WO2019244318A1 - ネットワークノード - Google Patents

ネットワークノード Download PDF

Info

Publication number
WO2019244318A1
WO2019244318A1 PCT/JP2018/023711 JP2018023711W WO2019244318A1 WO 2019244318 A1 WO2019244318 A1 WO 2019244318A1 JP 2018023711 W JP2018023711 W JP 2018023711W WO 2019244318 A1 WO2019244318 A1 WO 2019244318A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
node
setting
request
network node
Prior art date
Application number
PCT/JP2018/023711
Other languages
English (en)
French (fr)
Inventor
輝朗 戸枝
健次 甲斐
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020525180A priority Critical patent/JP7353279B2/ja
Priority to PCT/JP2018/023711 priority patent/WO2019244318A1/ja
Priority to EP18923499.0A priority patent/EP3813475A4/en
Priority to CN201880094736.6A priority patent/CN112369112A/zh
Priority to US17/252,873 priority patent/US20210258214A1/en
Publication of WO2019244318A1 publication Critical patent/WO2019244318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a network node in a wireless communication system.
  • 5G or NR New Radio
  • 5G wireless communication system
  • LTE-NR dual connectivity or multi-RAT (Multi Radio Access Technology) dual connectivity (hereinafter referred to as "MR-DC") has been introduced (for example, Non-Patent Document 2).
  • MR-DC Multi Radio Access Technology
  • information related to the settings of the communicating user device may be transferred between the network nodes due to the mobility of the communicating user device.
  • the notification format of the setting may not be synchronized. If the setting notification format is not synchronized, communication cannot be continued.
  • the present invention has been made in view of the above points, and it is an object of the present invention to allow a network node to appropriately set information on setting of a user device in another network node, and to allow the user device to continue communication.
  • a first network node in a communication system including a user device and a plurality of network nodes, the receiving unit receiving an inter-node message related to the setting of the user device from a second network node; A determination unit that determines whether the method of updating the setting of the user device is a full configuration or a delta configuration based on the message between the nodes; and a full configuration of the setting of the user device based on the determination. And an update unit for updating with a configuration or delta configuration.
  • the network node appropriately sets information on the setting of the user device in another network node, and the user device can continue communication.
  • FIG. 1 is a diagram illustrating a configuration example of a network architecture according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example (1) of setting between network nodes.
  • FIG. 9 is a diagram illustrating an example (2) of setting between network nodes. It is a figure showing example (3) of the setting between network nodes. It is a figure showing example (4) of the setting between network nodes. It is a figure showing example (5) of the setting between network nodes. It is a figure showing example (6) of the setting between network nodes. It is a figure showing example (1) of the setting between network nodes in an embodiment of the invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station device 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a user device 20 according to the embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a base station device 10 or a user device 20 according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • Synchronization Signal (SS), Primary SS (PSS), Secondary SS (SSS), Physical Broadcast Channel (PBCH), and Physical Broadcast Channel (PBCH) used in existing LTE are used.
  • Terms such as RACH), DL (Downlink), and UL (Uplink) are used. This is for the convenience of description, and the same signals, functions, and the like may be referred to by other names.
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or any other method (for example, Flexible Duplex). May be used.
  • a method of transmitting a signal using a transmission beam may be digital beamforming for transmitting a signal multiplied by a precoding vector (precoded with a precoding vector), Analog beamforming that realizes beamforming using a variable phase shifter in an RF (Radio Frequency) circuit may be used.
  • the method of receiving a signal using a reception beam may be digital beamforming that multiplies a received signal by a predetermined weight vector, or realizes beamforming using a variable phase shifter in an RF circuit.
  • Analog beam forming. Hybrid beamforming combining digital beamforming and analog beamforming may be applied.
  • transmitting a signal using a transmission beam may be transmitting a signal at a specific antenna port.
  • receiving a signal using a receive beam may be receiving a signal at a particular antenna port.
  • An antenna port refers to a logical antenna port or a physical antenna port defined in the 3GPP standard.
  • the method of forming the transmission beam and the reception beam is not limited to the above method.
  • a method of changing the angle of each antenna may be used, or a method of combining a method using a precoding vector and a method of changing the angle of an antenna may be used.
  • different antenna panels may be used by switching, a method of combining a plurality of antenna panels may be used, or another method may be used.
  • a plurality of different transmission beams may be used in a high frequency band.
  • the use of multiple transmission beams is referred to as multi-beam operation, and the use of one transmission beam is referred to as single beam operation.
  • the term “set” of a wireless parameter or the like may mean that a predetermined value is set (Pre-configured) or specified in advance, or the base station apparatus or a user The wireless parameter notified from the device may be set.
  • FIG. 1 is a diagram showing a configuration example of a network architecture according to an embodiment of the present invention.
  • the wireless network architecture according to the embodiment of the present invention includes 4G-CU, 4G-RU (Remote @ Unit, remote radio station), EPC (Evolved @ Packet @ Core), etc. on the LTE-Advanced side.
  • the wireless network architecture according to the embodiment of the present invention includes 5G-CU, 5G-DU, and the like on the 5G side.
  • the 5G-CU includes an RRC layer and is connected to the 5G-DU via a FH (Flonthaul) interface.
  • the 5G-CU is connected to the 4G-CU via an X2 interface.
  • the PDCP layer in the 4G-CU is a coupling or separation point when performing 4G-5G DC (Dual @ Connectivity), that is, EN-DC (E-UTRA-NR @ Dual @ Connectivity).
  • a network node including 5G-CU and 5G-DU is called gNB.
  • the 5G-CU may be called gNB-CU
  • the 5G-DU may be called gNB-DU.
  • CA Carrier Aggregation
  • DC is performed between the 4G-RU and the 5G-DU.
  • a UE 300 is wirelessly connected via a 4G-RU or 5G-DU RF, and transmits and receives packets.
  • FIG. 1 shows a wireless network architecture at the time of DC of LTE-NR.
  • a similar wireless network architecture may be used when separating 4G-CU into CU-DU, or when operating NR standalone.
  • the function related to the RRC layer and the PDCP layer may be moved to the 4G-CU, and the components below the RLC layer may be included in the 4G-DU.
  • the data rate of CPRI may be reduced by CU-DU separation.
  • a plurality of 5G-DUs may be connected to the 5G-CU.
  • the user device 20 simultaneously uses a plurality of component carriers provided by the base station device 10A serving as a master node and the base station device 10B serving as a secondary node, and uses the base station device 10A serving as a master node and the base device serving as a secondary node. It is possible to execute simultaneous transmission or simultaneous reception with the station device 10B.
  • each of the LTE system and the NR system has only one base station. However, a large number of base station apparatuses 10 covering the service areas of the LTE system and the NR system are generally arranged.
  • delta configuration (delta @ configuration) in which only a difference from a previously set value is notified is known. If delta configuration is possible from the viewpoint of radio resource consumption or terminal power consumption, it is desirable to apply delta configuration.
  • Various settings already set in the user device 20 can be taken over between the network nodes. For example, it is conceivable that the delta configuration is continued when the mobile node crosses over the network nodes.
  • a full configuration in which all set values are notified is known.
  • the full configuration is applied when there is no compatibility between network nodes.
  • the delta configuration cannot be applied. Since an extension is allowed in an RRC (Radio Resource Control) interface between network nodes, a situation in which the previous configuration cannot be understood may occur when the corresponding version or function is crossed over different network nodes.
  • RRC Radio Resource Control
  • the full configuration is realized by notifying the user device 20 of the configuration newly set by the network together with the initialization instruction by reconfiguration (Reconfiguration). Further, it is necessary to initialize related variables in the network node in accordance with the initialization of the user device 20.
  • the full configuration has many disadvantages such as resource consumption, so when the delta configuration cannot be executed, the full configuration is executed as an alternative.
  • release (release) and addition (Addition) of a DRB can be executed at a time.
  • the DRB is released in the initialization process, and the DRB is added in the process of resetting the configuration.
  • the release and addition of the same DRB-ID has a limitation in specifications that the same DRB-ID cannot be set in the RRC messages drb-ToReleaseList and drb-ToAddModList with the same RB setting. Therefore, the release and addition of the DRB are executed by changing the DRB-ID.
  • a full configuration is performed to release and add the DRB at once.
  • two RB settings (nr-RadioBearerConfig1 / nr-RadioBearerConfig2) can be set for the RB of the NR side PDCP (Packet ⁇ Data ⁇ Convergence ⁇ Protocol). For example, release and addition of the DRB can be performed at once.
  • nr-RadioBearerConfig1 / nr-RadioBearerConfig2 can be set for the RB of the NR side PDCP (Packet ⁇ Data ⁇ Convergence ⁇ Protocol). For example, release and addition of the DRB can be performed at once.
  • FIG. 3 is a diagram illustrating an example (1) of setting between network nodes.
  • use cases in which the full configuration is executed include, for example, the following cases.
  • a case where there is no compatibility between the network nodes corresponds to A) and B), and a case where the release and addition of the DRB are performed corresponds to C) and D).
  • A) When the target MN fails to interpret the setting value of the source MN B) When the target SN fails to interpret the setting value of the source SN C) When changing the PDCP version of the DRB D) PDCP count of the DRB To avoid wrap around
  • FIG. 4 is a diagram showing an example (2) of setting between network nodes.
  • a method for the MN to acquire the configuration on the SN side there is a method for acquiring from the full configuration execution request transmitted to the MN 10A from the SN 10B shown in FIG. 4 (S21). This is a method of realizing the full configuration of the SN trigger, which corresponds to B) of the above use case.
  • Table 1 shows X2 messages transmitted and received between network nodes used in the above use cases A) B) C) D).
  • the X2 message of “enforcement request or enforcement response” used in each “Procedure” is composed of “SgNB Addition Request” for adding an SN, a response “SgNB Addition Request Ack”, and “SgNB Modification” Modifying the SN setting. And a response "SgNB ⁇ Modification ⁇ Request ⁇ Ack".
  • the full configuration execution request of the MN trigger covers all use cases with “SgNB Addition Request” and “SgNB Modification Request”. Further, the full configuration execution request of the SN trigger is covered by "SgNB ⁇ Addition ⁇ Request ⁇ Ack" in all use cases.
  • the IE “sourceConfig SCG” shown in Table 2 is an IE for setting an SCG (Secondary Cell Group), and when the MN performs a full configuration, the IE is not set (Absent). Further, the IE “scg-RB-Config” shown in Table 2 is an IE for performing a delta configuration of the SCG radio bearer, and is not set when the MN performs a full configuration.
