WO2019242766A1 - 氘代mgl-3196化合物及其用途 - Google Patents

氘代mgl-3196化合物及其用途 Download PDF

Info

Publication number
WO2019242766A1
WO2019242766A1 PCT/CN2019/092386 CN2019092386W WO2019242766A1 WO 2019242766 A1 WO2019242766 A1 WO 2019242766A1 CN 2019092386 W CN2019092386 W CN 2019092386W WO 2019242766 A1 WO2019242766 A1 WO 2019242766A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pharmaceutically acceptable
added
hydrate
solvate
Prior art date
Application number
PCT/CN2019/092386
Other languages
English (en)
French (fr)
Inventor
杜武
李宇
李海波
陈元伟
张承智
李兴海
Original Assignee
成都海创药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都海创药业有限公司 filed Critical 成都海创药业有限公司
Priority to US17/255,231 priority Critical patent/US20210292304A1/en
Publication of WO2019242766A1 publication Critical patent/WO2019242766A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • A61P5/16Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4 for decreasing, blocking or antagonising the activity of the thyroid hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a deuterated MGL-3196 compound and uses thereof.
  • MGL-3196 is a highly selective thyroid hormone receptor ⁇ (THR- ⁇ ) agonist with an EC50 value of 0.21 ⁇ M. Its structural formula is Late clinical trials are currently underway, showing efficacy on dyslipidemia, hypercholesterolemia, and non-alcoholic steatohepatitis (NASH).
  • TRR- ⁇ thyroid hormone receptor ⁇
  • Deuterated drugs refer to the replacement of some hydrogen atoms in drug molecules with deuterium. Because deuterium is similar in shape and volume to hydrogen in drug molecules, deuterated drugs generally retain the biological activity and selectivity of the original drug. Because the C-D bond is more stable than the C-H bond, the chemical reaction of the deuterated drug makes the C-D bond more difficult to break, and its half-life may be prolonged.
  • the present invention expects that by deuterating MGL-3196 compounds, a class of deuterated drugs with good pharmacokinetic properties, reduced dosage, and reduced toxic and side effects can be obtained.
  • the purpose of the present invention is to provide a class of deuterated MGL-3196 drugs with good pharmacokinetic properties, low toxic and side effects, and good metabolic stability.
  • the present invention first provides a compound represented by formula (I) or an optical isomer, pharmaceutically acceptable salt, prodrug, hydrate or solvate thereof:
  • R 1 to R 10 are each independently selected from H and D, and are not all H.
  • R 7 to R 10 are each independently selected from H and D.
  • R 1 -R 6 and R 8 -R 10 are each independently selected from H and D.
  • R 8 to R 10 are each independently selected from H and D.
  • R 4 to R 10 are each independently selected from H and D.
  • R 1 to R 8 are each independently selected from H and D.
  • the compound is selected from, but not limited to, one of the following compounds:
  • the present invention also provides the aforementioned compounds or their optical isomers, pharmaceutically acceptable salts, prodrugs, hydrates or solvates for the preparation of cholesterol, the treatment of dyslipidemia, and the treatment of non-alcoholic steatohepatitis (NASH). Use in medicine.
  • NASH non-alcoholic steatohepatitis
  • the medicine is a medicine for treating familial hypercholesterolemia, non-alcoholic steatohepatitis (NASH), and non-alcoholic fatty liver disease (NAFLD).
  • NASH non-alcoholic steatohepatitis
  • NAFLD non-alcoholic fatty liver disease
  • the invention also provides the use of the aforementioned compound or its optical isomer, a pharmaceutically acceptable salt, a prodrug, a hydrate or a solvate in the preparation of a THR- ⁇ agonist.
  • the invention also provides a medicine for lowering cholesterol, treating dyslipidemia, and treating non-alcoholic fatty liver.
  • the compound is an active ingredient and a preparation prepared by adding a pharmaceutically acceptable excipient.
  • deuterated refers to the replacement of one or more hydrogens in a compound or group with deuterium. Deuteration can be mono-, di-, poly- or fully substituted.
  • the deuterium isotope content of deuterium at the deuterium substitution position is greater than the natural deuterium isotope content (0.015%), more preferably greater than 50%, more preferably greater than 75%, more preferably greater than 95%, more preferably Ground is greater than 97%, more preferably greater than 99%, and more preferably greater than 99.5%.
  • compound of the present invention refers to a compound represented by formula (I).
  • the term also includes various optical isomers, pharmaceutically acceptable salts, prodrugs, hydrates or solvates of compounds of formula (I).
  • the active ingredient described herein refers to any substance or mixture of substances used in the manufacture of pharmaceuticals, which has pharmacological activity or other direct effects in the diagnosis, treatment, symptom relief, treatment or prevention of disease Can affect the function or structure of the body.
  • the pharmaceutically acceptable excipient has certain physiological activity, but the addition of the ingredient will not change the dominance of the above-mentioned pharmaceutical composition in the course of disease treatment, but only exerts auxiliary effects, and these auxiliary effects are only for the component
  • auxiliary effects are only for the component
  • the use of known activities is a common adjuvant therapy in the medical field. If the above auxiliary ingredients are used in combination with the pharmaceutical composition of the present invention, they should still fall within the protection scope of the present invention.
  • the compound provided by the present invention or an optical isomer, pharmaceutically acceptable salt, prodrug, hydrate or solvate thereof has a better effect on thyroid hormone receptor ⁇ (THR- ⁇ ) Has better agonistic activity, longer half-life, lower clearance, better metabolic stability and pharmacokinetic properties, in the preparation of THR- ⁇ agonists, and treatment of dyslipidemia, hypercholesterolemia
  • THR- ⁇ thyroid hormone receptor ⁇
  • NASH non-alcoholic steatohepatitis
  • the raw materials and instruments used in the present invention are known products and are obtained by purchasing commercially available products.
  • Diethyl-2,2-di-deuterated methylmalonate A-2 (12.0 g, 6.18 mmol) was weighed into a 250 mL three-necked round bottom flask, and 12.5 mL of ethanol was added thereto, and the mixture was stirred and dissolved at room temperature. clarify. Subsequently, 12.5 mL of an aqueous solution in which potassium hydroxide (16.8 g, 30 mmol) was dissolved was added to the system. After the addition, the system was transferred to an oil bath at 85 ° C, and the reaction was continued with heating and stirring. After 1 h, the heating was stopped and the system was allowed to cool to room temperature and stirred overnight.
  • Step 1 Synthesis of 3,6-dichloro-4- (1,1,1,3,3,3-hexadeuteropropan-2-yl) pyridazine (Compound 1-1)
  • Step 2 Synthesis of 3,5-dichloro-4-((6-chloro-5- (1,1,1,3,3,3-hexadeuteropropan-2-yl) pyridazin-3-yl) Oxyaniline (Compound 1-2):
  • Step 3 Synthesis of 6- (4-amino-2,6-dichlorophenoxy) -4- (1,1,1,3,3,3-hexadeuteropropan-2-yl) pyridazine-3 (2hydro) -one (compounds 1-3):
  • Compound 1-2 (1.0 g, 2.95 mmol) was weighed and placed in a 100 mL three-neck round bottom flask, and glacial acetic acid (30 mL) was added thereto, followed by stirring at room temperature. To the system was then added anhydrous sodium acetate (847 mg, 10.33 mmol). After the addition was completed, the system was transferred to an oil bath at 105 ° C, and the reaction was stirred and refluxed. After 24 hours, the heating was stopped and the system was allowed to cool naturally to room temperature. The solvent was removed by rotary evaporation, water (150 mL) was added to the system, and the solution was transferred to an ice-water bath to cool down and stir.
  • a sodium hydroxide (1.0M) solution is added dropwise to the system to adjust the pH of the system to about 9.
  • ethyl acetate 100 mL was added to the system, followed by vigorous stirring, and the layers were allowed to stand for separation.
  • the aqueous phase was back-extracted with ethyl acetate (50 mL x 2).
  • the organic phases were combined, and water (30 mL) and saturated brine ( 30 mL), washed once, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a pale yellow solid.
  • N-cyanoacetylurethane (71mg, 0.46mmol) and placed it in a 25mL single-neck round bottom flask.
  • Water (9.4mL) and pyridine (2.8mL) were added to the flask, stirred and dissolved at room temperature to clarify. Place in an ice-water bath and continue to cool and stir for 30min.
  • the diazotization reaction solution was slowly added dropwise to a system in which N-cyanoacetylurethane was dissolved, and the dropping rate was controlled so that the internal temperature of the system did not exceed 5 ° C. After the dripping was completed, the system was stirred and stirred in an ice-water bath. After 1 h, the reaction was monitored by TLC.
  • Step 5 Synthesis of 2- (3,5-dichloro-4-((5- (1,1,1,3,3,3-hexadeuteroprop-2-yl) -6-oxy-1, 6-dihydropyridazin-3-yl) oxy) benzene) -3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-nitrile (Compound 1 )
  • compound 2 was prepared by a method similar to that in Example 1.
  • Step 2 Synthesis of 3,5-dichloro-4-((6-chloro-5-heptaisopropylpyridazin-3-yl) oxy) aniline (Compound 2-2): Yield: 52.5% .
  • MS (ESI) m / e 339.0 (M + H) + .
  • Step 3 Synthesis of 6- (4-amino-2,6-dichlorophenoxy) -4-hepta-deuteroisopropylpyridazin-3 (2hydro) -one (compound 2-3): yield : 77.3%. MS (ESI) m / e 321.1 (M + H) + .
  • Step 4 Synthesis of ethyl (2-cyano-2- (2- (3,5-dichloro-4-((5-deuteroisopropyl-6-oxo-1,6-dihydropyridine) Azine-3-yl) oxy) phenyl) imino) acetyl) carbamate (compound 2-4): used directly in the next reaction without further purification. Yield: 91.3%. MS (ESI) m / e 488.0 (M + H) + .
  • Step 5 Synthesis of 2- (3,5-dichloro-4-((5-hepta-deuteroisopropyl-6-oxo-1,6-dihydropyridazin-3-yl) oxy) phenyl ) -3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-nitrile (Compound 2-5): Yield: 95.3%.
