように設定される。 For this reason, as shown in FIG. 11, the magnet 25 has one of a sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg, and a difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg. The substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
 なお、図10,図11においても、ターゲット23の往路における位置または速度の変化を線Caおよび線Mg上の黒三角矢印で示し、ターゲット23の復路における位置または速度の変化を線Caおよび線Mg上の二本線の矢印で示している。 10 and 11, the change in the position or speed of the target 23 on the outward path is indicated by black triangle arrows on the lines Ca and Mg, and the change in position or speed of the target 23 on the return path is indicated by the lines Ca and Mg. This is indicated by the double arrow above.
 ターゲット23の往路が終了し、ターゲット23が折り返し位置Enに到達した際に、図8に示すように、マグネット25は、第1位置P1と第2位置P2との中央位置Cに位置する。
 そして、ターゲット23は、図10,図11に示すように、折り返し位置Enに到達すると即座に開始位置Stに向けて復路をスタートされる。同時に、マグネット25は、図10,図11に示すように、中央位置Cから第1位置P1に向かう動きを継続する。
When the forward path of the target 23 is completed and the target 23 reaches the turnback position En, the magnet 25 is located at the center position C between the first position P1 and the second position P2, as shown in FIG.
Then, as shown in FIGS. 10 and 11, when the target 23 reaches the turn-back position En, the target 23 is immediately started to return to the start position St. At the same time, the magnet 25 continues to move from the center position C to the first position P1, as shown in FIGS.
 カソードユニット22が折り返し位置Enから開始位置Stに到達する復路においても、マグネット25は、ターゲット23に対して第1位置P1と第2位置P2との間を奇数回行き来する。 {Circle around (2)} Even on the return path where the cathode unit 22 reaches the start position St from the turnback position En, the magnet 25 moves back and forth between the first position P1 and the second position P2 with respect to the target 23 an odd number of times.
 つまり、カソードユニット22が、図10に線Caで示すように、グラフ中央の折り返し位置Enからグラフ右端の開始位置Stまで移動する間に、マグネット25は、図10に線Mgで示すように、第1位置P1と第2位置P2との間を5回往復する。つまり、ターゲット23の復路で、マグネット25は中央位置Cから第2位置P2に2回、および第1位置P1に3回到達する。 That is, while the cathode unit 22 moves from the folded position En at the center of the graph to the start position St at the right end of the graph as shown by the line Ca in FIG. It reciprocates five times between the first position P1 and the second position P2. That is, on the return path of the target 23, the magnet 25 reaches the second position P2 twice from the center position C and reaches the first position P1 three times.
 ターゲット23の復路においても、マグネット25は、図11に示すように、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxと、カソード走査速度VCaとマグネット走査速度VMgとの差速度Vminとのいずれかで、一定速度として基板Sに対して走査される。さらに、これら、和速度Vmaxと差速度Vminとの切替時には、なるべく短い時間および距離で加速するように設定される。 Also on the return path of the target 23, as shown in FIG. 11, the magnet 25 is controlled by the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg and the difference speed Vmin between the cathode scanning speed VCa and the magnet scanning speed VMg. At any time, the substrate S is scanned at a constant speed. Further, at the time of switching between the sum speed Vmax and the difference speed Vmin, it is set so as to accelerate in a time and a distance as short as possible.
 これにより、マグネット25が、カソード走査速度VCaとマグネット走査速度VMgとの和速度Vmaxとして基板Sに対して走査される領域は、走査方向における形成領域R1の全域、すなわち、基板Sの全域にわたって配置するように設定される。 Accordingly, the region where the magnet 25 is scanned with respect to the substrate S as the sum speed Vmax of the cathode scanning speed VCa and the magnet scanning speed VMg is arranged over the entire region of the formation region R1 in the scanning direction, that is, over the entire region of the substrate S. Is set to
 具体的には、図11において線上の黒三角矢印で示したターゲット23の往路におけるマグネット25が和速度Vmaxで移動する領域と、図11において線上の二本線の矢印で示したターゲット23の復路におけるマグネット25が和速度Vmaxで移動する領域とが、連続する。これにより開始位置Stから折り返し位置Enを介して開始位置Stまで一往復カソードユニット22が移動する間に、走査方向における形成領域R1の全域で、マグネット25が和速度Vmaxで移動した部分が連続する。 Specifically, in FIG. 11, a region where the magnet 25 moves at the sum speed Vmax in the outward path of the target 23 indicated by the black triangle arrow on the line and a return path of the target 23 indicated by the double-line arrow on the line in FIG. 11. The region where the magnet 25 moves at the sum speed Vmax is continuous. As a result, while the reciprocating cathode unit 22 moves from the start position St to the start position St via the turnback position En, the portion where the magnet 25 moves at the sum velocity Vmax is continuous over the entire formation region R1 in the scanning direction. .