  • the IE “RRC @ config @ indication” shown in Table 3 can be set to “full @ config” as a setting value.
  • CG-ConfigInfo is an inter-node message that can be set to “SgNB Addition Request” or “SgNB Modification Request”.
  • Table 4 is a table for explaining a specific IE.
  • the IE “scg-CellGroupConfig” shown in Table 4 is an IE for setting the SCG, and can set the configuration.
  • the IE “scg-RB-Config” shown in Table 4 is an IE that performs delta configuration of the SCG radio bearer, and can set the configuration.
  • FIG. 5 is a diagram showing an example (3) of setting between network nodes.
  • FIG. 5 is an example of a sequence for executing the procedure "Inter-MN ⁇ HO ⁇ w / o ⁇ SN ⁇ change". In this sequence, the SN is not changed.
  • step S31 the S-MN 10A that is the source MN transmits “Handover Request” to the T-MN 10C that is the target MN. Subsequently, the T-MN 10C transmits “SgNB ⁇ Addition ⁇ Request” to the SN 10B (S32).
  • step S32 the SN specifies the UEContext with the identifier SgNB-UE-X2AP-ID and performs delta configuration.
  • step S33 the SN 10B transmits "SgNB ⁇ Addition ⁇ Request ⁇ Ack" to the T-MN 10C. Subsequently, the T-MN 10C transmits “Handover Request Request Ack” to the S-MN 10A (S34). Subsequently, the SN 10B transmits “SgNB ⁇ Release ⁇ Request” to the S-MN 10A (S35). Subsequently, the S-MN 10A transmits “SgNB ⁇ Release ⁇ Request ⁇ Ack” to the SN 10B (S36).
  • FIG. 6 is a diagram showing an example (4) of setting between network nodes.
  • FIG. 6 is an example of a sequence for executing the procedure “MN initiated / SN / modification”. In this sequence, the SN is not changed.
  • step S41 the MN 10A transmits “SgNB Modification Request” to the SN 10B.
  • step S21 the SN specifies the UEContext with the identifier SgNB-UE-X2AP-ID and performs delta configuration. Subsequently, the SN 10B transmits “SgNB ⁇ Modification ⁇ Request ⁇ Ack” to the MN 10A.
  • FIG. 7 is a diagram showing an example (5) of setting between network nodes. As described in FIGS. 5 and 6, when the MN does not expect the full configuration, it is necessary to always set the related IE in the inter-node message. FIG. 7 is an example of a sequence in which the MN sets the configuration to SN.
  • step S51 the MN 10A transmits “SgNB Modification Request” including CG-ConfigInfo to the SN 10B. Subsequently, the SN makes a determination with reference to the related IE included in the CG-ConfigInfo (S52). Subsequently, the SN 10B transmits “SgNB Modification Request Request Ack” including the CG-Config to the MN 10A (S53).
  • Table 5 is a table for explaining the determination processing in step S52.
  • the related IE setting is “Present”, the expected operation of the MN and the result of the SN determination are both delta configuration, and no problem occurs.
  • the result of the SN determination is a full configuration.
  • the expected operation of the MN may be a full configuration or a delta configuration. Therefore, a mismatch may occur between the expected operation of the MN and the determination result of the SN. Therefore, in order to eliminate the discrepancy between the expected operation of the MN and the determination result of the SN, it is necessary to add information indicating the presence / absence of a full configuration execution request to the inter-node message.
  • FIG. 8 is a diagram illustrating an example (6) of setting between network nodes. Since the specific IE set in the inter-node message when the MN does not expect the full configuration is for delta configuration use, if the SN overwrites the configuration notified by the MN, the MN will use the latest configuration. It is necessary to obtain the ration from SN. In order for the MN to obtain the configuration currently set from the SN, there is a method of setting “Query Indication” in “SgNB Modification Request”. FIG. 8 is an example of a sequence for setting the configuration after the MN acquires the configuration currently set from the SN.
  • step S61 the MN 10A transmits “SgNB Modification Request” including Query Indication to the SN 10B. Subsequently, the SN 10B transmits “SgNB Modification Request Request Ack” including the CG-Config to the MN 10A, and the MN 10A acquires the latest configuration.
  • Steps S61 and S62 are a “Query” procedure. The "Query” procedure can be signaling overhead. After the MN obtains the latest configuration from the SN by the “Query” procedure, and transmits the configuration to the same SN, the sequence in FIG. 8 includes a redundant procedure.
  • Steps S63-S65 are “Modify” procedures, which are the same as steps S51-S53. That is, since the determination shown in Table 5 is performed in the same manner, the expected operation of the MN and the determination result of the SN may not match for the full configuration and the delta configuration. Therefore, in order to eliminate the discrepancy between the expected operation of the MN and the determination result of the SN, it is necessary to add information indicating the presence / absence of a full configuration execution request to the inter-node message.
  • FIG. 9 is a diagram showing an example (1) of setting between network nodes according to the embodiment of the present invention.
  • the expected operation of the MN and the determination result of the SN may not match for the full configuration and the delta configuration. Therefore, an Indication (notification) indicating the presence / absence of the full configuration execution request is added to the inter-node message “SgNB ⁇ Addition ⁇ Request”.
  • FIG. 9 is an example of a sequence for executing the procedure "Inter-MN ⁇ HO ⁇ w / o ⁇ SN ⁇ change".
  • the S-MN 10A that is the source MN transmits “Handover @ Request” to the T-MN 10C that is the target MN.
  • the T-MN 10C transmits “SgNB ⁇ Addition ⁇ Request” including Indication indicating the presence / absence of the execution request of the full configuration to the SN 10B (S72).
  • step S73 the SN refers to the related IE included in the CG-ConfigInfo and the Indication indicating the presence / absence of the request for performing the full configuration, and determines whether the request for the inter-node message is the full configuration or the delta configuration. Make a decision.
  • Table 6 is a table for explaining the determination processing in step S73.
  • the full configuration execution request transmitted from the MN can be correctly determined in the SN, and the full configuration can be executed. As a result, unnecessary signaling such as a “Query” procedure can be reduced.
  • step S74 the SN 10B transmits "SgNB ⁇ Addition ⁇ Request ⁇ Ack" to the T-MN 10C. Subsequently, the T-MN 10C transmits “Handover Request Request Ack” to the S-MN 10A (S75). Next, the SN 10B transmits “SgNB ⁇ Release ⁇ Request” to the S-MN 10A (S76). Subsequently, the S-MN 10A transmits “SgNB ⁇ Release ⁇ Request ⁇ Ack” to the SN 10B (S77).
  • FIG. 10 is a diagram showing an example (2) of setting between network nodes according to the embodiment of the present invention.
  • FIG. 10 is an example in which a notification (Indication) indicating the presence or absence of the execution request of the full configuration is added to the inter-node message “SgNB Modification Request”.
  • step S81 the MN 10A transmits to the SN 10B “SgNB Modification Request” including an indication indicating whether a full configuration is requested. Subsequently, the SN makes a determination with reference to the related IE included in the CG-ConfigInfo and the Indication indicating whether or not there is a request for performing the full configuration (S82). Subsequently, the SN 10B transmits “SgNB Modification Request Ack” including the CG-Config to the MN 10A (S83). As in step S73, the determination shown in Table 6 is performed in step S82. In any case, the full configuration execution request transmitted from the MN is correctly determined in the SN, and the full configuration is executed. be able to. As a result, unnecessary signaling such as a “Query” procedure can be reduced.
  • FIG. 11 is a diagram showing an example (3) of setting between network nodes according to the embodiment of the present invention.
  • FIG. 11 an example of a full configuration using “Query @ Indication” will be described.
  • $ "Query @ Indication” is a notification for the MN to obtain the latest configuration from the source SN. That is, this is a mechanism for the MN to continue the delta configuration at the target SN.
  • “Query @ Indication” is defined only in the inter-node message “SgNB ⁇ Modification ⁇ Request”. Since the configuration acquired by “Query @ Indication” is for delta configuration, there is a difference from the configuration for full configuration. This is because the difference does not require a set value that always changes when a node is changed. In “Query @ Indication”, only the SN notifies the configuration, and various variables on the SN side are not initialized. As the operation of the SN after “Query @ Indication”, there are a case where the delta configuration is continued and a case where the full configuration is performed, so that it is not possible to always perform one of the operations.
  • step S91 the MN 10A or the T-MN 10A transmits "SgNB Modification Request” including "Query Indication” to the SN 10B. Subsequently, the SN 10B transmits “SgNB Modification Request Ack” including the CG-Config to the MN 10A or the T-MN 10A (S92). In step S92, the MN 10A or the T-MN 10A acquires a configuration for a full configuration using “Query @ Indication”.
  • step S93 the MN 10A or the T-MN 10A transmits the message X to the SN 10B. Subsequently, the SN determines a processing type based on the message X (S94).
  • the message X has the same ID as the identifier SgNB-UE-X2AP-ID used in step S92.
  • Table 7 is a table for explaining the determination processing in step S73.
  • Received message "shown in Table 7 is message X received by SN 10B in step S93. Only when the "received message” is "SgNB @ Reconfiguration @ Complete", the SN 10B determines that the request is a full configuration execution request, and performs an initialization process. In the case of another message, that is, “SgNB Addition Request”, “SgNB Modification Request” or “SgNB Release Request”, it is determined that the message is a normal Query, and the initialization process is not performed.
  • the message “SgNB Addition Request” may include “Query Indication”.
  • “Query Indication” is included in “SgNB Addition Request”
  • determination of full configuration or delta configuration is performed in the sequence shown in FIG. 9 including Indication indicating whether there is a full configuration execution request described with reference to FIG. Do.
  • the network node correctly determines whether the inter-node message from the MN is a full configuration execution request or a delta configuration execution request in any use case, and Configuration can be set. Further, the network node can reduce unnecessary signaling in the process of determining whether the request is a full configuration execution request or a delta configuration execution request.
  • the network node appropriately sets information on the setting of the user device in another network node, and the user device can continue communication.
  • the base station device 10 and the user device 20 include a function for implementing the above-described embodiment. However, each of the base station device 10 and the user device 20 may include only some of the functions in the embodiment.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of the base station device 10 according to the embodiment of the present invention.
  • base station apparatus 10 includes transmitting section 110, receiving section 120, setting section 130, and control section 140.
  • the functional configuration shown in FIG. 12 is only an example. As long as the operation according to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any.
  • the transmission unit 110 has a function of generating a signal to be transmitted to the user device 20 and transmitting the signal wirelessly. Further, transmitting section 110 transmits a message between network nodes to another network node.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the user device 20 and acquiring, for example, information of a higher layer from the received signals. Further, transmitting section 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, and the like to user apparatus 20. Further, receiving section 120 receives a message between network nodes from another network node.