  • 1 H NMR 400 MHz, DMSO-d 6 ) ⁇ 13.30 (br, 1H), 12.25 (s, 1H), 7.78 (s, 2H), 7.45 (s, 1H).
  • Diethyl-2-trideuterated methyl-2-methylmalonate (10.0 g, 52.3 mmol) was weighed into a 250 mL three-necked round bottom flask, and 12.5 mL of ethanol was added thereto, which was dissolved by stirring at room temperature. clarify. Subsequently, 12.5 mL of an aqueous solution in which potassium hydroxide (16.8 g, 30 mmol) was dissolved was added to the system. After the addition, the system was transferred to an oil bath at 85 ° C, and the reaction was continued with heating and stirring. After 1 h, the heating was stopped and the system was allowed to cool to room temperature and stirred overnight.
  • compound 3 was prepared by a method similar to that in Example 1.
  • Step 1 Synthesis of 3,6-dichloro-4- (1,1,1-trideuteroprop-2-yl) pyridazine (Compound 3-1): Yield: 60%, MS (ESI) m / e 194.2 (M + H) + .
  • Step 2 Synthesis of 3,5-dichloro-4-((6-chloro-5- (1,1,1-trideuteroprop-2-yl) pyridazin-3-yl) oxy) aniline (compound 3-2): Yield: 64%, MS (ESI) m / e 335.0 (M + H) + .
  • Step 3 Synthesis of 6- (4-amino-2,6-dichlorophenoxy) -4- (prop-2-yl-1,1,1-trideuterium) pyridazine-3 (2hydrogen)- Ketone (Compound 3-3): Yield: 72.5%, MS (ESI) m / e 317.1 (M + H) + .
  • Step 4 Synthesis of ethyl (2-cyano-2- (2- (3,5-dichloro-4-((6-oxo-5- (prop-2-yl-1,1,1-tri Deuterium) -1,6-dihydropyridazin-3-yl) oxy) phenyl) hymidine) ethyl) carbamate (Compound 3-4): Yield: 75%, MS (ESI) m / e 484.1 (M + H) + .
  • Step 5 Synthesis of 2- (3,5-dichloro-4-((6-oxo-5- (prop-2-yl-1,1,1-trideuterium) -1,6-dihydropyridazine) -3-yl) oxy) phenyl) -3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-carbonitrile (Compound 3): Yield: 41.4%.
  • Method 1 Weigh 4,5-dichloromaleic hydrazide (2.0g, 11.05mmol) into a 100ml single-neck round bottom flask, add 50ml deuterated methanol, add 10ml heavy water, add 200mg Pd / C, and replace with deuterium 3 Then, the reaction was performed at room temperature for 40 hours, filtered, and the filtrate was concentrated to dryness under reduced pressure. 6 ml of methanol was added to the slurry, filtered, and the filter cake was dried to obtain 1.0 g of compound 4,5-diuterium maleic hydrazide. Yield: 79%. ) m / e 115.2 (M + H) + . 13 C NMR (101 MHz, DMSO-d 6 ) 156.76, 130.50.
  • Method 2 Add maleic hydrazide (5.6g, 50mmol) to a round-bottomed flask, add 80ml of heavy water, add 500mgPd / C, replace with hydrogen for three times, heat and reflux under hydrogen atmosphere for 72h, cool to room temperature, filter, and add filter cake In a round bottom flask, the above operation was repeated. After the reaction was completed, the filter cake was added with 100 ml of methanol, refluxed for 30 min, filtered, and the filtrate was concentrated to dryness under reduced pressure to obtain 2.5 g of 4,5-dideuterium-maleic hydrazide.
  • compound 10 was prepared by a method similar to that in Example 1.
  • Step 2 Synthesis of 3,5-dichloro-4-((6-chloro-4-deuter-5- (hepta-deuteropropan-2-yl) pyridazin-3-yl) oxy) aniline (compound 10-2 )
  • Step 3 Synthesis of 6- (4-amino-2,6-dichlorophenoxy) -5-deuter-4- (hepta-deuteropropan-2-yl) pyridazin-3 (2hydro) -one (compound 10-3)
  • a sodium hydroxide (1.0M) solution is added dropwise to the system to adjust the pH of the system to about 9.
  • ethyl acetate 100 mL was added to the system, followed by vigorous stirring, and the layers were allowed to stand for separation.
  • the aqueous phase was back-extracted with ethyl acetate (50 mL x 2).
  • the organic phases were combined, and water (30 mL) and saturated brine ( 30 mL), washed once, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give a pale yellow solid.
  • Step 4 Synthesis of ethyl (2-cyano-2- (2- (3,5-dichloro-4-((4-deuter-5-heptadium-isopropyl-6-oxo-1, 6-dihydropyridazin-3-yl) oxy) phenyl) biimino) acetyl) carbamate (Compound 10-4)
  • N-cyanoacetylurethane 159.2mg, 1.02mmol
  • Water (21.0mL) and pyridine (6.3mL) were added to it, stirred and dissolved at room temperature to clarify. Transfer to an ice-water bath and continue cooling and stirring for 30min.
  • the diazotization reaction solution was slowly added dropwise to a system in which N-cyanoacetylurethane was dissolved, and the dropping rate was controlled so that the internal temperature of the system did not exceed 5 ° C. After the dripping was completed, the system was stirred and stirred in an ice-water bath. After 1 h, the reaction was monitored by TLC.
  • Step 5 Synthesis of 2- (3,5-dichloro-4-((4-deutero-5- (hepta-deuteroisopropyl) -6-oxo-1,6-dihydropyridazine-3- Yl) oxy) phenyl) -3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-nitrile (Compound 10)
  • the compounds D and A were used as raw materials, and were prepared by a method similar to the synthesis of compound 10.
  • Step 1 Synthesis of 3,6-dichloro-4-deuter-5- (1,1,1,3,3,3-hexadeuteroprop-2-yl) pyridazine (compound 11-1):
  • Step 3 Synthesis of 6- (4-amino-2,6-dichlorophenoxy) -4- (1,1,1,3,3,3-hexadeuteroprop-2-yl) pyta-5- Deuterium-3 (2hydro) -one (compound 11-3):
  • Step 4 Synthesis of ethyl (2-cyano-2- (2- (3,5-dichloro-4-((4-deuter-5- (1,1,1,3,3,3-hexadeuterium) Propyl-2-yl) -6-oxo-1,6-dihydropyridazin-3-yl) oxy) phenyl) biamino) ethyl) carbamate (compound 11-4)
  • Step 5 Synthesis of 2- (3,5-dichloro-4-((4-deutero-5- (1,1,1,3,3,3-hexadeuteropropan-2-yl) -6 -Oxo-1,6-dihydropyridazin-3-yl) oxy) phenyl) -3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine- 6-nitrile (compound 11):
  • compounds 4-9, 12 can be prepared: using compound C3 as a raw material, using a method similar to the synthesis of hepta-deuterated isobutyric acid compound B, Preparation of 2,3,3,3-tetradeuterated 2-methylpropanoic acid. Using this as a raw material, Compound 4 can be prepared by a method similar to that in Example 1.
  • 2-deuterated 2-methylpropionic acid can be prepared by a method similar to the synthesis of compound B.
  • Compound 5 can be prepared by a method similar to that in Example 1.
  • compound 6 can be prepared by a method similar to that in Example 4.
  • Isobutyric acid, 4,5-dideuter-3,6-dichloropyridazine and 4-amino-2,6-dichloro-3,5-dideuterated phenol (Organic Letters were prepared in a similar manner to the literature, 2008, 10, 4351.) as a raw material compound 7 can be prepared by a method similar to that of Example 4.
  • compound 8 can be prepared by a method similar to that in Example 1.
  • Hepta-deuterated isobutyric acid B, 4,5-dideuter-3,6-dichloropyridazine and 4-amino-2,6-dichloro-3,5-dideuterated phenol were used as raw materials.
  • the method of Example 4 can prepare compound 12.
  • Test Example 1 Agonist activity test of the compound of the present invention on THR- ⁇
  • the agonistic activity of the compound on THR- ⁇ was measured by a method similar to the literature (J. Med. Chem. 2014, 57, 3912.): 100X reference compound or compound was prepared with DMSO and diluted 1: 3 in equal proportion. Dilute 100X reference compound or compound to 4X with 1X reaction buffer and add to experimental plate. A 1X reaction buffer was used to prepare a 4X TR ⁇ -LBD or TR ⁇ -LBD, 4X RXR ⁇ mixed solution, and added to the experimental plate. A 1X reaction buffer solution was used to prepare a 2X biotin-SRC2-2, 2X Eu-anti-GST, and 2X streptavidin-d2 mixed solution, and added to the experimental plate.
  • the compounds of the present invention have good agonistic activity on THR- ⁇ , especially compounds 2, 3, 10, and 11.
  • the agonistic activity on THR- ⁇ is significantly better than the undeuterated control compound MGL-3196.
  • NADPH solution (5mM): Weigh an appropriate amount of NADPH standard, dissolve it in phosphate buffered saline (1xPBS), mix well, and put it in an ice bath for later use.
  • test compound solution Weigh appropriate amounts to be tested separately DMSO was used to prepare a suitable concentration solution to obtain stock solution I; an appropriate amount of stock solution I was taken and further diluted to 5 ⁇ M with 1 ⁇ PBS to obtain stock solution II. Store in refrigerator at 4 ° C for later use.
  • Preparation of liver microsomal solutions Pipette the liver, mouse, and human liver microsomal stock solutions and dilute them to a solution of 0.833 mg / ml with PBS.
  • the control group used an equal volume of 1xPBS instead of 20 ⁇ l NADPH.
  • the test drug and microsomal protein content in the reaction system were 1 ⁇ M and 0.5 mg / ml, respectively, and the DMSO content in the system was not higher than 0.2%.
  • 300 ⁇ l of acetonitrile was added to stop the reaction (including the appropriate internal standard compound selected).
