WO2019244456A1 - Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program - Google Patents

Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program Download PDF

Info

Publication number
WO2019244456A1
WO2019244456A1 PCT/JP2019/015911 JP2019015911W WO2019244456A1 WO 2019244456 A1 WO2019244456 A1 WO 2019244456A1 JP 2019015911 W JP2019015911 W JP 2019015911W WO 2019244456 A1 WO2019244456 A1 WO 2019244456A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
imaging
correction
imaging apparatus
image
Prior art date
Application number
PCT/JP2019/015911
Other languages
French (fr)
Japanese (ja)
Inventor
翔 佐藤
渡辺 実
健太郎 藤吉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019244456A1 publication Critical patent/WO2019244456A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a radiation imaging apparatus, a radiation imaging system, a method for controlling a radiation imaging apparatus, and a program.
  • a radiation imaging device including an imaging panel in which pixels in which a conversion element for converting radiation into electric charges and a switching element such as a thin film transistor (TFT) are arranged in an array is widely used.
  • a signal output from each pixel includes an offset component (noise component) due to a dark current of the conversion element, a residual charge component due to a parasitic capacitance of the switch element, and the like. Therefore, offset correction that removes an offset component from a radiation image by subtracting a signal (correction data) read from a pixel without irradiating radiation from a signal for a radiation image that is read from the pixel after irradiation is performed.
  • the offset component changes due to a temperature change or the like during use of the radiation imaging apparatus.
  • the correction data acquired at the time of calibration such as when the radiation imaging apparatus is started, is updated using a signal acquired without irradiating radiation before or after imaging of a radiation image, and the temperature is changed. It is shown that a corresponding offset correction is performed.
  • the offset component may change with time.
  • An object of the present invention is to provide a technique for improving the accuracy of offset correction.
  • a radiation imaging apparatus is a radiation imaging apparatus including a plurality of pixels for acquiring a radiation image, and the radiation imaging apparatus starts operating. Between the time when the radiation image is captured according to the irradiation of the radiation and the time when the radiation is not irradiated, at least two times of the imaging for the correction are performed in a state where the radiation is not irradiated, and the signal obtained by the at least two times of the imaging for the correction is obtained.
  • Correction information indicating a correction value that changes over time based on the correction information, and corrects image data obtained from a plurality of pixels by capturing the radiation image based on the timing at which the radiation image was captured and the correction information. It is characterized by the following.
  • FIG. 1 is a block diagram showing a configuration example of a radiation imaging system using a radiation imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram illustrating a configuration example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a flowchart illustrating an operation example of the radiation imaging apparatus of FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 1 is a block diagram showing a configuration example of a radiation imaging system using a radiation imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram illustrating a configuration example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a flowchart illustrating an operation example of the radiation imaging apparatus of FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 1 is a block diagram showing a configuration example
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a flowchart illustrating an operation example of the radiation imaging apparatus of FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
  • the radiation in the present invention includes, in addition to ⁇ -rays, ⁇ -rays, and ⁇ -rays, which are beams produced by particles (including photons) emitted by radiation decay, beams having similar or higher energy, such as X-rays and the like. Particle beams, cosmic rays and the like can also be included.
  • FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system 10 including a radiation imaging apparatus 100 according to the first embodiment of the present invention.
  • the radiation imaging system 10 includes a radiation imaging apparatus 100, a control computer 110, a radiation control apparatus 120, and a radiation generation apparatus 130.
  • the radiation generator 130 generates radiation in accordance with a control signal output from the radiation controller 120, and irradiates the radiation to the radiation imaging apparatus 100.
  • the radiation imaging apparatus 100 generates an image corresponding to the irradiated radiation amount, and transmits the image to the control computer 110.
  • the control computer 110 controls the operation of the entire radiation imaging system 10. For example, the control computer 110 instructs the radiation control apparatus 120 to start or stop radiation irradiation, and notifies the radiation imaging apparatus 100 of the start or stop of radiation irradiation. Synchronization with the imaging device 100 is established.
  • the control computer 110 may be used by a user (such as a doctor or a radiological technician) to change the settings of the radiation imaging apparatus 100.
  • the radiation imaging apparatus 100 includes a detector 104, a signal processing unit 105, a control unit 106, a communication unit 107, and a power supply unit 108.
  • the detector 104 detects radiation and generates an electric signal corresponding to the detected radiation dose.
  • Detector 104 is sometimes referred to as a planar detector (FPD).
  • the detector 104 includes a pixel array 101, a driving circuit 102, and a readout circuit 103.
  • the drive circuit 102 drives each pixel included in the pixel array 101, and causes each pixel to generate an electric signal.
  • the read circuit 103 reads an electric signal from the pixel array 101 and outputs a signal corresponding to the read electric signal.
  • the control unit 106 controls the operation of the entire radiation imaging apparatus 100.
  • the communication unit 107 communicates with a device outside the radiation imaging apparatus 100, for example, a control computer 110.
  • the power supply unit 108 generates power to be supplied to each component of the radiation imaging apparatus 100.
  • the signal processing unit 105 generates a radiation image according to radiation irradiation using the signal acquired from the detector 104.
  • the signal processing unit 105 may include a memory 109 for storing a radiation image or the like.
  • the radiation imaging apparatus 100 includes the signal processing unit 105, but is not limited thereto.
  • the control computer 110 may perform part or all of the processing performed by the signal processing unit 105 described above.
  • the pixel array 101 of the detector 104 has pixels P arranged over m rows ⁇ n columns (m and n are each an integer of 1 or more).
  • m and n are each an integer of 1 or more.
  • the pixel array 101 may have pixels arranged in about 2800 rows ⁇ 2800 columns.
  • the pixel P included in the pixel array 101 includes a conversion element 201 that converts radiation or light into electric charge, and a switch element 202 that outputs an electric signal corresponding to the electric charge.
  • the conversion element 201 functions as an element (sensor) for detecting radiation.
  • the conversion element 201 and the switch element 202 included in the pixel P located at the i-th row and the j-th column i and j are integers satisfying 1 ⁇ i ⁇ m and 1 ⁇ j ⁇ n) are denoted by Sij and Tij, respectively. Is shown.
  • the conversion element 201 may be a photoelectric conversion element that converts light such as visible light into electric charge, or may be a conversion element that directly converts radiation into electric charge.
  • the conversion element 201 is a photoelectric conversion element, a scintillator that converts radiation into visible light is disposed on the radiation incident side of the detector 104.
  • the conversion element 201 is disposed on a substrate such as a glass substrate, and may be a MIS photodiode using amorphous silicon as a main material or a PIN photodiode.
  • the switch element 202 is, for example, a transistor having a control terminal and two main terminals. In this embodiment, a thin film transistor (TFT) is used as the switch element 202.
  • TFT thin film transistor
  • One electrode of the conversion element 201 is electrically connected to one of two main terminals of the switch element 202, and the other electrode is electrically connected to the power supply unit 108 via the bias line Vs. You. All the pixels P included in the pixel array 101 can be commonly connected to the bias line Vs. A bias voltage is supplied from the power supply unit 108 to the conversion element 201 of each pixel P via the bias line Vs
  • Detector 104 further includes m drive lines G1 to Gm (hereinafter collectively referred to as drive lines G).
  • the control terminals of the switch elements 202 of a plurality of pixels P forming a row are commonly connected to each drive line G.
  • One end of the drive line G is connected to the drive circuit 102.
  • the drive circuit 102 supplies a drive signal for controlling the conduction state of the switch element 202 to each pixel P of the pixel array 101 on a row-by-row basis via a drive line G in accordance with a control signal supplied from the control unit 106. This causes each pixel P to output an electric signal.
  • Detector 104 further includes n signal lines Sig1 to Sign (hereinafter collectively referred to as signal lines Sig).
  • a main terminal to which the conversion element 201 is not connected among the two main terminals of the switch elements 202 of the plurality of pixels P forming the column is commonly connected to each signal line Sig.
  • One end of each drive line Sig is connected to the read circuit 103. While the switch element 202 is in the conductive state, an electric signal corresponding to the electric charge accumulated in the conversion element 201 is supplied to the signal line Sig, and the electric signal is read by the reading circuit 103.
  • a plurality of electric signals supplied to each signal line Sig from a plurality of pixels P forming one row are supplied to the readout circuit 103 in parallel.
  • the readout circuit 103 includes a plurality of amplification circuits 200, a multiplexer 207, a buffer amplifier 208, and an A / D converter 209.
  • the read circuit 103 reads the electric signal supplied to the signal line Sig, generates a value corresponding to the electric signal, and supplies the value to the signal processing unit 105. This series of operations performed by the read circuit 103 can be called a read operation.
  • the amplifier circuit 200 is individually provided for each signal line Sig.
  • the amplifier circuit 200 amplifies and outputs an electric signal supplied from the signal line Sig.
  • the multiplexer 207 sequentially outputs the electric signals output from the respective amplifier circuits 200 in parallel according to the control signal CLK supplied from the control unit 106.
  • Buffer amplifier 208 performs impedance conversion on the electric signal output from multiplexer 207 and outputs the converted electric signal.
  • the A / D converter 209 converts the analog data output from the buffer amplifier 208 into digital data, and supplies the digital data to the signal processing unit 105.
  • the amplifying circuit 200 includes an integrating amplifier 203, a variable amplifier 204, a sample and hold circuit 205, and a buffer amplifier 206.
  • the integrating amplifier 203 includes an operational amplifier, an integrating capacitor, and a reset switch, and integrates, amplifies, and outputs an electric signal supplied from the signal line Sig.
  • the output of the operational amplifier is fed back to the inverting input terminal of the operational amplifier through an integration capacitor, and the reference voltage Vref is supplied from the power supply unit 108 to the non-inverting input terminal.
  • the amplification factor of the amplifier circuit 200 can be changed.
  • the reset switch of the integrating amplifier 203 is turned on in response to the control signal RC supplied from the control unit 106, the integrating amplifier 203 is reset.
  • the variable amplifier 204 amplifies and outputs the electric signal supplied from the integrating amplifier 203.
  • the sample and hold circuit 205 has a sampling switch and a sampling capacitor, and samples and holds the electric signal supplied from the variable amplifier 204 in accordance with the control signal SH supplied from the control unit 106.
  • the electric signal held by the sample hold circuit 205 is output from the amplifier circuit 200 through the buffer amplifier 206.
  • the user turns on the radiation imaging apparatus 100.
  • the power may be turned on by a user operating a power switch arranged on the radiation imaging apparatus 100.
  • the radiation imaging apparatus 100 in the sleep state may be turned on in response to receiving the activation signal from the control computer 110. In response, the radiation imaging apparatus 100 starts operating.
  • the control computer 110 sets the imaging mode of the radiation imaging apparatus 100 based on the input of the imaging conditions and the like from the user.
  • the imaging mode includes, for example, a general imaging mode for capturing a still image and a fluoroscopic imaging mode for capturing a moving image.
  • the control computer 110 sets, for example, the intensity of the radiation emitted by the radiation generator 130 or sets the sensitivity of the radiation imaging apparatus 100 (for example, the gain of the amplifier of the readout circuit 103) according to the imaging mode. I do.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 is set to the fluoroscopic imaging mode will be described.
  • an existing method may be applied.
  • the radiation imaging apparatus 100 enters an imaging standby state to wait for an instruction to start imaging from a user.
  • the radiation imaging apparatus 100 in the imaging standby state reads out an electric signal from each pixel P in order to remove electric charges generated by the dark current.
  • the control computer 110 determines whether or not the user has instructed to start imaging.
  • the instruction to start imaging is issued, for example, by pressing a radiation irradiation switch. If the start of imaging has not been instructed (NO in S304), the radiation imaging apparatus 100 maintains the imaging standby state. If the start of imaging has been instructed (YES in S304), the radiation imaging apparatus 100 transitions to S305.
  • the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated, and acquires a signal (hereinafter, referred to as offset data) obtained by the correction imaging.
  • the offset data is image data generated by the radiation imaging apparatus 100 by reading an electric signal from each pixel P of the pixel array 101 in a state where the radiation imaging apparatus 100 is not irradiated with radiation. Therefore, during the operation of S305, the radiation generator 130 does not start irradiation of radiation yet.
  • the radiation imaging apparatus 100 acquires the offset data a plurality of times in the correction imaging in the state where the radiation is not irradiated in S305.
  • the number of times the radiation imaging apparatus 100 acquires the offset data in S305 may be set at the time of shipment of the radiation imaging apparatus 100, for example, or may be set by a user via the control computer 110.
  • the radiation imaging apparatus 100 transitions to S306.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 starts capturing a moving image in the fluoroscopic imaging mode.
  • the radiation generating apparatus 130 emits radiation intermittently, and the radiation imaging apparatus 100 generates an image corresponding to the amount of irradiated radiation, that is, a radiation image.
  • Synchronization between the radiation generator 130 and the radiation imaging apparatus 100 is performed by, for example, the control computer 110.
  • the average value of the offset data acquired a plurality of times in S305 is used for the offset correction for the radiation image obtained in S306.
  • the radiation imaging apparatus 100 obtains the correction data of each of the plurality of pixels P based on the signals (offset data) obtained a plurality of times from each of the plurality of pixels P in the correction imaging in S305. I do.
  • the correction data of each of the plurality of pixels P may be obtained based on the average value of the signals obtained a plurality of times from each of the plurality of pixels P.
  • the radiation imaging apparatus 100 corrects the image data obtained from the plurality of pixels P by imaging the radiation image in S306 based on the correction data acquired in S305.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 determines whether a predetermined time has elapsed from the start of imaging in S306. If the predetermined time has not elapsed (NO in S307), the radiation imaging system 10 including the radiation imaging apparatus 100 continues the imaging in S306. If the predetermined time has elapsed (YES in S307), the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S308. The method of determining the predetermined time in S307 will be described later.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated. At this time, the radiation imaging apparatus 100 acquires offset data at least once in the correction imaging in S308.
  • the radiation imaging apparatus 100 obtains correction information indicating a correction value that changes over time using the correction data or offset data obtained in S305 and the offset data obtained in S308.
  • This correction value changes with time according to a correction function F (t) corresponding to correction data or offset data obtained by at least two correction images in S305 and S308.
  • a detailed calculation method of the correction function F (t) will be described later.
  • the radiation imaging system 10 restarts imaging.
  • the imaging in S310 may be imaging under the same imaging conditions as S306. That is, the imaging in S310 can be an imaging of a moving image that is continuously performed from S306 with the operations in S307 to S309 interposed therebetween. Therefore, the imaging in S306 and the imaging in S310 may be imaging using the same imaging mode.
  • the correction value of the correction information obtained in S309 is used.
  • the radiation imaging apparatus 100 performs at least two times in a state where radiation is not irradiated between the start of the operation of the radiation imaging apparatus in S301 and the imaging of the radiation image in S310 corresponding to the irradiation of radiation.
  • the radiation imaging apparatus 100 acquires correction information indicating a correction value that changes over time (S309) based on signals obtained by at least two correction imaging operations (S305 and S308). Next, the radiation imaging apparatus 100 corrects the image data obtained from the plurality of pixels P by the imaging of the radiation image in S310 based on the timing at which the imaging of the radiation image was performed in S310 and the correction information.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S311 and ends a series of imaging operations. Specifically, the radiation generator 130 stops irradiation of the radiation, and the radiation imaging apparatus 100 ends the generation of the radiation image.
  • the transition from S310 to S311 may be performed when a predetermined time has elapsed from the start of imaging in S310, or when the remaining capacity of the memory 109 for storing a radiation image falls below a threshold. May be performed, or a transition may be made according to a user's instruction.
  • FIG. 4A is a timing chart illustrating a time T9
  • FIG. 4B is a diagram illustrating an example of a change in the offset component of the pixel P
  • FIG. 4C is an example of an image of the offset data.
  • the row of “operation” indicates the content of the operation of the radiation imaging apparatus 100.
  • the “Radiation” row indicates whether or not radiation is being irradiated to the radiation imaging apparatus 100.
  • the radiation generator 130 irradiates the radiation imaging apparatus 100 with radiation.
  • the generator 130 does not emit radiation.
  • the row of “read circuit” indicates whether or not the read circuit 103 is performing a read operation.
  • the read circuit 103 performs a read operation during a high level, and the read circuit 103 performs a read operation during a low level. Absent.
  • the control unit 106 may stop supplying power from the power supply unit 108 to the reading circuit 103 in order to reduce power consumption.
  • the rows “G1” to “Gm” indicate the levels of the drive signals that the drive circuit 102 supplies to each of the drive lines G1 to Gm. During this time, the switch element 202 is in a non-conductive state.
  • the control unit 106 controls the driving circuit 102 to sequentially drive the driving lines G to Gm.
  • the supplied drive signal is temporarily switched to a high level.
  • the switching element 202 becomes conductive, and the charge generated by the dark current is removed from the conversion element 201.
  • the control unit 106 repeats the same processing in order from the drive line G1.
  • a series of operations from the time T1 to T2 is referred to as one frame operation during a shooting standby.
  • the imaging standby state no radiation is applied to the radiation imaging apparatus 100.
  • the control unit 106 does not cause the readout circuit 103 to perform a readout operation.
  • the offset data is composed of m ⁇ n pixel values.
  • the pixel value is a value generated by the reading circuit 103 performing a reading operation in a state where an electric signal is supplied from the pixel to the signal line Sig.
  • the control unit 106 maintains all the drive signals supplied from the drive circuit 102 to the drive lines G1 to Gm at low level. As a result, the charges generated by the dark current are accumulated in the conversion element 201 of each pixel P.
  • the time (accumulation time) between times T3 and T4 is a value set in advance, and has the same length as the accumulation time of imaging in S306. After the accumulation time elapses, from time T4 to T5, the drive circuit 102 temporarily switches the drive signals supplied to the respective drive lines G sequentially from the drive line G1 to the high level, and makes the switch element 202 conductive.
  • the control unit 106 repeats the operation from time T3 to T5 to acquire offset data for a preset number of times.
  • a series of operations from time T3 to T5 is called one frame operation in offset data acquisition.
  • the radiation generator 130 does not irradiate the radiation imaging apparatus 100 with radiation as described above.
  • the control unit 106 does not cause the reading circuit 103 to perform the reading operation.
  • the radiation imaging apparatus 100 starts acquiring image data of a radiation image.
  • the radiation image is composed of m ⁇ n pixel values.
  • the operation performed by the radiation imaging apparatus 100 from time T6 to time T8 is the same as the operation performed by the radiation imaging apparatus 100 from time T3 to time T5, and a redundant description will be omitted.
  • a series of operations from time T6 to T8 is referred to as one frame operation in capturing a moving image.
  • One image data of a moving image is generated by one frame operation.
  • radiation is irradiated from the radiation generator 130 to the radiation imaging apparatus 100.
  • the readout circuit 103 supplies the m ⁇ n pixel values generated between times T7 and T8 to the signal processing unit 105.
  • the signal processing unit 105 stores these pixel values in the memory 109 as image data of the radiation image.
  • the offset correction in S306 can be performed using the average value of the offset data acquired a plurality of times in S305 as the correction data as described above.
  • the control unit 106 repeats one frame operation in capturing a moving image from time T6 to T8 until a predetermined time T9.
  • the radiation imaging apparatus 100 performs imaging for correction again.
  • the correction imaging is performed in an imaging mode corresponding to the imaging in S310 (for example, the same imaging conditions as the imaging in S310).
  • control unit 106 may repeat the operation from time T9 to T10 to acquire a plurality of offset data.
  • the control unit 106 acquires the offset data at least once or more.
  • the offset correction of the image data obtained by the imaging in S310 is performed by correcting the correction information of the correction information (or the offset data) obtained in S305 and the correction information obtained using the offset data obtained in S308. This is performed using a correction value that changes with time according to F (t).
  • FIG. 4B is a diagram illustrating an example of a variation in an offset component for each region of the pixel array 101 caused by an influence of a temperature variation or the like when the radiation imaging apparatus 100 is used for a long time (for example, several tens of minutes to several hours). It is.
  • the correction data acquired from the offset data acquired a plurality of times in the imaging for correction in S305 is used for offset correction, the accuracy of the offset correction deteriorates due to the fluctuation of the offset component caused by the temperature fluctuation that occurs when used for a long time. In some cases.
  • the time T9 when a predetermined time has elapsed from the start of imaging in S306, acquisition of offset data is performed at least once or more, and a correction function F (t) indicating a change in the offset component is calculated.
  • the time t is a time from the start of the imaging of the radiation image in S306, and the time T6, which is the start time of the imaging, is set as the origin.
  • the image data is offset-corrected using the correction value obtained based on the correction function F (t).
  • the correction data acquired from the offset data acquired in the imaging for correction in S305 is represented by F (0)
  • the pixel value of the pixel Pno in the i-th row and the j-th row of the pixel array 101 is represented by F (0, i, j).
  • the correction function at time t is represented by F (t)
  • the pixel value in the i-th row and j-th row is represented by F (t, i, j)
  • the time constant ⁇ corresponding to the variation of the offset component is obtained from the correction data F (0), which is the average value of the offset data acquired a plurality of times in S305, and the offset data F (t1) acquired at the time T9.
  • the time constant ⁇ is a predetermined value of the correction data F (0), which is the average value of the offset data acquired a plurality of times in S305
  • the offset data F (t1) acquired at the time T9. May be calculated using the average value in the region of. That is, the plurality of pixels P arranged in the pixel array 101 constitute a plurality of pixel groups including at least one pixel for each predetermined region.
  • the radiation imaging apparatus 100 performs a plurality of correction imaging based on the signals acquired for each of the plurality of pixel groups in the correction imaging other than the correction imaging in S305 among the two correction imaging in S305 and S308.
  • the correction data of each pixel P included in each pixel group is obtained.
  • a time constant for each region (pixel group) represented by the following Expressions (3) and (4) is obtained from the average value of each pixel P of the pixel groups in the regions A and B shown in FIG. 4C. ⁇ may be calculated.
  • offset correction is performed using a correction value according to the correction functions shown in the above equations (5) and (6). That is, the image data output from the pixel P in the area A has a correction value according to the correction function of the following equation (7), and the image data output from the pixel P in the area B has a correction function of the following equation (8). Offset correction is performed using the correction value according to.
  • the correction value may be updated according to the timing at which imaging was performed for each frame in the imaging in S310.
  • the correction value may be updated at predetermined time intervals. Further, the interval at which the correction value is updated may be set by the user.
  • the image data obtained from the plurality of pixels P by the imaging of the radiation image in S310 includes the timing at which the imaging of the radiation image was performed and the correction information obtained in at least two correction imaging operations in S305 and S308. Is corrected with high accuracy.
  • the time T9 at which the predetermined time has elapsed from the start of the imaging in S306 may be determined in advance based on an allowable amount of unevenness and artifacts caused by an offset correction error.
  • the time T9 may be determined according to the temperature fluctuation of the radiation imaging apparatus 100 by adding a function of monitoring the temperature fluctuation of the radiation imaging apparatus 100 such as a temperature sensor to the radiation imaging apparatus 100. Further, the time T9 may be determined by the user according to the usage environment and the like.
  • the operation of the radiation imaging apparatus 100 from time T9 to T10 may be repeatedly performed a plurality of times to acquire a plurality of offset data.
  • the correction coefficient F (t) may be obtained by using the average value of the plurality of offset data as the correction data.
  • the correction data is reduced in noise, and the accuracy in calculating the time constant ⁇ of the fluctuation of the offset is improved.
  • the number of repetitions may be about several times, for example, two or three times.
  • the correction function F (t) is obtained using the correction data F (0) obtained from the offset data obtained a plurality of times in S305 and the average value of the offset data F (t1) obtained in S308 in the regions A and B. ) Has been described as an example of the method of calculating each of the regions. However, acquisition of offset data and correction data is not limited to this.
  • the pixel array 101 of the radiation imaging apparatus 100 may be further divided into a plurality of regions, or the correction function F (t) may be calculated using an average value of signals of all regions. Further, the correction function F (t) may be calculated using an output value of a predetermined pixel among the plurality of pixels P included in the pixel array 101.
  • FIG. 5A shows a timing chart of a modified example of the operation example of the radiation imaging apparatus 100 of FIG. 4A.
  • FIG. 5B is a diagram illustrating an example of the fluctuation of the offset component at this time.
  • step S303 similarly to step S303, the control unit 106 does not cause the readout circuit 103 to perform a readout operation. For this reason, in S303 ', in the radiation imaging apparatus 100, temperature fluctuation hardly occurs, and the influence is often small enough to be ignored. For this reason, as shown in FIG. 5B, it can be said that the temperature fluctuation of the offset component occurs from the start of the imaging in S306 at time T6 '. For this reason, the origin of the time t, which is a parameter of the correction function F (t), may be the time T6 'at which the shooting standby state of S303' ends and the imaging of S306 starts.
  • the offset correction in the imaging in S306 is performed using the correction data F (0) that is the average value of the offset data acquired a plurality of times in S305. Further, the offset correction in the fluoroscopic imaging in S310 is performed based on the correction function F (t) of the above-described equations (7) and (8). As described above, the time t, which is a parameter of the correction function F (t), may be set as the origin when the temperature of the radiation imaging apparatus 100 starts to fluctuate due to the operation of the radiation imaging apparatus 100.
  • FIG. 6A shows a timing chart of a modified example of the operation example of the radiation imaging apparatus 100 of FIG. 4A.
  • FIG. 6B is a diagram illustrating an example of the fluctuation of the offset component at this time.
  • the imaging for correction shown in S308' and the imaging shown in S310 ' are performed.
  • the imaging for correction in S308 ' is performed for the purpose of updating the correction information based on the signal data obtained by the imaging for correction.
  • the imaging for correction in S308 ' is performed for the purpose of updating the time constant ⁇ calculated by the above-described equations (3) and (4).
  • the time constant ⁇ is updated again using the correction data F (0) acquired in S305, the offset data F (t1) acquired in S308, and the offset data F (t2) acquired in S308 ′,
  • the correction function F (t) in Expressions (5) and (6) is updated.
  • the image data obtained from the plurality of pixels P by imaging the radiation image in S310 ' indicates a correction value that changes with time according to the timing at which the imaging of the radiation image was performed in S310' and the updated correction function F (t). The correction is performed based on the correction information.
  • the offset correction in the imaging in S310 is performed based on the correction function F 1 (t) calculated using the offset data F (t1) acquired in S308. Further, the offset correction in the imaging in S310 ′ can be performed based on the correction function F 2 (t) updated using the offset data F (t2) acquired in S308 ′. Accordingly, when a long-time moving image is captured, the correction function F (t) is updated during the capturing, so that it is possible to continuously perform the offset correction with higher accuracy.
  • a plurality of offset data may be repeatedly obtained, and the average value of the plurality of offset data is calculated as the offset data (correction data) F 1 (t), and It may be used as F 2 (t).
  • the average value of the plurality of offset data noise of the offset data is reduced, and the accuracy in calculating the time constant ⁇ of the fluctuation of the offset is improved.
  • FIG. 7 is a flowchart illustrating an operation example of the radiation imaging apparatus 100 according to the present embodiment.
  • the mode is changed from the fluoroscopic imaging mode for capturing a moving image to the general imaging mode for capturing a still image
  • the mode is changed from the general imaging mode to the fluoroscopic imaging mode.
  • the offset component does not largely change, and when the mode is changed from the general imaging mode to the fluoroscopic imaging mode, the offset component changes with time that cannot be ignored. I do.
  • the same operations as those in the flowchart of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description of the same operations is omitted.
  • the operations from S301 to S306 are the same as those in FIG.
  • the radiation imaging system 10 including the radiation imaging apparatus determines whether or not the mode change can be performed.
  • the radiation imaging system 10 continues to capture a moving image.
  • the mode change is performed (YES in S707), the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S708, and in S708, the radiation imaging system 10 captures, for example, a still image.
  • the radiation imaging system 10 including the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated. At this time, the radiation imaging apparatus 100 performs correction imaging for acquiring one offset data at least twice.
  • the imaging for correction in S709 can be performed in an operation mode (same operation as S710) corresponding to the imaging in S711 described below except for the presence / absence of radiation irradiation.
  • the radiation imaging apparatus 100 acquires correction information indicating a correction value that changes over time according to a correction function F (t ') corresponding to offset data obtained by at least two correction imaging operations in S709. .
  • a detailed method of acquiring the correction function F (t ') will be described later.
  • step S711 the radiation imaging system 10 including the radiation imaging apparatus 100 restarts capturing moving images.
  • the image data obtained from the plurality of pixels P by the imaging of the radiation image in S711 is corrected based on the timing at which the imaging of the radiation image was performed and the correction information.
  • FIG. 8A is a timing chart of an operation example of the radiation imaging apparatus 100 according to the present embodiment
  • FIG. 4A and 4B are denoted by the same reference numerals as those in FIGS. 4A and 4B, and detailed description thereof will be omitted.
  • a mode change is performed before and after S708.
  • a still image may be captured during a fluoroscopic imaging mode in which a moving image is captured.
  • the radiation imaging apparatus 100 captures a still image.
  • the radiation imaging apparatus 100 performs the imaging for correction for acquiring one offset data twice or more.
  • the imaging for correction in S709 is performed in the same imaging mode as the imaging in S711 performed thereafter.
  • the radiation imaging apparatus 100 starts acquiring image data of the radiation image and repeats until the fluoroscopic imaging ends.
  • the offset correction in S711 is performed based on correction information indicating a correction value that changes with time according to the correction function F (t ') as described above.
  • the above-described second imaging is performed separately from the imaging for correction in S709 in a state where the radiation is not irradiated.
  • imaging for correction in S303 is performed.
  • the radiation imaging apparatus 100 converts the image data obtained from the plurality of pixels P by imaging of the radiation image in S306 into offset data (correction data) obtained by imaging for S303no correction in the same manner as in the first embodiment. ) To correct.
  • FIG. 8B is a diagram illustrating an example of a variation in the offset component of each region of the pixel array 101 as illustrated in FIG. 4C when the radiation imaging apparatus 100 captures a still image while capturing a moving image.
  • the variation of the offset component in this case may be on the order of several seconds, unlike the variation of the offset component due to the above-mentioned temperature variation (for example, several tens of minutes to several hours). Further, the fluctuation of the offset component sometimes shows a different behavior from the fluctuation of the offset component due to the temperature fluctuation.
  • the origin of the time t ' is the start time of the earlier imaging of at least two correction imagings in S709.
  • the start time Trad2 of capturing the image for correction in S709 may be set as the origin.
  • the image data of the acquired radiation image is corrected using a correction value that changes with time according to the correction function F (t ').
  • the correction data that is the average value of the offset data acquired in S305 is represented by F (0).
  • the offset data at the time t ′ is represented by F (t ′)
  • the following equation (9) holds.
  • ⁇ ′ F (0) ⁇ ⁇ 1-exp ( ⁇ t ′ / ⁇ ′) ⁇ (9)
  • ⁇ ′ can be expressed by the following equation (10) using F (1) and F (2) described above.
  • ⁇ ′ t ′ / ⁇ ln (F (2) / F (1)) ⁇ (10)
  • the time constant ⁇ ′ is obtained by calculating the average value of the offset data F (1) and the offset data F (2) in a predetermined area of the pixel array 101 as in the first embodiment. It may be used to calculate.
  • the correction value according to the correction function of Expression (13) is applied to the image data output from the pixel P in the area A, and the correction function of Expression (14) is applied to the image data output from the pixel P in the area B.
  • Offset correction is performed using the correction value according to.
  • the method of obtaining the correction function F (t ′) is, for example, a method of calculating the correction function F (t ′) for each area using an average value of signals output from the pixels P in the area A and the area B.
  • the correction function F (t ′) may be obtained by dividing the pixel array 101 of the radiation imaging apparatus 100 into a plurality of parts, or by using an average value of signals in all regions of the pixel array 101.
  • the offset variation function F (t ') may be calculated using the output value of a predetermined pixel.
  • the imaging for correction in S709 may be repeatedly performed a plurality of times. If ⁇ ′ in Expression (10) is obtained using a plurality of times of offset data, the accuracy is improved. However, in the correction imaging in S709, if the number of repetitions of imaging is increased, the time during which imaging is not possible (the time from time Trad2 to time T11) increases, and the usability of the radiation imaging apparatus 100 may be reduced. is there. For this reason, the number of repetitions may be about several times, for example, two or three times.
  • FIG. 9A is a timing chart of an operation example of the radiation imaging apparatus 100 according to the present embodiment
  • FIG. 9B is a view showing an example of a variation of the offset component at this time.
  • the configuration in the case where the effect of temperature fluctuation due to long-time imaging can be neglected has been described.
  • a configuration will be described in which offset fluctuation occurs due to temperature fluctuation caused by long-time imaging and mode change imaging is performed.
  • the difference from the timing chart of FIG. 8A is that before the capture of a still image in S708 for performing a mode change, the operation shifts to the operation of S308 for acquiring correction information, and the offset data is changed. It is a point that has been acquired.
  • S306 when a long-time moving image is captured, the offset fluctuation due to the temperature fluctuation occurs as described above. In this case, the use of the correction data F (0) acquired in S305 cannot be continued. That is, when an offset variation due to the operation of the radiation imaging apparatus 100 occurs due to the mode change in addition to the offset variation due to the temperature variation, it is difficult to obtain the true value of the offset correction value in the imaging of the moving image in S711. become.
  • the operation transits to the operation of S308 at time Tflu1, that is, immediately before the capturing of the still image in S708, and the image capturing for correction is performed. carry out.
  • the imaging for correction in S308 can be performed in an operation mode (same operation as S711) corresponding to the imaging in S711.
  • the control unit 106 may repeat the operation from time Tflu1 to Tflu2 to acquire at least a plurality of offset data set in advance.
  • the radiation imaging apparatus 100 captures a still image at the time Trad1, that is, by starting the operation of S708. Further, similarly to the above-described second embodiment, from the time Trad2 at which the imaging of the still image is completed, in the operation of S709, the radiation imaging apparatus 100 performs at least two imagings for correction, and performs two or more imagings for correction. Get offset data of The imaging for correction in S709 is performed in the same imaging mode as the imaging in S711 performed thereafter.
  • the correction function F (t) may be obtained by using the above equations (3) to (6).
  • the imaging for correction in S709 is performed to acquire at least two pieces of offset data, and the fluctuation of the offset component is obtained.
  • a correction function F (t ′) to be represented is calculated.
  • the origin of the time t ′ is the start time Trad2 of the acquisition of the offset data in S709.
  • the offset variation function F (t ′) is a variation of the equation (9) described in the second embodiment and can be expressed by the following equation (15).
  • F (t ′) F (t) ⁇ ⁇ 1-exp ( ⁇ t ′ / ⁇ ′) ⁇ (15)
  • the time t ' has the origin at the start time Trad2 of the acquisition of the offset data in S709.
  • the present invention has been described above.
  • the configuration in which the imaging in S306 and the imaging in S310 are in the same operation mode has been described, but the present invention is not limited to this.
  • imaging with different operation modes frame rate, pixel binning, irradiation field area, etc.
  • the imaging of moving images in S306 and S310 may be different operation modes.
  • low-speed fluoroscopy for example, 5 fps
  • offset data F (t1) of the operation mode of S310 is acquired.
  • S305 imaging for correction corresponding to the operation mode of S306 and imaging for correction corresponding to the operation mode of S310 are performed.
  • the correction data obtained from the correction imaging corresponding to the operation mode of S310 is F (0), and the correction function F (t) is obtained.
  • t-other offset correction is performed on the radiation image acquired by the imaging in S310.
  • the present invention supplies a program for realizing one or more functions of the above-described embodiments to a system or an apparatus via a network or a storage medium, and one or more processors in a computer of the system or the apparatus read and execute the program. It can also be realized by the following processing. Further, it can be realized by a circuit (for example, an ASIC) that realizes one or more functions.
  • a circuit for example, an ASIC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This radiation imaging device comprises a plurality of pixels for acquiring a radiation image. The radiation imaging device performs imaging for correction at least twice in a state where no radiation is being emitted during a period from the time when the operation of the radiation imaging device is initiated until the time when a radiation image in accordance with emission of radiation is imaged, acquires, on the basis of signals obtained as a result of the imaging for correction performed at least twice, correction information indicative of a correction value that changes over time, and corrects, on the basis of the correction information and the timing at which the radiation image was imaged, image data obtained from a plurality of pixels as a result of imaging of the radiation image.