  • the setting unit 130 stores in the storage device the setting information set in advance and various setting information to be transmitted to the user device 20, and reads out the setting information from the storage device as needed.
  • the content of the setting information is, for example, setting information related to communication of the user device 20 such as setting of a radio bearer or a secondary cell.
  • the control unit 140 controls the communication to which the user device 20 and the EN-DC are applied, as described in the embodiment. In addition, the control unit 140 obtains a configuration related to communication of the user device 20 from another network node or notifies another network. Further, the control unit 140 sets a delta configuration or a full configuration for the configuration related to the communication of the user device 20.
  • a function unit related to signal transmission in control unit 140 may be included in transmission unit 110, and a function unit related to signal reception in control unit 140 may be included in reception unit 120.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user device 20.
  • the user device 20 includes a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 13 is only an example. As long as the operation according to the embodiment of the present invention can be executed, the names of the functional divisions and the functional units may be any.
  • the transmission unit 210 creates a transmission signal from transmission data, and transmits the transmission signal wirelessly.
  • the receiving unit 220 wirelessly receives various signals, and obtains a higher layer signal from the received physical layer signal.
  • the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, a DL / UL / SL control signal, and the like transmitted from the base station device 10.
  • the transmitting unit 210 transmits the PSCCH (Physical Sidelink Shared Channel), the PSSCH (Physical Sidelink Shared Channel), the PSDCH (Physical Sidelink Discovery Channel), and the PSBCH (Physical Sidelink Broadcast Channel) to other user devices 20 as D2D communication. )
  • the receiving unit 120 receives a PSCCH, a PSSCH, a PSDCH, a PSBCH, or the like from another user apparatus 20.
  • the setting unit 230 stores various setting information received from the base station device 10 or the user device 20 by the receiving unit 220 in a storage device, and reads out the setting information from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, setting information related to communication of the user device 20 such as setting of a radio bearer or a secondary cell.
  • the control unit 240 performs wireless communication to which EN-DC is applied, as described in the embodiment. Further, the control unit 240 receives information related to wireless communication from the base station device 10, controls wireless communication of the user device 20 based on the information, and reports necessary information to the base station device 10.
  • a function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and a function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated from each other directly and directly. And / or indirectly (for example, wired and / or wireless), and may be implemented by these multiple devices.
  • both the base station device 10 and the user device 20 according to an embodiment of the present invention may function as a computer that performs processing according to the embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the wireless communication device that is the base station device 10 or the user device 20 according to the embodiment of the present invention.
  • Each of the above-described base station apparatus 10 and user apparatus 20 is physically a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. It may be configured.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station device 10 and the user device 20 may be configured to include one or more devices indicated by 1001 to 1006 illustrated in the drawing, or may be configured without including some devices. May be done.
  • the functions of the base station device 10 and the user device 20 are performed by reading predetermined software (program) on hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs an arithmetic operation. This is realized by controlling reading and / or writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 1001 reads out a program (program code), a software module, or data from the auxiliary storage device 1003 and / or the communication device 1004 to the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the transmission unit 110, the reception unit 120, the setting unit 130, and the control unit 140 of the base station device 10 illustrated in FIG. 12 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Further, for example, the transmission unit 210, the reception unit 220, the setting unit 230, and the control unit 240 of the user device 20 illustrated in FIG.
  • Processor 1001 are realized by a control program stored in the storage device 1002 and operated by the processor 1001. Is also good. Although it has been described that the above-described various processes are executed by one processor 1001, the processes may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented with one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium and is, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be configured.
  • the storage device 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, and the like that can be executed to execute the processing according to an embodiment of the present invention.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, Blu -Ray (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, or the like.
  • the auxiliary storage device 1003 may be called an auxiliary storage device.
  • the storage medium described above may be, for example, a database including the storage device 1002 and / or the auxiliary storage device 1003, a server, or any other suitable medium.
  • the communication device 1004 is hardware (transmitting / receiving device) for performing communication between computers via a wired and / or wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, and the like.
  • the transmitting unit 110 and the receiving unit 120 of the base station device 10 may be realized by the communication device 1004.
  • the transmission unit 210 and the reception unit 220 of the user device 20 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the storage device 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus, or may be configured by a different bus between devices.
  • the base station device 10 and the user device 20 are respectively a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. , And some or all of the functional blocks may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • the first network node in the communication system including the user device and the plurality of network nodes, and the setting of the user device from the second network node is performed.
  • the network node correctly determines whether the inter-node message from the MN is a full configuration execution request or a delta configuration execution request in any use case, and performs appropriate configuration. Settings can be set. Further, the network node can reduce unnecessary signaling in the process of determining whether the request is a full configuration execution request or a delta configuration execution request. That is, the network node appropriately sets information on the setting of the user device in another network node, and the user device can continue communication.
  • the inter-node message may include information indicating that the configuration updating method of the user device is a full configuration. With this configuration, the network node can correctly determine whether the inter-node message from the MN is a full configuration execution request or a delta configuration execution request.
  • the second network node is a master node
  • the first network node is a secondary node
  • the inter-node message may not include an instruction to change the first network node.
  • the inter-node message may be a request to add a secondary node.
  • the inter-node message may be a change request for a secondary node.
  • the receiving unit further includes a transmitting unit configured to receive an inquiry related to the setting of the user device from the second network node, and transmit a response to the inquiry to the second network node,
  • a full configuration may be set based on a type of the message having the identifier included in the response to the inquiry.
  • the full configuration is performed based on the type of the message. It can be correctly determined whether the request is a configuration execution request or a delta configuration execution request.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the order of the processing may be changed as long as there is no contradiction.
  • Software operated by the processor of the base station apparatus according to the embodiment of the present invention and software operated by the processor of the user apparatus according to the embodiment of the present invention are a random access memory (RAM), a flash memory, and a read-only memory, respectively.
  • ROM read-only memory
  • EPROM EPROM
  • EEPROM electrically erasable programmable read-only memory
  • register hard disk
  • removable disk CD-ROM
  • database database
  • server or any other suitable storage medium.
  • the notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by another method.
  • the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be called an RRC message, for example, RRC message.
  • a connection setup (RRC (Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like may be used.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a system using Bluetooth (registered trademark), another appropriate system, and / or a next-generation system extended based on the system.
  • the specific operation described as being performed by the base station apparatus in this specification may be performed by an upper node (upper node) in some cases.
  • an upper node In a network including one or a plurality of network nodes (network @ nodes) having a base station apparatus, various operations performed for communication with a user apparatus are performed by a base station apparatus and / or a network other than the base station apparatus.
  • a node eg, but not limited to MME or S-GW, etc.
  • the case where the number of other network nodes other than the base station apparatus is one is illustrated, but a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
  • the user equipment is provided by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • a base station device may also be referred to by those skilled in the art as an NB (NodeB), an eNB (evolved @ NodeB), a gNB (Next @ generation @ NodeB, @ NR @ nodeB), a base station (Base @ Station), or some other suitable terminology. is there.
  • determining may encompass a wide variety of actions. “Judgment” and “decision” are, for example, judgment (judging), calculation (computing), processing (processing), deriving (investigating), and investigating (looking up) (for example, a table). , A search in a database or another data structure), ascertaining a thing as “determining", “determining", and the like. Also, “determining” and “determining” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and accessing. (Accessing) (e.g., accessing data in a memory) may be regarded as "determined” or "determined”.
  • judgment and “decision” mean that resolving, selecting, choosing, choosing, establishing, comparing, etc. are regarded as “judgment” and “decided”. May be included. That is, “judgment” and “decision” may include deeming any operation as “judgment” and “determined”.
  • control unit 140 is an example of a determination unit or an update unit.
  • "SgNB ⁇ Addition ⁇ Request” is an example of a request to add a secondary node.
  • SgNB Modification Request is an example of a secondary node change request.
  • “Query @ Indication” is an example of an inquiry related to the setting of the user device.
  • SgNB-UE-X2AP-ID is an example of an identifier included in the response to the inquiry.
  • SN is an example of a first network node.
  • the MN is an example of a second network node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ネットワークノードは、ユーザ装置及び複数のネットワークノードを含む通信システムにおける第1のネットワークノードであって、第2のネットワークノードから前記ユーザ装置の設定に係るノード間メッセージを受信する受信部と、前記ノード間メッセージに基づいて、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであるかデルタコンフィグレーションであるか判定する判定部と、前記判定に基づいて、前記ユーザ装置の設定をフルコンフィグレーション又はデルタコンフィグレーションで更新する更新部とを有する。