  • reaction-stopped samples are mixed and placed in a centrifuge at 3200 rpm for 10 minutes, and the supernatant is removed for LC / MS / MS analysis.
  • the half-life of the compounds of the present invention in mouse and human liver microsomes is longer than that of the non-deuterated compound MGL3196, especially Compound 2, Compound 10, and Compound 11, which indicates that the compounds of the present invention are more metabolically stable than non-deuterated
  • the substitution compound MGL3196 is better. It shows that the compounds of the present invention may have better pharmacokinetics, and have better safety and effectiveness.
  • Test example 3 Metabolic stability of the compound of the present invention to human CYP2C8 metabolic enzymes
  • Phosphate buffer 100 mM, pH 7.4 was prepared by using Na 2 HPO 4 and KH 2 PO 4 and pure water;
  • test compound and the reference compound are dissolved in acetonitrile to obtain a working solution (200 ⁇ M);
  • a NADPH solution (10 mM) is prepared by using NADPH and a phosphate buffer solution (100 mM, pH 7.4);
  • the recombinant CYP2C8 enzyme storage solution is diluted to 100 pM with phosphate buffer solution (100 mM, pH 7.4);
  • CYP2C8 is the main human metabolic enzyme of MGL-3196.
  • the metabolic stability of CYP2C8 can better predict the metabolic stability of the compounds of the present invention in humans. Tests show that the compound of the present invention has a longer half-life and lower clearance rate than MGL-3196 under the action of CYP2C8, especially compounds 2, 10, and 11. Therefore, the compounds of the present invention have better metabolic stability for CYP2C8, and better human pharmacokinetics are expected.
  • Test Example 4 Mouse pharmacokinetics of the compound of the present invention
  • DMA N, N-dimethylacetamide
  • Polyethylene glycol 400 manufacturer: Chengdu Kelong Chemical Reagent Factory;
  • HPC LF manufacturer: Chengdu Yuannuo Tiancheng Technology Co., Ltd .;
  • Ultrasonic cleaning instrument model: AS10200; manufacturer: Tianjin Oteaseins Instrument Co., Ltd .;
  • Vortex meter model: VORTEX1; manufacturer: Germany IKA Group;
  • API4000 triple quadrupole mass spectrometer manufacturer: American Applied Biosystem
  • mice Chengdu Dashuo Experimental Animal Co., Ltd.
  • Group IV Weigh 1.15mg of the sample to be measured accurately, add DMA 0.228ml to dissolve it, then add PEG400 1.139ml, 0.1M phosphate buffer 5.012ml, and finally add 40% HP-B-CD to a final volume of 11.39ml , Sonicate, vortex and mix to prepare a 0.1 mg / ml transparent clear solution.
  • PO group Accurately weigh 5.06 mg of the sample to be tested, add 2% HPC LF (containing 0.1% Tween-80) to a final volume of 20.04 ml, mix by ultrasound and vortex to prepare a uniform suspension solution of 0.25 mg / ml
  • mice Nine healthy adult ICR mice (3 animals at each time point); after fasting overnight (free drinking water), they were administered by tail vein and gavage respectively; the iv group was 5min, 15min, 0.5, 1, respectively after administration.
  • 0.1ml of blood was collected from the submandibular vein, and the plasma was separated by centrifugation at 4 ° C for 5min, and stored at -20 ° C for testing.
  • 0.1ml of blood was collected from the submandibular vein before and 0.5,1,2,4,6,8,12,24h after administration.
  • the treatment method was the same as that of the intravenous administration group.
  • the LC / MS / MS method was established to determine the concentration of the original drug in plasma, and the plasma concentration-time curve was drawn.
  • the main pharmacokinetic parameters were calculated using WinNonlin 6.3 software.
  • mice show that the compounds of the present invention, especially compounds 10 and 11, have higher blood concentration, higher exposure, longer half-life, and better performance in mice than MGL-3196. Pharmacokinetics.
  • the compound provided by the present invention has a better effect on the thyroid hormone receptor ⁇ (THR) than the undeuterated control compound MGL3196.
  • THR thyroid hormone receptor ⁇
  • - ⁇ has better agonistic activity, longer half-life, lower clearance, better metabolic stability and pharmacokinetic properties, in the preparation of THR- ⁇ agonists, and treatment of dyslipidemia, high Cholesterolemia, non-alcoholic steatohepatitis (NASH), and non-alcoholic steatohepatitis (NAFLD) are promising drugs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明公开了式(I)所示的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其中,R1-R10分别独立地选自H、D,且不全为H。本发明提供的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物相比于未氘代的对照化合物MGL3196,对甲状腺激素受体β(THR-β)有更好的激动活性,具有更长的半衰期,更低的清除率,有更好的代谢稳定性和药代动力学性质,在制备THR-β激动剂,以及治疗THR-β激动剂适用的适应症,包括血脂异常、高胆固醇血症、非酒精性脂肪性肝炎(NASH)、非酒精性脂肪肝病(NAFLD)的药物上应用前景优良。

Description

氘代MGL-3196化合物及其用途 技术领域
本发明涉及氘代MGL-3196化合物及其用途。
背景技术
MGL-3196是高度选择性的甲状腺激素受体β(THR-β)激动剂,EC50值为0.21μM,其结构式为
Figure PCTCN2019092386-appb-000001
目前正在进行后期临床试验,显示了对血脂异常,高胆固醇血症,非酒精性脂肪性肝炎(NASH)的疗效。
氘代药物是指将药物分子中的部分氢原子替换为氘。由于氘在药物分子中形状和体积与氢接近,氘代药物一般会保留原来药物的生物活性和选择性。由于C-D键比C-H键更稳定,使得氘代药物在化学反应过程中,C-D键更不容易断裂,其半衰期可能会延长。
但是,由于生物***的代谢过程复杂,药物在生物体内的药代动力学性质受到多方面因素影响,也表现出相应的复杂性。与相应的非氘代药物相比,氘代药物药代动力学性质的变化表现出极大的偶然性和不可预测性。某些位点的氘代非但不能延长半衰期,反而可能会使其缩短(Scott L.Harbeson,Roger D.Tung.Deuterium in Drug Discovery and Development,P405-406。),劣化其药代动力学性质;另一方面,药物分子上某些位置的氢因为空间位阻等原因也不易被氘代,因此,药物的氘代并非随心所欲,可氘代的位点是不可预期的。
本发明期望通过对MGL-3196化合物进行氘代,得到一类药代动力学性质良好、降低使用剂量,降低毒副作用的代谢产物的氘代药物。
发明内容
本发明的目的在于提供一类药代动力学性质良好、毒副作用小以及代谢稳定性好的氘代MGL-3196药物。
本发明首先提供了式(I)所示的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物:
Figure PCTCN2019092386-appb-000002
其中,R 1-R 10分别独立地选自H、D,且不全为H。
进一步地,所述化合物具有式(II)所示结构:
Figure PCTCN2019092386-appb-000003
其中,R 7-R 10分别独立地选自H、D。
进一步地,所述化合物具有式(III)所示结构:
Figure PCTCN2019092386-appb-000004
其中,R 1-R 6,R 8-R 10分别独立地选自H、D。
进一步地,所述化合物具有式(IV)所示结构:
Figure PCTCN2019092386-appb-000005
其中,R 8-R 10分别独立地选自H、D。
进一步地,所述化合物具有式(V)所示结构:
Figure PCTCN2019092386-appb-000006
其中,R 4-R 10分别独立地选自H、D。
进一步地,所述化合物具有式(VI)所示结构:
Figure PCTCN2019092386-appb-000007
其中,R 1-R 8分别独立地选自H、D。
进一步地,所述化合物选自但不局限于如下化合物之一:
Figure PCTCN2019092386-appb-000008
本发明还提供了上述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物在制备降低胆固醇,治疗血脂异常,治疗非酒精性脂肪肝炎(NASH)的药物中 用途。
进一步地,所述药物是治疗家族性高胆固醇血症、非酒精性脂肪性肝炎(NASH),非酒精性脂肪肝病(NAFLD)的药物。
本发明还提供了上述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物在制备THR-β激动剂中的用途。
本发明还提供了一种降低胆固醇,治疗血脂异常,治疗非酒精性脂肪肝的药物,它是以上述的化合物或其光学异构体、药学上可接受的前药,盐、水合物或溶剂合物为活性成分,再加上药学上可接受的辅料制备而成的制剂。
如本文所用,“氘代”指化合物或基团中的一个或多个氢被氘所取代。氘代可以是一取代、二取代、多取代或全取代。在另一优选例中,氘在氘取代位置的氘同位素含量是大于天然氘同位素含量(0.015%),更佳地大于50%,更佳地大于75%,更佳地大于95%,更佳地大于97%,更佳地大于99%,更佳地大于99.5%。
如本文所用,术语“本发明化合物”指式(I)所示的化合物。该术语还包括及式(I)化合物的各种光学异构体、药学上可接受的盐、前药、水合物或溶剂合物。
本文所述活性成分,是指用于药品制造中的任何一种物质或物质的混合物,此种物质在疾病的诊断,治疗,症状缓解,处理或疾病的预防中有药理活性或其他直接作用或者能影响机体的功能或结构。
所述药学上可接受的辅料,它具有一定生理活性,但该成分的加入不会改变上述药物组合物在疾病治疗过程中的主导地位,而仅仅发挥辅助功效,这些辅助功效仅仅是对该成分已知活性的利用,是医药领域惯用的辅助治疗方式。若将上述辅助性成分与本发明药物组合物配合使用,仍然应属于本发明保护的范围。
本发明提供的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物相比于未氘代的对照化合物MGL3196,对甲状腺激素受体β(THR-β)有更好的激动活性,具有更长的半衰期,更低的清除率,有更好的代谢稳定性和药代动力学性质,在制备THR-β激动剂,以及治疗血脂异常、高胆固醇血症,、非酒精性脂肪性肝炎(NASH)的药物上应用前景优良。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实 现的技术均属于本发明的范围。
具体实施方式
本发明所用原料、仪器都是已知产品,通过购买市售产品所得。
实施例1、合成2-(3,5-二氯-4-((5-(1,1,1,3,3,3-六氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(1)
Figure PCTCN2019092386-appb-000009
用文献方法(Canadian Journal of Chemistry,2014,92,305)制备得到2-三氘代甲基-3,3,3-三氘代丙酸A。
Figure PCTCN2019092386-appb-000010
量取35 0mL乙醇置于500mL三颈圆底烧瓶中,室温搅拌。随后向体系中缓慢地分批次加入Na片(9.9g,430.79mmol),当体系呈现完全澄清时,将体系移置于油浴中继续加热搅拌。待体系内温升至70℃时,向体系中滴加丙二酸二乙酯(30g,187.30mmol),滴毕,保温搅拌15min。向体系中滴加氘代碘甲烷(57g,393.33mmol),控制滴加速度,使体系中保持回流状态。加毕,体系继续在90℃的油浴中搅拌反应。4h后,TLC监测原料消耗完全。撤去油浴,待体系冷却至室温,旋蒸除去溶剂得粗品,后经柱层析分离得无色透明油状液体二乙基-2,2-二氘代甲基丙二酸酯A-2(23g)。收率:63.2%。MS(ESI)m/e 195.3(M+H) +
称取二乙基-2,2-二氘代甲基丙二酸酯A-2(12.0g,6.18mmol)置于250mL三颈圆底烧瓶中,并向其中加入12.5mL乙醇,室温搅拌溶解澄清。随后,向体系中加入12.5mL溶有氢氧化钾(16.8g,30mmol)的水溶液。加毕,将体系移置于85℃的油浴中,继续加热搅拌反应。1h后,停止加热,体系自然冷却至室温并搅拌过夜。翌日,将体系移置 于冰水浴中降温冷却搅拌,待体系内温降至0℃时,向体系中滴加HCl(6.0M)溶液调节体系的PH至2左右,控制滴加速度,使内温不超过5℃。完毕,减压浓缩除去溶剂,并加入甲苯旋带除去体系中的水分,反复数次,直至体系呈现完全干燥为止。尔后,向体系中加入ACN(100mL),置于85℃的油浴中,回流搅拌15min,趁热抽滤。收集滤饼,重复上述操作三次。合并滤液,旋蒸除去溶剂,得棕色固体。将其置于50mL单颈圆底烧瓶中,并加入甲苯(15mL),室温搅拌打浆,20min后,对其进行抽滤操作,滤饼用甲苯(5mL)少量多次淋洗,真空干燥后得类白色固体2,2-二(三氘代甲基)丙二酸A-3(4.7g)。收率:55.1%。MS(ESI)m/e 156.2(M+H 2O) +
称取2,2-二氘代甲基丙二酸A-3(3.0g,34mmol)置于25mL单颈圆底烧瓶中,后将体系置于185℃的油浴中搅拌。当体系中呈现完全的熔化状态,保温搅拌30min。停止加热,体系自然冷却至室温。减压蒸馏得无色透明液体2-三氘代甲基-3,3,3-三氘代丙酸A(1.5g)。收率:73.4%。 1H NMR(400MHz,DMSO-d 6)δ11.82(br,1H),2.38(s,1H)。
第一步:合成3,6-二氯-4-(1,1,1,3,3,3-六氘丙-2-基)哒嗪(化合物1-1):
称取2-三氘代甲基-3,3,3-三氘代丙酸A(1.4g,15mmol)置于100mL三颈圆底烧瓶中,并向其中加入20mL水,室温搅拌溶解澄清。随后向体系中加入3,6-二氯哒嗪(2.2g,15mmol),室温搅拌。接着向体系中加入硝酸银(2.5g,15mmol),完毕将体系移置于油浴中升温加热搅拌反应。当体系内温升至50℃时,向体系中滴加浓硫酸(3.5mL),滴毕,体系在该温度下保温搅拌10min。尔后,当体系内温升至60℃时,向体系中滴加6mL溶有过硫酸铵(10.3g,45mmol)的水溶液。待体系内温升至70℃时,任其在该温度下保温搅拌反应30min。停止加热,体系自然冷却至室温。再将体系移置于冰水浴中降温冷却搅拌,15min后,向体系中滴加NaOH(6.0M)溶液调节体系的PH值至8左右。向体系中加入乙酸乙酯(20mL)剧烈搅拌,静置分层,水相用乙酸乙酯(10mL x 3)反萃,合并有机相,依次用水(10mL x 3),饱和食盐水(20mL)洗涤,无水硫酸钠干燥。减压浓缩得粗品,经柱层析分离得类白色固体3,6-二氯-4-(1,1,1,3,3,3-六氘丙-2-基)哒嗪(化合物1-1)1.7g。收率:58%。MS(ESI)m/e 197.2(M+H) +1H NMR(400MHz,DMSO-d 6)δ7.98(d,J=0.8Hz,1H),3.12(s,1H)。
第二步:合成3,5-二氯-4-((6-氯-5-(1,1,1,3,3,3-六氘丙-2-基)哒嗪-3-基)氧)苯胺(化合物1-2):
称取3,6-二氯-4-(1,1,1,3,3,3-六氘丙-2-基)哒嗪(1.7g,8.46mmol)置于100mL三颈圆底烧瓶中,并向其中加入10mL二甲亚砜,室温搅拌溶解澄清。对体系进行氩气置换操作,反复十次,确保体系中的惰性气体氛围。随后依次向体系中加入4-氨基-2,6-二氯苯酚(1.5g,8.46mmol),无水碳酸钾(4.7g,33.84mmol),碘化亚铜(967.5mg,5.08mmol)。加毕,将体系移置于90℃的油浴中,升温加热搅拌反应过夜。24h后,监测原料消耗完毕。停止加热,任体系自然冷却至室温。向体系中加入乙酸乙酯(20mL)和水(20mL),剧烈搅拌,后静置分层,水相用乙酸乙酯(20mL x 3)反萃,合并有机相,依次用水(10mL x 3),饱和食盐水(20mL)洗涤,无水硫酸钠干燥。减压浓缩除去溶剂得粗品,后经柱层析分离得固体(1.7g)。收率:58.2%。MS(ESI)m/e 338.7(M+H) +
第三步:合成6-(4-氨基-2,6-二氯苯氧基)-4-(1,1,1,3,3,3-六氘丙-2-基)哒嗪-3(2氢)-酮(化合物1-3):
称取化合物1-2(1.0g,2.95mmol)置于100mL三颈圆底烧瓶中,并向其中加入冰醋酸(30mL),室温搅拌。随后向体系中加入无水醋酸钠(847mg,10.33mmol)。加毕,将体系移置于105℃的油浴中,搅拌回流反应。24h后,停止加热,任体系自然冷却至室温。旋蒸除去溶剂,向体系中加入水(150mL),后将其移置于冰水浴中降温冷却搅拌。待体系内温降至5℃时,向体系中滴加氢氧化钠(1.0M)溶液,调节体系PH值至9左右。尔后,向体系中加入乙酸乙酯(100mL),剧烈搅拌,后静置分层,水相用乙酸乙酯(50mL x 2)反萃,合并有机相,分别用水(30mL),饱和食盐水(30mL)各洗涤一次,无水硫酸钠干燥,减压浓缩得淡黄色固体。向装有该固体的100mL三颈圆底烧瓶中依次加入甲醇(20mL),NaOH(1.0M)溶液(20mL),完毕,将体系移置于105℃的油浴中回流反应。17h后,停止加热,撤去油浴,任体系恢复至室温。旋蒸除去溶剂,加入乙酸乙酯(160mL)和水(100mL),剧烈搅拌,静置分层,水层用乙酸乙酯(25mLx 2)反萃,合并有机层,依次用水(20mL x 2),饱和食盐水(20mL)洗涤,无水硫酸钠干燥,旋蒸除去溶剂得粗品,后经柱层析分离得固体为化合物1-3(823mg)。收率:87%。MS(ESI)m/e 320.2(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.13(s,1H),7.27(d,J=0.8Hz,1H),6.66(s,2H),5.62(s,2H),2.98(s,1H)。
第四步:合成乙基(2-氰-2-(2-(3,5-二氯-4-((5-(1,1,1,3,3,3-六氘丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)亚联氨基)乙酰基)氨基甲酸脂(化合物1-4):
称取化合物1-3(134mg,0.42mmol)置于25mL单颈圆底烧瓶中,并向其中加入水(5.6mL),室温搅拌。随后向体系中加入浓盐酸(2.8mL)。完毕,将体系移置于冰水浴中降温冷却搅拌。待体系内温降至0℃时,向体系中滴加0.4mL溶有亚硝酸钠(36.5mg,0.53mmol)的水溶液。加毕,任体系继续保温搅拌反应30min。另称取N-氰基乙酰尿烷(71mg,0.46mmol)置于25mL单颈圆底烧瓶中,向其中加入水(9.4mL),吡啶(2.8mL),室温搅拌溶解澄清,后将体系移置于冰水浴中继续降温冷却搅拌30min。将重氮化反应液缓慢滴加入溶有N-氰基乙酰尿烷的体系中,控制滴加速度,使体系内温不超过5℃。滴毕,任体系在冰水浴中保温搅拌反应。1h后,TLC监测反应结束。对体系进行抽滤操作,滤饼用水少量多次淋洗,再用正己烷淋洗数次,干燥后得橙色固体(124mg)。不经进一步纯化,直接用于下步反应中。收率:60.8%。MS(ESI)m/e 487.1(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.22(s,1H),12.14(br,1H),10.90(s,1H),7.99(s,2H),7.37(d,J=0.8Hz,1H),4.23-4.17(q,J=14.0,7.2Hz,2H),3.00(s,1H),1.29-1.25(t,J=7.2Hz,3H)。
第五步:合成2-(3,5-二氯-4-((5-(1,1,1,3,3,3-六氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(化合物1)
称取化合物1-5(124mg,0.25mmol)置于25mL单颈圆底烧瓶中,并向其中加入冰醋酸(3mL),室温搅拌。随后向体系中加入无水醋酸钠(102.5mg,1.25mmol)。完毕,将体系移置于120℃的油浴中升温加热搅拌反应。1h后,TLC监测原料消耗完毕。停止加热,任体系冷却至室温,后置于冰水浴中继续降温冷却搅拌,待体系内温降至5℃时,向体系中加入冰水,剧烈搅拌20min。尔后对其进行抽滤操作,滤饼用水少量多次淋洗,再溶解于乙酸乙酯中,无水硫酸钠干燥,旋蒸除去溶剂得粗品,经Pre-TLC分离纯化得浅橘红色固体(83mg)。收率:74.1%。MS(ESI)m/e 441.0(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.2(br,1H),7.78(s,2H),7.43(d,J=0.8Hz,1H),3.01(s,1H)。
实施例2、合成2-(3,5-二氯-4-((5-(七氘代异丙基丙基-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(2)
Figure PCTCN2019092386-appb-000011
合成2,3,3,3-四氘代-2-(三氘代甲基)丙酸(化合物B):
称取2,2-二(三氘代甲基)丙二酸(3g,34mmol)置于100mL单颈圆底烧瓶中,并向其中加入重水(15mL),后将体系置于60℃的水浴中旋蒸除去溶剂,反复操作两次。将上述底物转移置于35mL封管中,加入重水(9mL),封闭后置于160℃的油浴中,搅拌反应过夜。12h后,停止加热,任体系冷却至室温,低温旋除溶剂得无色透明油状液体化合物B(2.1g)。不经进一步纯化,直接用于下步反应中。
以化合物B和3,6-二氯哒嗪为原料,用类似于实施列1的方法制备得到化合物2.