Description

放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラムRadiation imaging apparatus, radiation imaging system, method of controlling radiation imaging apparatus, and program
 本発明は、放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、および、プログラムに関するものである。 The present invention relates to a radiation imaging apparatus, a radiation imaging system, a method for controlling a radiation imaging apparatus, and a program.
 医療画像診断などに用いる撮像装置として、放射線を電荷に変換する変換素子と薄膜トランジスタ(TFT)などのスイッチ素子とを組み合わせた画素がアレイ状に配された撮像パネルを含む放射線撮像装置が広く利用されている。それぞれの画素から出力される信号には、変換素子の暗電流やスイッチ素子の寄生容量による残留電荷成分などに起因するオフセット成分(ノイズ成分)が含まれる。そこで、放射線を照射した後に画素から読み出される放射線画像用の信号から、放射線を照射せずに画素から読み出した信号(補正用データ)を差し引くことによって、放射線画像からオフセット成分を除去するオフセット補正が行われている。オフセット成分は、放射線撮像装置の使用中の温度変化などによって変化する。特許文献1には、放射線撮像装置の起動時などのキャリブレーション時に取得した補正用データを、放射線画像の撮像の前または後に放射線を照射せずに取得した信号を用いて更新し、温度変化に応じたオフセット補正を行うことが示されている。 2. Description of the Related Art As an imaging device used for medical image diagnosis and the like, a radiation imaging device including an imaging panel in which pixels in which a conversion element for converting radiation into electric charges and a switching element such as a thin film transistor (TFT) are arranged in an array is widely used. ing. A signal output from each pixel includes an offset component (noise component) due to a dark current of the conversion element, a residual charge component due to a parasitic capacitance of the switch element, and the like. Therefore, offset correction that removes an offset component from a radiation image by subtracting a signal (correction data) read from a pixel without irradiating radiation from a signal for a radiation image that is read from the pixel after irradiation is performed. Is being done. The offset component changes due to a temperature change or the like during use of the radiation imaging apparatus. In Patent Document 1, the correction data acquired at the time of calibration, such as when the radiation imaging apparatus is started, is updated using a signal acquired without irradiating radiation before or after imaging of a radiation image, and the temperature is changed. It is shown that a corresponding offset correction is performed.
特許5182371号公報Japanese Patent No. 5182371
 動画像の撮像など長時間の撮像や動画像の撮像と静止画像の撮像との間などで撮像モードを切替えながらの撮像を行う際、オフセット成分が経時的に変化する場合がある。特許文献1に示される方法では、経時的に変化するオフセット成分をリアルタイムに補正できない可能性がある。 (4) When performing imaging while switching the imaging mode between long-time imaging such as imaging of a moving image or between imaging of a moving image and imaging of a still image, the offset component may change with time. In the method disclosed in Patent Document 1, there is a possibility that an offset component that changes over time cannot be corrected in real time.
 本発明は、オフセット補正の精度を向上させる技術を提供することを目的とする。 An object of the present invention is to provide a technique for improving the accuracy of offset correction.
 上記課題に鑑みて、本発明の実施形態に係る放射線撮像装置は、放射線画像を取得するための複数の画素を含む放射線撮像装置であって、放射線撮像装置は、放射線撮像装置が動作を開始してから放射線の照射に応じた放射線画像の撮像を行うまでの間に、放射線が照射されない状態で少なくとも2回の補正用の撮像を行い、少なくとも2回の補正用の撮像によって得られた信号に基づいて、経時的に変化する補正値を示す補正情報を取得し、放射線画像の撮像によって複数の画素から得られる画像データを、放射線画像の撮像を行ったタイミングと補正情報とに基づいて補正することを特徴とする。 In view of the above problems, a radiation imaging apparatus according to an embodiment of the present invention is a radiation imaging apparatus including a plurality of pixels for acquiring a radiation image, and the radiation imaging apparatus starts operating. Between the time when the radiation image is captured according to the irradiation of the radiation and the time when the radiation is not irradiated, at least two times of the imaging for the correction are performed in a state where the radiation is not irradiated, and the signal obtained by the at least two times of the imaging for the correction is obtained. Correction information indicating a correction value that changes over time based on the correction information, and corrects image data obtained from a plurality of pixels by capturing the radiation image based on the timing at which the radiation image was captured and the correction information. It is characterized by the following.
 上記手段によって、オフセット補正の精度を向上させる技術を提供する。 技術 A technique for improving the accuracy of offset correction by the above means is provided.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態に係る放射線撮像装置を用いた放射線撮像システムの構成例を示すブロック図。 図1の放射線撮像装置の構成例を示す等価回路図。 図1の放射線撮像装置の動作例を説明するフロー図。 図1の放射線撮像装置の動作例を説明する図。 図1の放射線撮像装置の動作例を説明する図。 図1の放射線撮像装置の動作例を説明する図。 図4A、4Bの動作例の変形例を示す図。 図4A、4Bの動作例の変形例を示す図。 図4A、4Bの動作例の変形例を示す図。 図4A、4Bの動作例の変形例を示す図。 図1の放射線撮像装置の動作例を説明するフロー図。 図1の放射線撮像装置の動作例を説明する図。 図1の放射線撮像装置の動作例を説明する図。 図1の放射線撮像装置の動作例を説明する図。 図1の放射線撮像装置の動作例を説明する図。
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are included in and constitute a part of the specification and illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
FIG. 1 is a block diagram showing a configuration example of a radiation imaging system using a radiation imaging apparatus according to an embodiment of the present invention. FIG. 2 is an equivalent circuit diagram illustrating a configuration example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a flowchart illustrating an operation example of the radiation imaging apparatus of FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. The figure which shows the modification of the operation example of FIG. 4A, 4B. The figure which shows the modification of the operation example of FIG. 4A, 4B. The figure which shows the modification of the operation example of FIG. 4A, 4B. The figure which shows the modification of the operation example of FIG. 4A, 4B. FIG. 2 is a flowchart illustrating an operation example of the radiation imaging apparatus of FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1. FIG. 2 is a diagram illustrating an operation example of the radiation imaging apparatus in FIG. 1.
 以下、本発明に係る放射線撮像装置の具体的な実施形態を、添付図面を参照して説明する。本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 Hereinafter, specific embodiments of the radiation imaging apparatus according to the present invention will be described with reference to the accompanying drawings. The radiation in the present invention includes, in addition to α-rays, β-rays, and γ-rays, which are beams produced by particles (including photons) emitted by radiation decay, beams having similar or higher energy, such as X-rays and the like. Particle beams, cosmic rays and the like can also be included.
 第1の実施形態
 図1~6Bを参照して、本発明の実施形態による放射線撮像装置100の構成について説明する。図1は、本発明の第1の実施形態における放射線撮像装置100を含む放射線撮像システム10の構成例を示すブロック図である。
First Embodiment A configuration of a radiation imaging apparatus 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6B. FIG. 1 is a block diagram illustrating a configuration example of a radiation imaging system 10 including a radiation imaging apparatus 100 according to the first embodiment of the present invention.
 図1に示されるように、放射線撮像システム10は、放射線撮像装置100、制御用コンピュータ110、放射線制御装置120、放射線発生装置130を含む。放射線発生装置130は、放射線制御装置120から出力される制御信号に応じて、放射線を生成し、放射線撮像装置100に向けて放射線を照射する。放射線撮像装置100は、照射された放射線量に応じた画像を生成し、制御用コンピュータ110へ送信する。制御用コンピュータ110は、放射線撮像システム10全体の動作を制御する。例えば、制御用コンピュータ110は、放射線制御装置120に対して放射線の照射の開始や停止を指示し、放射線撮像装置100に放射線の照射の開始や停止を通知することによって、放射線制御装置120と放射線撮像装置100との間の同期をとる。また、制御用コンピュータ110は、ユーザ(医師や放射線技師など)が放射線撮像装置100の設定を変更するために用いられてもよい。 As shown in FIG. 1, the radiation imaging system 10 includes a radiation imaging apparatus 100, a control computer 110, a radiation control apparatus 120, and a radiation generation apparatus 130. The radiation generator 130 generates radiation in accordance with a control signal output from the radiation controller 120, and irradiates the radiation to the radiation imaging apparatus 100. The radiation imaging apparatus 100 generates an image corresponding to the irradiated radiation amount, and transmits the image to the control computer 110. The control computer 110 controls the operation of the entire radiation imaging system 10. For example, the control computer 110 instructs the radiation control apparatus 120 to start or stop radiation irradiation, and notifies the radiation imaging apparatus 100 of the start or stop of radiation irradiation. Synchronization with the imaging device 100 is established. The control computer 110 may be used by a user (such as a doctor or a radiological technician) to change the settings of the radiation imaging apparatus 100.
 放射線撮像装置100は、検出器104、信号処理部105、制御部106、通信部107、および、電源部108を含む。検出器104は、放射線を検出し、検出した放射線量に応じた電気信号を生成する。検出器104は、平面検出器(FPD)と呼ばれることもある。検出器104は、画素アレイ101、駆動回路102、読出回路103を含む。画素アレイ101には、放射線の照射に応じた放射線画像を取得するための複数の画素が、2次元行列状に配されている。駆動回路102は、画素アレイ101に含まれるそれぞれの画素を駆動し、それぞれの画素に電気信号を生成させる。読出回路103は、画素アレイ101から電気信号を読み出し、読み出した電気信号に応じた信号を出力する。 The radiation imaging apparatus 100 includes a detector 104, a signal processing unit 105, a control unit 106, a communication unit 107, and a power supply unit 108. The detector 104 detects radiation and generates an electric signal corresponding to the detected radiation dose. Detector 104 is sometimes referred to as a planar detector (FPD). The detector 104 includes a pixel array 101, a driving circuit 102, and a readout circuit 103. In the pixel array 101, a plurality of pixels for acquiring a radiation image according to radiation irradiation are arranged in a two-dimensional matrix. The drive circuit 102 drives each pixel included in the pixel array 101, and causes each pixel to generate an electric signal. The read circuit 103 reads an electric signal from the pixel array 101 and outputs a signal corresponding to the read electric signal.
 制御部106は、放射線撮像装置100全体の動作を制御する。通信部107は、放射線撮像装置100の外の装置、例えば制御用コンピュータ110との通信を行う。電源部108は、放射線撮像装置100の各構成に供給される電力を生成する。信号処理部105は、検出器104から取得した信号を用いて放射線の照射に応じた放射線画像を生成する。信号処理部105は、放射線画像等を記憶するためのメモリ109を有していてもよい。図1に示される構成では、放射線撮像装置100が信号処理部105を備えるが、これに限られることはない。例えば、制御用コンピュータ110が、上述の信号処理部105が行う処理の一部またはすべてを行ってもよい。 The control unit 106 controls the operation of the entire radiation imaging apparatus 100. The communication unit 107 communicates with a device outside the radiation imaging apparatus 100, for example, a control computer 110. The power supply unit 108 generates power to be supplied to each component of the radiation imaging apparatus 100. The signal processing unit 105 generates a radiation image according to radiation irradiation using the signal acquired from the detector 104. The signal processing unit 105 may include a memory 109 for storing a radiation image or the like. In the configuration illustrated in FIG. 1, the radiation imaging apparatus 100 includes the signal processing unit 105, but is not limited thereto. For example, the control computer 110 may perform part or all of the processing performed by the signal processing unit 105 described above.
 次に、検出器104の構成例について、図2の等価回路図を用いて説明する。検出器104の画素アレイ101はm行×n列(mおよびnは、それぞれ1以上の整数)にわたって配された画素Pを有する。例えば、放射線撮像装置100の画素アレイ101が17インチの画素アレイである場合、画素アレイ101は、約2800行×2800列に配された画素を有しうる。 Next, a configuration example of the detector 104 will be described with reference to an equivalent circuit diagram of FIG. The pixel array 101 of the detector 104 has pixels P arranged over m rows × n columns (m and n are each an integer of 1 or more). For example, when the pixel array 101 of the radiation imaging apparatus 100 is a 17-inch pixel array, the pixel array 101 may have pixels arranged in about 2800 rows × 2800 columns.
 画素アレイ101に含まれる画素Pは、放射線または光を電荷に変換する変換素子201と、その電荷に応じた電気信号を出力するためのスイッチ素子202とを含む。変換素子201は、放射線を検出する素子(センサ)として機能する。図2では、i行j列(iおよびjは、1≦i≦m、1≦j≦nを満たす整数)に位置する画素Pに含まれる変換素子201およびスイッチ素子202を、それぞれSij及びTijと示す。変換素子201は、可視光などの光を電荷に変換する光電変換素子であってもよいし、放射線を直接電荷に変換する変換素子であってもよい。変換素子201が光電変換素子である場合に、検出器104の放射線入射側に、放射線を可視光に変換するシンチレータが配される。変換素子201は、ガラス基板などの基板上に配され、アモルファスシリコンを主材料とするMIS型フォトダイオードであってもよいし、PIN型フォトダイオードであってもよい。スイッチ素子202は、例えば制御端子と2つの主端子を有するトランジスタである。本実施形態において、スイッチ素子202として薄膜トランジスタ(TFT)が用いられる。変換素子201の一方の電極は、スイッチ素子202の2つの主端子のうち一方の主端子に電気的に接続され、他方の電極は、バイアス線Vsを介して電源部108と電気的に接続される。バイアス線Vsには画素アレイ101に含まれるすべての画素Pが、共通に接続されうる。バイアス線Vsを通じて、電源部108からそれぞれの画素Pの変換素子201にバイアス電圧が供給される。 The pixel P included in the pixel array 101 includes a conversion element 201 that converts radiation or light into electric charge, and a switch element 202 that outputs an electric signal corresponding to the electric charge. The conversion element 201 functions as an element (sensor) for detecting radiation. In FIG. 2, the conversion element 201 and the switch element 202 included in the pixel P located at the i-th row and the j-th column (i and j are integers satisfying 1 ≦ i ≦ m and 1 ≦ j ≦ n) are denoted by Sij and Tij, respectively. Is shown. The conversion element 201 may be a photoelectric conversion element that converts light such as visible light into electric charge, or may be a conversion element that directly converts radiation into electric charge. When the conversion element 201 is a photoelectric conversion element, a scintillator that converts radiation into visible light is disposed on the radiation incident side of the detector 104. The conversion element 201 is disposed on a substrate such as a glass substrate, and may be a MIS photodiode using amorphous silicon as a main material or a PIN photodiode. The switch element 202 is, for example, a transistor having a control terminal and two main terminals. In this embodiment, a thin film transistor (TFT) is used as the switch element 202. One electrode of the conversion element 201 is electrically connected to one of two main terminals of the switch element 202, and the other electrode is electrically connected to the power supply unit 108 via the bias line Vs. You. All the pixels P included in the pixel array 101 can be commonly connected to the bias line Vs. A bias voltage is supplied from the power supply unit 108 to the conversion element 201 of each pixel P via the bias line Vs.
 検出器104は、m本の駆動線G1~Gm(以下、駆動線Gと総称する)をさらに含む。それぞれの駆動線Gには、行を構成する複数の画素Pのスイッチ素子202の制御端子が共通に接続される。駆動線Gの一端は、駆動回路102に接続される。駆動回路102は、制御部106から供給される制御信号に応じて、駆動線Gを介して、スイッチ素子202の導通状態を制御する駆動信号を画素アレイ101の各画素Pに行単位で供給することによって、各画素Pに電気信号を出力させる。 Detector 104 further includes m drive lines G1 to Gm (hereinafter collectively referred to as drive lines G). The control terminals of the switch elements 202 of a plurality of pixels P forming a row are commonly connected to each drive line G. One end of the drive line G is connected to the drive circuit 102. The drive circuit 102 supplies a drive signal for controlling the conduction state of the switch element 202 to each pixel P of the pixel array 101 on a row-by-row basis via a drive line G in accordance with a control signal supplied from the control unit 106. This causes each pixel P to output an electric signal.
 検出器104は、n本の信号線Sig1~Sign(以下、信号線Sigと総称する)をさらに含む。それぞれの信号線Sigには、列を構成する複数の画素Pのスイッチ素子202の2つの主端子のうち変換素子201が接続されていない主端子が、共通に接続される。各駆動線Sigの一端は、読出回路103に接続される。スイッチ素子202が導通状態である間に、変換素子201に蓄積された電荷に応じた電気信号が信号線Sigに供給され、この電気信号が読出回路103によって読み出される。1つの行を構成する複数の画素Pから各信号線Sigへ供給された複数の電気信号は読出回路103へ並列に供給される。 Detector 104 further includes n signal lines Sig1 to Sign (hereinafter collectively referred to as signal lines Sig). A main terminal to which the conversion element 201 is not connected among the two main terminals of the switch elements 202 of the plurality of pixels P forming the column is commonly connected to each signal line Sig. One end of each drive line Sig is connected to the read circuit 103. While the switch element 202 is in the conductive state, an electric signal corresponding to the electric charge accumulated in the conversion element 201 is supplied to the signal line Sig, and the electric signal is read by the reading circuit 103. A plurality of electric signals supplied to each signal line Sig from a plurality of pixels P forming one row are supplied to the readout circuit 103 in parallel.
 読出回路103は、複数の増幅回路200、マルチプレクサ207、バッファ増幅器208、および、A/D変換器209を含む。読出回路103は、信号線Sigに供給されている電気信号を読み出し、この電気信号に応じた値を生成し、この値を信号処理部105へ供給する。読出回路103が行うこの一連の動作は、読み出し動作と呼ばれうる。増幅回路200は、信号線Sigごとに個別に配される。増幅回路200は、信号線Sigから供給される電気信号を増幅して出力する。マルチプレクサ207は、それぞれの増幅回路200が並列に出力する電気信号を、制御部106から供給される制御信号CLKに応じて順次出力する。バッファ増幅器208は、マルチプレクサ207から出力された電気信号をインピーダンス変換し、変換後の電気信号を出力する。A/D変換器209は、バッファ増幅器208から出力されたアナログデータをデジタルデータに変換し、このデジタルデータを信号処理部105へ供給する。 The readout circuit 103 includes a plurality of amplification circuits 200, a multiplexer 207, a buffer amplifier 208, and an A / D converter 209. The read circuit 103 reads the electric signal supplied to the signal line Sig, generates a value corresponding to the electric signal, and supplies the value to the signal processing unit 105. This series of operations performed by the read circuit 103 can be called a read operation. The amplifier circuit 200 is individually provided for each signal line Sig. The amplifier circuit 200 amplifies and outputs an electric signal supplied from the signal line Sig. The multiplexer 207 sequentially outputs the electric signals output from the respective amplifier circuits 200 in parallel according to the control signal CLK supplied from the control unit 106. Buffer amplifier 208 performs impedance conversion on the electric signal output from multiplexer 207 and outputs the converted electric signal. The A / D converter 209 converts the analog data output from the buffer amplifier 208 into digital data, and supplies the digital data to the signal processing unit 105.