Description

ネットワークノード
 本発明は、無線通信システムにおけるネットワークノードに関する。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「5G」あるいは「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。
 NRシステムでは、LTEシステムにおけるデュアルコネクティビティと同様に、LTEシステムの基地局(eNB)とNRシステムの基地局(gNB)との間でデータを分割し、これらの基地局によってデータを同時送受信する、LTE-NRデュアルコネクティビティ又はマルチRAT(Multi Radio Access Technology)デュアルコネクティビティ(以下、「MR-DC」という。)と呼ばれる技術が導入されている(例えば非特許文献2)。
3GPP TR 38.401 V15.1.0(2018-03) 3GPP TS 37.340 V15.1.0(2018-03)
 NRのネットワークアーキテクチャにおいて、通信中のユーザ装置のモビリティにより、通信中のユーザ装置の設定に係る情報をネットワークノード間で引き継ぐことがある。あるネットワークノードから、他のネットワークノードに通信中のユーザ装置の設定に係る情報を通知するとき、設定の通知形式が同期されていない場合があった。設定の通知形式が同期されていない場合、通信が継続できない。
 本発明は上記の点に鑑みてなされたものであり、ネットワークノードが、ユーザ装置の設定に係る情報を他のネットワークノードに適切に設定し、ユーザ装置は通信を継続することを目的とする。
 開示の技術によれば、ユーザ装置及び複数のネットワークノードを含む通信システムにおける第1のネットワークノードであって、第2のネットワークノードから前記ユーザ装置の設定に係るノード間メッセージを受信する受信部と、前記ノード間メッセージに基づいて、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであるかデルタコンフィグレーションであるか判定する判定部と、前記判定に基づいて、前記ユーザ装置の設定をフルコンフィグレーション又はデルタコンフィグレーションで更新する更新部とを有するネットワークノードが提供される。
 開示の技術によれば、ネットワークノードが、ユーザ装置の設定に係る情報を他のネットワークノードに適切に設定し、ユーザ装置は通信を継続することができる。
本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。 本発明の実施の形態における通信システムの構成例を示す図である。 ネットワークノード間における設定の例(1)を示す図である。 ネットワークノード間における設定の例(2)を示す図である。 ネットワークノード間における設定の例(3)を示す図である。 ネットワークノード間における設定の例(4)を示す図である。 ネットワークノード間における設定の例(5)を示す図である。 ネットワークノード間における設定の例(6)を示す図である。 本発明の実施の形態におけるネットワークノード間における設定の例(1)を示す図である。 本発明の実施の形態におけるネットワークノード間における設定の例(2)を示す図である。 本発明の実施の形態におけるネットワークノード間における設定の例(3)を示す図である。 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。 本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。 本発明の実施の形態における基地局装置10又はユーザ装置20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR又は5G)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization Signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical RACH)、DL(Downlink)、UL(Uplink)等の用語を使用している。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、以下の説明において、送信ビームを用いて信号を送信する方法は、プリコーディングベクトルが乗算された(プリコーディングベクトルでプリコードされた)信号を送信するデジタルビームフォーミングであってもよいし、RF(Radio Frequency)回路内の可変移相器を用いてビームフォーミングを実現するアナログビームフォーミングであってもよい。同様に、受信ビームを用いて信号を受信する方法は、所定の重みベクトルを受信した信号に乗算するデジタルビームフォーミングであってもよいし、RF回路内の可変位相器を用いてビームフォーミングを実現するアナログビームフォーミングであってもよい。デジタルビームフォーミングとアナログビームフォーミングを組み合わせたハイブリッドビームフォーミングが適用されてもよい。また、送信ビームを用いて信号を送信することは、特定のアンテナポートで信号を送信することであってもよい。同様に、受信ビームを用いて信号を受信することは、特定のアンテナポートで信号を受信することとであってもよい。アンテナポートとは、3GPPの規格で定義されている論理アンテナポート又は物理アンテナポートを指す。
 なお、送信ビーム及び受信ビームの形成方法は、上記の方法に限られない。例えば、複数アンテナを備える基地局装置又はユーザ装置において、それぞれのアンテナの角度を変える方法を用いてもよいし、プリコーディングベクトルを用いる方法とアンテナの角度を変える方法を組み合わせる方法を用いてもよいし、異なるアンテナパネルを切り替えて利用してもよいし、複数のアンテナパネルを合わせて使う方法を組み合わせる方法を用いてもよいし、その他の方法を用いてもよい。また、例えば、高周波数帯において、複数の互いに異なる送信ビームが使用されてもよい。複数の送信ビームが使用されることを、マルチビーム運用といい、ひとつの送信ビームが使用されることを、シングルビーム運用という。
 また、本発明の実施の形態において、無線パラメータ等が「設定される」とは、所定の値が予め設定(Pre-configure)又は規定されることであってもよいし、基地局装置又はユーザ装置から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。図1に示されるように、本発明の実施の形態における無線ネットワークアーキテクチャは、LTE-Advanced側において、4G-CU、4G-RU(Remote Unit、リモート無線局)、EPC(Evolved Packet Core)等を含む。本発明の実施の形態における無線ネットワークアーキテクチャは、5G側において、5G-CU、5G-DU等を含む。
 図1に示されるように、4G-CUは、RRC(Radio Resource Control)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、L1(レイヤ1、PHY層又は物理層)までのレイヤを含み、CPRI(Common Public Radio Interface)を介して4G-RUと接続されている。4G-CU及び4G-RUを含むネットワークノードをeNBという。
 一方、5G側において、図1に示されるように、5G-CUは、RRCレイヤを含み、5G-DUとFH(Flonthaul)インタフェースを介して接続されている。また、5G-CUは、4G-CUとX2インタフェースで接続されている。4G-CUにおけるPDCPレイヤが、4G-5GのDC(Dual Connectivity)すなわちEN-DC(E-UTRA-NR Dual Connectivity)を行う場合の結合又は分離ポイントとなる。5G-CU及び5G-DUを含むネットワークノードをgNBという。また、5G-CUをgNB-CU、5G-DUをgNB-DUと呼んでもよい。
 また、図1に示されるように、4G-RU間において、CA(Carrier Aggregation)が行われ、4G-RUと5G-DUとで、DCが行われる。なお図示しないが、UE(User Equipment)300が、4G-RU又は5G-DUのRFを介して無線接続され、パケットを送受信する。
 なお、図1は、LTE-NRのDC時の無線ネットワークアーキテクチャを示している。しかしながら、4G-CUをCU-DUに分離する場合、又はNRスタンドアロン運用する場合も、同様の無線ネットワークアーキテクチャが使用されてよい。4G-CUをCU-DUに分離する場合、RRCレイヤ及びPDCPレイヤに係る機能を4G-CUに移し、RLCレイヤ以下を4G-DUに含める構成としてもよい。なお、CU-DU分離によって、CPRIのデータレートが低減されてもよい。また、5G-CUに、複数の5G-DUが接続されていてもよい。
 図2は、本発明の実施の形態に係る無線通信システムの構成例を示す図である。図2は、EN-DC時の無線通信システムを示す概略図である。
 図2に示されるように、ユーザ装置20は、LTEシステムによって提供される基地局装置10A、NRシステムによって提供される基地局装置10B(以降、基地局装置10Aと基地局装置10Bを区別しない場合「基地局装置10」として参照されてもよい。)と通信する。さらにユーザ装置20は、基地局装置10Aをマスタノード(以下、「MN」ともいう。)とし、基地局装置10Bをセカンダリノード(以下、「SN」ともいう。)とするLTE-NRデュアルコネクティビティ、すなわちEN-DCをサポートする。ユーザ装置20は、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bにより提供される複数のコンポーネントキャリアを同時に利用して、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bと同時送信又は同時受信を実行することが可能である。なお、図示された例では、LTEシステム及びNRシステムはそれぞれ1つの基地局しか有していない。しかしながら、一般にLTEシステム及びNRシステムのサービスエリアをカバーする多数の基地局装置10が配置される。
 なお、以下の実施例は、LTE-NRデュアルコネクティビティに関して説明されるが、本発明の実施の形態に係るユーザ装置20は、LTE-NRデュアルコネクティビティに限定されず、異なるRATを利用した複数の無線通信システムの間のデュアルコネクティビティ、すなわち、MR-DC(Multi-RAT Dual Connectivity)に適用可能である。
 通信中のユーザ装置20に設定される各種のコンフィグレーションに関して、無線ベアラ又はセカンダリセル(SCell)設定等のユーザ装置20に設定する情報は通信状況等により変化することがある。ネットワークは、都度ユーザ装置20に適切な設定に変更することで安定した通信を継続させることができる。コンフィグレーションとは、ユーザ装置20に設定する通信を行うための情報を示す。
 ユーザ装置20又はネットワークノードにおいて設定値を変更する場合、前回設定した値からの差分のみが通知されるデルタコンフィグレーション(delta configuration)が知られている。無線リソース消費又は端末の電力消費の観点からデルタコンフィグレーションが可能な場合は、デルタコンフィグレーションを適用することが望ましい。ユーザ装置20に設定済みの各種の設定は、ネットワークノード間で引き継ぐことが可能であり、例えば、モビリティによるネットワークノード跨り時に、デルタコンフィグレーションを継続することが考えられる。
 一方、設定値を変更する場合、すべての設定値が通知されるフルコンフィグレーション(full configuration)が知られている。例えば、ネットワークノード間の互換性がない場合等に、フルコンフィグレーションは適用される。
 ここで、ターゲットノードが、前回設定値を理解できなければ、デルタコンフィグレーションを適用することができない。ネットワークノード間のRRC(Radio Resource Control)インタフェースは、拡張(extension)が許容されているため、対応するバージョン又は機能が異なるネットワークノード跨り時に、前回コンフィグレーションを理解できない状況が発生し得る。