第一步:合成3,6-二氯-4-(七氘代异丙基)哒嗪(化合物2-1):收率:61.0%。MS(ESI)m/e 198.1(M+H) +
第二步:合成3,5-二氯-4-((6-氯-5-七氘代异丙基哒嗪-3-基)氧)苯胺(化合物2-2):收率:52.5%。MS(ESI)m/e 339.0(M+H) +
第三步:合成6-(4-氨基-2,6-二氯苯氧基)-4-七氘代异丙基哒嗪-3(2氢)-酮(化合物2-3):收率:77.3%。MS(ESI)m/e 321.1(M+H) +
第四步:合成乙基(2-氰基-2-(2-(3,5-二氯-4-((5-氘代异丙基-6-氧代-1,6-二氢哒嗪-3-yl)氧)苯基)亚联氨基)乙酰基)氨基甲酸酯(化合物2-4):不经进一步纯化,直接用于下步反应中。收率:91.3%。MS(ESI)m/e 488.0(M+H) +
第五步:合成2-(3,5-二氯-4-((5-七氘代异丙基-6-氧代-1,6-二氢哒嗪-3-yl)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(化合物2-5):收率:95.3%。MS(ESI)m/e 442.0(M+H) +1H NMR(400MHz,DMSO-d 6)δ13.30(br,1H),12.25(s,1H),7.78(s,2H),7.45(s,1H)。
实施例3、合成2-(3,5-二氯-4-((5-(1,1,1-三氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(3)
Figure PCTCN2019092386-appb-000012
合成2-(三氘代甲基)丙酸(化合物C)
Figure PCTCN2019092386-appb-000013
(1)化合物二乙基-2-氘代甲基-2-甲基丙二酸酯的合成
量取350mL乙醇置于500mL三颈圆底烧瓶中,室温搅拌。随后向体系中缓慢地分批次加入Na片(9.9g,430.79mmol),当体系呈现完全澄清时,将体系移置于油浴中继续加热搅拌。待体系内温升至70℃时,向体系中滴加2-甲基-丙二酸二乙酯(20.0g,114.80mmol),滴毕,保温搅拌15min。向体系中滴加氘代碘甲烷(18.5g,196.6mmol),控制滴加速度,使体系中保持回流状态。加毕,体系继续在90℃的油浴中搅拌反应。4h后,TLC监测原料消耗完全。撤去油浴,待体系冷却至室温,旋蒸除去溶剂得粗品,后经柱层析分离得无色透明油状液体二乙基-2-氘代甲基-2-甲基丙二酸酯15.7g。收率:71.5%。
(2)化合物2-三氘代甲基-2-甲基丙二酸的合成
称取二乙基-2-三氘代甲基-2-甲基丙二酸酯(10.0g,52.3mmol)置于250mL三颈圆底烧瓶中,并向其中加入12.5mL乙醇,室温搅拌溶解澄清。随后,向体系中加入12.5mL溶有氢氧化钾(16.8g,30mmol)的水溶液。加毕,将体系移置于85℃的油浴中,继续加热搅拌反应。1h后,停止加热,体系自然冷却至室温并搅拌过夜。翌日,将体系移置于冰水浴中降温冷却搅拌,待体系内温降至0℃时,向体系中滴加HCl(6.0M)溶液调节体系的PH至2左右,控制滴加速度,使内温不超过5℃。完毕,减压浓缩除去溶剂,并加入甲苯旋带除去体系中的水分,反复数次,直至体系呈现完全干燥为止。尔后,向体系中加入ACN(100mL),置于85℃的油浴中,回流搅拌15min,趁热抽滤。收集滤 饼,重复上述操作三次。合并滤液,旋蒸除去溶剂,得棕色固体。将其置于50mL单颈圆底烧瓶中,并加入甲苯(15mL),室温搅拌打浆,20min后,对其进行抽滤操作,滤饼用甲苯(5mL)少量多次淋洗,真空干燥后得类白色固体2-氘代甲基-2-甲基丙二酸5.8g。收率:82%。MS(ESI)m/e 153.3(M+H 2O) +, 1H NMR(400MHz,DMSO-d 6)δ13.58(s,2H),1.25(s,3H).
(3)化合物2-三氘代甲基丙酸的合成
将化合物2-三氘代甲基-2-甲基丙二酸(3.1g,22.94mmol)加入25ml圆底烧瓶中,加热至180℃,反应30min,有气泡生成,固定变成油状,冷却后蒸馏,得到化合物2-三氘代甲基丙酸1.1g,收率:52.6%。
以化合物C和3,6-二氯哒嗪为原料,用类似于实施列1的方法制备得到化合物3.
第一步:合成3,6-二氯-4-(1,1,1-三氘代丙-2-基)哒嗪(化合物3-1):收率:60%,MS(ESI)m/e 194.2(M+H) +
第二步:合成3,5-二氯-4-((6-氯-5-(1,1,1-三氘代丙-2-基)哒嗪-3-基)氧)苯胺(化合物3-2):收率:64%,MS(ESI)m/e 335.0(M+H) +
第三步:合成6-(4-氨基-2,6-二氯苯氧基)-4-(丙-2-基-1,1,1-三氘)哒嗪-3(2氢)-酮(化合物3-3):收率:72.5%,MS(ESI)m/e 317.1(M+H) +
第四步:合成乙基(2-氰基-2-(2-(3,5-二氯-4-((6-氧-5-(丙-2-基-1,1,1-三氘)-1,6-二氢哒嗪-3-基)氧)苯基)亚联氨基)乙基)氨基甲酸酯(化合物3-4):收率:75%,MS(ESI)m/e 484.1(M+H) +
第五步:合成2-(3,5-二氯-4-((6-氧-5-(丙-2-基-1,1,1-三氘)-1,6-二氢哒嗪-3-yl)氧)苯基)-3,5-二氧-2,3,4,5-四氢-1,2,4-三嗪-6-甲腈(化合物3):收率:41.4%。MS(ESI)m/e 438.1(M+H) +;1H NMR(400MHz,DMSO)δ13.29(s,1H),12.25(s,1H),7.79(s,2H),7.45(s,1H),3.04(q,J=6.5Hz,1H),1.21–1.19(d,3H).
实施例4、合成2-(3,5-二氯-4-((4-氘代-5-(七氘代异丙基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(10)
Figure PCTCN2019092386-appb-000014
合成4,5-二氘-3,6-二氯哒嗪(化合物D):
Figure PCTCN2019092386-appb-000015
(1)4,5-二氯-马来酰肼(D-2)的合成
称取化合物2,3-二氯马来酸酐(8.35g,50mmol),加入100ml圆底烧瓶中,加入40ml水,加入水合肼(2.5g,50mmol),加热至回流,保温反应4h,冷却至室温,冰水浴30min,过滤,滤饼用100ml水淋洗,烘干,得到4,5-二氯马来酰肼(D-2)5.0g,收率:55.3%,MS(ESI)m/e 181.0(M+H) +
(2)4,5-二氘-马来酰肼(D-3)的合成
方法一:称取4,5-二氯马来酰肼(2.0g,11.05mmol)加入100ml单口圆底烧瓶中,加入50ml氘代甲醇,加入10ml重水,加入200mg Pd/C,氘气置换3次,室温反应40h,过滤,滤液减压浓缩干,加入6ml甲醇打浆,过滤,滤饼烘干,得化合物4,5-二氘马来酰肼1.0g,收率:79%,MS(ESI)m/e 115.2(M+H) +13C NMR(101MHz,DMSO-d 6)δ156.76,130.50.