 増幅回路200は、積分増幅器203、可変増幅器204、サンプルホールド回路205、バッファアンプ206を含む。積分増幅器203は、オペアンプ、積分容量、リセットスイッチを含み、信号線Sigから供給された電気信号を積分および増幅して出力する。このオペアンプの反転入力端子にはオペアンプの出力が積分容量を通じてフィードバックされ、非反転入力端子には電源部108から基準電圧Vrefが供給される。積分容量の値を変えることによって、増幅回路200の増幅率を変更することが可能である。積分増幅器203のリセットスイッチが制御部106から供給された制御信号RCに応じてオンになることによって、積分増幅器203がリセットされる。可変増幅器204は、積分増幅器203から供給された電気信号を増幅して出力する。 The amplifying circuit 200 includes an integrating amplifier 203, a variable amplifier 204, a sample and hold circuit 205, and a buffer amplifier 206. The integrating amplifier 203 includes an operational amplifier, an integrating capacitor, and a reset switch, and integrates, amplifies, and outputs an electric signal supplied from the signal line Sig. The output of the operational amplifier is fed back to the inverting input terminal of the operational amplifier through an integration capacitor, and the reference voltage Vref is supplied from the power supply unit 108 to the non-inverting input terminal. By changing the value of the integration capacitance, the amplification factor of the amplifier circuit 200 can be changed. When the reset switch of the integrating amplifier 203 is turned on in response to the control signal RC supplied from the control unit 106, the integrating amplifier 203 is reset. The variable amplifier 204 amplifies and outputs the electric signal supplied from the integrating amplifier 203.
 サンプルホールド回路205は、サンプリングスイッチとサンプリング容量とを有し、可変増幅器204から供給された電気信号を、制御部106から供給された制御信号SHに応じてサンプルして保持する。サンプルホールド回路205によって保持された電気信号は、バッファアンプ206を通じて増幅回路200から出力される。 The sample and hold circuit 205 has a sampling switch and a sampling capacitor, and samples and holds the electric signal supplied from the variable amplifier 204 in accordance with the control signal SH supplied from the control unit 106. The electric signal held by the sample hold circuit 205 is output from the amplifier circuit 200 through the buffer amplifier 206.
 次いで、図3のフロー図を参照して、本実施形態における放射線撮像装置100の動作について説明する。 Next, the operation of the radiation imaging apparatus 100 according to the present embodiment will be described with reference to the flowchart of FIG.
 まず、S301において、ユーザによって放射線撮像装置100に電源が投入される。例えば、ユーザが、放射線撮像装置100に配された電源スイッチを操作することによって電源が投入されてもよい。また、例えば、制御用コンピュータ110から起動信号を受信したことに従ってスリープ状態だった放射線撮像装置100の電源が投入されてもよい。これに応じて、放射線撮像装置100は、動作を開始する。 First, in step S301, the user turns on the radiation imaging apparatus 100. For example, the power may be turned on by a user operating a power switch arranged on the radiation imaging apparatus 100. Further, for example, the radiation imaging apparatus 100 in the sleep state may be turned on in response to receiving the activation signal from the control computer 110. In response, the radiation imaging apparatus 100 starts operating.
 次いで、S302において、制御用コンピュータ110は、ユーザからの撮像条件などの入力に基づいて、放射線撮像装置100の撮像モードを設定する。撮像モードは、例えば、静止画を撮像する一般撮影モードと、動画像を撮像する透視撮影モードとを含む。制御用コンピュータ110は、例えば、撮像モードに応じて、放射線発生装置130が照射する放射線の強度を設定したり、放射線撮像装置100の感度(例えば、読出回路103の増幅器のゲイン)を設定したりする。以下では、放射線撮像装置100を含む放射線撮像システム10が、透視撮影モードに設定された場合について説明する。放射線撮像システム10が一般撮影モードに設定された場合には既存の手法が適用されてもよい。 Next, in S302, the control computer 110 sets the imaging mode of the radiation imaging apparatus 100 based on the input of the imaging conditions and the like from the user. The imaging mode includes, for example, a general imaging mode for capturing a still image and a fluoroscopic imaging mode for capturing a moving image. The control computer 110 sets, for example, the intensity of the radiation emitted by the radiation generator 130 or sets the sensitivity of the radiation imaging apparatus 100 (for example, the gain of the amplifier of the readout circuit 103) according to the imaging mode. I do. Hereinafter, the case where the radiation imaging system 10 including the radiation imaging apparatus 100 is set to the fluoroscopic imaging mode will be described. When the radiation imaging system 10 is set to the general imaging mode, an existing method may be applied.
 S303において、放射線撮像装置100は、ユーザからの撮像の開始の指示を待機する撮像待機状態になる。撮像待機状態である放射線撮像装置100は、暗電流によって生じた電荷を除去するために、それぞれの画素Pから電気信号を読み出す。 In S303, the radiation imaging apparatus 100 enters an imaging standby state to wait for an instruction to start imaging from a user. The radiation imaging apparatus 100 in the imaging standby state reads out an electric signal from each pixel P in order to remove electric charges generated by the dark current.
 次いで、S304において、制御用コンピュータ110は、ユーザから撮像開始が指示されたか否かを判定する。撮像の開始の指示は、例えば、放射線の照射スイッチの押下によって行われる。撮像開始が指示されていない場合(S304でNO)、放射線撮像装置100は、撮影待機状態を維持する。撮影開始が指示された場合(S304でYES)、放射線撮像装置100は、S305に遷移する。S305において、放射線撮像装置100は、放射線が照射されない状態で補正用の撮像を行い、補正用の撮像によって得られた信号(以下、オフセットデータと呼ぶ)を取得する。オフセットデータとは、放射線撮像装置100に放射線が照射されていない状態で画素アレイ101のそれぞれの画素Pから電気信号を読み出すことによって放射線撮像装置100が生成する画像データのことである。従って、S305の動作中に、放射線発生装置130はまだ放射線の照射を開始しない。 Next, in S304, the control computer 110 determines whether or not the user has instructed to start imaging. The instruction to start imaging is issued, for example, by pressing a radiation irradiation switch. If the start of imaging has not been instructed (NO in S304), the radiation imaging apparatus 100 maintains the imaging standby state. If the start of imaging has been instructed (YES in S304), the radiation imaging apparatus 100 transitions to S305. In step S305, the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated, and acquires a signal (hereinafter, referred to as offset data) obtained by the correction imaging. The offset data is image data generated by the radiation imaging apparatus 100 by reading an electric signal from each pixel P of the pixel array 101 in a state where the radiation imaging apparatus 100 is not irradiated with radiation. Therefore, during the operation of S305, the radiation generator 130 does not start irradiation of radiation yet.
 本実施形態において、放射線撮像装置100は、S305の放射線が照射されない状態での補正用の撮像において、オフセットデータを複数回にわたって取得する。S305で放射線撮像装置100がオフセットデータを取得する回数は、例えば、放射線撮像装置100の出荷時に設定されてもよいし、制御用コンピュータ110を介してユーザによって設定されてもよい。 In the present embodiment, the radiation imaging apparatus 100 acquires the offset data a plurality of times in the correction imaging in the state where the radiation is not irradiated in S305. The number of times the radiation imaging apparatus 100 acquires the offset data in S305 may be set at the time of shipment of the radiation imaging apparatus 100, for example, or may be set by a user via the control computer 110.
 放射線撮像装置100が所定の回数のオフセットデータを取得し終わると、放射線撮像装置100は、S306に遷移する。S306で、放射線撮像装置100を含む放射線撮像システム10は透視撮影モードでの動画像の撮像を開始する。動画像の撮像中、放射線発生装置130は間欠的に放射線を照射し、放射線撮像装置100は照射された放射線量に応じた画像、すなわち放射線画像を生成する。放射線発生装置130と放射線撮像装置100との間の同期は、例えば、制御用コンピュータ110によって行われる。このS306で得られる放射線画像に対するオフセット補正には、S305で複数回取得されたオフセットデータの平均値が用いられる。換言すると、放射線撮像装置100は、S305の補正用の撮像において、複数の画素Pのそれぞれから複数回にわたり取得した信号(オフセットデータ)に基づいて、複数の画素Pのそれぞれの補正用データを取得する。このとき、複数の画素Pのそれぞれから複数回にわたり取得した信号の平均値に基づいて、複数の画素Pのそれぞれの補正用データを取得してもよい。放射線撮像装置100は、S306の放射線画像の撮像によって複数の画素Pから得られる画像データを、S305で取得した補正用データに基づいて補正する。 (4) When the radiation imaging apparatus 100 has obtained the offset data for the predetermined number of times, the radiation imaging apparatus 100 transitions to S306. In S306, the radiation imaging system 10 including the radiation imaging apparatus 100 starts capturing a moving image in the fluoroscopic imaging mode. During capturing of a moving image, the radiation generating apparatus 130 emits radiation intermittently, and the radiation imaging apparatus 100 generates an image corresponding to the amount of irradiated radiation, that is, a radiation image. Synchronization between the radiation generator 130 and the radiation imaging apparatus 100 is performed by, for example, the control computer 110. The average value of the offset data acquired a plurality of times in S305 is used for the offset correction for the radiation image obtained in S306. In other words, the radiation imaging apparatus 100 obtains the correction data of each of the plurality of pixels P based on the signals (offset data) obtained a plurality of times from each of the plurality of pixels P in the correction imaging in S305. I do. At this time, the correction data of each of the plurality of pixels P may be obtained based on the average value of the signals obtained a plurality of times from each of the plurality of pixels P. The radiation imaging apparatus 100 corrects the image data obtained from the plurality of pixels P by imaging the radiation image in S306 based on the correction data acquired in S305.
 次いで、S307で、放射線撮像装置100を含む放射線撮像システム10は、S306の撮像の開始から所定の時間が経過したか否かを判定する。所定の時間が経過していない場合(S307でNO)、放射線撮像装置100を含む放射線撮像システム10は、S306の撮像を継続する。所定の時間が経過した場合(S307でYES)、放射線撮像装置100を含む放射線撮像システム10は、S308に遷移する。S307における所定の時間の決定方法は、後述する。 Next, in S307, the radiation imaging system 10 including the radiation imaging apparatus 100 determines whether a predetermined time has elapsed from the start of imaging in S306. If the predetermined time has not elapsed (NO in S307), the radiation imaging system 10 including the radiation imaging apparatus 100 continues the imaging in S306. If the predetermined time has elapsed (YES in S307), the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S308. The method of determining the predetermined time in S307 will be described later.
 S308において、放射線撮像装置100を含む放射線撮像システム10は、放射線が照射されない状態で補正用の撮像を行う。このとき、放射線撮像装置100は、S308の補正用の撮像において、少なくとも1回、オフセットデータを取得する。 In S308, the radiation imaging system 10 including the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated. At this time, the radiation imaging apparatus 100 acquires offset data at least once in the correction imaging in S308.
 S309において、放射線撮像装置100は、S305で取得した補正用データまたはオフセットデータと、S308で取得したオフセットデータと、を用いて、経時的に変化する補正値を示す補正情報を取得する。この補正値は、S305とS308との少なくとも2回の補正用の撮像によって得られた補正用データまたはオフセットデータに応じた補正関数F(t)に従って経時的に変化する。補正関数F(t)の詳細な算出方法は、後述する。 In S309, the radiation imaging apparatus 100 obtains correction information indicating a correction value that changes over time using the correction data or offset data obtained in S305 and the offset data obtained in S308. This correction value changes with time according to a correction function F (t) corresponding to correction data or offset data obtained by at least two correction images in S305 and S308. A detailed calculation method of the correction function F (t) will be described later.
 次いで、S310で、放射線撮像システム10は撮像を再開する。このとき、S310の撮像は、S306と同じ撮像条件での撮像であってもよい。つまり、S310の撮像は、S307~S309の動作を挟んでS306から引き続き行われる動画像の撮像でありうる。このため、S306の撮像とS310の撮像とが、互いに同じ撮像モードを用いた撮像であってもよい。このS310で得られる放射線画像に対するオフセット補正には、S309で取得された補正情報の補正値が用いられる。換言すると、放射線撮像装置100は、放射線撮像装置がS301で動作を開始してから放射線の照射に応じたS310での放射線画像の撮像を行うまでの間に、放射線が照射されない状態で少なくとも2回の補正用の撮像(S305、S308)を行う。少なくとも2回の補正用の撮像(S305、S308)によって得られた信号に基づいて、放射線撮像装置100は、経時的に変化する補正値を示す補正情報を取得(S309)する。次いで、放射線撮像装置100は、S310の放射線画像の撮像によって複数の画素Pから得られる画像データを、S310での放射線画像の撮像を行ったタイミングと補正情報とに基づいて補正する。 Next, in S310, the radiation imaging system 10 restarts imaging. At this time, the imaging in S310 may be imaging under the same imaging conditions as S306. That is, the imaging in S310 can be an imaging of a moving image that is continuously performed from S306 with the operations in S307 to S309 interposed therebetween. Therefore, the imaging in S306 and the imaging in S310 may be imaging using the same imaging mode. For the offset correction for the radiation image obtained in S310, the correction value of the correction information obtained in S309 is used. In other words, the radiation imaging apparatus 100 performs at least two times in a state where radiation is not irradiated between the start of the operation of the radiation imaging apparatus in S301 and the imaging of the radiation image in S310 corresponding to the irradiation of radiation. Is performed (S305, S308) for correction. The radiation imaging apparatus 100 acquires correction information indicating a correction value that changes over time (S309) based on signals obtained by at least two correction imaging operations (S305 and S308). Next, the radiation imaging apparatus 100 corrects the image data obtained from the plurality of pixels P by the imaging of the radiation image in S310 based on the timing at which the imaging of the radiation image was performed in S310 and the correction information.
 S310での撮像が終了すると、放射線撮像装置100を含む放射線撮像システム10は、S311に遷移し、一連の撮像動作を終了する。具体的に、放射線発生装置130が、放射線の照射を停止し、放射線撮像装置100は放射線画像の生成を終了する。S310からS311への遷移は、S310での撮像の開始から所定の時間が経過したことに応じて行われてもよいし、放射線画像を格納するメモリ109の残容量が閾値を下回ったことに応じて行われてもよいし、ユーザの指示に応じて遷移してもよい。 When the imaging in S310 ends, the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S311 and ends a series of imaging operations. Specifically, the radiation generator 130 stops irradiation of the radiation, and the radiation imaging apparatus 100 ends the generation of the radiation image. The transition from S310 to S311 may be performed when a predetermined time has elapsed from the start of imaging in S310, or when the remaining capacity of the memory 109 for storing a radiation image falls below a threshold. May be performed, or a transition may be made according to a user's instruction.
 次に、図4A~4Cを参照し、図3の放射線撮像装置100の動作の詳細について説明する。図4Aは、時刻T9は、を示すタイミング図、図4Bは、画素Pのオフセット成分の変動の例を示す図、図4Cは、オフセットデータの画像例をそれぞれ示す。 Next, details of the operation of the radiation imaging apparatus 100 in FIG. 3 will be described with reference to FIGS. 4A to 4C. FIG. 4A is a timing chart illustrating a time T9, FIG. 4B is a diagram illustrating an example of a change in the offset component of the pixel P, and FIG. 4C is an example of an image of the offset data.
 図4Aにおいて、「動作」の行は、放射線撮像装置100の動作の内容を示す。「放射線」の行は、放射線撮像装置100へ放射線が照射されているか否かを示し、ハイレベルの間、放射線発生装置130は、放射線撮像装置100へ放射線を照射し、ローレベルの間、放射線発生装置130は、放射線を照射しない。「読出回路」の行は、読出回路103が読み出し動作を行っているか否かを示し、ハイレベルの間、読出回路103は読み出し動作を行い、ローレベルの間、読出回路103は読み出し動作を行わない。読出回路103が読み出し動作を行わない間、制御部106は、消費電力低減のために、電源部108から読出回路103への電力の供給を停止してもよい。「G1」~「Gm」の行は、駆動回路102が駆動線G1~Gmのそれぞれに供給している駆動信号のレベルを示し、ハイレベルの間、スイッチ素子202は導通状態となり、ローレベルの間、スイッチ素子202は非導通状態となる。 4A, the row of “operation” indicates the content of the operation of the radiation imaging apparatus 100. The “Radiation” row indicates whether or not radiation is being irradiated to the radiation imaging apparatus 100. During a high level, the radiation generator 130 irradiates the radiation imaging apparatus 100 with radiation. The generator 130 does not emit radiation. The row of “read circuit” indicates whether or not the read circuit 103 is performing a read operation. The read circuit 103 performs a read operation during a high level, and the read circuit 103 performs a read operation during a low level. Absent. While the reading circuit 103 does not perform the reading operation, the control unit 106 may stop supplying power from the power supply unit 108 to the reading circuit 103 in order to reduce power consumption. The rows “G1” to “Gm” indicate the levels of the drive signals that the drive circuit 102 supplies to each of the drive lines G1 to Gm. During this time, the switch element 202 is in a non-conductive state.
 時刻T1で、S303の動作が始まると、すなわち放射線撮像装置100が撮像待機状態になると、制御部106は、駆動回路102を制御して、駆動線G1から駆動線Gmまで順に、駆動線Gへ供給する駆動信号を一時的にハイレベルに切り替える。これによって、スイッチ素子202は導通状態になり、暗電流によって発生した電荷が変換素子201から除去される。時刻T2で、駆動線Gmまで駆動信号の切り替えが終了すると、制御部106は、駆動線G1から順に同じ処理を繰り返す。時刻T1~T2の一連の動作を、撮影待機中の1回のフレーム動作と呼ぶ。撮影待機状態では、放射線撮像装置100へ放射線は照射されない。また、撮影待機状態では、画素アレイ101のそれぞれの画素Pから信号を読み出す必要がないので、制御部106は読出回路103に読み出し動作を行わせない。 At time T1, when the operation of S303 starts, that is, when the radiation imaging apparatus 100 enters the imaging standby state, the control unit 106 controls the driving circuit 102 to sequentially drive the driving lines G to Gm. The supplied drive signal is temporarily switched to a high level. As a result, the switching element 202 becomes conductive, and the charge generated by the dark current is removed from the conversion element 201. At time T2, when the switching of the drive signal to the drive line Gm ends, the control unit 106 repeats the same processing in order from the drive line G1. A series of operations from the time T1 to T2 is referred to as one frame operation during a shooting standby. In the imaging standby state, no radiation is applied to the radiation imaging apparatus 100. In addition, in the shooting standby state, there is no need to read a signal from each pixel P of the pixel array 101, so the control unit 106 does not cause the readout circuit 103 to perform a readout operation.