 そこで、設定済みのコンフィグレーションを初期化しつつ通信を継続するため、フルコンフィグレーションを実行する。フルコンフィグレーションは、ネットワークが初期化指示と共に新たに設定するコンフィグレーションを再設定(Reconfiguration)でユーザ装置20に通知することで実現される。さらに、ユーザ装置20の初期化に合わせて、ネットワークノードにおいても関連変数を初期化する必要がある。デルタコンフィグレーションと比較した場合フルコンフィグレーションはリソース消費等でデメリットが多いため、デルタコンフィグレーションが実行できない場合に代替手段としてフルコンフィグレーションが実行される。
 フルコンフィグレーションにおいては、DRB(Data radio bearer)の解放(Release)及び追加(Addition)が一度に実行可能である。初期化処理でDRBの解放が行われ、コンフィグレーションを再設定する過程でDRBの追加が行われる。同一DRB-IDの解放及び追加は、同一RB設定で同一のDRB-IDをRRCメッセージであるdrb-ToReleaseList及びdrb-ToAddModListに設定できないという仕様上の制約が存在する。そのため、DRBの解放及び追加は、DRB-IDの変更によって実行される。DRB-IDを維持する場合、フルコンフィグレーションを実行して、DRBの解放及び追加(Addition)を一度に実行する。なお、EN-DCにおいては、NR側PDCP(Packet Data Convergence Protocol)のRBについて2つのRB設定(nr-RadioBearerConfig1/nr-RadioBearerConfig2)が設定可能であるため、一方に開放、他方に追加を設定すれば、DRBの解放及び追加が一度に実行可能である。
 図3は、ネットワークノード間における設定の例(1)を示す図である。EN-DCにおいて、フルコンフィグレーションが実行されるユースケースは、例えば以下の場合が存在する。ネットワークノード間で互換性がない場合がA)及びB)、DRBの解放及び追加を実行する場合がC)及びD)に対応する。
A)ターゲットMNが、ソースMNの設定値の解釈に失敗する場合
B)ターゲットSNが、ソースSNの設定値の解釈に失敗する場合
C)DRBのPDCPバージョンを変更する場合
D)DRBのPDCPカウントラップアラウンド(count wrap around)を回避する場合
 EN-DC中のフルコンフィグレーションは、初期化指示に加え、新たに設定するコンフィグレーションをMNが再設定することで実現される。図3に示されるように、MN10Aはフルコンフィグレーション実施要求をSN10Bに送信して(S11)、フルコンフィグレーションが実行され、SN10Bはフルコンフィグレーション実施応答をMN10Aに送信する(S12)。EN-DC中ではない状態のフルコンフィグレーションと異なり、EN-DCを継続する場合、MN及びSN双方のコンフィグレーションを再設定する必要がある。初期化指示とネットワーク側のコンフィグレーションは、MNのみに閉じて設定可能である。一方、SN側のコンフィグレーションは、SNから取得される必要がある。
 SN側のコンフィグレーションをMNが取得する方法として、図3に示されるMN10Aからのフルコンフィグレーション実施要求に対する応答であるSN10Bからのフルコンフィグレーション実施応答から取得する方法がある。MNトリガのフルコンフィグレーションの実現方法であり、上記ユースケースのA)C)D)に該当する。
 図4は、ネットワークノード間における設定の例(2)を示す図である。SN側のコンフィグレーションをMNが取得する方法として、図4に示されるSN10BからのMN10Aに送信されるフルコンフィグレーション実施要求から取得する方法がある(S21)。SNトリガのフルコンフィグレーションの実現方法であり、上記ユースケースのB)に該当する。
 表1は、上記ユースケースA)B)C)D)において使用されるネットワークノード間で送受信されるX2メッセージを示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、「Procedure」に使用される「実施要求又は実施応答」のX2メッセージがネットワークノード間で送受信される。「Procedure」には、SNを追加する「SN Addition」、SNの設定を修正する「MN initiated SN Modification」、SNを変更する「MN/SN initiated SN Change」、SN変更を伴うMNのハンドオーバを実行する「Inter-MN HO w/ SN Change」、SN変更を伴わないMNのハンドオーバを実行する「Inter-MN HO w/o SN Change」がある。各「Procedure」において使用される「実施要求又は実施応答」のX2メッセージは、SNを追加する「SgNB Addition Request」とその応答「SgNB Addition Request Ack」、SNの設定を修正する「SgNB Modification Request」とその応答「SgNB Modification Request Ack」がある。
 表1に示される各「Procedure」において、上記ユースケースが発生する。「SN Addition」の場合、ユースケースCが発生する。「MN initiated SN Modification」の場合、ユースケースC又はDが発生する。「MN/SN initiated SN Change」の場合、ユースケースBが発生する。「Inter-MN HO w/ SN Change」の場合、ユースケースA、ユースケースA及びユースケースBが同時、ユースケースBが発生する。「Inter-MN HO w/o SN Change」の場合、ユースケースAが発生する。
 すなわち、MNトリガのフルコンフィグレーション実施要求は、「SgNB Addition Request」及び「SgNB Modification Request」で全てのユースケースがカバーされる。また、SNトリガのフルコンフィグレーション実施要求は、「SgNB Addition Request Ack」で全てのユースケースがカバーされる。
 「SgNB Addition Request」又は「SgNB Modification Request」に設定可能なノード間メッセージである「CG-ConfigInfo」に含まれる特定のIE(information element)の設定有無で、MNトリガのフルコンフィグレーション実施要求が可能である。表2は、特定のIEを説明するための表である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるIE「sourceConfigSCG」は、SCG(Secondary Cell Group)の設定を行うIEであり、MNがフルコンフィグレーションを実施する場合は、当該IEは設定されない(Absent)。また、表2に示されるIE「scg-RB-Config」は、SCGの無線ベアラのデルタコンフィグレーションを行うIEであり、MNがフルコンフィグレーションを実施する場合は、当該IEは設定されない。
 「SgNB Addition Request Ack」又は「SgNB Modification Request Ack」に設定可能なノード間メッセージである「RRC config indication」に含まれる特定のIEの設定値で、SNトリガのフルコンフィグレーション実施要求が可能である。表3は、特定のIEを説明するための表である。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるIE「RRC config indication」は、設定値に「full config」が設定可能である。
 「SgNB Addition Request」又は「SgNB Modification Request」に設定可能なノード間メッセージである「CG-ConfigInfo」に含まれる特定のIEにコンフィグレーションを設定することで、フルコンフィグレーション実施応答が可能である。表4は、特定のIEを説明するための表である。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるIE「scg-CellGroupConfig」は、SCGの設定を行うIEであり、コンフィグレーションを設定することができる。表4に示されるIE「scg-RB-Config」は、SCGの無線ベアラのデルタコンフィグレーションを行うIEであり、コンフィグレーションを設定することができる。
 図5は、ネットワークノード間における設定の例(3)を示す図である。図5は、procedure「Inter-MN HO w/o SN change」を実行するシーケンスの例である。当該シーケンスにおいては、SNは変更されない。
 ステップS31において、ソースMNであるS-MN10Aは、ターゲットMNであるT-MN10Cに「Handover Request」を送信する。続いて、T-MN10Cは、「SgNB Addition Request」をSN10Bに送信する(S32)。ステップS32において、SNは識別子SgNB-UE-X2AP-IDで、UEContextを特定してデルタコンフィグレーションを行う。
 ステップS33において、SN10Bは、「SgNB Addition Request Ack」をT-MN10Cに送信する。続いて、T-MN10Cは、「Handover Request Ack」をS-MN10Aに送信する(S34)。続いて、SN10Bは、「SgNB Release Request」をS-MN10Aに送信する(S35)。続いて、S-MN10Aは、「SgNB Release Request Ack」をSN10Bに送信する(S36)。
 ここで、MNトリガのフルコンフィグレーション実施要求を行う場合、ターゲットノードが変更となる場合にデルタコンフィグレーションを継続するためのIEを未設定とする方法のみ可能である。一方、図5に示されたシーケンスではSNは変更されないため、ステップS32においてSNがノード間メッセージを受信したとき、SNがフルコンフィグレーションであるかデルタコンフィグレーションであるかをどのように識別するかが明確ではない。一方、MNがフルコンフィグレーションを期待しない場合、MNはノード間メッセージに関連IEを常に設定する必要がある。
 図6は、ネットワークノード間における設定の例(4)を示す図である。図6は、procedure「MN initiated SN modification」を実行するシーケンスの例である。当該シーケンスにおいては、SNは変更されない。
 ステップS41において、MN10Aは、「SgNB Modification Request」をSN10Bに送信する。ステップS21において、SNは識別子SgNB-UE-X2AP-IDで、UEContextを特定してデルタコンフィグレーションを行う。続いて、SN10Bは、「SgNB Modification Request Ack」をMN10Aに送信する。
 ここで、図5と同様に、MNトリガのフルコンフィグレーション実施要求を行う場合、ターゲットノードが変更となる場合にデルタコンフィグレーションを継続するためのIEを未設定とする方法のみ可能である。一方、図6に示されたシーケンスではSNは変更されないため、ステップS21においてSNがノード間メッセージを受信したとき、SNがフルコンフィグレーションであるかデルタコンフィグレーションであるかをどのように識別するかが明確ではない。一方、MNがフルコンフィグレーションを期待しない場合、MNはノード間メッセージに関連IEを常に設定する必要がある。
 図7は、ネットワークノード間における設定の例(5)を示す図である。図5及び図6で説明したように、MNがフルコンフィグレーションを期待しない場合、ノード間メッセージに常に関連IEを設定する必要がある。図7は、MNがコンフィグレーションをSNに設定するシーケンスの例である。
 ステップS51において、MN10Aは、CG-ConfigInfoを含む「SgNB Modification Request」をSN10Bに送信する。続いて、SNは、CG-ConfigInfoに含まれる関連IEを参照して判定を行う(S52)。続いて、SN10Bは、CG-Configを含む「SgNB Modification Request Ack」をMN10Aに送信する(S53)。表5は、ステップS52における判定処理を説明するための表である。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、関連IE設定が「Present」である場合、MNの期待動作及びSNの判定結果は共にデルタコンフィグレーションとなり問題は生じない。一方、関連IE設定が「Absent」である場合、SNの判定結果はフルコンフィグレーションとなる。しかしながら、MNの期待動作は、フルコンフィグレーションの場合とデルタコンフィグレーションの場合がある。したがって、MNの期待動作とSNの判定結果に不一致が生じることがある。そこで、MNの期待動作とSNの判定結果との不一致を解消するため、フルコンフィグレーションの実施要求有無を示す情報が、ノード間メッセージに追加される必要がある。