方法二:将马来酰肼(5.6g,50mmol)加入圆底烧瓶中,加入80ml重水,加入500mgPd/C,氢气置换三次,在氢气氛围下加热回流72h,冷却至室温,过滤,滤饼加入圆底烧瓶中,重复以上操作。反应结束后过滤,滤饼加入100ml甲醇,回流30min,过滤,滤液减压浓缩干,得到4,5-二氘-马来酰肼2.5g,收率:43.87%。
(3)4,5-二氘-3,6-二氯哒嗪(D)的合成
称取4,5-二氘马来酰肼(1.0g,8.74mmol)于100ml圆底烧瓶中,加入三氯氧磷15ml,115℃回流4h,减压浓缩干,冰水浴冷却,加入20ml冰水,用氨水调节pH=9.0,加 入30ml二氯甲烷萃取,水层用20ml二氯甲烷再萃取一次,合并有机层,有机层分别用水,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩干,得到1.2g化合物4,5-二氘-3,6-二氯哒嗪,收率:90.9%。 13C NMR(101MHz,DMSO-d 6)δ156.3,131.9(t,J=27Hz)。MS(ESI)m/e 151(M+H) +
用化合物D和B为原料,用类似于实施列1的方法制备得到化合物10
第一步:合成3,6-二氯-4-氘-5-(七氘丙-2-基)哒嗪(化合物10-1)
称取化合物B(377.7mg,3.97mmol)置于100mL三颈圆底烧瓶中,并向其中加入10mL水,室温搅拌溶解澄清。随后向体系中加入3,6-二氯-4,5-二氘哒嗪(599.3mg,3.97mmol),室温搅拌。接着向体系中加入硝酸银(674.3mg,3.97mmol),完毕将体系移置于油浴中升温加热搅拌反应。当体系内温升至50℃时,向体系中滴加浓硫酸(1mL),滴毕,体系在该温度下保温搅拌10min。尔后,当体系内温升至60℃时,向体系中滴加2mL溶有过硫酸铵(2.7g,11.91mmol)的水溶液。待体系内温升至70℃时,任其在该温度下保温搅拌反应30min。停止加热,体系自然冷却至室温。再将体系移置于冰水浴中降温冷却搅拌,15min后,向体系中滴加NaOH(2.0M)溶液调节体系的PH值至8左右。向体系中加入乙酸乙酯(20mL)剧烈搅拌,静置分层,水相用乙酸乙酯(15mL x3)反萃,合并有机相,依次用水(10mL x 3),饱和食盐水(15mL)洗涤,无水硫酸钠干燥。减压浓缩得粗品,经柱层析分离得类白色固体化合物10-1(520mg)。收率:65.8%。MS(ESI)m/e 199.1(M+H) +
第二步:合成3,5-二氯-4-((6-氯-4-氘-5-(七氘丙-2-基)哒嗪-3-基)氧)苯胺(化合物10-2)
称取10-1(520mg,2.61mmol)置于25mL单颈圆底烧瓶中,并向其中加入5mL二甲亚砜,室温搅拌溶解澄清。随后依次向体系中加入4-氨基-2,6-二氯苯酚(464.6mg,2.61mmol),无水碳酸钾(1.4g,10.44mmol),碘化亚铜(299mg,1.57mmol)。加毕,对体系进行氩气置换操作,反复十次,确保体系中的惰性气体氛围。后将体系移置于90℃的油浴中,升温加热搅拌反应过夜。4h后,TLC监测原料消耗完毕。停止加热,任体系自然冷却至室温。向体系中加入乙酸乙酯(20mL)和水(20mL),剧烈搅拌,后静置分层,水相用乙酸乙酯(30mL x 3)反萃,合并有机相,依次用水(20mL x 3),饱和食盐水(20mL)洗涤,无水硫酸钠干燥。减压浓缩除去溶剂得粗品,后经柱层析分析得类白色固体化合物10-2(668mg)。收率:75.1%。MS(ESI)m/e 340.1(M+H) +1H NMR(400MHz,DMSO-d 6)δ6.71(s,2H),5.67(s,2H)。
第三步:合成6-(4-氨基-2,6-二氯苯氧基)-5-氘-4-(七氘丙-2-基)哒嗪-3(2氢)-酮(化合物10-3)
称取化合物10-2(668mg,1.96mmol)置于50mL单颈圆底烧瓶中,并向其中加入冰醋酸(20mL),室温搅拌。随后向体系中加入无水醋酸钠(562.7mg,6.86mmol)。加毕,将体系移置于105℃的油浴中,搅拌回流反应。22h后,停止加热,任体系自然冷却至室温。旋蒸除去溶剂,向体系中加入水(100mL),后将其移置于冰水浴中降温冷却搅拌。待体系内温降至5℃时,向体系中滴加氢氧化钠(1.0M)溶液,调节体系PH值至9左右。尔后,向体系中加入乙酸乙酯(100mL),剧烈搅拌,后静置分层,水相用乙酸乙酯(50mL x 2)反萃,合并有机相,分别用水(30mL),饱和食盐水(30mL)各洗涤一次,无水硫酸钠干燥,减压浓缩得淡黄色固体。向装有该固体的100mL三颈圆底烧瓶中依次加入甲醇(20mL),NaOH(1.0M)溶液(20mL),完毕,将体系移置于105℃的油浴中回流反应。11h后,停止加热,撤去油浴,任体系恢复至室温。旋蒸除去溶剂,加入乙酸乙酯(160mL)和水(100mL),剧烈搅拌,静置分层,水层用乙酸乙酯(25mL x 2)反萃,合并有机层,依次用水(20mL x 2),饱和食盐水(20mL)洗涤,无水硫酸钠干燥,旋蒸除去溶剂得粗品,后经柱层析分离得淡黄色固体化合物10-3(416mg)。收率:65.8%。MS(ESI)m/e 322.1(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.10(s,1H),6.66(s,2H),5.60(s,2H)。
第四步:合成乙基(2-氰基-2-(2-(3,5-二氯-4-((4-氘-5-七氘代异丙基-6-氧代-1,6-二氢哒嗪-3-基)氧)苯基)亚联氨基)乙酰基)氨基甲酸酯(化合物10-4)
称取化合物10-3(300mg,0.93mmol)置于50mL单颈圆底烧瓶中,并向其中加入水(12.5mL),室温搅拌。随后向体系中加入浓盐酸(6.3mL)。完毕,将体系移置于冰水浴中降温冷却搅拌。待体系内温降至0℃时,向体系中滴加1.0mL溶有亚硝酸钠(80mg,1.16mmol)的水溶液。加毕,任体系继续保温搅拌反应30min。另称取N-氰基乙酰尿烷(159.2mg,1.02mmol)置于50mL单颈圆底烧瓶中,向其中加入水(21.0mL),吡啶(6.3mL),室温搅拌溶解澄清,后将体系移置于冰水浴中继续降温冷却搅拌30min。将重氮化反应液缓慢滴加入溶有N-氰基乙酰尿烷的体系中,控制滴加速度,使体系内温不超过5℃。滴毕,任体系在冰水浴中保温搅拌反应。1h后,TLC监测反应结束。对体系进行抽滤操作,滤饼用水少量多次淋洗,再用正己烷淋洗数次,干燥后得橘红色固体化合物10-4(420.0mg)。不经进一步纯化,直接用于下步反应中。收率:92.1%。MS(ESI)m/e 489.1(M+H) +
第五步:合成2-(3,5-二氯-4-((4-氘代-5-(七氘代异丙基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯 基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(化合物10)
称取化合物10-4(300mg,0.61mmol)置于25mL单颈圆底烧瓶中,并向其中加入冰醋酸(8mL),室温搅拌。随后向体系中加入无水醋酸钠(250.1mg,3.05mmol)。完毕,将体系移置于120℃的油浴中升温加热搅拌反应。2h后,TLC监测原料消耗完毕。停止加热,任体系冷却至室温,后置于冰水浴中继续降温冷却搅拌,待体系内温降至5℃时,向体系中加入冰水,剧烈搅拌30min。尔后对其进行抽滤操作,滤饼用水少量多次淋洗,再溶解于乙酸乙酯中,无水硫酸钠干燥,旋蒸除去溶剂得粗品,经Pre-TLC分离纯化得浅橘色固体化合物10(190mg)。收率:69.9%。MS(ESI)m/e 443.0(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.22(br,1H)7.78(s,2H)。
实施例5、合成2-(3,5-二氯-4-((4-氘代-5-(1,1,1,3,3,3-六氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(11)
Figure PCTCN2019092386-appb-000016
使用化合物D和A为原料,用类似于合成化合物10的方法制备得到。
第一步:合成3,6-二氯-4-氘-5-(1,1,1,3,3,3-六氘代丙-2-基)哒嗪(化合物11-1):
将化合物3,6-二氯-4,5-二氘哒嗪(604mg,4.0mmol)加入10ml水中,加入化合物C(372mg,4.0mmol),搅拌下加入AgNO3(680mg,4mmol),升温至50℃,缓慢滴加浓硫酸1ml,滴加完毕后,升温至60℃,保温反应10min。将过硫酸铵(2.74g,12mmol)溶于6ml水中,滴加到反应体系中,滴加完毕后,升温至70℃,保温反应30min,TLC监控反应直至原料反应完全,关闭加热,冰水浴冷却,用6N NaOH水溶液调节pH=8.0,用30ml乙酸乙酯萃取,有机层用水、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩干,柱层析分离纯化(石油醚/乙酸乙酯=10:1),得到化合物11-1(500mg),收率:63.1%,MS(ESI)m/e 198.1(M+H) +
第二步:3,5-氯-4-((6-氯-5-(1,1,1,3,3,3-六氘代丙-2-基-)哒嗪-3-基-4-氘)氧)苯胺(化合物 11-2)的合成:
将化合物11-1(500mg,2.52mmol)溶于10ml DMSO,加入化合物4-氨基-2,6-二氯苯酚(454mg,2.52mmol),搅拌下加入K2CO3(1.41g,10.2mmol),加入CuI(292mg,1.53mmol),Ar置换3次,升温至90℃,反应过夜,冷却,加入水,乙酸乙酯萃取,有机层分别用水、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩干,柱层析分离纯化(石油醚/乙酸乙酯=5:1),得到化合物11-2(452mg),收率:52.8%,MS(ESI)m/e 339.2(M+H) +;1H NMR(400MHz,DMSO-d 6)δ6.72(d,J=2.7Hz,2H),5.69(s,2H),3.12(s,1H).
第三步:合成6-(4-氨基-2,6-二氯苯氧)-4-(1,1,1,3,3,3-六氘代丙-2-基)哒-5-氘-3(2氢)-酮(化合物11-3):
将化合物11-2(440mg,1.30mmol)溶于5ml乙酸,加入乙酸钠(374mg,4.60mmol),105℃回流过夜,减压浓缩至干,用用6N NaOH溶液调节Ph=9,用20ml乙酸乙酯萃取,水层再用20ml乙酸乙酯反萃一次,合并有机层,分别用水、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩干。加入10ml甲醇,加入10ml 1NNaOH水溶液,105℃反应6h,冷却,减压浓缩掉大部分甲醇,加入20ml乙酸乙酯萃取,有机层用水、饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩干,柱层析分离纯化(石油醚/乙酸乙酯=3:2),得到化合物11-3 202mg,收率:48.3%,MS(ESI)m/e 321.2(M+H) +1H NMR(400MHz,DMSO-d 6)δ12.10(s,1H),6.67(d,J=4.3Hz,2H),5.60(s,2H),2.98(s,1H).