 次いで、時刻T3で、S305の動作が始まると、すなわち放射線撮像システム10が撮像開始を指示されると、放射線撮像装置100は、補正用の撮像を行いオフセットデータの取得を開始する。オフセットデータは、m×n個の画素値で構成される。画素値とは、画素から信号線Sigへ電気信号が供給されている状態で読出回路103が読み出し動作を行うことによって生成された値のことである。 Next, at time T3, when the operation of S305 starts, that is, when the radiation imaging system 10 is instructed to start imaging, the radiation imaging apparatus 100 performs correction imaging and starts acquiring offset data. The offset data is composed of m × n pixel values. The pixel value is a value generated by the reading circuit 103 performing a reading operation in a state where an electric signal is supplied from the pixel to the signal line Sig.
 まず、時刻T3~T4の間、制御部106は、駆動回路102が駆動線G1~Gmに供給する駆動信号をすべてローレベルに維持する。これによって、それぞれの画素Pの変換素子201に、暗電流によって発生した電荷が蓄積される。時刻T3~T4の時間(蓄積時間)は事前に設定された値であり、S306での撮像の蓄積時間と同じ長さである。蓄積時間が経過すると、時刻T4~T5で、駆動回路102は、駆動線G1から順にそれぞれの駆動線Gへ供給する駆動信号を一時的にハイレベルに切り替え、スイッチ素子202を導通状態にする。これによって、各行の変換素子201に蓄積された電荷に応じた電気信号が順に信号線Sigに供給される。時刻T4~T5の間、制御部106は、読出回路103に読み出し動作を行わせる。これによって、それぞれの画素Pが信号線Sigに供給した信号に応じた画素値が生成され、この画素値が信号処理部105へ供給される。信号処理部105は、読出回路103から供給されたm×n個の画素値をオフセットデータとしてメモリ109に記憶する。 {First, during the time T3 to T4, the control unit 106 maintains all the drive signals supplied from the drive circuit 102 to the drive lines G1 to Gm at low level. As a result, the charges generated by the dark current are accumulated in the conversion element 201 of each pixel P. The time (accumulation time) between times T3 and T4 is a value set in advance, and has the same length as the accumulation time of imaging in S306. After the accumulation time elapses, from time T4 to T5, the drive circuit 102 temporarily switches the drive signals supplied to the respective drive lines G sequentially from the drive line G1 to the high level, and makes the switch element 202 conductive. Thus, electric signals corresponding to the charges accumulated in the conversion elements 201 of each row are sequentially supplied to the signal line Sig. During time T4 to T5, the control unit 106 causes the readout circuit 103 to perform a readout operation. As a result, a pixel value corresponding to the signal supplied from each pixel P to the signal line Sig is generated, and the pixel value is supplied to the signal processing unit 105. The signal processing unit 105 stores the m × n pixel values supplied from the readout circuit 103 in the memory 109 as offset data.
 時刻T5で、オフセットデータの生成が終了すると、制御部106は、時刻T3~T5までの動作を繰り返し、事前に設定された回数分のオフセットデータを取得する。時刻T3~T5までの一連の動作を、オフセットデータ取得における1回のフレーム動作を呼ぶ。S305のオフセットデータ取得動作中、上述の通り、放射線発生装置130は、放射線撮像装置100へ放射線を照射しない。また、電荷の蓄積中(時刻T3~T4)、制御部106は、読出回路103に読み出し動作を行わせない。 (4) When the generation of the offset data is completed at time T5, the control unit 106 repeats the operation from time T3 to T5 to acquire offset data for a preset number of times. A series of operations from time T3 to T5 is called one frame operation in offset data acquisition. During the offset data acquisition operation in S305, the radiation generator 130 does not irradiate the radiation imaging apparatus 100 with radiation as described above. Further, during the accumulation of the electric charge (time T3 to T4), the control unit 106 does not cause the reading circuit 103 to perform the reading operation.
 時刻T6で、S306の動作が始まると、すなわち放射線撮像システム10が動画像の撮像を開始すると、放射線撮像装置100は、放射線画像の画像データの取得を開始する。放射線画像は、m×n個の画素値で構成される。時刻T6~T8までに放射線撮像装置100が行う動作は、時刻T3~T5までに放射線撮像装置100が行う動作と同等であるため、重複する説明を省略する。時刻T6~T8までの一連の動作を、動画像の撮像における1回のフレーム動作と呼ぶ。1回のフレーム動作によって、動画像の1つの画像データが生成される。時刻T6~T7の間、放射線発生装置130から放射線撮像装置100へ放射線が照射される。従って、時刻T7の時点で、それぞれの画素Pの変換素子201には、暗電流によって発生した電荷だけでなく、照射された放射線に応じて発生した電荷も蓄積される。読出回路103は、時刻T7~T8の間に生成したm×n個の画素値を信号処理部105へ供給する。信号処理部105は、これらの画素値を放射線画像の画像データとしてメモリ109に記憶する。S306でのオフセット補正は、上述のようにS305で複数回取得したオフセットデータの平均値を補正データとして用いて実施されうる。S306において、制御部106は、時刻T6~T8までの動画像の撮像における1回のフレーム動作を、所定の時刻T9まで繰り返す。 At time T6, when the operation of S306 starts, that is, when the radiation imaging system 10 starts capturing a moving image, the radiation imaging apparatus 100 starts acquiring image data of a radiation image. The radiation image is composed of m × n pixel values. The operation performed by the radiation imaging apparatus 100 from time T6 to time T8 is the same as the operation performed by the radiation imaging apparatus 100 from time T3 to time T5, and a redundant description will be omitted. A series of operations from time T6 to T8 is referred to as one frame operation in capturing a moving image. One image data of a moving image is generated by one frame operation. Between times T6 and T7, radiation is irradiated from the radiation generator 130 to the radiation imaging apparatus 100. Therefore, at the time T7, not only the charge generated by the dark current but also the charge generated according to the irradiated radiation is accumulated in the conversion element 201 of each pixel P. The readout circuit 103 supplies the m × n pixel values generated between times T7 and T8 to the signal processing unit 105. The signal processing unit 105 stores these pixel values in the memory 109 as image data of the radiation image. The offset correction in S306 can be performed using the average value of the offset data acquired a plurality of times in S305 as the correction data as described above. In S306, the control unit 106 repeats one frame operation in capturing a moving image from time T6 to T8 until a predetermined time T9.
 S306の撮像の開始から所定の時間が経過した時刻T9で、S308の動作が始まると、放射線撮像装置100は、再び補正用の撮像を実施する。補正用の撮像は、S310での撮像に対応した撮像(例えば、S310の撮像と同じ撮像条件)モードで実施される。時刻T10で、補正用の撮像における1回のオフセットデータの取得が終了する。制御部106は、時刻T10の後、時刻T9~T10の動作を繰り返し、複数のオフセットデータを取得してもよい。少なくとも1回以上、制御部106は、オフセットデータを取得する。 放射線 When the operation of S308 starts at a time T9 when a predetermined time has elapsed from the start of imaging in S306, the radiation imaging apparatus 100 performs imaging for correction again. The correction imaging is performed in an imaging mode corresponding to the imaging in S310 (for example, the same imaging conditions as the imaging in S310). At time T10, one acquisition of offset data in the imaging for correction ends. After time T10, control unit 106 may repeat the operation from time T9 to T10 to acquire a plurality of offset data. The control unit 106 acquires the offset data at least once or more.
 時刻T11で、S310の動作が始まると、すなわち放射線撮像システム10がS306と同じ条件での撮像を再開し、放射線撮像装置100は放射線画像の画像データの取得を再開する。ここで、S310の撮像で取得された画像データのオフセット補正は、S305で取得した補正用データ(または、オフセットデータ。)とS308で取得したオフセットデータとを用いて取得した補正情報の、補正関数F(t)に従って経時的に変化する補正値を用いて実施される。 At time T11, when the operation in S310 starts, that is, the radiation imaging system 10 resumes imaging under the same conditions as in S306, and the radiation imaging apparatus 100 resumes acquiring image data of a radiation image. Here, the offset correction of the image data obtained by the imaging in S310 is performed by correcting the correction information of the correction information (or the offset data) obtained in S305 and the correction information obtained using the offset data obtained in S308. This is performed using a correction value that changes with time according to F (t).
 次に、補正関数F(t)について詳細に説明する。図4Bは、放射線撮像装置100を長時間(例えば、数10分から数時間。)使用する際に温度変動などの影響によって生じる、画素アレイ101の領域ごとのオフセット成分の変動の例を示した図である。S305の補正用の撮像で複数回取得したオフセットデータから取得した補正データをオフセット補正に使用する場合、長時間使用する際に生じる温度変動に起因するオフセット成分の変動によって、オフセット補正の精度が悪化してしまう場合がある。 Next, the correction function F (t) will be described in detail. FIG. 4B is a diagram illustrating an example of a variation in an offset component for each region of the pixel array 101 caused by an influence of a temperature variation or the like when the radiation imaging apparatus 100 is used for a long time (for example, several tens of minutes to several hours). It is. When the correction data acquired from the offset data acquired a plurality of times in the imaging for correction in S305 is used for offset correction, the accuracy of the offset correction deteriorates due to the fluctuation of the offset component caused by the temperature fluctuation that occurs when used for a long time. In some cases.
 また、図4Cに示すように、放射線撮像装置100を長時間使用すると、温度変動によってオフセットデータに局所的なムラが発生する。時刻T6で、S306の撮像を開始した時点と、時刻T9のような長時間の撮像を行った時点(時刻T6~T9が、数10分以上から数時間程度)とでは、画素アレイ101の領域ごとにオフセット成分が大きく変動しうる。 4C, when the radiation imaging apparatus 100 is used for a long time, local unevenness occurs in the offset data due to temperature fluctuation. At the time T6, when the imaging in S306 is started and when the long-time imaging is performed as at the time T9 (time T6 to T9 is several tens of minutes to several hours), the area of the pixel array 101 is not changed. The offset component can vary greatly from one to another.
 そこで、本実施形態において、S306の撮像の開始から所定の時間が経過した時刻T9で、少なくとも1回以上オフセットデータの取得を実施し、オフセット成分の変動を示す補正関数F(t)を算出する。ここで、時間tは、S306の放射線画像の撮像の開始からの時間であり、撮像の開始時刻である時刻T6を原点とする。その後、S310での撮像時には、補正関数F(t)に基づいて取得した補正値を用いて、画像データがオフセット補正される。 Therefore, in the present embodiment, at time T9 when a predetermined time has elapsed from the start of imaging in S306, acquisition of offset data is performed at least once or more, and a correction function F (t) indicating a change in the offset component is calculated. . Here, the time t is a time from the start of the imaging of the radiation image in S306, and the time T6, which is the start time of the imaging, is set as the origin. Thereafter, at the time of imaging in S310, the image data is offset-corrected using the correction value obtained based on the correction function F (t).
 ここで、S305の補正用の撮像で取得したオフセットデータから取得した補正用データをF(0)で表し、画素アレイ101のi列j行にある画素Pno画素値をF(0,i,j)で表す。また、時間tにおける補正関数をF(t)で表し、そのうちのi列j行にある画素値をF(t,i,j)で表すと、以下の式(1)が成り立つ。
F(t,i,j)=F(0,i,j)×exp(-t/τ)・・・(1)
ここで、τは、S305とS308との少なくとも2回の補正用の撮像によって得られたオフセットデータに応じたオフセット成分の変動の時定数である。τは、前述の式(1)より、以下の式(2)で表せる。
τ=t/{ln(F(0)/F(t))} ・・・(2)
Here, the correction data acquired from the offset data acquired in the imaging for correction in S305 is represented by F (0), and the pixel value of the pixel Pno in the i-th row and the j-th row of the pixel array 101 is represented by F (0, i, j). ). Further, when the correction function at time t is represented by F (t), and the pixel value in the i-th row and j-th row is represented by F (t, i, j), the following equation (1) holds.
F (t, i, j) = F (0, i, j) × exp (−t / τ) (1)
Here, τ is a time constant of the variation of the offset component according to the offset data obtained by at least two correction imaging operations in S305 and S308. τ can be expressed by the following expression (2) from the above expression (1).
τ = t / {ln (F (0) / F (t))} (2)
 つまり、S305で複数回にわたって取得したオフセットデータの平均値である補正用データF(0)と、時刻T9で取得したオフセットデータF(t1)と、からオフセット成分の変動に応じた時定数τを算出することができる。ここで、式(2)において、時定数τは、S305で複数回取得したオフセットデータの平均値である補正用データF(0)、および、時刻T9で取得したオフセットデータF(t1)の所定の領域内における平均値を用いて算出してもよい。つまり、画素アレイ101に配される複数の画素Pは、所定の領域ごとに少なくとも1つの画素を含む複数の画素群を構成する。放射線撮像装置100は、S305とS308との2回の補正用の撮像のうちS305の補正用の撮像以外の補正用の撮像において、この複数の画素群ごとに取得した信号に基づいて、複数の画素群ごとに含まれるそれぞれの画素Pの補正用データを取得する。例えば、図4Cに示した領域Aおよび領域B内の画素群のそれぞれの画素Pの平均値から、以下の式(3)および式(4)で表される領域(画素群)ごとの時定数τを算出してもよい。
τ=t1/{ln(F(0)/F(t1))}・・・(3)
τ=t1/{ln(F(0)/F(t1))}・・・(4)
領域ごとに時定数τが算出されると、以下の式(5)および式(6)に表される領域ごとの補正関数F(t)が算出される。
(t)=F(0)×exp(-t/τ)・・・(5)
(t)=F(0)×exp(-t/τ)・・・(6)
That is, the time constant τ corresponding to the variation of the offset component is obtained from the correction data F (0), which is the average value of the offset data acquired a plurality of times in S305, and the offset data F (t1) acquired at the time T9. Can be calculated. Here, in the equation (2), the time constant τ is a predetermined value of the correction data F (0), which is the average value of the offset data acquired a plurality of times in S305, and the offset data F (t1) acquired at the time T9. May be calculated using the average value in the region of. That is, the plurality of pixels P arranged in the pixel array 101 constitute a plurality of pixel groups including at least one pixel for each predetermined region. The radiation imaging apparatus 100 performs a plurality of correction imaging based on the signals acquired for each of the plurality of pixel groups in the correction imaging other than the correction imaging in S305 among the two correction imaging in S305 and S308. The correction data of each pixel P included in each pixel group is obtained. For example, a time constant for each region (pixel group) represented by the following Expressions (3) and (4) is obtained from the average value of each pixel P of the pixel groups in the regions A and B shown in FIG. 4C. τ may be calculated.
τ a = t1 / {ln (F a (0) / F a (t1))} (3)
τ b = t1 / {ln (F b (0) / F b (t1))} (4)
When the time constant τ is calculated for each region, a correction function F (t) for each region expressed by the following Expressions (5) and (6) is calculated.
F a (t) = F a (0) × exp (−t / τ a ) (5)
F b (t) = F b (0) × exp (−t / τ b ) (6)
 S310での撮像には、上記の式(5)および式(6)に示される補正関数に従う補正値を用いてオフセット補正を実施する。すなわち、領域Aの画素Pから出力される画像データには以下の式(7)の補正関数に従う補正値、領域Bの画素Pから出力される画像データには以下の式(8)の補正関数に従う補正値を用いて、オフセット補正を行う。
(t,i,j)=F(0,i,j)×exp(-t/τ)・・・(7)
(t,i,j)=F(0,i,j)×exp(-t/τ)・・・(8)
これによって、放射線撮像装置100の継続的な温度変動によって、動画像などの撮像中にオフセット成分が継続的に変化しても、適切なオフセット補正を実施することが可能となる。
In the imaging in S310, offset correction is performed using a correction value according to the correction functions shown in the above equations (5) and (6). That is, the image data output from the pixel P in the area A has a correction value according to the correction function of the following equation (7), and the image data output from the pixel P in the area B has a correction function of the following equation (8). Offset correction is performed using the correction value according to.
F a (t, i, j) = F a (0, i, j) × exp (−t / τ a ) (7)
F b (t, i, j) = F b (0, i, j) × exp (−t / τ b ) (8)
Accordingly, even if the offset component continuously changes during imaging of a moving image or the like due to continuous temperature fluctuation of the radiation imaging apparatus 100, it is possible to perform appropriate offset correction.
 また、式(7)および式(8)を用いたオフセット補正は、S310での撮像において、フレーム毎に撮像を行ったタイミングに応じて補正値を更新してもよいまた、例えば、1秒ごとなどあらかじめ定められた所定の時間ごと、補正値を更新してもよい。また、ユーザによって補正値が更新される間隔などが設定されてもよい。これによって、S310の放射線画像の撮像によって複数の画素Pから得られる画像データが、放射線画像の撮像を行ったタイミングとS305とS308との少なくとも2回の補正用の撮像で得られた補正情報とに基づいて高精度に補正される。 In the offset correction using Expressions (7) and (8), the correction value may be updated according to the timing at which imaging was performed for each frame in the imaging in S310. For example, the correction value may be updated at predetermined time intervals. Further, the interval at which the correction value is updated may be set by the user. As a result, the image data obtained from the plurality of pixels P by the imaging of the radiation image in S310 includes the timing at which the imaging of the radiation image was performed and the correction information obtained in at least two correction imaging operations in S305 and S308. Is corrected with high accuracy.
 また、S306の撮像の開始から所定の時間が経過した時刻T9は、予めオフセット補正のエラーによって生じるムラやアーチファクトの許容量によって決められていてもよい。また、時刻T9は、放射線撮像装置100に温度センサなどの放射線撮像装置100の温度変動をモニタする機能を付加し、放射線撮像装置100の温度変動に応じて決められてもよい。また、時刻T9は、使用環境などに応じてユーザによって定められてもよい。 The time T9 at which the predetermined time has elapsed from the start of the imaging in S306 may be determined in advance based on an allowable amount of unevenness and artifacts caused by an offset correction error. The time T9 may be determined according to the temperature fluctuation of the radiation imaging apparatus 100 by adding a function of monitoring the temperature fluctuation of the radiation imaging apparatus 100 such as a temperature sensor to the radiation imaging apparatus 100. Further, the time T9 may be determined by the user according to the usage environment and the like.
 また、S308のオフセットデータの取得において、時刻T9~T10までの放射線撮像装置100の動作を複数回繰り返し実施し複数のオフセットデータを取得してもよい。この場合、複数のオフセットデータの平均値を補正用データとして用い、補正係数F(t)を取得してもよい。複数のオフセットデータの平均値を補正用データとして用いることで、補正用データが低ノイズ化され、オフセットの変動の時定数τを算出する際の精度が向上する。ただし、S308の補正用の撮像におけるオフセットデータの取得において、繰り返し回数を増加させると、撮像の途中で撮像が不可能な時間(時刻T9~T11の時間)が増大してしまい、放射線撮像装置100の使い勝手が悪くなる可能性がある。このため、繰り返し回数は、例えば、2回や3回など数回程度であってもよい。 In the acquisition of the offset data in S308, the operation of the radiation imaging apparatus 100 from time T9 to T10 may be repeatedly performed a plurality of times to acquire a plurality of offset data. In this case, the correction coefficient F (t) may be obtained by using the average value of the plurality of offset data as the correction data. By using the average value of the plurality of offset data as the correction data, the correction data is reduced in noise, and the accuracy in calculating the time constant τ of the fluctuation of the offset is improved. However, when the number of repetitions is increased in the acquisition of offset data in the imaging for correction in S308, the time during which imaging is not possible during the imaging (time from time T9 to T11) increases, and the radiation imaging apparatus 100 May be inconvenient. For this reason, the number of repetitions may be about several times, for example, two or three times.