 図8は、ネットワークノード間における設定の例(6)を示す図である。MNがフルコンフィグレーションを期待しない場合のノード間メッセージに設定される特定のIEは、デルタコンフィグレーション用途であるため、SNがMNから通知されたコンフィグレーションを上書きする場合、MNは、最新のコンフィグレーションをSNから取得する必要がある。SNから現在設定されているコンフィグレーションをMNが取得するためには、「SgNB Modification Request」に「Query Indication」を設定する方法がある。図8は、SNから現在設定されているコンフィグレーションをMNが取得した後コンフィグレーションを設定するシーケンスの例である。
 ステップS61において、MN10Aは、Query Indicationを含む「SgNB Modification Request」をSN10Bに送信する。続いて、SN10Bは、CG-Configを含む「SgNB Modification Request Ack」をMN10Aに送信して、MN10Aは最新のコンフィグレーションを取得する。ステップS61及びステップS62が、「Query」手順である。「Query」手順は、シグナリングのオーバヘッドになり得る。「Query」手順によってMNがSNから最新のコンフィグレーションを取得した後、同一のSNに当該コンフィグレーションを送信するため、図8のシーケンスには冗長な手順が含まれる。
 ステップS63-S65は「Modify」手順であり、ステップS51-S53と同様である。すなわち、表5に示される判定が同様に行われるため、フルコンフィグレーションとデルタコンフィグレーションとについて、MNの期待動作とSNの判定結果に不一致が生じることがある。そこで、MNの期待動作とSNの判定結果との不一致を解消するため、フルコンフィグレーションの実施要求有無を示す情報が、ノード間メッセージに追加される必要がある。
 図9は、本発明の実施の形態におけるネットワークノード間における設定の例(1)を示す図である。図7及び図8で説明したように、フルコンフィグレーションとデルタコンフィグレーションとについて、MNの期待動作とSNの判定結果に不一致が生じることがある。そこで、フルコンフィグレーションの実施要求有無を示すIndication(通知)を、ノード間メッセージ「SgNB Addition Request」に追加する。
 図9は、procedure「Inter-MN HO w/o SN change」を実行するシーケンスの例である。ステップS71において、ソースMNであるS-MN10Aは、ターゲットMNであるT-MN10Cに「Handover Request」を送信する。続いて、T-MN10Cは、フルコンフィグレーションの実施要求有無を示すIndicationを含む「SgNB Addition Request」をSN10Bに送信する(S72)。
 ステップS73において、SNは、CG-ConfigInfoに含まれる関連IE及びフルコンフィグレーションの実施要求有無を示すIndicationを参照して、ノード間メッセージの要求がフルコンフィグレーションであるかデルタコンフィグレーションであるかの判定を行う。表6は、ステップS73における判定処理を説明するための表である。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、関連IE設定が「Present」である場合、MNの期待動作及びSNの判定結果は共にデルタコンフィグレーションとなる。関連IE設定が「Absent」かつIndicationが「Present」である場合、SNの判定結果はフルコンフィグレーションであり、MNの期待動作は、フルコンフィグレーションであるため、MNの期待動作とSNの判定結果は一致する。関連IE設定が「Absent」かつIndicationが「Absent」である場合、SNの判定結果はデルタコンフィグレーションであり、MNの期待動作は、デルタコンフィグレーションであるため、MNの期待動作とSNの判定結果は一致する。
 したがって、いかなるケースにおいても、MNから送信されるフルコンフィグレーション実施要求を、SNにおいて正しく判定して、フルコンフィグレーションを実行することができる。これにより、「Query」手順等の不要なシグナリングを削減することができる。
 ステップS74において、SN10Bは、「SgNB Addition Request Ack」をT-MN10Cに送信する。続いて、T-MN10Cは、「Handover Request Ack」をS-MN10Aに送信する(S75)。続いて、SN10Bは、「SgNB Release Request」をS-MN10Aに送信する(S76)。続いて、S-MN10Aは、「SgNB Release Request Ack」をSN10Bに送信する(S77)。
 図10は、本発明の実施の形態におけるネットワークノード間における設定の例(2)を示す図である。図10は、フルコンフィグレーションの実施要求有無を示す通知(Indication)を、ノード間メッセージ「SgNB Modification Request」に追加する例である。
 ステップS81において、MN10Aは、フルコンフィグレーションの実施要求有無を示すIndicationを含む「SgNB Modification Request」をSN10Bに送信する。続いて、SNは、CG-ConfigInfoに含まれる関連IE及びフルコンフィグレーションの実施要求有無を示すIndicationを参照して判定を行う(S82)。続いて、SN10Bは、CG-Configを含む「SgNB Modification Request Ack」をMN10Aに送信する(S83)。ステップS73と同様に、ステップS82において表6に示される判定が行われるため、いかなるケースにおいても、MNから送信されるフルコンフィグレーション実施要求を、SNにおいて正しく判定して、フルコンフィグレーションを実行することができる。これにより、「Query」手順等の不要なシグナリングを削減することができる。
 図11は、本発明の実施の形態におけるネットワークノード間における設定の例(3)を示す図である。図11において「Query Indication」を使用するフルコンフィグレーションの例を説明する。
 「Query Indication」は、MNがソースSNから最新のコンフィグレーションを取得するための通知である。すなわち、MNがターゲットSNでデルタコンフィグレーションを継続するための仕組みである。「Query Indication」は、ノード間メッセージ「SgNB Modification Request」にのみ定義されている。「Query Indication」によって取得されるコンフィグレーションは、デルタコンフィグレーション用途であるため、フルコンフィグレーション用途のコンフィグレーションと差分がある。当該差分は、ノード変更時に必ず変更が発生する設定値は不要であるためである。「Query Indication」は、SNがコンフィグレーションを通知するのみであり、SN側の各種変数は初期化されない。「Query Indication」後のSNの動作として、デルタコンフィグレーション継続の場合とフルコンフィグレーション実施の場合とが存在するため、いずれか一方を常に実行する動作はできない。
 ステップS91において、MN10A又はT-MN10Aは、「Query Indication」を含む「SgNB Modification Request」をSN10Bに送信する。続いて、SN10Bは、CG-Configを含む「SgNB Modification Request Ack」をMN10A又はT-MN10Aに送信する(S92)。ステップS92において、MN10A又はT-MN10Aは、「Query Indication」によりフルコンフィグレーション用途のコンフィグレーションを取得する。
 ステップS93において、MN10A又はT-MN10Aは、メッセージXをSN10Bに送信する。続いて、SNは、メッセージXに基づいて、処理種別を判定する(S94)。メッセージXは、ステップS92で使用された識別子SgNB-UE-X2AP-IDと同一のIDを有する。表7は、ステップS73における判定処理を説明するための表である。
Figure JPOXMLDOC01-appb-T000007
 表7に示される「受信メッセージ」は、ステップS93でSN10Bに受信されたメッセージXである。「受信メッセージ」が、「SgNB Reconfiguration Complete」である場合のみ、SN10Bは、フルコンフィグレーション実施要求であると判定し、初期化処理を実施する。他のメッセージ、すなわち「SgNB Addition Request」、「SgNB Modification Request」又は「SgNB Release Request」の場合、通常のQueryであると判定し、初期化処理は行わない。
 なお、メッセージ「SgNB Addition Request」に「Query Indication」が含まれてもよい。「SgNB Addition Request」に「Query Indication」含まれる場合、さらに図9で説明したフルコンフィグレーション実施要求有無を示すIndicationを含めて、図9に示されるシーケンスでフルコンフィグレーション又はデルタコンフィグレーションの判定を行う。
 上述の実施例により、ネットワークノードは、いかなるユースケースであっても、MNからのノード間メッセージが、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定して、適切にコンフィグレーションを設定することができる。また、ネットワークノードは、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかの判定処理において、不要なシグナリングを削減することができる。
 すなわち、ネットワークノードが、ユーザ装置の設定に係る情報を他のネットワークノードに適切に設定し、ユーザ装置は通信を継続することができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ装置20の機能構成例を説明する。基地局装置10及びユーザ装置20は上述した実施例を実施する機能を含む。ただし、基地局装置10及びユーザ装置20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局装置10>
 図12は、本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。図12に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図12に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、ユーザ装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、ユーザ装置20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。ままた、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
 設定部130は、予め設定される設定情報、及び、ユーザ装置20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、無線ベアラ又はセカンダリセルの設定等のユーザ装置20の通信に係る設定情報等である。
 制御部140は、実施例において説明したように、ユーザ装置20とEN-DCが適用された通信の制御を行う。また、制御部140は、ユーザ装置20の通信に係るコンフィグレーションについて他のネットワークノードから取得又は他のネットワークに通知を行う。また、制御部140は、ユーザ装置20の通信に係るコンフィグレーションについてデルタコンフィグレーション又はフルコンフィグレーションを設定する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <ユーザ装置20>