 実際には、図11に示すように、ターゲット23の往路における和速度Vmaxの領域と、ターゲット23の復路における和速度Vmaxの領域とは、互いに重なる部分もあるが、少なくとも、カソードユニット22が基板Sに対して一往復する間において、マグネット25が和速度Vmaxで移動する領域が、走査方向における基板Sの全体を覆うようになっている。 Actually, as shown in FIG. 11, the area of the sum velocity Vmax in the forward path of the target 23 and the area of the sum velocity Vmax in the return path of the target 23 partially overlap each other. During one reciprocation with respect to S, the area where the magnet 25 moves at the sum velocity Vmax covers the entire substrate S in the scanning direction.
 ターゲット23の復路が終了し、ターゲット23が開始位置Stに到達した際に、図9に示すように、マグネット25は、第1位置P1と第2位置P2との中央位置Cに位置する。 When the return path of the target 23 ends and the target 23 reaches the start position St, as shown in FIG. 9, the magnet 25 is located at the center position C between the first position P1 and the second position P2.
 これにより、ターゲット23の往復動作を一回終了する。 This completes the reciprocating operation of the target 23 once.
 本実施形態においては、ターゲット23の往路におけるマグネット25の走査状態と、ターゲット23の復路におけるマグネット25の走査状態とのバラツキが相殺される。走査方向における基板S内位置による成膜バラツキが発生することを防止してムラをなくし、成膜特性の均一化を図ることが可能となる。 In the present embodiment, the variation between the scanning state of the magnet 25 on the outward path of the target 23 and the scanning state of the magnet 25 on the return path of the target 23 is offset. It is possible to prevent unevenness in film formation due to the position in the substrate S in the scanning direction, to eliminate unevenness, and to achieve uniform film formation characteristics.
 また、図10に示すように、例えば、基板S中央において、左側のターゲット23往路においてマグネット25が図で上向きに移動している部分では、右側のターゲット23の復路においてマグネット25は、図で下向きに移動している。 Further, as shown in FIG. 10, for example, in the center of the substrate S, in the portion where the magnet 25 moves upward in the figure on the outward path of the target 23 on the left, the magnet 25 moves downward in the figure on the return path of the target 23 on the right. Have moved to.
 このように、マグネット25をターゲット23の往復動作において、中央位置Cから第2位置P2に向かう方向にスタートして、偶数回往復するように設定することで、マグネット25の移動方向が、ターゲット23の往路と復路とにおいて互いにキャンセルされるようにマグネット25の移動方向を設定することが可能となる。 As described above, in the reciprocating operation of the target 23, the magnet 25 is set to start in the direction from the center position C toward the second position P2 and to reciprocate an even number of times, so that the moving direction of the magnet 25 is It is possible to set the moving direction of the magnet 25 so as to cancel each other on the outward path and the return path.
 これにより、走査方向における基板S内位置による成膜バラツキが発生することを防止してムラをなくし、成膜特性の均一化を図ることが可能となる。 (4) This prevents the occurrence of film formation variation due to the position in the substrate S in the scanning direction, eliminates unevenness, and makes it possible to achieve uniform film formation characteristics.
 さらに、マグネット25が走査方向と反対の方向へスタートしてもよい。この場合、図11において示した黒三角矢印と二本線矢印とを逆にした状態となる。この場合でも、同様に、成膜ムラを低減することができる。 Furthermore, the magnet 25 may start in the direction opposite to the scanning direction. In this case, the black triangle arrow and the two-line arrow shown in FIG. 11 are reversed. Even in this case, similarly, film formation unevenness can be reduced.
 本実施形態においては、上記のようにカソードユニット22(ターゲット23)およびマグネット25の走査速度および方向を設定したことで、成膜ムラを低減することができる。 In the present embodiment, by setting the scanning speed and direction of the cathode unit 22 (the target 23) and the magnet 25 as described above, it is possible to reduce film formation unevenness.
 なお、上記の各実施形態においては、直流電源26Dに一枚のターゲット23が接続される構成としたが、交流電源に接続された偶数枚のターゲットを有する構成とすることもできる。 In the above embodiments, one target 23 is connected to the DC power supply 26D. However, an even number of targets connected to the AC power supply may be used.
 また、カソードユニット22とマグネット25との速度比を保つ場合には、カソードユニット22の速度を下げてもよい。例えば、基板Sの端付近で遅くして基板Sの端における膜厚を厚くする場合などが考えられる。 (4) In order to maintain the speed ratio between the cathode unit 22 and the magnet 25, the speed of the cathode unit 22 may be reduced. For example, it is conceivable that the film thickness at the edge of the substrate S is increased by slowing down near the edge of the substrate S.