 S305で複数回取得したオフセットデータから得た補正用データF(0)、および、S308で取得したオフセットデータF(t1)の領域Aおよび領域B内における平均値を用いて、補正関数F(t)を領域毎にそれぞれ算出する方法を例に説明した。しかしながら、オフセットデータや補正用データの取得は、これに限定されるものではない。放射線撮像装置100の画素アレイ101を、さらに複数に領域を分割してもよいし、全領域の信号の平均値を用いて補正関数F(t)を算出してもよい。また、画素アレイ101内に含まれる複数の画素Pのうち所定の画素の出力値を用いて、補正関数F(t)を算出してもよい。 The correction function F (t) is obtained using the correction data F (0) obtained from the offset data obtained a plurality of times in S305 and the average value of the offset data F (t1) obtained in S308 in the regions A and B. ) Has been described as an example of the method of calculating each of the regions. However, acquisition of offset data and correction data is not limited to this. The pixel array 101 of the radiation imaging apparatus 100 may be further divided into a plurality of regions, or the correction function F (t) may be calculated using an average value of signals of all regions. Further, the correction function F (t) may be calculated using an output value of a predetermined pixel among the plurality of pixels P included in the pixel array 101.
 図5Aに図4Aの放射線撮像装置100の動作例の変形例のタイミング図を示す。図5Bは、このときのオフセット成分の変動の例を示す図である。 FIG. 5A shows a timing chart of a modified example of the operation example of the radiation imaging apparatus 100 of FIG. 4A. FIG. 5B is a diagram illustrating an example of the fluctuation of the offset component at this time.
 図5Aのタイミング図において、図4Aのタイミング図と比較して、S305での補正用の撮像の後に、S303’で示される撮影待機状態が存在する。このように、放射線画像の撮像において、S305の撮像でオフセットデータ(補正用データ)を取得した後、再度、撮影待機状態に遷移する場合がある。 に お い て In the timing chart of FIG. 5A, there is a shooting standby state shown in S303 ′ after the correction imaging in S305, as compared with the timing chart of FIG. 4A. As described above, in the imaging of the radiation image, after the offset data (correction data) is acquired in the imaging in step S305, the imaging apparatus may transition to the imaging standby state again.
 S303’において、S303と同様に、制御部106は、読出回路103に読み出し動作を行わせない。このため、S303’では、放射線撮像装置100において、温度変動が発生しにくいし、影響が無視できるほど軽微である場合が多い。このため、図5Bに示されるように、オフセット成分の温度変動は、時刻T6’でのS306の撮像の開始時点から発生すると言える。このため、補正関数F(t)のパラメータとなる時間tは、S303’の撮影待機状態が終了し、S306の撮像が開始される時刻T6’を原点としてもよい。この場合、S306の撮像におけるオフセット補正は、S305で複数回取得されたオフセットデータの平均値である補正用データF(0)を用いて実施される。また、S310の透視撮影におけるオフセット補正は、前述の式(7)および式(8)の補正関数F(t)に基づいて実施される。このように、補正関数F(t)のパラメータとなる時間tは、放射線撮像装置100が動作することによって、放射線撮像装置100の温度が変動を開始する時点を原点としてもよい。 In step S303, similarly to step S303, the control unit 106 does not cause the readout circuit 103 to perform a readout operation. For this reason, in S303 ', in the radiation imaging apparatus 100, temperature fluctuation hardly occurs, and the influence is often small enough to be ignored. For this reason, as shown in FIG. 5B, it can be said that the temperature fluctuation of the offset component occurs from the start of the imaging in S306 at time T6 '. For this reason, the origin of the time t, which is a parameter of the correction function F (t), may be the time T6 'at which the shooting standby state of S303' ends and the imaging of S306 starts. In this case, the offset correction in the imaging in S306 is performed using the correction data F (0) that is the average value of the offset data acquired a plurality of times in S305. Further, the offset correction in the fluoroscopic imaging in S310 is performed based on the correction function F (t) of the above-described equations (7) and (8). As described above, the time t, which is a parameter of the correction function F (t), may be set as the origin when the temperature of the radiation imaging apparatus 100 starts to fluctuate due to the operation of the radiation imaging apparatus 100.
 図6Aに図4Aの放射線撮像装置100の動作例の変形例のタイミング図を示す。図6Bは、このときのオフセット成分の変動の例を示す図である。 6A shows a timing chart of a modified example of the operation example of the radiation imaging apparatus 100 of FIG. 4A. FIG. 6B is a diagram illustrating an example of the fluctuation of the offset component at this time.
 図6Aのタイミング図において、図4Aのタイミング図と比較して、S310の撮像の後に、所定の時刻T9’においてS308’で示される補正用の撮像と、S310’で示される撮像とが行われる。ここで、S308’での補正用の撮像は、補正用の撮像によって得られた信号データに基づいて補正情報を更新する目的で行われる。より具体的には、S308’の補正用の撮像は、前述の式(3)および式(4)で算出した時定数τを更新する目的で実施される。すなわち、S305で取得した補正用データF(0)、S308で取得したオフセットデータF(t1)、およびS308’で取得したオフセットデータF(t2)を用いて、再度、時定数τを更新し、式(5)および式(6)の補正関数F(t)を更新する。S310’の放射線画像の撮像によって複数の画素Pから得られる画像データを、S310’の放射線画像の撮像を行ったタイミングと更新された補正関数F(t)に従って経時的に変化する補正値を示す補正情報とに基づいて補正する。 In the timing chart of FIG. 6A, as compared with the timing chart of FIG. 4A, after the imaging in S310, at a predetermined time T9 ', the imaging for correction shown in S308' and the imaging shown in S310 'are performed. . Here, the imaging for correction in S308 'is performed for the purpose of updating the correction information based on the signal data obtained by the imaging for correction. More specifically, the imaging for correction in S308 'is performed for the purpose of updating the time constant τ calculated by the above-described equations (3) and (4). That is, the time constant τ is updated again using the correction data F (0) acquired in S305, the offset data F (t1) acquired in S308, and the offset data F (t2) acquired in S308 ′, The correction function F (t) in Expressions (5) and (6) is updated. The image data obtained from the plurality of pixels P by imaging the radiation image in S310 'indicates a correction value that changes with time according to the timing at which the imaging of the radiation image was performed in S310' and the updated correction function F (t). The correction is performed based on the correction information.
 この場合、S310の撮像におけるオフセット補正は、S308で取得したオフセットデータF(t1)を用いて算出された補正関数F(t)に基づいて実施される。また、S310’の撮像におけるオフセット補正は、S308’で取得したオフセットデータF(t2)を用いて更新された補正関数F(t)に基づいて実施されうる。これによって、長時間の動画像の撮像を実施した場合、補正関数F(t)が、撮像の間に更新されることで、継続的により精度の高いオフセット補正の実施が可能となる。 In this case, the offset correction in the imaging in S310 is performed based on the correction function F 1 (t) calculated using the offset data F (t1) acquired in S308. Further, the offset correction in the imaging in S310 ′ can be performed based on the correction function F 2 (t) updated using the offset data F (t2) acquired in S308 ′. Accordingly, when a long-time moving image is captured, the correction function F (t) is updated during the capturing, so that it is possible to continuously perform the offset correction with higher accuracy.
 また、この場合、S308およびS308’の補正用の撮像において、複数のオフセットデータを繰り返し取得してもよく、複数のオフセットデータの平均値をオフセットデータ(補正用データ)F(t)、およびF(t)として用いてもよい。複数のオフセットデータの平均値を用いることで、オフセットデータが低ノイズ化され、オフセットの変動の時定数τを算出する際の精度が向上する。 Further, in this case, in the correction imaging in S308 and S308 ′, a plurality of offset data may be repeatedly obtained, and the average value of the plurality of offset data is calculated as the offset data (correction data) F 1 (t), and It may be used as F 2 (t). By using the average value of the plurality of offset data, noise of the offset data is reduced, and the accuracy in calculating the time constant τ of the fluctuation of the offset is improved.
 第2の実施形態
 図7~8Bを参照して、本発明の実施形態による放射線撮像装置100の動作について説明する。上述の第1の実施形態では、長時間の動画像の撮像を行う透視撮影モードなどにおいて、放射線撮像装置100の温度変動によってオフセット成分が継続的に変化し、このオフセット成分を補正する方法について説明した。一方、本実施形態では、モードチェンジをしながらの撮影のように放射線撮像装置100の動作モードを切り替える際に、動作モードの変更直後にオフセット成分が局所的かつ経時的に変化するオフセット補正について説明する。ここでは、上述のような温度変動が無視できる場合について説明する。
Second Embodiment The operation of the radiation imaging apparatus 100 according to the second embodiment of the present invention will be described with reference to FIGS. In the above-described first embodiment, a method of correcting the offset component in which the offset component continuously changes due to temperature fluctuation of the radiation imaging apparatus 100 in a fluoroscopic imaging mode in which a long-time moving image is captured is described. did. On the other hand, in the present embodiment, when the operation mode of the radiation imaging apparatus 100 is switched as in imaging with a mode change, offset correction in which an offset component locally and temporally changes immediately after the operation mode is changed will be described. I do. Here, a case in which the above-described temperature fluctuation can be ignored will be described.
 図7は、本実施形態における放射線撮像装置100の動作例を示すフロー図である。本実施形態において、動画像の撮像を行う透視撮影モードから静止画像の撮像を行う一般撮影モードにモードチェンジし、さらに、一般撮影モードから透視撮影モードにモードチェンジする場合について説明する。また、透視撮影モードから一般撮影モードにモードチェンジする場合は、オフセット成分が大きく変化せず、一般撮影モードから透視撮影モードにモードチェンジする場合、オフセット成分が無視できない経時的な変化をするとして説明する。図3に示される第1の実施形態のフロー図と同等の動作に関しては同じ番号を付与しており、同等な動作の詳細な説明は割愛する。 FIG. 7 is a flowchart illustrating an operation example of the radiation imaging apparatus 100 according to the present embodiment. In the present embodiment, a case will be described in which the mode is changed from the fluoroscopic imaging mode for capturing a moving image to the general imaging mode for capturing a still image, and further, the mode is changed from the general imaging mode to the fluoroscopic imaging mode. In addition, when the mode is changed from the fluoroscopic imaging mode to the general imaging mode, the offset component does not largely change, and when the mode is changed from the general imaging mode to the fluoroscopic imaging mode, the offset component changes with time that cannot be ignored. I do. The same operations as those in the flowchart of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and detailed description of the same operations is omitted.
 図7において、S301~S306までの動作は、図3記載のものと同様である。次いで、S707で、放射線撮像装置を含む放射線撮像システム10は、モードチェンジの実施可否を判定する。モードチェンジを実施しない場合(S707でNO)、放射線撮像システム10は、引き続き動画像の撮像を継続する。モードチェンジを実施する場合(S707でYES)、放射線撮像装置100を含む放射線撮像システム10はS708に遷移し、S708で放射線撮像システム10は、例えば静止画像の撮像を実施する。 に お い て In FIG. 7, the operations from S301 to S306 are the same as those in FIG. Next, in S707, the radiation imaging system 10 including the radiation imaging apparatus determines whether or not the mode change can be performed. When the mode change is not performed (NO in S707), the radiation imaging system 10 continues to capture a moving image. When the mode change is performed (YES in S707), the radiation imaging system 10 including the radiation imaging apparatus 100 transitions to S708, and in S708, the radiation imaging system 10 captures, for example, a still image.
 静止画像の撮像を行うと、次いで、放射線撮像装置100を含む放射線撮像システム10は、放射線が照射されない状態で補正用の撮像を行う。このとき、放射線撮像装置100は、少なくとも2回、それぞれ1つのオフセットデータを取得する補正用の撮像を行う。S709での補正用の撮像は、放射線の照射の有無を除いて後述のS711の撮像に対応した動作(S710と同じ動作)モードで実施されうる。 (4) After capturing a still image, the radiation imaging system 10 including the radiation imaging apparatus 100 performs correction imaging in a state where radiation is not irradiated. At this time, the radiation imaging apparatus 100 performs correction imaging for acquiring one offset data at least twice. The imaging for correction in S709 can be performed in an operation mode (same operation as S710) corresponding to the imaging in S711 described below except for the presence / absence of radiation irradiation.
 S710で、放射線撮像装置100は、S709で少なくとも2回の補正用の撮像によって得られたオフセットデータに応じた補正関数F(t’)に従って経時的に変化する補正値を示す補正情報を取得する。補正関数F(t’)の詳細な取得方法は、後述する。 In S710, the radiation imaging apparatus 100 acquires correction information indicating a correction value that changes over time according to a correction function F (t ') corresponding to offset data obtained by at least two correction imaging operations in S709. . A detailed method of acquiring the correction function F (t ') will be described later.
 S711で、放射線撮像装置100を含む放射線撮像システム10は、動画像の撮像を再開する。S711の放射線画像の撮像によって複数の画素Pから得られる画像データは、放射線画像の撮像を行ったタイミングと補正情報とに基づいて補正される。 In step S711, the radiation imaging system 10 including the radiation imaging apparatus 100 restarts capturing moving images. The image data obtained from the plurality of pixels P by the imaging of the radiation image in S711 is corrected based on the timing at which the imaging of the radiation image was performed and the correction information.
 図8Aは、本実施形態の放射線撮像装置100の動作例のタイミング図、図8Bは、このときのオフセット成分の変動の例を示す図である。図4A、4Bに示される第1の実施形態のタイミング図と同等の構成を示すものには図4A、4Bと同じ番号を付与してあり、ここでは、詳細な説明は割愛する。 FIG. 8A is a timing chart of an operation example of the radiation imaging apparatus 100 according to the present embodiment, and FIG. 4A and 4B are denoted by the same reference numerals as those in FIGS. 4A and 4B, and detailed description thereof will be omitted.
 図8Aのタイミング図において、図4Aのタイミング図との相違点は、S708の前後においてモードチェンジを実施している点である。このように、放射線画像の撮像において、動画像の撮像を行う透視撮影モード中に静止画像の撮像を実施する場合がある。 に お い て The timing chart of FIG. 8A is different from the timing chart of FIG. 4A in that a mode change is performed before and after S708. As described above, in capturing a radiographic image, a still image may be captured during a fluoroscopic imaging mode in which a moving image is captured.
 時刻Trad1で、すなわちS708の動作開始によって、放射線撮像装置100は、静止画像の撮像を実施する。静止画像の撮像が終了した時刻Trad2で、S709の動作が始まると、放射線撮像装置100はオフセットデータを1つ取得する補正用の撮像を2回以上実施する。S709での補正用の撮像は、その後に実施するS711の撮像と同じ撮像モードで実施する。 で At time Trad1, that is, by starting the operation of S708, the radiation imaging apparatus 100 captures a still image. When the operation of S709 is started at the time Trad2 at which the imaging of the still image is completed, the radiation imaging apparatus 100 performs the imaging for correction for acquiring one offset data twice or more. The imaging for correction in S709 is performed in the same imaging mode as the imaging in S711 performed thereafter.
 時刻T11で、S711の動作が始まると、すなわち放射線撮像システム10が再び動画像の撮像を開始すると、放射線撮像装置100は放射線画像の画像データの取得を開始し、透視撮影が終了するまで繰り返す。ここで、S711でのオフセット補正は、上述のように補正関数F(t’)に従って経時的に変化する補正値を示す補正情報に基づいて実施される。 At time T11, when the operation of S711 starts, that is, when the radiation imaging system 10 starts capturing a moving image again, the radiation imaging apparatus 100 starts acquiring image data of the radiation image and repeats until the fluoroscopic imaging ends. Here, the offset correction in S711 is performed based on correction information indicating a correction value that changes with time according to the correction function F (t ') as described above.
 また、S709で行われる補正譲歩を取得する前のS306の放射線画像の撮像においては、S306の放射線画像の撮像の前に、放射線が照射されない状態でS709の補正用の撮像とは別に上述の第1の実施形態と同様にS303の補正用の撮像を行う。放射線撮像装置100は、S306の放射線画像の撮像によって複数の画素Pから得られる画像データを、上述の第1の実施形態と同様に、S303no補正用の撮像によって得られたオフセットデータ(補正用データ)に基づいて補正する。 In addition, in the imaging of the radiation image in S306 before acquiring the correction concession performed in S709, before the imaging of the radiation image in S306, the above-described second imaging is performed separately from the imaging for correction in S709 in a state where the radiation is not irradiated. As in the first embodiment, imaging for correction in S303 is performed. The radiation imaging apparatus 100 converts the image data obtained from the plurality of pixels P by imaging of the radiation image in S306 into offset data (correction data) obtained by imaging for S303no correction in the same manner as in the first embodiment. ) To correct.
 次に、補正関数F(t’)の更新について詳細に説明する。図8Bは、放射線撮像装置100が、動画像の撮像中に静止画像を撮像する場合の、画素アレイ101の図4Cに示されるような領域ごとのオフセット成分の変動の例を示した図である。前述のように、モードチェンジを実施した場合、撮像モードの変更直後に、放射線撮像装置100の動作に起因するオフセット成分の局所的かつ経時的な変化が発生する場合がある。この場合のオフセット成分の変動は、前述の温度変動によるオフセット成分の変動(例えば、数10分から数時間)と異なり数秒オーダーの場合がある。また、オフセット成分の変動が、温度変動によるオフセット成分の変動と異なる挙動を示す場合がある。 Next, the updating of the correction function F (t ') will be described in detail. FIG. 8B is a diagram illustrating an example of a variation in the offset component of each region of the pixel array 101 as illustrated in FIG. 4C when the radiation imaging apparatus 100 captures a still image while capturing a moving image. . As described above, when the mode change is performed, a local and temporal change of the offset component due to the operation of the radiation imaging apparatus 100 may occur immediately after the change of the imaging mode. The variation of the offset component in this case may be on the order of several seconds, unlike the variation of the offset component due to the above-mentioned temperature variation (for example, several tens of minutes to several hours). Further, the fluctuation of the offset component sometimes shows a different behavior from the fluctuation of the offset component due to the temperature fluctuation.