第四步:合成乙基(2-氰-2-(2-(3,5-二氯-4-((4-氘-5-(1,1,1,3,3,3-六氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)亚联氨基)乙基)氨基甲酸酯(化合物11-4)
将化合物11-3(195mg,0.61mmol)加入10ml水中,搅拌下加入4.6ml浓盐酸,冰浴,加入亚硝酸钠(52mg,0.76mmol),保温搅拌30min。将将N-氰基乙酰尿烷(105mg,0.67mmol)加入圆底烧瓶中,加入16ml水,加入4.6ml吡啶,冰水浴30min。将上一步的反应液滴加到反应体系中,滴加完毕后,保温搅拌30min,过滤,滤饼用100ml水淋洗,干燥,得到***固体化合物11-4(265mg),收率:89%。MS(ESI)m/e 488.1(M+H) +。第五步:合成2-(3,5-二氯-4-((4-氘代-5-(1,1,1,3,3,3-六氘代丙-2-基)-6-氧-1,6-二氢哒嗪-3-基)氧)苯基)-3,5-二氧代-2,3,4,5-四氢-1,2,4-三嗪-6-腈(化合物11):
将化合物11-4(265mg,0.54mmol)溶于4ml乙酸中,加入乙酸钠(222mg,2.7mmol),125℃回流反应2h,冷却至室温,加入50ml冰水,冰水浴冷却下搅拌30min,过滤,滤饼用80ml水淋洗,滤饼烘干。将滤饼溶于50ml甲醇中,加入100mg活性炭,80℃回流30min,热过滤,滤液减压浓缩干,得白色固体化合物11(195mg),收率:81.7%,MS (ESI)m/e 442.0(M+H) +1H NMR(400MHz,DMSO-d 6)δ13.30(br,1H),12.25(br,1H),7.79(s,2H),3.01(s,1H)。
采用相应的原料和类似于实施例1-5所述的制备方法,即可制备得到化合物4-9,12:用化合物C3为原料,用类似于合成七氘代异丁酸化合物B的方法可制备2,3,3,3-四氘代-2-甲基丙酸。以之为原料,用类似于实施列1的方法可制备得到化合物4。
用2,2-二甲基丙二酸为原料,用类似于合成化合物B的方法可制备2-氘代-2-甲基丙酸。以之为原料,用类似于实施列1的方法可制备得到化合物5。
用异丁酸和4,5-二氘-3,6-二氯哒嗪为原料,用类似于实施例4的方法可制备得到化合物6。用异丁酸,4,5-二氘-3,6-二氯哒嗪和4-氨基-2,6-二氯-3,5-二氘代苯酚(用类似于文献方法制备Organic Letters,2008,10,4351.)为原料,用类似于实施例4的方法可制备得到化合物7。
用六氘代异丁酸A,和4-氨基-2,6-二氯-3,5-二氘代苯酚为原料,用类似于实施例1的方法可制备得到化合物8。
用七氘代异丁酸B,和4-氨基-2,6-二氯-3,5-二氘代苯酚为原料,用类似于实施例1的方法可制备得到化合物9。
用七氘代异丁酸B,4,5-二氘-3,6-二氯哒嗪和4-氨基-2,6-二氯-3,5-二氘代苯酚为原料,用类似于实施例4的方法可制备得到化合物12。
以下通过试验例的方式来说明本发明的有益效果。
试验例1、本发明化合物对THR-β的激动活性实验
用类似于文献方法(J.Med.Chem.2014,57,3912.)测得化合物对THR-β的激动活性:用DMSO制备100X参比化合物或化合物,并进行1:3等比稀释。用1X反应缓冲液将100X梯度稀释参比化合物或化合物稀释为4X,并加入实验板中。用1X反应缓冲液制备4X TRα-LBD或TRβ-LBD,4X RXRα的混合溶液,并加入实验板中。用1X反应缓冲液制备2X biotin-SRC2-2,2X Eu-anti-GST,2X streptavidin-d2的混合溶液,并加入实验板中。1000rpm离心1min并在室温及避光条件下孵育4小时。在EnVision 2104板读取器上读取665nm和615nm荧光信号值,并计算Ratio 665nm/615nm。实验结果见表1.
表1:化合物对THR-β的激动活性
化合物 EC 50(nM)
MGL-3196 240
1 244
2 97
3 97
10 168
11 121
实验表明本发明化合物对THR-β有良好的激动活性,特别是化合物2、3、10、11,其对THR-β的激动活性明显优于未氘代的对照化合物MGL-3196。
试验例2、本发明化合物的肝微粒体代谢稳定性实验
1.NADPH溶液(5mM)配制:称取适量NADPH标准品,用磷酸缓冲液(1xPBS)溶解,混匀,配完放至冰浴中备用;受试化合物溶液配制:分别称取适量的待测物,用DMSO配制成适宜浓度溶液,得到储备液I;取适量储备液I,进一步用1xPBS稀释至5μM,得到储备液II。放置4℃冰箱备用;肝微粒体溶液配制:分别吸取大、小鼠、人肝微粒体原液,用PBS稀释至0.833mg/ml的溶液。
2.移取60μl肝微粒体溶液,于1ml 96孔板中,加入供试药液(或探针底物睾酮溶液)20μl,37℃热混仪中预孵5min。加入20μl NADPH溶液启始反应,反应体系中供试药物、微粒体蛋白及NADPH含量分别为1μM、0.5mg/ml和1mM,体系中DMSO含量不高于0.2%。然后分别于0,15,30,45,60min(每个时间点复孔),加入乙腈300μl终止反应(含所选择的合适内标化合物)。
3.对照组用等体积的1xPBS代替20μl NADPH,反应体系中供试药物、微粒体蛋白含量分别为1μM、0.5mg/ml,体系中DMSO含量不高于0.2%。分别于0,60min(每个时间点复孔),加入乙腈300μl终止反应(含所选择的合适内标化合物)。
4.到达孵育时间后,将终止反应的样品混匀,放入离心机中3200rpm离心10min,移取上清液进行LC/MS/MS分析。
5.数据分析:从提取的离子色谱图确定峰面积。斜率值k通过母体药物的剩余百分比与孵育时间曲线的自然对数的线性回归来确定。
体外半衰期(体外t 1/2)由斜率值确定:in vitro t 1/2=-(0.693/k)
体外内在清除率(in vitro CL int,以μL/min/mg为单位)使用以下等式(重复测定的平 均值)由体外半衰期t 1/2(分钟)换算:
Figure PCTCN2019092386-appb-000017
放大内在清除率(Scale up CL int,以mL/min/kg为单位)通过使用以下式(重复测定的平均值)由体外t 1/2(分钟)换算:
Figure PCTCN2019092386-appb-000018
小鼠,大鼠和人肝微粒体代谢稳定性实验结果见表2:
表2、小鼠和人肝微粒体代谢稳定性实验结果
Figure PCTCN2019092386-appb-000019
如上表所示,本发明化合物在小鼠和人的肝微粒体中的半衰期比非氘代化合物MGL3196长,特别是化合物2、化合物10、化合物11,说明本发明化合物的代谢稳定性比非氘代化合物MGL3196更好。表明本发明化合物可能有更好的药代动力学,具有更好的安全性和有效性。
试验例3、本发明化合物对人CYP2C8代谢酶的代谢稳定性
1)用Na 2HPO 4和KH 2PO 4,纯水制备得到磷酸盐缓冲液(100mM,pH 7.4);
2)待测化合物及参照化合物溶于乙腈得到工作溶液(200μM);
3)用NADPH和磷酸盐缓冲液(100mM,pH 7.4)制备得到NADPH溶液(10mM);
4)重组CYP2C8酶储存液用磷酸盐缓冲液(100mM,pH 7.4)稀释至100pM;
5)待测化合物或参照化合物Amitriptyline的工作溶液加入至CYP2C8溶液中,化合物浓度为2μM。向其中加入NADPH溶液(10mM)引发代谢反应。在0,5,10,15,25分钟时间点取30μL代谢反应孵化溶液,转入淬灭盘中用120μL乙腈(包含内标)淬灭;
6)样品在4℃下离心60min以沉淀蛋白。取上层清液转入96孔板中用纯水稀释1倍后做LC-MS/MS分析;
7)数据分析及计算类似于试验例2。所得结果见表3。
表3.本发明化合物对CYP2C8的代谢稳定性。
Figure PCTCN2019092386-appb-000020
CYP2C8是MGL-3196的主要人体代谢酶。对CYP2C8的代谢稳定性可以更好地预测本发明化合物在人体的体内代谢稳定性。试验表明本发明化合物在CYP2C8作用下,比MGL-3196具有更长的半衰期,更低的清除率,特别是化合物2、10、11。因此本发明化合物对于CYP2C8具有更好的代谢稳定性,预期有更好的人体药代动力学。
试验例4、本发明化合物的小鼠药代动力学
1)实验材料及仪器:
N,N-二甲基乙酰胺(DMA),生产厂家:Sigma;
聚乙二醇400(PEG400),生产厂家:成都市科龙化工试剂厂;
羟丙基β环糊精(HP-β-CD),生产厂家:上海笛柏化学品技术有限公司;
HPC LF,生产厂家:成都远诺天成科技有限公司;
肝素钠,生产厂家:成都市科龙化工试剂厂
电子分析天平,型号:SECURA225D-1CN;厂家:德国赛多利斯集团;
超声波清洗仪,型号:AS10200;厂家:天津奥特赛恩斯仪器有限公司;
纯水***,型号:PURELAB Classic;厂家:英国ELGA仪器有限公司;
涡旋仪,型号:VORTEX1;厂家:德国IKA集团;
高速冷冻离心机,型号:21R;厂家:赛默飞世尔科技(中国)有限公司;
电子天平,型号:XY1000-2C;厂家:常州市幸运电子设备有限公司;
高效液相色谱***,型号:LC-20AD;厂家:日本SHIMADZU仪器公司;
API4000三重四极杆质谱仪,厂家:美国Applied Biosystem公司;
LC-20AD高效液相色谱***(日本SHIMADZU(岛津)公司)
PhenixWinnolin药动学软件(Version 6.3,美国Certara公司)
分析天平(赛多利斯,SECURA225D-1CN)
实验动物:ICR小鼠(成都达硕实验动物有限公司)
2)实验方法及结果
待测样品配制:
IV组:精密称取待测样品1.15mg,先加入DMA 0.228ml使之溶解,再依次加入PEG400 1.139ml,0.1M磷酸缓冲液5.012ml,最后加入40%HP-B-CD至终体积11.39ml,超声、涡漩混匀,配制成0.1mg/ml的透明澄清溶液。
PO组:精密称取待测样品5.06mg,加入2%HPC LF(内含0.1%Tween-80)至终体积20.04ml,超声、涡漩混匀,配制成0.25mg/ml的均匀混悬溶液
实验过程:
健康成年ICR小鼠9只(每个时间点3只动物);禁食过夜(自由饮水)后,分别尾静脉及灌胃给药;i.v.组分别于给药后5min,15min,0.5,1,2,4,8,12,24h由颌下静脉采血0.1ml,4℃离心5min分离血浆,于-20℃保存待测。po.组于给药前及给药后0.5,1,2,4,6,8,12,24h由颌下静脉采血0.1ml,处理方法同静脉注射给药组。建立LC/MS/MS法测定血浆中的原形药物浓度,绘制血药浓度-时间曲线,采用WinNonlin 6.3软件计算主要药动学参数。
表4、小鼠药代动力学实验(po.5mpk)
Figure PCTCN2019092386-appb-000021
小鼠药代动力学实验结果表明本发明化合物,特别是化合物10、11,在小鼠中比MGL-3196有更高的血药浓度,更高的暴露量,更长的半衰期,具有更好的药代动力学。
综上,本发明提供的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物相比于未氘代的对照化合物MGL3196,对甲状腺激素受体β(THR-β)有更好的激动活性,具有更长的半衰期,更低的清除率,有更好的代谢稳定性和药代动力学性质,在制备THR-β激动剂,以及治疗血脂异常、高胆固醇血症、非酒精性脂肪性肝炎(NASH)、 非酒精性脂肪肝病(NAFLD)的药物上应用前景优良。

Claims (11)

  1. 式(I)所示的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物:
    Figure PCTCN2019092386-appb-100001
    其中,R 1-R 10分别独立地选自H、D,且不全为H。