 上記の実施形態においては、スパッタチャンバ13がレーン変更する構成として説明したが、本発明はこの構成に限られない。 In the above embodiment, the configuration in which the sputter chamber 13 changes lanes has been described, but the present invention is not limited to this configuration.
 例えば、本発明は、図18に示すように、プラテン機構を有するクラスタ型枚葉式のスパッタリング装置を採用することもできる。
 図18は、他の実施形態におけるスパッタリング装置の全体構成を示す構成図である。
For example, as shown in FIG. 18, the present invention may employ a cluster type single wafer type sputtering apparatus having a platen mechanism.
FIG. 18 is a configuration diagram illustrating an overall configuration of a sputtering apparatus according to another embodiment.
 このスパッタリング装置100は、被処理基板Sを搬入/搬出するロード・アンロード室102と、基板S上に所定の被膜をスパッタ法により形成する成膜室(チャンバ)104と、成膜室104とロード・アンロード室102との間の搬送室103と、を備えている。スパッタリング装置100は、図において、サイドスパッタ式として示しているが、スパッタダウン式、あるいは、スパッタアップ式とすることもできる。 The sputtering apparatus 100 includes a load / unload chamber 102 for loading / unloading a substrate S to be processed, a film formation chamber (chamber) 104 for forming a predetermined film on the substrate S by a sputtering method, and a film formation chamber 104. And a transfer chamber 103 between the loading / unloading chamber 102. Although the sputtering apparatus 100 is shown as a side sputtering type in the drawing, it may be a sputtering down type or a sputtering up type.
 スパッタリング装置100には、成膜室104Aとロード・アンロード室102Aとが設けられている。これら複数のチャンバ102,102A,104,104Aが搬送室103の周囲を取り囲むように形成されており、こうしたチャンバは、例えば、互いに隣接して形成された2つのロード・アンロード室(チャンバ)と、複数の処理室(チャンバ)として構成されることになる。 The sputtering apparatus 100 is provided with a film forming chamber 104A and a load / unload chamber 102A. The plurality of chambers 102, 102A, 104, 104A are formed so as to surround the transfer chamber 103. For example, such chambers include two load / unload chambers (chambers) formed adjacent to each other. And a plurality of processing chambers (chambers).
 例えば、一方のロード・アンロード室102は、外部からスパッタリング装置100に向けて基板Sを搬入するロード室、他方のロード・アンロード室102Aは、スパッタリング装置100から外部に基板Sを搬出するアンロード室とし、また、成膜室104と成膜室104Aとが異なる成膜工程をおこなう構成とすることもできる。 For example, one load / unload chamber 102 is a load chamber for carrying the substrate S from the outside toward the sputtering apparatus 100, and the other load / unload chamber 102A is an unload chamber for carrying the substrate S from the sputtering apparatus 100 to the outside. Alternatively, the load chamber may be used, and the film formation chamber 104 and the film formation chamber 104A may perform different film formation steps.
 こうしたそれぞれのチャンバ102,102A,104,104Aと搬送室103との間には、それぞれ仕切りバルブが形成されていればよい。 仕 A partition valve may be formed between each of the chambers 102, 102A, 104, 104A and the transfer chamber 103.
 ロード・アンロード室102には、外部から搬入された基板Sの載置位置を設定してアライメント可能な位置決め部材が配置されていてもよい。
 ロード・アンロード室102には、また、この室内を粗真空引きするロータリーポンプ等の粗引き排気手段が設けられる。
In the loading / unloading chamber 102, a positioning member capable of setting and aligning the mounting position of the substrate S carried in from the outside may be arranged.
The load / unload chamber 102 is also provided with a rough evacuation unit such as a rotary pump for roughly evacuating the chamber.
 搬送室103の内部には、図18に示すように、搬送装置(搬送ロボット)103aが配置されている。 搬 送 A transfer device (transfer robot) 103a is disposed inside the transfer chamber 103, as shown in FIG.
 搬送装置103aは、回転軸と、この回転軸に取り付けられたロボットアームと、ロボットアームの一端に形成されたロボットハンドと、上下動装置とを有している。ロボットアームは、互いに屈曲可能な第一、第二の能動アームと、第一、第二の従動アームとから構成されている。搬送装置103aは、被搬送物である基板Sを、チャンバ102,102A,103,104,104A間で移動させることができる。 The transfer device 103a has a rotating shaft, a robot arm attached to the rotating shaft, a robot hand formed at one end of the robot arm, and a vertical moving device. The robot arm includes first and second active arms that can bend with each other, and first and second driven arms. The transfer device 103a can move the substrate S, which is the transfer object, between the chambers 102, 102A, 103, 104, and 104A.