 そこで、本実施形態において、静止画像の撮像が終了した時刻Trad2において、少なくとも2回の補正用画像の撮像を行い、2つ以上のオフセットデータを取得し、オフセット成分の変動を表す補正関数F(t’)を算出する。ここで、時間t’は、S709での少なくとも2回の補正用の撮像のうちより早く行った撮像の開始時刻を原点とする。例えば、S709での補正用画像の撮像の開始時刻Trad2を原点としてもよい。その後、S711での動画像の撮像時には、補正関数F(t’)に従って経時的に変化する補正値を用いて、取得した放射線画像の画像データを補正する。 Therefore, in the present embodiment, at time Trad2 at which the imaging of the still image is completed, imaging of the correction image is performed at least twice, two or more pieces of offset data are acquired, and the correction function F ( t ′) is calculated. Here, the origin of the time t 'is the start time of the earlier imaging of at least two correction imagings in S709. For example, the start time Trad2 of capturing the image for correction in S709 may be set as the origin. Thereafter, at the time of capturing a moving image in S711, the image data of the acquired radiation image is corrected using a correction value that changes with time according to the correction function F (t ').
 ここで、第1の実施形態と同様に、S305で取得したオフセットデータの平均値である補正用データをF(0)で表す。また、時間t’=t1’で取得したオフセットデータ、すなわちS709の1回目の補正用の撮像で取得した1回目のオフセットデータをF(1)で表す。また、時間t’=t2’で取得したオフセットデータ、すなわちS709の2回目の補正用の撮像で取得したオフセットデータをF(2)で表す。この場合、時間t’におけるオフセットデータをF(t’)で表すと、以下の式(9)が成り立つ。
F(t’)=F(0)×{1-exp(-t’/τ’)}・・・(9)
ここで、τ’は、S709での補正用画像の撮像の開始時刻Trad2を原点とした時間t’=0からのオフセット成分の変動の時定数である。また、τ’は、前述のF(1)およびF(2)を用いて以下の式(10)で表せる。
τ’=t’/{ln(F(2)/F(1))} ・・・(10)
ここで、式(10)において時定数τ’は、第1の実施形態と同様に、オフセットデータF(1)およびオフセットデータF(2)を、画素アレイ101の所定の領域内における平均値を用いて算出してもよい。すなわち、第1の実施形態にて説明した手法と同様、例えば、所定の領域Aおよび領域B内での画素Pのそれぞれから出力されるオフセットデータの平均値を用いて、以下の式(11)および式(12)で表される領域毎の時定数τ’を算出してもよい。
τ’=t’/{ln(F(2)/F(1))}・・・(11)
τ’=t’/{ln(F(2)/F(1))}・・・(12)
Here, similarly to the first embodiment, the correction data that is the average value of the offset data acquired in S305 is represented by F (0). The offset data acquired at time t ′ = t1 ′, that is, the first offset data acquired in the first correction imaging in S709 is represented by F (1). The offset data obtained at time t ′ = t2 ′, that is, the offset data obtained in the second correction imaging in S709 is represented by F (2). In this case, when the offset data at the time t ′ is represented by F (t ′), the following equation (9) holds.
F (t ′) = F (0) × {1-exp (−t ′ / τ ′)} (9)
Here, τ ′ is the time constant of the change of the offset component from the time t ′ = 0 with the start time Trad2 of the imaging of the correction image in S709 as the origin. Further, τ ′ can be expressed by the following equation (10) using F (1) and F (2) described above.
τ ′ = t ′ / {ln (F (2) / F (1))} (10)
Here, in the equation (10), the time constant τ ′ is obtained by calculating the average value of the offset data F (1) and the offset data F (2) in a predetermined area of the pixel array 101 as in the first embodiment. It may be used to calculate. That is, similar to the method described in the first embodiment, for example, using the average value of the offset data output from each of the pixels P in the predetermined area A and the area B, the following equation (11) is used. Alternatively, the time constant τ ′ for each region represented by Expression (12) may be calculated.
τ a ′ = t ′ / {ln (F a (2) / F a (1))} (11)
τ b ′ = t ′ / {ln (F b (2) / F b (1))} (12)
 領域ごとに時定数τ’が算出されると、以下の式(13)および式(14)に表される領域ごとの補正関数F(t’)が算出される。
(t’)=F(0)×{1-exp(-t’/τ’)}・・・(13)
(t’)=F(0)×{1-exp(-t’/τ’)}・・・(14)
When the time constant τ ′ is calculated for each region, a correction function F (t ′) for each region represented by the following Expressions (13) and (14) is calculated.
F a (t ′) = F a (0) × {1-exp (−t ′ / τ a ′)} (13)
F b (t ′) = F b (0) × {1−exp (−t ′ / τ b ′)} (14)
 S711での撮像において、領域Aの画素Pから出力される画像データには式(13)の補正関数に従う補正値、領域Bの画素Pから出力される画像データには式(14)の補正関数に従う補正値を用いて、オフセット補正を行う。これによって、モードチェンジ撮影のように、放射線撮像装置100において撮像モードを切り替える際、撮像モードの変更直後にオフセット成分が局所的かつ経時的に変動する場合であっても、適切なオフセット補正が可能となる。 In the imaging in S711, the correction value according to the correction function of Expression (13) is applied to the image data output from the pixel P in the area A, and the correction function of Expression (14) is applied to the image data output from the pixel P in the area B. Offset correction is performed using the correction value according to. Thus, when the imaging mode is switched in the radiation imaging apparatus 100 as in mode change imaging, appropriate offset correction can be performed even when the offset component fluctuates locally and over time immediately after the imaging mode is changed. It becomes.
 また、本実施形態において、補正関数F(t’)の取得は、領域Aおよび領域B内におけるそれぞれの画素Pから出力される信号の平均値を用いて、領域ごとに算出する方法を例に説明したが、これに限定されるものでは無い。補正関数F(t’)の取得は、放射線撮像装置100の画素アレイ101を、さらに複数に分割して取得してもよいし、画素アレイ101の全領域の信号の平均値を用いてもよい。また、所定の画素の出力値を用いて、オフセット変動関数F(t’)を算出してもよい。 In the present embodiment, the method of obtaining the correction function F (t ′) is, for example, a method of calculating the correction function F (t ′) for each area using an average value of signals output from the pixels P in the area A and the area B. Although described, it is not limited to this. The correction function F (t ′) may be obtained by dividing the pixel array 101 of the radiation imaging apparatus 100 into a plurality of parts, or by using an average value of signals in all regions of the pixel array 101. . Further, the offset variation function F (t ') may be calculated using the output value of a predetermined pixel.
 また、S709の補正用の撮像は、複数回の撮像を繰り返し実施しても良く、複数回のオフセットデータを用いて式(10)のτ’を求めると、精度は向上する。ただし、S709における補正用の撮像において、撮像の繰り返し回数を増加させると、撮影不可能な時間(時刻Trad2~T11の時間)が増大してしまい、放射線撮像装置100の使い勝手が悪くなる可能性がある。このため、繰り返し回数は、例えば、2回や3回など数回程度であってもよい。 The imaging for correction in S709 may be repeatedly performed a plurality of times. If τ ′ in Expression (10) is obtained using a plurality of times of offset data, the accuracy is improved. However, in the correction imaging in S709, if the number of repetitions of imaging is increased, the time during which imaging is not possible (the time from time Trad2 to time T11) increases, and the usability of the radiation imaging apparatus 100 may be reduced. is there. For this reason, the number of repetitions may be about several times, for example, two or three times.
 第3の実施形態
 図9A、9Bを用いて本発明の実施形態による放射線撮像装置100の動作について説明する。図9Aは、本実施形態の放射線撮像装置100の動作例のタイミング図、図9Bは、このときのオフセット成分の変動の例を示す図である。上述の第2の実施形態では、長時間の撮像による温度変動の影響が無視できる場合の構成について説明した。本実施形態においては、長時間の撮像に起因する温度変動によってオフセット変動が生じ、なおかつ、モードチェンジ撮影を実施する場合の構成について説明する。
Third Embodiment The operation of the radiation imaging apparatus 100 according to the third embodiment of the present invention will be described with reference to FIGS. 9A and 9B. FIG. 9A is a timing chart of an operation example of the radiation imaging apparatus 100 according to the present embodiment, and FIG. 9B is a view showing an example of a variation of the offset component at this time. In the above-described second embodiment, the configuration in the case where the effect of temperature fluctuation due to long-time imaging can be neglected has been described. In the present embodiment, a configuration will be described in which offset fluctuation occurs due to temperature fluctuation caused by long-time imaging and mode change imaging is performed.
 図9Aのタイミング図において、図8Aのタイミング図との相違点は、モードチェンジを実施するS708の静止画像の撮像の前に、補正情報を取得するためのS308の動作に遷移し、オフセットデータを取得している点である。S306において、長時間の動画像の撮像が実施されると、上述のように温度変動によるオフセット変動が生じる。この場合、S305で取得した補正用データF(0)を使用し続けることができない。すなわち、温度変動によるオフセット変動に加えて、モードチェンジによって放射線撮像装置100の動作に起因するオフセット変動が発生した場合、S711の動画像の撮像において、オフセットの補正値の真値を得ることが困難になる。 In the timing chart of FIG. 9A, the difference from the timing chart of FIG. 8A is that before the capture of a still image in S708 for performing a mode change, the operation shifts to the operation of S308 for acquiring correction information, and the offset data is changed. It is a point that has been acquired. In S306, when a long-time moving image is captured, the offset fluctuation due to the temperature fluctuation occurs as described above. In this case, the use of the correction data F (0) acquired in S305 cannot be continued. That is, when an offset variation due to the operation of the radiation imaging apparatus 100 occurs due to the mode change in addition to the offset variation due to the temperature variation, it is difficult to obtain the true value of the offset correction value in the imaging of the moving image in S711. become.
 そこで、本実施形態では、S306の動画像の撮像中にモードチェンジを実施する際、時刻Tflu1で、すなわちS708の静止画像の撮像を実施する直前にS308の動作に遷移し、補正用の撮像を実施する。S308での補正用の撮像は、S711の撮像に対応した動作(S711と同じ動作)モードで実施されうる。時刻Tflu2で、1つのオフセットデータの取得が終了すると、制御部106は、時刻Tflu1~Tflu2までの動作を繰り返し、事前に設定された少なくとも複数のオフセットデータを取得してもよい。 Therefore, in the present embodiment, when the mode change is performed during the capturing of the moving image in S306, the operation transits to the operation of S308 at time Tflu1, that is, immediately before the capturing of the still image in S708, and the image capturing for correction is performed. carry out. The imaging for correction in S308 can be performed in an operation mode (same operation as S711) corresponding to the imaging in S711. When the acquisition of one piece of offset data ends at time Tflu2, the control unit 106 may repeat the operation from time Tflu1 to Tflu2 to acquire at least a plurality of offset data set in advance.
 補正用の撮像を終了した後、時刻Trad1で、すなわちS708の動作開始によって、放射線撮像装置100は、静止画像の撮像を実施する。さらに、上述の第2の実施形態と同様に、静止画像の撮像が終了した時刻Trad2から、S709の動作において、放射線撮像装置100は、少なくとも2回の補正用の撮像を実施し、2つ以上のオフセットデータを取得する。S709での補正用の撮像は、その後に実施するS711の撮像と同じ撮像モードで実施する。 (4) After the correction imaging is completed, the radiation imaging apparatus 100 captures a still image at the time Trad1, that is, by starting the operation of S708. Further, similarly to the above-described second embodiment, from the time Trad2 at which the imaging of the still image is completed, in the operation of S709, the radiation imaging apparatus 100 performs at least two imagings for correction, and performs two or more imagings for correction. Get offset data of The imaging for correction in S709 is performed in the same imaging mode as the imaging in S711 performed thereafter.
 次に、本実施形態における補正関数F(t’)について詳細に説明する。本実施形態では、オフセット変動関数F(t’)の算出方法が、上述の第2の実施形態と異なる。 Next, the correction function F (t ') in the present embodiment will be described in detail. In the present embodiment, the method of calculating the offset variation function F (t ') is different from that of the above-described second embodiment.
 上述の第2の実施形態では、S306の撮像における温度変動の影響を考慮せず、モードチェンジ後に実施されるS711の撮像で用いられる補正関数F(t’)の算出方法について説明した。一方、本実施形態において、S306の撮像における温度変動の影響を考慮するため、図9Bに示されるように、S708の静止画像の撮像が実施されるまでにオフセット変動が生じている。よって、上述の式(9)の補正関数F(t’)を用いると、S711の撮像で取得される放射線画像の画像データのオフセット補正の精度は悪化する。 In the above-described second embodiment, the calculation method of the correction function F (t ′) used in the imaging in S711 performed after the mode change without considering the influence of the temperature fluctuation in the imaging in S306 has been described. On the other hand, in the present embodiment, in order to consider the influence of the temperature fluctuation in the imaging in S306, as shown in FIG. 9B, an offset fluctuation occurs before the still image is captured in S708. Therefore, when the correction function F (t ') of the above equation (9) is used, the accuracy of the offset correction of the image data of the radiation image acquired by the imaging in S711 deteriorates.
 そこで、本実施形態では、S708の静止画撮影を実施する直前に、S308のオフセットデータを取得し、オフセット変動関数F(t)を算出しておく。すなわち、上述の第1の実施形態で説明した手法によって、S305で複数回取得したオフセットデータの平均値データF(0)、時間t=t1で取得したオフセットデータF(t1)を用いて、温度変動によるオフセット成分の変動の時定数τを算出する。これによって、補正関数F(t)を取得する。例えば、補正関数F(t)の取得は、上述の式(3)~式(6)を用いてもよい。 Therefore, in the present embodiment, immediately before performing the still image shooting in S708, the offset data in S308 is obtained and the offset variation function F (t) is calculated. That is, according to the method described in the first embodiment, the average value data F (0) of the offset data acquired multiple times in S305 and the offset data F (t1) acquired at time t = t1 are used to determine the temperature. The time constant τ of the variation of the offset component due to the variation is calculated. Thereby, the correction function F (t) is obtained. For example, the correction function F (t) may be obtained by using the above equations (3) to (6).
 これによって、S306の動画像の撮像からS708の静止画像の撮像にモードチェンジする時点でのオフセット成分の変動が取得できる。さらに、上述の第2実施形態で説明した手法によって、S708の静止画像の撮像の直後の時刻Trad2で、S709の補正用の撮像を実施し少なくとも2つのオフセットデータを取得し、オフセット成分の変動を表す補正関数F(t’)を算出する。ここで、時間t’は、S709でのオフセットデータの取得の開始時刻Trad2を原点とする。その後、S711での撮像時には、補正関数F(t’)に基づいて、取得した放射線画像の画像データのオフセット補正を実施する。オフセット変動関数F(t’)は、第2実施形態で説明した式(9)の変化形となり以下の式(15)で表せる。
F(t’)=F(t)×{1-exp(-t’/τ’)}・・・(15)
ここで、時間t’は、S709でのオフセットデータの取得の開始時刻Trad2を原点である。
As a result, it is possible to acquire the fluctuation of the offset component at the time when the mode is changed from the capturing of the moving image in S306 to the capturing of the still image in S708. Further, by the method described in the above-described second embodiment, at time Trad2 immediately after the imaging of the still image in S708, the imaging for correction in S709 is performed to acquire at least two pieces of offset data, and the fluctuation of the offset component is obtained. A correction function F (t ′) to be represented is calculated. Here, the origin of the time t ′ is the start time Trad2 of the acquisition of the offset data in S709. Thereafter, at the time of imaging in S711, offset correction of the acquired image data of the radiation image is performed based on the correction function F (t '). The offset variation function F (t ′) is a variation of the equation (9) described in the second embodiment and can be expressed by the following equation (15).
F (t ′) = F (t) × {1-exp (−t ′ / τ ′)} (15)
Here, the time t 'has the origin at the start time Trad2 of the acquisition of the offset data in S709.
 式(15)によって、本実施形態のように、長時間の撮像に起因する温度変動によってオフセット変動が生じ、なおかつモードチェンジ撮影を実施する場合であっても、S711での動画像の撮像において適切なオフセット補正が可能となる。 According to Expression (15), even when offset fluctuation occurs due to temperature fluctuation due to long-time imaging and mode change imaging is performed as in the present embodiment, it is appropriate for capturing a moving image in S711. Offset correction can be performed.
 以上、本発明における実施形態について説明した。本実施形態において、図3および図4Aに示されるように、S306の撮像とS310の撮像とが、同じ動作モードである構成で説明したが、これに限定されるものでは無い。動画像の撮像においては、動作モード(フレームレート、画素ビニング、照射野領域など)の異なる撮像を実施する場合があり、S306とS310との動画像の撮像が異なる動作モードであってもよい。例えば、S306においては、低速透視撮影(例えば5fps)を実施し、S310においては、高速透視撮影(例えば15fps)をする場合は、S308では、S310の動作モードのオフセットデータF(t1)を取得する。この場合は、S305において、S306の動作モードに相当する補正用の撮像とS310の動作モードに相当する補正用の撮像とを行う。これらの撮像のうちS310の動作モードに相当する補正用の撮像から取得した補正用データをF(0)とし、補正関数F(t)を取得する。この補正関数F(t)に基づいて、S310の撮像で取得した放射線画像の画像でt-他のオフセット補正を実施する。 The embodiments of the present invention have been described above. In the present embodiment, as shown in FIGS. 3 and 4A, the configuration in which the imaging in S306 and the imaging in S310 are in the same operation mode has been described, but the present invention is not limited to this. In capturing a moving image, there may be a case where imaging with different operation modes (frame rate, pixel binning, irradiation field area, etc.) is performed, and the imaging of moving images in S306 and S310 may be different operation modes. For example, in S306, low-speed fluoroscopy (for example, 5 fps) is performed. In S310, when high-speed fluoroscopy (for example, 15 fps) is performed, in S308, offset data F (t1) of the operation mode of S310 is acquired. . In this case, in S305, imaging for correction corresponding to the operation mode of S306 and imaging for correction corresponding to the operation mode of S310 are performed. Of these imagings, the correction data obtained from the correction imaging corresponding to the operation mode of S310 is F (0), and the correction function F (t) is obtained. Based on the correction function F (t), t-other offset correction is performed on the radiation image acquired by the imaging in S310.
(その他の実施例)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other Examples)
The present invention supplies a program for realizing one or more functions of the above-described embodiments to a system or an apparatus via a network or a storage medium, and one or more processors in a computer of the system or the apparatus read and execute the program. It can also be realized by the following processing. Further, it can be realized by a circuit (for example, an ASIC) that realizes one or more functions.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to make the scope of the present invention public.
 本願は、2018年6月18日提出の日本国特許出願特願2018-115423を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims the priority of Japanese Patent Application No. 2018-115423 filed on Jun. 18, 2018, the entire contents of which are incorporated herein by reference.