 図13は、ユーザ装置20の機能構成の一例を示す図である。図13に示されるように、ユーザ装置20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ装置20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他のユーザ装置20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局装置10又はユーザ装置20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、無線ベアラ又はセカンダリセルの設定等のユーザ装置20の通信に係る設定情報等である。
 制御部240は、実施例において説明したように、EN-DCが適用された無線通信を行う。また、制御部240は、基地局装置10から無線通信に係る情報を受信して、当該情報に基づいてユーザ装置20の無線通信を制御し、必要な情報を基地局装置10に報告する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上述の本発明の実施の形態の説明に用いた機能構成図(図12及び図13)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 また、例えば、本発明の一実施の形態における基地局装置10及びユーザ装置20はいずれも、本発明の実施の形態に係る処理を行うコンピュータとして機能してもよい。図14は、本発明の実施の形態に係る基地局装置10又はユーザ装置20である無線通信装置のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ装置20はそれぞれ、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007等を含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ装置20のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局装置10及びユーザ装置20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、補助記憶装置1003及び/又は通信装置1004から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図12に示した基地局装置10の送信部110、受信部120、設定部130、制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図13に示したユーザ装置20の送信部210と、受信部220と、設定部230、制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つで構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つで構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び/又は補助記憶装置1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュール等ともいう。例えば、基地局装置10の送信部110及び受信部120は、通信装置1004で実現されてもよい。また、ユーザ装置20の送信部210及び受信部220は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、基地局装置10及びユーザ装置20はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、ユーザ装置及び複数のネットワークノードを含む通信システムにおける第1のネットワークノードであって、第2のネットワークノードから前記ユーザ装置の設定に係るノード間メッセージを受信する受信部と、前記ノード間メッセージに基づいて、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであるかデルタコンフィグレーションであるか判定する判定部と、前記判定に基づいて、前記ユーザ装置の設定をフルコンフィグレーション又はデルタコンフィグレーションで更新する更新部とを有するネットワークノードが提供される。
 上記の構成により、ネットワークノードは、いかなるユースケースであっても、MNからのノード間メッセージが、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定して、適切にコンフィグレーションを設定することができる。また、ネットワークノードは、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかの判定処理において、不要なシグナリングを削減することができる。すなわち、ネットワークノードが、ユーザ装置の設定に係る情報を他のネットワークノードに適切に設定し、ユーザ装置は通信を継続することができる。
 前記ノード間メッセージは、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであることを示す情報を含んでもよい。当該構成により、ネットワークノードは、MNからのノード間メッセージが、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定することができる。
 前記第2のネットワークノードはマスタノードであり、前記第1のネットワークノードはセカンダリノードであって、前記ノード間メッセージは、前記第1のネットワークノードを変更する指示を含まなくてもよい。当該構成により、ネットワークノードは、SNが変更されない動作であっても、MNからのノード間メッセージが、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定することができる。
 前記ノード間メッセージは、セカンダリノードの追加要求であってもよい。当該構成により、「SgNB Addition Request」がMNからSNに送信された場合に、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定することができる。
 前記ノード間メッセージは、セカンダリノードの変更要求であってもよい。当該構成により、「SgNB Modification Request」がMNからSNに送信された場合に、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定することができる。
 前記受信部は、前記第2のネットワークノードから、前記ユーザ装置の設定に係る問合せを受信し、前記問合せの応答を前記第2のネットワークノードに送信する送信部をさらに有し、前記第2のネットワークノードから、前記問合せの応答に含まれる識別子を有するメッセージを受信した場合、前記問合せの応答に含まれる識別子を有するメッセージの種別に基づいて、フルコンフィグレーションを設定してもよい。当該構成により、「Query Indication」がMNからSNに送信された後、SNからMNに応答を送信したIDを含むメッセージがMNからSNに受信された場合、当該メッセージの種別に基づいて、フルコンフィグレーション実施要求及びデルタコンフィグレーション実施要求のいずれであるかを正しく判定することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置及びユーザ装置は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局装置によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置との通信のために行われる様々な動作は、基地局装置及び/又は基地局装置以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局装置以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
 ユーザ装置は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局装置は、当業者によって、NB(NodeB)、eNB(evolved NodeB)、gNB(Next generation NodeB, NR nodeB)、ベースステーション(Base Station)、又はいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「含む(include)」、「含んでいる(including)」、及びそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
 なお、本発明の実施の形態において、制御部140は、判定部又は更新部の一例である。「SgNB Addition Request」は、セカンダリノードの追加要求の一例である。「SgNB Modification Request」は、セカンダリノードの変更要求の一例である。「Query Indication」は、ユーザ装置の設定に係る問合せの一例である。SgNB-UE-X2AP-IDは、問合せの応答に含まれる識別子の一例である。SNは、第1のネットワークノードの一例である。MNは、第2のネットワークノードの一例である。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
10    基地局装置
110   送信部
120   受信部
130   設定部
140   制御部
20    ユーザ装置
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  ユーザ装置及び複数のネットワークノードを含む通信システムにおける第1のネットワークノードであって、
     第2のネットワークノードから前記ユーザ装置の設定に係るノード間メッセージを受信する受信部と、
     前記ノード間メッセージに基づいて、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであるかデルタコンフィグレーションであるか判定する判定部と、
     前記判定に基づいて、前記ユーザ装置の設定をフルコンフィグレーション又はデルタコンフィグレーションで更新する更新部とを有するネットワークノード。
  2.  前記ノード間メッセージは、前記ユーザ装置の設定の更新方法がフルコンフィグレーションであることを示す情報を含む請求項1記載のネットワークノード。
  3.  前記第2のネットワークノードはマスタノードであり、前記第1のネットワークノードはセカンダリノードであって、前記ノード間メッセージは、前記第1のネットワークノードを変更する指示を含まない請求項2記載のネットワークノード。
  4.  前記ノード間メッセージは、セカンダリノードの追加要求である請求項3記載のネットワークノード。
  5.  前記ノード間メッセージは、セカンダリノードの変更要求である請求項3記載のネットワークノード。
  6.  前記受信部は、前記第2のネットワークノードから、前記ユーザ装置の設定に係る問合せを受信し、
     前記問合せの応答を前記第2のネットワークノードに送信する送信部をさらに有し、
     前記第2のネットワークノードから、前記問合せの応答に含まれる識別子を有するメッセージを受信した場合、前記問合せの応答に含まれる識別子を有するメッセージの種別に基づいて、フルコンフィグレーションを実行する請求項1記載のネットワークノード。
PCT/JP2018/023711 2018-06-21 2018-06-21 ネットワークノード WO2019244318A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020525180A JP7353279B2 (ja) 2018-06-21 2018-06-21 ネットワークノード
PCT/JP2018/023711 WO2019244318A1 (ja) 2018-06-21 2018-06-21 ネットワークノード
EP18923499.0A EP3813475A4 (en) 2018-06-21 2018-06-21 NETWORK NODE
CN201880094736.6A CN112369112A (zh) 2018-06-21 2018-06-21 网络节点
US17/252,873 US20210258214A1 (en) 2018-06-21 2018-06-21 Network node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023711 WO2019244318A1 (ja) 2018-06-21 2018-06-21 ネットワークノード