 成膜室104は、上述した第1および第2実施形態のスパッタチャンバ13と同様に、ムービングカソードによりスパッタリングをおこなう構成とされることができる。 (4) The film formation chamber 104 can be configured to perform sputtering using a moving cathode, similarly to the sputtering chambers 13 of the first and second embodiments described above.
 さらに、本発明は、図19に示すように、インターバック式のスパッタリング装置を採用することもできる。
 図19は、他の実施形態におけるスパッタリング装置の全体構成を示す構成図である。
Further, the present invention can employ an inter-back type sputtering apparatus as shown in FIG.
FIG. 19 is a configuration diagram illustrating an overall configuration of a sputtering apparatus according to another embodiment.
 このスパッタリング装置200は、インターバック式のスパッタ装置であり、基板(またはキャリア)Sを搬入/搬出する仕込み/取り出し室202と、基板S上に所定の被膜をスパッタ法により形成する耐圧の成膜室(真空槽)203とを備えている。 The sputtering apparatus 200 is an inter-back type sputtering apparatus, and includes a loading / unloading chamber 202 for loading / unloading a substrate (or a carrier) S, and a pressure-resistant film forming a predetermined coating on the substrate S by a sputtering method. (Vacuum tank) 203.
 仕込み/取出し室202には、この室内を粗真空引きするロータリーポンプ等の粗引き排気手段204が設けられ、この室内には、基板を保持・搬送するための基板トレイ205が移動可能に配置されている。成膜室203の内部には、基板を加熱するためのヒータ211が設けられている。また、ターゲットを保持するバッキングプレート206に負電位のスパッタ電圧を印加する電源207、この室内にガスを導入するガス導入手段208、成膜室203の内部を高真空引きするターボ分子ポンプ等の高真空排気手段209、シールド電極となるチムニ(構造体)210が設けられている。 The loading / unloading chamber 202 is provided with a rough evacuation means 204 such as a rotary pump for roughly vacuuming the chamber, and a substrate tray 205 for holding and transporting the substrate is movably disposed in the chamber. ing. A heater 211 for heating the substrate is provided inside the film forming chamber 203. Further, a power source 207 for applying a negative potential sputtering voltage to the backing plate 206 holding the target, gas introduction means 208 for introducing gas into the chamber, and a turbo-molecular pump such as a turbo molecular pump for evacuating the inside of the film formation chamber 203 to a high vacuum. An evacuation unit 209 and a chimney (structure) 210 serving as a shield electrode are provided.
 成膜室203は、上述した第1および第2実施形態のスパッタチャンバ13と同様に、ムービングカソードによりスパッタリングをおこなう構成とされることができる。 (4) The film forming chamber 203 can be configured to perform sputtering by a moving cathode, similarly to the sputtering chambers 13 of the first and second embodiments described above.
 これらの構成においても、本発明のスパッタリング方法を適用することができ、走査方向における基板S内位置による成膜バラツキが発生することを防止してムラをなくし、成膜特性の均一化を図ることが可能となる。 Also in these configurations, the sputtering method of the present invention can be applied, and it is possible to prevent unevenness in film formation due to a position in the substrate S in the scanning direction, eliminate unevenness, and achieve uniform film formation characteristics. Becomes possible.
 以下、本発明にかかる実施例を説明する。 Hereinafter, embodiments according to the present invention will be described.
 なお、本発明における具体例について説明する。
 ここでは、図4~図7に示すように、開始位置Stにおけるターゲット23に対してマグネット25を第1位置P1からスタートさせるとともに、ターゲット23に対してマグネット25を奇数回往復動作させて、開始位置Stにおけるターゲット23に対して中央位置Cで停止するように、ターゲット23を基板Sに対して一往復させて、スパッタリングをおこなった。その際における諸元を示す。
A specific example of the present invention will be described.
Here, as shown in FIGS. 4 to 7, the magnet 25 is started from the first position P1 with respect to the target 23 at the start position St, and the magnet 25 is reciprocated an odd number of times with respect to the target 23 to start. The sputtering was performed by reciprocating the target 23 once with respect to the substrate S so as to stop at the center position C with respect to the target 23 at the position St. The specifications at that time are shown.