Claims (20)

  1.  放射線画像を取得するための複数の画素を含む放射線撮像装置であって、
     前記放射線撮像装置は、
      前記放射線撮像装置が動作を開始してから放射線の照射に応じた放射線画像の撮像を行うまでの間に、放射線が照射されない状態で少なくとも2回の補正用の撮像を行い、
      前記少なくとも2回の補正用の撮像によって得られた信号に基づいて、経時的に変化する補正値を示す補正情報を取得し、
      前記放射線画像の撮像によって前記複数の画素から得られる画像データを、前記放射線画像の撮像を行ったタイミングと前記補正情報とに基づいて補正することを特徴とする放射線撮像装置。
    A radiation imaging apparatus including a plurality of pixels for acquiring a radiation image,
    The radiation imaging apparatus,
    Between the start of the operation of the radiation imaging apparatus and the imaging of a radiation image corresponding to the irradiation of radiation, at least two times of correction imaging in a state where radiation is not irradiated,
    Based on a signal obtained by the at least two correction imaging operations, obtains correction information indicating a correction value that changes over time,
    A radiation imaging apparatus, wherein image data obtained from the plurality of pixels by capturing the radiation image is corrected based on the timing at which the radiation image was captured and the correction information.
  2.  前記補正値が、前記少なくとも2回の補正用の撮像によって得られた信号に応じた補正関数に従って経時的に変化することを特徴とする請求項1に記載の放射線撮像装置。 2. The radiation imaging apparatus according to claim 1, wherein the correction value changes over time according to a correction function corresponding to a signal obtained by the at least two correction imaging operations. 3.
  3.  前記補正関数が、前記少なくとも2回の補正用の撮像によって得られた信号に応じた時定数を含むことを特徴とする請求項2に記載の放射線撮像装置。 3. The radiation imaging apparatus according to claim 2, wherein the correction function includes a time constant corresponding to a signal obtained by the at least two correction imaging operations.
  4.  前記放射線撮像装置は、前記補正情報を取得する前に前記放射線画像の撮像とは別の放射線画像の撮像を行い、
     前記少なくとも2回の補正用の撮像のうち1回の補正用の撮像が、前記別の放射線画像の撮像の前に行われ、
     前記放射線撮像装置は、前記別の放射線画像の撮像によって前記複数の画素から得られる画像データを、前記1回の補正用の撮像によって得られた第1の補正用データに基づいて補正することを特徴とする請求項3に記載の放射線撮像装置。
    The radiation imaging apparatus performs imaging of a radiation image different from the imaging of the radiation image before acquiring the correction information,
    One of the at least two correction imaging is performed before the another radiation image is captured,
    The radiation imaging apparatus may correct image data obtained from the plurality of pixels by imaging the another radiation image based on first correction data obtained by the single correction imaging. The radiation imaging apparatus according to claim 3, wherein:
  5.  前記第1の補正用データをF(0)、前記時定数をτ、前記別の放射線画像の撮像の開始からの時間をt、前記補正関数をF(t)としたとき、前記補正関数は、
    F(t)=F(0)×exp(-t/τ)
    で表されることを特徴とする請求項4に記載の放射線撮像装置。
    Assuming that the first correction data is F (0), the time constant is τ, the time from the start of capturing another radiation image is t, and the correction function is F (t), the correction function is ,
    F (t) = F (0) × exp (−t / τ)
    The radiation imaging apparatus according to claim 4, wherein:
  6.  前記放射線撮像装置は、前記1回の補正用の撮像において、前記複数の画素のそれぞれから複数回にわたり取得した信号に基づいて、前記複数の画素のそれぞれの前記第1の補正用データを取得することを特徴とする請求項5に記載の放射線撮像装置。 The radiation imaging apparatus obtains the first correction data of each of the plurality of pixels based on a signal obtained a plurality of times from each of the plurality of pixels in the one correction imaging. The radiation imaging apparatus according to claim 5, wherein:
  7.  前記放射線撮像装置は、前記複数の画素のそれぞれから複数回にわたり取得した信号の平均値に基づいて、前記複数の画素のそれぞれの前記第1の補正用データを取得することを特徴とする請求項6に記載の放射線撮像装置。 The radiation imaging apparatus acquires the first correction data for each of the plurality of pixels based on an average value of signals acquired a plurality of times from each of the plurality of pixels. 7. The radiation imaging apparatus according to 6.
  8.  前記複数の画素は、少なくとも1つの画素を含む複数の画素群を構成し、
     前記放射線撮像装置は、
      前記少なくとも2回の補正用の撮像のうち前記1回の補正用の撮像以外の補正用の撮像において、前記複数の画素群ごとに取得した信号に基づいて、前記複数の画素群ごとに含まれるそれぞれの画素の第2の補正用データを取得し、
      前記第1の補正用データおよび前記第2の補正用データに基づいて前記補正情報を取得することを特徴とする請求項5乃至7の何れか1項に記載の放射線撮像装置。
    The plurality of pixels constitute a plurality of pixel groups including at least one pixel,
    The radiation imaging apparatus,
    In the correction imaging other than the one correction imaging among the at least two correction imagings, the correction imaging is included for each of the plurality of pixel groups based on a signal acquired for each of the plurality of pixel groups. Obtaining the second correction data of each pixel,
    The radiation imaging apparatus according to claim 5, wherein the correction information is acquired based on the first correction data and the second correction data.
  9.  前記放射線撮像装置は、複数の画素群ごとに取得した前記複数の画素群に含まれるそれぞれの画素の信号の平均値に基づいて、前記複数の画素群ごとに含まれるそれぞれの画素の前記第2の補正用データを取得することを特徴とする請求項8に記載の放射線撮像装置。 The radiation imaging apparatus may further include, based on an average value of a signal of each of the pixels included in the plurality of pixel groups acquired for each of the plurality of pixel groups, the second one of the pixels included in each of the plurality of pixel groups. 9. The radiation imaging apparatus according to claim 8, wherein the correction data is acquired.
  10.  前記放射線画像の撮像と前記別の放射線画像の撮像とが、互いに同じ撮像条件を用いた撮像であることを特徴とする請求項4乃至8の何れか1項に記載の放射線撮像装置。 9. The radiation imaging apparatus according to claim 4, wherein the imaging of the radiation image and the imaging of the another radiation image are imaging using the same imaging condition. 10.
  11.  前記放射線撮像装置は、前記補正情報を取得する前に前記放射線画像の撮像とは別の放射線画像の撮像を行い、
     前記別の放射線画像の撮像の前に、放射線が照射されない状態で前記少なくとも2回の補正用の撮像とは別の補正用の撮像を行い、
     前記放射線撮像装置は、前記別の放射線画像の撮像によって前記複数の画素から得られる画像データを、前記別の補正用の撮像によって得られた第1の補正用データに基づいて補正することを特徴とする請求項3に記載の放射線撮像装置。
    The radiation imaging apparatus performs imaging of a radiation image different from the imaging of the radiation image before acquiring the correction information,
    Before the imaging of the another radiation image, performing at least two times of imaging for correction other than the imaging for correction in a state where radiation is not irradiated,
    The radiation imaging apparatus corrects image data obtained from the plurality of pixels by imaging the another radiation image based on first correction data obtained by the another correction imaging. The radiation imaging apparatus according to claim 3, wherein:
  12.  前記少なくとも2回の補正用の撮像は、第1の撮像と前記第1の撮像の後に行われる第2の撮像とを含み、
     前記別の補正用の撮像によって得られた補正用データをF(0)、前記時定数をτ、前記第1の撮像の開始からの時間をt、前記補正関数をF(t)としたとき、前記補正関数は、
    F(t)=F(0)×exp(-t/τ)
    で表されることを特徴とする請求項11に記載の放射線撮像装置。
    The at least two correction imaging includes a first imaging and a second imaging performed after the first imaging,
    When the correction data obtained by the another correction imaging is F (0), the time constant is τ, the time from the start of the first imaging is t, and the correction function is F (t). , The correction function is:
    F (t) = F (0) × exp (−t / τ)
    The radiation imaging apparatus according to claim 11, wherein:
  13.  前記複数の画素は、少なくとも1つの画素を含む複数の画素群を構成し、
     前記放射線撮像装置は、
      前記少なくとも2回の補正用の撮像において、複数の画素群ごとに取得した信号に基づいて、前記複数の画素群ごとに含まれるそれぞれの画素の前記第1の補正用データを含む前記少なくとも2つの補正用データを取得し、
      前記少なくとも2つの補正用データに基づいて前記補正情報を取得することを特徴とすることを特徴とする請求項12に記載の放射線撮像装置。
    The plurality of pixels constitute a plurality of pixel groups including at least one pixel,
    The radiation imaging apparatus,
    In the at least two correction imaging operations, the at least two correction image data including the first correction data of each pixel included in each of the plurality of pixel groups is based on a signal acquired for each of the plurality of pixel groups. Acquire correction data,
    The radiation imaging apparatus according to claim 12, wherein the correction information is acquired based on the at least two pieces of correction data.
  14.  前記放射線撮像装置は、複数の画素群ごとに取得した前記複数の画素群に含まれるそれぞれの画素の信号の平均値に基づいて、前記複数の画素群ごとに含まれるそれぞれの画素の前記少なくとも2つの補正用データのそれぞれを取得することを特徴とする請求項13に記載の放射線撮像装置。 The radiation imaging apparatus may further include, based on an average value of a signal of each pixel included in the plurality of pixel groups acquired for each of the plurality of pixel groups, the at least two of the pixels included in each of the plurality of pixel groups. 14. The radiation imaging apparatus according to claim 13, wherein each of the correction data is acquired.
  15.  前記放射線画像の撮像と前記別の放射線画像の撮像とが、互いに異なる撮像モードの撮像であることを特徴とする請求項11乃至14の何れか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 11 to 14, wherein the imaging of the radiation image and the imaging of the another radiation image are imaging in imaging modes different from each other.
  16.  前記放射線撮像装置は、
      前記放射線画像の撮像の後に、放射線が照射されない状態で更なる補正用の撮像と、前記更なる補正用の撮像の後に更なる放射線画像の撮像と、を行い、
      前記補正情報を前記更なる補正用の撮像によって得られた信号データに基づいて更新し、
      前記更なる放射線画像の撮像によって前記複数の画素から得られる画像データを、前記更なる放射線画像の撮像を行ったタイミングと更新された前記補正情報とに基づいて補正することを特徴とする請求項1乃至15の何れか1項に記載の放射線撮像装置。
    The radiation imaging apparatus,
    After imaging of the radiation image, imaging for further correction in a state where radiation is not irradiated, and imaging of a further radiation image after the imaging for the further correction,
    Update the correction information based on the signal data obtained by the imaging for the further correction,
    The image data obtained from the plurality of pixels by capturing the further radiation image is corrected based on the timing at which the further radiation image was captured and the updated correction information. 16. The radiation imaging apparatus according to any one of 1 to 15.
  17.  前記放射線画像の撮像が、動画像を撮像することを特徴とする請求項1乃至16の何れか1項に記載の放射線撮像装置。 The radiation imaging apparatus according to any one of claims 1 to 16, wherein the imaging of the radiation image is performed by capturing a moving image.
  18.  請求項1乃至17の何れか1項に記載の放射線撮像装置と、
     前記放射線撮像装置に放射線を照射するための放射線発生装置と、
    を含む放射線撮像システム。
    A radiation imaging apparatus according to any one of claims 1 to 17,
    A radiation generator for irradiating the radiation imaging device with radiation,
    A radiation imaging system including:
  19.  放射線画像を取得するための複数の画素を含む放射線撮像装置の制御方法であって、
     前記放射線撮像装置が動作を開始してから放射線の照射に応じた放射線画像の撮像を行うまでの間に、放射線が照射されない状態で少なくとも2回の補正用の撮像を行う工程と、
     前記少なくとも2回の補正用の撮像によって得られた信号に基づいて、経時的に変化する補正値を示す補正情報を取得する工程と、
     前記放射線画像の撮像によって前記複数の画素から得られる画像データを、前記放射線画像の撮像を行ったタイミングと前記補正情報とに基づいて補正する工程と、
    を含むことを特徴とする制御方法。
    A method for controlling a radiation imaging apparatus including a plurality of pixels for acquiring a radiation image,
    Between the start of the operation of the radiation imaging apparatus and imaging of a radiation image corresponding to irradiation of radiation, a step of performing imaging for correction at least twice in a state where radiation is not irradiated,
    A step of acquiring correction information indicating a correction value that changes over time based on a signal obtained by the at least two correction imaging operations;
    Image data obtained from the plurality of pixels by the imaging of the radiation image, a step of correcting based on the timing and the correction information of the imaging of the radiation image,
    A control method comprising:
  20.  請求項19に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute each step of the control method according to claim 19.
PCT/JP2019/015911 2018-06-18 2019-04-12 Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program WO2019244456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115423A JP2019216875A (en) 2018-06-18 2018-06-18 Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and program
JP2018-115423 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019244456A1 true WO2019244456A1 (en) 2019-12-26