Publications (1)

Publication Number Publication Date
WO2019244318A1 true WO2019244318A1 (ja) 2019-12-26

Family

ID=68983579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023711 WO2019244318A1 (ja) 2018-06-21 2018-06-21 ネットワークノード

Country Status (5)

Country Link
US (1) US20210258214A1 (ja)
EP (1) EP3813475A4 (ja)
JP (1) JP7353279B2 (ja)
CN (1) CN112369112A (ja)
WO (1) WO2019244318A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195782A1 (ja) * 2021-03-17 2022-09-22 株式会社Nttドコモ 無線基地局
WO2022224766A1 (ja) * 2021-04-20 2022-10-27 株式会社Nttドコモ 無線基地局

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574898A (en) * 2018-06-22 2019-12-25 Nec Corp Communication system
US11363656B2 (en) * 2019-08-14 2022-06-14 Qualcomm Incorporated Techniques for indicating full configuration to a secondary node in dual connectivity

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9392504B2 (en) * 2007-06-19 2016-07-12 Qualcomm Incorporated Delivery of handover command
KR102098204B1 (ko) * 2009-12-15 2020-04-07 와이어리스 퓨처 테크놀로지스 인코포레이티드 핸드오버에 대한 시그널링 방식을 결정하기 위한 방법들, 장치들, 관련된 컴퓨터 프로그램 물건 및 데이터 구조
CN104780575B (zh) * 2009-12-15 2018-10-16 无线未来科技公司 用于支持用户设备切换的方法、源基站和目标基站
CN102378287B (zh) * 2010-08-11 2014-12-10 电信科学技术研究院 一种主小区更换的小区配置方法及装置
US9420501B2 (en) * 2012-11-30 2016-08-16 Nokia Technologies Oy Method and apparatus for handover in heterogeneous system
WO2015047051A1 (en) * 2013-09-30 2015-04-02 Lg Electronics Inc. Method for determining radio resource control configuration in wireless communication system supporting dual connectivity and apparatus thereof
GB2528913B (en) * 2014-08-04 2017-03-01 Samsung Electronics Co Ltd Signalling in dual connectivity mobile communication networks
ES2957472T3 (es) * 2014-08-07 2024-01-19 Alcatel Lucent Red de conectividad dual
US10609757B2 (en) * 2015-09-07 2020-03-31 Nokia Solutions And Networks Oy Method and apparatus for implementing radio resource control of multi-connectivity
JP6123009B1 (ja) * 2015-11-05 2017-04-26 株式会社Nttドコモ ユーザ装置、基地局、及び接続確立方法
US20170295524A1 (en) * 2016-04-08 2017-10-12 Nokia Technologies Oy Apparatuses and methods for indication of full configuration in handover signaling
US10912139B2 (en) * 2016-07-18 2021-02-02 Samsung Electronics Co., Ltd. Network interconnectivity
US11330656B2 (en) * 2016-11-04 2022-05-10 Telefonaktiebolaget Lm Ericsson (Publ) UE capability signaling for tight-interworking
US20200154326A1 (en) * 2017-03-22 2020-05-14 Idac Holdings, Inc. Delayed handover execution in wireless networks based on a trigger condition
WO2018182240A1 (ko) * 2017-03-25 2018-10-04 엘지전자 주식회사 무선 통신 시스템에서 lte/nr 인터워킹을 위한 절차를 향상시키는 방법 및 장치
KR20180122935A (ko) * 2017-05-04 2018-11-14 삼성전자주식회사 UE autonomous handover에서의 measurement report/event 운용 및 네트워크 시그널링 방법
US10785817B2 (en) * 2017-09-28 2020-09-22 Apple Inc. Signaling radio bearer type 3 (SRB3) and secondary cell group (SCG) failure handling
CN111602462B (zh) * 2017-11-10 2023-07-28 瑞典爱立信有限公司 用户设备、节点以及在其中执行的方法
JP7065183B2 (ja) * 2017-11-16 2022-05-11 テレフオンアクチーボラゲット エルエム エリクソン(パブル) En-dcにおけるフルrrc設定
WO2019139517A1 (en) * 2018-01-12 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Delta configuration in split cu-du ran architecture
WO2019160743A1 (en) * 2018-02-14 2019-08-22 Google Llc Full and delta configuration in a central unit-distributed unit architecture
US10856356B2 (en) * 2018-03-11 2020-12-01 Htc Corporation Device and method of handling a secondary node configuration

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TR 38.401, March 2018 (2018-03-01)
3GPP TS 37.340, March 2018 (2018-03-01)
CATT: "Clarification of SCG-ConfigInfo's absence when MN sets full-config flag (RILNo C043", 3GPP TSG-RAN WG2 NR AD HOC 0118 R2-1800148, 16 January 2018 (2018-01-16), XP051386922 *
See also references of EP3813475A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195782A1 (ja) * 2021-03-17 2022-09-22 株式会社Nttドコモ 無線基地局
WO2022224766A1 (ja) * 2021-04-20 2022-10-27 株式会社Nttドコモ 無線基地局

Also Published As

Publication number Publication date
JP7353279B2 (ja) 2023-09-29
US20210258214A1 (en) 2021-08-19
JPWO2019244318A1 (ja) 2021-07-15
EP3813475A4 (en) 2022-02-09
EP3813475A1 (en) 2021-04-28
CN112369112A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2019244318A1 (ja) ネットワークノード
CN109156043B (zh) 一种管理包含虚拟接入点的无线连接的方法和***
KR102371035B1 (ko) 유저장치
WO2019220606A1 (ja) ネットワークノード
WO2020031359A1 (ja) ユーザ装置及び基地局装置
WO2020031358A1 (ja) ユーザ装置及び送信方法
WO2023151888A1 (en) Configuration enhancements for l1/l2 mobility
WO2019244317A1 (ja) 通信装置、及び通信方法
EP3911022A1 (en) Network node, and user device
WO2020166020A1 (ja) ユーザ装置及び基地局装置
WO2020031332A1 (ja) ユーザ装置、基地局装置、及び測定方法
WO2021171673A1 (ja) 基地局及び通信方法
WO2020179035A1 (ja) ネットワークノード
US20210176711A1 (en) User equipment and base station apparatus
US20210120396A1 (en) User equipment, base station apparatus, and core network apparatus
WO2020166028A1 (ja) ネットワークノード
US20210029645A1 (en) User equipment and base station apparatus
WO2019211913A1 (ja) ユーザ装置及び基地局装置
WO2020003677A1 (ja) ネットワークノード及び基地局装置
WO2020161912A1 (ja) ネットワークノード
WO2020165957A1 (ja) 通信装置
WO2020031279A1 (ja) ユーザ装置及び基地局装置
WO2020174548A1 (ja) ネットワークノード及び通信方法
WO2021014625A1 (ja) 基地局及び通信方法
EP3681246A1 (en) Network node

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018923499

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018923499

Country of ref document: EP

Effective date: 20210121