 膜種:ITO
 基板:1500x1850    
 膜厚測定ポイント:224pt(基板端10mm除く)
 Power:3.1kW
 圧力:0.3Pa
 ガス:Ar 720sccm
Film type: ITO
Substrate: 1500x1850
Film thickness measurement point: 224 pt (excluding 10 mm of substrate edge)
Power: 3.1 kW
Pressure: 0.3Pa
Gas: Ar 720 sccm
 ここで、マグネットの往復回数を、7pass、および、9passとして成膜をおこない、その膜厚を上記の測定ポイント数で測定し膜厚分布を算出した。なお、膜厚分布は、膜厚の最大値Maxと最小値Minとの差および和から、
 (Max-Min)/(Max+Min)×100
 として膜厚%を算出した。
 その結果を図16に示す。
Here, the film was formed with the number of reciprocations of the magnet being 7 pass and 9 pass, and the film thickness was measured at the above-mentioned number of measurement points to calculate the film thickness distribution. The film thickness distribution is obtained from the difference and the sum between the maximum value Max and the minimum value Min of the film thickness.
(Max−Min) / (Max + Min) × 100
And the film thickness% was calculated.
FIG. 16 shows the result.
 さらに、比較のため、図12~図13に示すように、開始位置Stにおけるターゲット23に対してマグネット25を第1位置P1からスタートさせるとともに、折り返し位置Enにおけるターゲット23に対して第2位置P2となるように、ターゲット23に対してマグネット25を偶数回往復動作させる。この状態で、ターゲット23を基板Sに対して一往復させて、開始位置Stで停止したターゲット23におけるマグネットが第1位置P1で停止するように、スパッタリングをおこなった。 Further, for comparison, as shown in FIGS. 12 and 13, the magnet 25 is started from the first position P1 with respect to the target 23 at the start position St, and the second position P2 with respect to the target 23 at the turnback position En. The magnet 25 is reciprocated an even number of times with respect to the target 23 such that In this state, sputtering was performed such that the target 23 reciprocated once with respect to the substrate S, and the magnet in the target 23 stopped at the start position St stopped at the first position P1.
 この際、図14~図15に示すように、基板Sに対して和速度Vmaxでマグネット25が走査される領域が、ターゲット23の往路と復路とで重なるようにするとともに、差速度Vminでマグネット25が走査される領域が、ターゲット23の往路と復路とで重なるようにした。 At this time, as shown in FIGS. 14 and 15, the region scanned by the magnet 25 at the sum velocity Vmax with respect to the substrate S is made to overlap on the forward path and the return path of the target 23, and the magnet is scanned at the differential velocity Vmin. The scanning area 25 overlaps the forward path and the return path of the target 23.
 ここで、マグネットの往復回数を、4pass、および、10passとして成膜をおこない、その膜厚を上記の測定ポイント数で測定し、同様にして膜厚分布を算出した。
 その結果を図16に示す。
Here, film formation was performed with the number of reciprocations of the magnet being 4 pass and 10 pass, and the film thickness was measured at the above-mentioned number of measurement points, and the film thickness distribution was calculated in the same manner.
FIG. 16 shows the result.
 これらの結果から、ターゲット23に対してマグネット25の往復回数(Pass)を奇数回として、ターゲット23の往路と復路とにおいてマグネットのpass走査方向の違いをキャンセルするようにマグネットを揺動させると、膜厚分布が半分程度まで小さくなり、膜特性が大幅に改善することがわかる。 From these results, when the number of reciprocations (Pass) of the magnet 25 with respect to the target 23 is set to an odd number, and the magnet is swung so as to cancel the difference in the pass scanning direction of the magnet between the forward path and the return path of the target 23, It can be seen that the film thickness distribution is reduced to about half and the film characteristics are significantly improved.
 さらに、ターゲット23に対してマグネット25の往復回数(Pass)を多くすると、膜厚分布が改善することもわかる。 (4) It is also found that the film thickness distribution is improved when the number of reciprocations (Pass) of the magnet 25 with respect to the target 23 is increased.
 本発明の活用例として、OLED用のTFTのチャネル層、トップエミッション構造のカソードの金属薄膜層、IMI構造のITO層などの製造を挙げることができる。 {Examples of application of the present invention include the production of a channel layer of a TFT for an OLED, a metal thin film layer of a cathode having a top emission structure, and an ITO layer having an IMI structure.