Family

ID=68983965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015911 WO2019244456A1 (en) 2018-06-18 2019-04-12 Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program

Country Status (2)

Country Link
JP (1) JP2019216875A (en)
WO (1) WO2019244456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112545484A (en) * 2020-12-01 2021-03-26 上海联影医疗科技股份有限公司 Method and device for determining calibration time of medical imaging system and computer equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242594B2 (en) 2020-02-13 2023-03-20 富士フイルム株式会社 RADIATION IMAGE DETECTION DEVICE, OPERATION METHOD AND OPERATION PROGRAM THEREOF

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112180A (en) * 1983-11-22 1985-06-18 Hitachi Medical Corp Correction circuit of offset quantity
JP2008259045A (en) * 2007-04-06 2008-10-23 Canon Inc Imaging apparatus, imaging system, its controlling method, and program
JP2010131223A (en) * 2008-12-05 2010-06-17 Fujifilm Corp Image processor and image processing method
WO2012032801A1 (en) * 2010-09-09 2012-03-15 コニカミノルタエムジー株式会社 Radiographic imaging device and radiographic imaging system
JP2014168602A (en) * 2013-03-05 2014-09-18 Toshiba Corp Radial ray image detection apparatus
JP2016000354A (en) * 2015-09-24 2016-01-07 キヤノン株式会社 Photographing control device and method thereof, radiation moving image photographing device and program
JP2016214394A (en) * 2015-05-15 2016-12-22 キヤノン株式会社 Radiographic apparatus, radiographic method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112180A (en) * 1983-11-22 1985-06-18 Hitachi Medical Corp Correction circuit of offset quantity
JP2008259045A (en) * 2007-04-06 2008-10-23 Canon Inc Imaging apparatus, imaging system, its controlling method, and program
JP2010131223A (en) * 2008-12-05 2010-06-17 Fujifilm Corp Image processor and image processing method
WO2012032801A1 (en) * 2010-09-09 2012-03-15 コニカミノルタエムジー株式会社 Radiographic imaging device and radiographic imaging system
JP2014168602A (en) * 2013-03-05 2014-09-18 Toshiba Corp Radial ray image detection apparatus
JP2016214394A (en) * 2015-05-15 2016-12-22 キヤノン株式会社 Radiographic apparatus, radiographic method, and program
JP2016000354A (en) * 2015-09-24 2016-01-07 キヤノン株式会社 Photographing control device and method thereof, radiation moving image photographing device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112545484A (en) * 2020-12-01 2021-03-26 上海联影医疗科技股份有限公司 Method and device for determining calibration time of medical imaging system and computer equipment
CN112545484B (en) * 2020-12-01 2023-08-08 上海联影医疗科技股份有限公司 Medical imaging system calibration time determination method, device and computer equipment

Also Published As

Publication number Publication date
JP2019216875A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
CN110623682B (en) Radiation imaging apparatus, control method, radiation imaging system, and storage medium
JP6525579B2 (en) Radiation imaging apparatus and radiation imaging system
JP5517484B2 (en) Imaging apparatus and imaging system, control method thereof, and program thereof
RU2504101C2 (en) Image forming apparatus and image forming system, image forming method and image forming program
JP6990986B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP5539139B2 (en) IMAGING DEVICE, IMAGING SYSTEM, AND IMAGING DEVICE CONTROL METHOD
US8436314B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
RU2527076C2 (en) Image forming apparatus, image forming system, method of controlling said apparatus and system, and programme
JP5448643B2 (en) Imaging system, image processing method thereof, and program thereof
JP5274661B2 (en) Radiation imaging apparatus, radiation imaging system, control method thereof, and program thereof
JP2014049983A (en) Radiographic image pickup device and control method and program therefor
US20200371259A1 (en) Radiation imaging apparatus and radiation imaging system
CN107645640B (en) Radiographic image capturing apparatus, radiographic image capturing system, and control method therefor
US20110128359A1 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
WO2019244456A1 (en) Radiation imaging device, radiation imaging system, method for controlling radiation imaging device, and program
JP2020031961A (en) Radiographic system
JP5799750B2 (en) Radiographic imaging system and radiographic imaging device
JP2021010653A (en) Radiation imaging apparatus and radiation imaging system
EP2197198A2 (en) Image pickup apparatus and image pickup system
WO2022244495A1 (en) Radiation imaging device and radiation imaging system
US20230417934A1 (en) Radiation imaging apparatus, radiation imaging system, control method for radiation imaging apparatus, non-transitory computer-readable storage medium, and signal processing apparatus
WO2015005259A1 (en) Radiation imaging device and radiation imaging system
JP2022176882A (en) Radiation imaging device and radiation imaging system
JP2017130761A (en) Radiation imaging apparatus and radiation imaging system
JP2019136403A (en) Radiographic apparatus and radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823354

Country of ref document: EP

Kind code of ref document: A1