 10…スパッタリング装置
 11…搬出入チャンバ
 12…前処理チャンバ
 13…スパッタチャンバ
 14…ゲートバルブ
 15…排気部
 16…成膜レーン
 17…回収レーン
 18…カソード装置
 19…レーン変更部
 21…ガス供給部
 22…カソードユニット
 23…ターゲット
 23a…表面
 23e1…第1端部
 23e2…第2端部
 25…マグネット
 26D…直流電源
 27…走査部
 29…マグネット走査部
 P1…第1位置
 P2…第2位置
 C…中央位置
 St…開始位置
 En…折り返し位置
 S…基板(被処理基板)
 R1…形成領域
 R2…対向領域
 Re1…端部
 Re2…端部
 VCa…カソード走査速度
 VMg…マグネット走査速度
 Vmax…和速度
 Vmin…差速度
DESCRIPTION OF SYMBOLS 10 ... Sputtering apparatus 11 ... Carry-in / out chamber 12 ... Pre-processing chamber 13 ... Sputter chamber 14 ... Gate valve 15 ... Exhaust part 16 ... Film formation lane 17 ... Recovery lane 18 ... Cathode device 19 ... Lane change part 21 ... Gas supply part 22 ... Cathode unit 23 ... Target 23a ... Surface 23e1 ... First end 23e2 ... Second end 25 ... Magnet 26D ... DC power supply 27 ... Scanning unit 29 ... Magnet scanning unit P1 ... First position P2 ... Second position C ... Center Position St: Start position En: Turn-back position S: Substrate (substrate to be processed)
R1 ... formation area R2 ... facing area Re1 ... edge Re2 ... edge VCa ... cathode scanning speed VMg ... magnet scanning speed Vmax ... sum speed Vmin ... difference speed

Claims (7)

  1.  スパッタリング方法であって、
     被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出可能なターゲットを有するカソードユニットと、基板面内方向となる走査方向において前記被成膜基板に対して前記カソードユニットを相対的に往復動作させる走査部と、前記カソードユニットにおける前記ターゲットにエロージョン領域を形成するマグネットと、前記走査方向に前記マグネットを往復動作させるマグネット走査部とを用い、
     前記カソードユニットが前記走査部によって前記走査方向に前記被成膜基板に対して相対的に往復動作される間に、前記マグネットを前記マグネット走査部によって前記走査方向に往復動作させ、
     前記被成膜基板に対する前記ターゲットの速度に対応して、
     前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、
     前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作とが、
     互いに補償し合うように設定される、
     スパッタリング方法。
    A sputtering method,
    A cathode unit having a target capable of emitting sputtered particles toward a formation region where a film is formed on the deposition target substrate, and the cathode unit being positioned relative to the deposition target substrate in a scanning direction that is an in-plane direction of the substrate. A scanning unit that performs reciprocating operation, a magnet that forms an erosion area on the target in the cathode unit, and a magnet scanning unit that reciprocates the magnet in the scanning direction,
    While the cathode unit is relatively reciprocated with respect to the deposition substrate in the scanning direction by the scanning unit, the magnet is reciprocated in the scanning direction by the magnet scanning unit,
    According to the speed of the target with respect to the film formation substrate,
    Reciprocating motion of the magnet in a forward movement of the target with respect to the film formation substrate,
    Reciprocating operation of the magnet in the return path operation of the target with respect to the deposition target substrate,
    Set to compensate each other,
    Sputtering method.
  2.  前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記被成膜基板から遠い前記ターゲットの端部に位置する、または、前記マグネットが前記走査方向において前記被成膜基板から近い前記ターゲットの端部に位置するとともに、
     前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が奇数回に設定される、
     請求項1記載のスパッタリング方法。
    At a start position of the target and the magnet, the magnet is located at an end of the target far from the film formation substrate in the scanning direction, or the magnet is close to the film formation substrate in the scanning direction. Located at the end of the target,
    In one reciprocating operation of the target with respect to the deposition target substrate, the number of reciprocating operations of the magnet with respect to the target is set to an odd number,
    The sputtering method according to claim 1.
  3.  前記ターゲットの往路動作終了位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置する、
     請求項2記載のスパッタリング方法。
    At the forward movement end position of the target, the magnet is located at the center of the target in the scanning direction,
    The sputtering method according to claim 2.
  4.  前記ターゲットおよび前記マグネットの開始位置において、前記マグネットが前記走査方向において前記ターゲットの中央部に位置するとともに、
     前記被成膜基板に対する前記ターゲットの1往復動作において、前記ターゲットに対する前記マグネットの往復動作の回数が偶数回に設定される、
     請求項1記載のスパッタリング方法。
    At the start position of the target and the magnet, the magnet is located at the center of the target in the scanning direction,
    In one reciprocating operation of the target with respect to the deposition target substrate, the number of reciprocating operations of the magnet with respect to the target is set to an even number.
    The sputtering method according to claim 1.
  5.  スパッタリング装置であって、
     被成膜基板において膜が形成される形成領域に向けてスパッタ粒子を放出するカソードユニットと、
     前記カソードユニットと前記被成膜基板とを相対的に基板面内方向となる走査方向に往復動作可能な走査部と、
     エロージョン領域が形成されるターゲットと、
     前記ターゲットに対して前記被成膜基板とは反対側に配置されて前記ターゲットに前記エロージョン領域を形成するマグネットと、
     前記マグネットを前記ターゲットの前記走査方向における端部間で往復動作可能なマグネット走査部と、
     前記走査部と前記マグネット走査部とに接続されて、前記カソードユニットの往復動作及び前記マグネットの往復動作を制御する制御部と、
     を有し、
     前記制御部において、
     前記被成膜基板に対する前記ターゲットの速度に対応して、
     前記被成膜基板に対する前記ターゲットの往路動作における前記マグネットの往復動作と、
     前記被成膜基板に対する前記ターゲットの復路動作における前記マグネットの往復動作と、が互いに補償し合うように設定される、
     スパッタリング装置。
    A sputtering device,
    A cathode unit that emits sputter particles toward a formation region where a film is formed on the deposition target substrate;
    A scanning unit capable of reciprocatingly moving the cathode unit and the substrate on which the film is to be formed in a scanning direction that is a direction in a substrate surface;
    A target on which an erosion region is formed;
    A magnet that is arranged on the opposite side of the film formation substrate with respect to the target and forms the erosion region in the target;
    A magnet scanning unit capable of reciprocating the magnet between ends of the target in the scanning direction,
    A control unit connected to the scanning unit and the magnet scanning unit to control a reciprocating operation of the cathode unit and a reciprocating operation of the magnet;
    Has,
    In the control unit,
    According to the speed of the target with respect to the film formation substrate,
    Reciprocating motion of the magnet in a forward movement of the target with respect to the film formation substrate,
    The reciprocating operation of the magnet in the return path operation of the target with respect to the deposition target substrate is set to compensate each other.
    Sputtering equipment.
  6.  スパッタリング装置であって、
     被成膜基板において膜が形成される成膜領域に対向して、前記成膜領域に対して相対的に移動しながらスパッタ粒子を放出する細長形状のカソードユニットと、
     前記カソードユニットを、前記成膜領域の一端より外側の第一成膜外位置から、前記成膜領域の他端より外側の第二成膜外位置の間で往復移動するように、前記カソードユニットの長辺に交差する走査方向に移動させるカソード走査部と、を有し、
     前記カソードユニットは、
     細長のターゲットと、
     前記ターゲットの裏面に配置されるマグネットと、
     前記マグネットを前記ターゲットの長辺に交差する方向に往復させるマグネット走査部と、
     を有し、
     前記成膜領域において、前記カソードユニットの往路動作における前記マグネットの往復動作と、前記カソードユニットの復路動作における前記マグネットの往復動作と、が前記被成膜基板と前記マグネットの相対速度において、補償するように制御される、
     スパッタリング装置。
    A sputtering device,
    An elongated cathode unit that emits sputter particles while moving relative to the film formation region, facing a film formation region where a film is formed on the film formation substrate;
    The cathode unit, so that the cathode unit reciprocates from a first non-deposition position outside one end of the film formation region to a second non-deposition position outside the other end of the film formation region. A cathode scanning unit that moves in a scanning direction that intersects the long side of the
    The cathode unit,
    An elongated target,
    A magnet arranged on the back surface of the target,
    A magnet scanning unit for reciprocating the magnet in a direction intersecting the long side of the target,
    Has,
    In the film forming region, the reciprocating operation of the magnet in the outward movement of the cathode unit and the reciprocating operation of the magnet in the backward movement of the cathode unit compensate for the relative speed between the substrate on which the film is formed and the magnet. Is controlled as
    Sputtering equipment.
  7.  前記成膜領域において、
     前記カソードユニットの往路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、
     前記カソードユニットの復路動作と前記マグネットの往復動作の合成速度の最小値となる領域と、が重ならない、
     請求項6に記載のスパッタリング装置。
    In the film forming area,
    A region where the combined speed of the forward movement of the cathode unit and the reciprocating movement of the magnet is the minimum value,
    The region where the return speed of the cathode unit and the minimum value of the combined speed of the reciprocating motion of the magnet do not overlap,
    The sputtering device according to claim 6.
PCT/JP2019/023615 2018-06-19 2019-06-14 Sputtering method and sputtering device WO2019244786A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980006868.3A CN111527236B (en) 2018-06-19 2019-06-14 Sputtering method and sputtering apparatus
KR1020207018300A KR102334224B1 (en) 2018-06-19 2019-06-14 sputtering method, sputtering device
JP2020525676A JP7066841B2 (en) 2018-06-19 2019-06-14 Sputtering method, sputtering equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116343 2018-06-19
JP2018116343 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244786A1 true WO2019244786A1 (en) 2019-12-26

Family

ID=68983856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023615 WO2019244786A1 (en) 2018-06-19 2019-06-14 Sputtering method and sputtering device

Country Status (5)

Country Link
JP (1) JP7066841B2 (en)
KR (1) KR102334224B1 (en)
CN (1) CN111527236B (en)
TW (1) TWI724435B (en)
WO (1) WO2019244786A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202229593A (en) * 2020-10-06 2022-08-01 日商東京威力科創股份有限公司 Magnetron sputtering apparatus and magnetron sputtering method
CN115558898A (en) * 2022-09-27 2023-01-03 信利(惠州)智能显示有限公司 Method for improving utilization rate of target material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610127A (en) * 1992-06-28 1994-01-18 Ulvac Japan Ltd Magnetron sputtering device
JPH06322534A (en) * 1993-05-07 1994-11-22 Sharp Corp Method and device for forming thin film
JPH0959772A (en) * 1995-08-21 1997-03-04 Nippon Sheet Glass Co Ltd Magnetron sputtering method
WO2012077298A1 (en) * 2010-12-06 2012-06-14 シャープ株式会社 Thin-film forming apparatus and thin-film forming method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581500B2 (en) 1974-03-25 1983-01-11 株式会社東芝 shadow mask
JP4246547B2 (en) * 2003-05-23 2009-04-02 株式会社アルバック Sputtering apparatus and sputtering method
JP5162464B2 (en) * 2006-10-24 2013-03-13 株式会社アルバック Thin film forming method and thin film forming apparatus
JP5145325B2 (en) * 2007-03-01 2013-02-13 株式会社アルバック Thin film forming method and thin film forming apparatus
US20100294649A1 (en) * 2008-01-21 2010-11-25 Ulvac, Inc. Sputtering film forming method and sputtering film forming apparatus
WO2010044257A1 (en) * 2008-10-16 2010-04-22 株式会社アルバック Sputtering apparatus, method for forming thin film, and method for manufacturing field effect transistor
US20130112546A1 (en) * 2011-11-04 2013-05-09 Intevac, Inc. Linear scanning sputtering system and method
JP2015214715A (en) 2012-08-10 2015-12-03 キヤノンアネルバ株式会社 Sputtering apparatus
KR101700341B1 (en) * 2013-08-29 2017-02-13 가부시키가이샤 알박 Reactive sputtering device
WO2017169448A1 (en) * 2016-03-29 2017-10-05 株式会社 アルバック Film-forming apparatus and film-forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610127A (en) * 1992-06-28 1994-01-18 Ulvac Japan Ltd Magnetron sputtering device
JPH06322534A (en) * 1993-05-07 1994-11-22 Sharp Corp Method and device for forming thin film
JPH0959772A (en) * 1995-08-21 1997-03-04 Nippon Sheet Glass Co Ltd Magnetron sputtering method
WO2012077298A1 (en) * 2010-12-06 2012-06-14 シャープ株式会社 Thin-film forming apparatus and thin-film forming method

Also Published As

Publication number Publication date
TW202006165A (en) 2020-02-01
CN111527236B (en) 2022-10-28
KR20200093604A (en) 2020-08-05
CN111527236A (en) 2020-08-11
KR102334224B1 (en) 2021-12-02
JPWO2019244786A1 (en) 2021-01-07
JP7066841B2 (en) 2022-05-13
TWI724435B (en) 2021-04-11

Similar Documents

Publication Publication Date Title
TWI570257B (en) Reactive sputtering apparatus
WO2008050618A1 (en) Thin film forming method and thin film forming device
WO2019244786A1 (en) Sputtering method and sputtering device
JP2010077487A (en) Apparatus for manufacturing organic el device and method for manufacturing the same, and film deposition apparatus and film deposition method
JP6251588B2 (en) Deposition method
JP4768001B2 (en) ORGANIC EL DEVICE MANUFACTURING APPARATUS, ITS MANUFACTURING METHOD, FILM-FORMING APPARATUS, AND FILM-FORMING METHOD
JP2013171811A (en) Deposition device
CN110965031B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
JPH088213A (en) Method and apparatus for sputtering
JP7242293B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
JP2013001920A (en) Sputtering apparatus, film-forming apparatus using the same and film-forming method
TWI731312B (en) Sputtering method
JP5358697B2 (en) Deposition equipment
JP7219140B2 (en) Deposition method
WO2023095872A1 (en) Sputtering device
JP4951712B2 (en) ORGANIC EL DEVICE MANUFACTURING APPARATUS, ITS MANUFACTURING METHOD, FILM-FORMING APPARATUS, AND FILM-FORMING METHOD
JP2022188450A (en) Film deposition apparatus
JP5705933B2 (en) Deposition equipment
CN116288194A (en) Sputtering apparatus
JP2013110114A (en) Apparatus for manufacturing organic el device and angle correction mechanism
JP2020204067A (en) Sputtering apparatus and film deposition method
JP2019026870A (en) Sputtering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207018300

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020525676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823222

Country of ref document: EP

Kind code of ref document: A1