  2. 根据权利要求1所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物具有式(II)所示结构:
    Figure PCTCN2019092386-appb-100002
    其中,R 7-R 10分别独立地选自H、D。
  3. 根据权利要求1所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物具有式(III)所示结构:
    Figure PCTCN2019092386-appb-100003
    其中,R 1-R 6,R 8-R 10分别独立地选自H、D。
  4. 根据权利要求1所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物具有式(IV)所示结构:
    Figure PCTCN2019092386-appb-100004
    其中,R 8-R 10分别独立地选自H、D。
  5. 根据权利要求1所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物具有式(V)所示结构:
    Figure PCTCN2019092386-appb-100005
    其中,R 4-R 10分别独立地选自H、D。
  6. 根据权利要求1所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物具有式(VI)所示结构:
    Figure PCTCN2019092386-appb-100006
    其中,R 1-R 8分别独立地选自H、D。
  7. 根据权利要求1~6任一项所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物,其特征在于:所述化合物选自但不局限于如下化合物之一:
    Figure PCTCN2019092386-appb-100007
  8. 权利要求1~7任一项所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物在制备治疗THR-b激动剂适用的适应症,降低胆固醇,治疗血脂异常,治疗非酒精性脂肪肝炎,非酒精性脂肪肝病的药物中的用途。
  9. 根据权利要求8所述的用途,其特征在于:所述药物是治疗家族性高胆固醇血症、非酒精性脂肪性肝炎,非酒精性脂肪肝病的药物。
  10. 权利要求1~7任一项所述的化合物或其光学异构体、药学上可接受的盐、前药、水合物或溶剂合物在制备THR-β激动剂中用途。
  11. 一种降低胆固醇,治疗血脂异常,治疗非酒精性脂肪肝的药物,其特征在于:它是以权利要求1~7任一项所述的化合物或其光学异构体、药学上可接受的前药,盐、水合物或溶剂合物为活性成分,再加上药学上可接受的辅料制备而成的制剂。
PCT/CN2019/092386 2018-06-22 2019-06-21 氘代mgl-3196化合物及其用途 WO2019242766A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/255,231 US20210292304A1 (en) 2018-06-22 2019-06-21 Deuterated mgl-3196 compound and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810651269.4 2018-06-22
CN201810651269 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242766A1 true WO2019242766A1 (zh) 2019-12-26

Family

ID=68968713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092386 WO2019242766A1 (zh) 2018-06-22 2019-06-21 氘代mgl-3196化合物及其用途

Country Status (3)

Country Link
US (1) US20210292304A1 (zh)
CN (1) CN110627773B (zh)
WO (1) WO2019242766A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020169069A1 (en) 2019-02-21 2020-08-27 Nanjing Ruijie Pharma Co., Ltd. Novel compounds and their uses as thyroid hormone receptor agonists
US11091467B2 (en) 2019-05-08 2021-08-17 Aligos Therapeutics, Inc. Modulators of THR-β and methods of use thereof
US11964964B2 (en) 2018-06-12 2024-04-23 Xizang Haisco Pharmaceutical Co., Ltd. Thyroid hormone receptor agonists and uses thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574995B (zh) * 2018-01-23 2020-07-24 深圳市塔吉瑞生物医药有限公司 取代的哒嗪酮化合物
CN111592528A (zh) * 2019-02-20 2020-08-28 苏州泽璟生物制药股份有限公司 氘代的哒嗪酮及其衍生物和药物组合物
TW202108556A (zh) * 2019-05-10 2021-03-01 大陸商深圳微芯生物科技股份有限公司 一種噠嗪酮衍生物及其應用
CN112409340B (zh) * 2019-08-21 2022-03-18 海创药业股份有限公司 卤素取代的苯醚类化合物及其用途
JP2023528637A (ja) * 2020-06-02 2023-07-05 成都康弘▲葯▼▲業▼集▲團▼股▲フン▼有限公司 新規甲状腺ホルモンβ受容体アゴニスト
JP2024510431A (ja) * 2021-03-04 2024-03-07 フカン(シャンハイ)ヘルス テクノロジー カンパニー,リミテッド 芳香族化合物、その調製法及び応用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228135A (zh) * 2005-07-21 2008-07-23 霍夫曼-拉罗奇有限公司 作为甲状腺激素受体激动剂的哒嗪酮衍生物
WO2018075650A1 (en) * 2016-10-18 2018-04-26 Madrigal Pharmaceuticals, Inc. Methods of treating liver disorders or lipid disorders with a thr-beta agonist
CN109574995A (zh) * 2018-01-23 2019-04-05 深圳市塔吉瑞生物医药有限公司 取代的哒嗪酮化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804870B (zh) * 2012-09-17 2023-06-11 美商瑪德瑞高製藥公司 用以合成甲狀腺激素類似物及其多形體之方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228135A (zh) * 2005-07-21 2008-07-23 霍夫曼-拉罗奇有限公司 作为甲状腺激素受体激动剂的哒嗪酮衍生物
WO2018075650A1 (en) * 2016-10-18 2018-04-26 Madrigal Pharmaceuticals, Inc. Methods of treating liver disorders or lipid disorders with a thr-beta agonist
CN109574995A (zh) * 2018-01-23 2019-04-05 深圳市塔吉瑞生物医药有限公司 取代的哒嗪酮化合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAKOBSSON, T. ET AL.: "Potential Role of Thyroid Receptor beta Agonists in the Treatment of Hyperlipidemia", DRUGS, vol. 77, no. 15, 2 September 2017 (2017-09-02), pages 1613 - 1621, XP055614264, ISSN: 0012-6667, DOI: 10.1007/s40265-017-0791-4 *
KELLY, M.J. ET AL.: "Discovery of 2-[3, 5-Dichloro-4-(5-isopropyl-6-oxo-1, 6- dihydropyridazin-3-yloxy)phenyl]-3, 5-dioxo-2, 3, 4, 5-tetrahydro[l, 2, 4]triazine-6- carbonitrile (MGL-3196), a Highly Selective Thyroid Hormone Receptor beta Agonist in Clinical Trials for the Treatment of Dyslipidemia", JOURNAL OF MEDICINAL CHEMISTRY, vol. 57, no. 10, 22 May 2014 (2014-05-22), pages 3912 - 3923, XP055436939, ISSN: 0012-6667, DOI: 10.1021/jm4019299 *
WANG, SHIZHEN: "Part VI Research of Nuclear Medicine", MOLECULAR NUCLEAR MEDICINE, 30 April 2004 (2004-04-30), pages 417 - 418 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964964B2 (en) 2018-06-12 2024-04-23 Xizang Haisco Pharmaceutical Co., Ltd. Thyroid hormone receptor agonists and uses thereof
WO2020169069A1 (en) 2019-02-21 2020-08-27 Nanjing Ruijie Pharma Co., Ltd. Novel compounds and their uses as thyroid hormone receptor agonists
US11091467B2 (en) 2019-05-08 2021-08-17 Aligos Therapeutics, Inc. Modulators of THR-β and methods of use thereof

Also Published As

Publication number Publication date
CN110627773B (zh) 2021-03-19
CN110627773A (zh) 2019-12-31
US20210292304A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2019242766A1 (zh) 氘代mgl-3196化合物及其用途
JP6124848B2 (ja) 心筋灌流イメージングのための造影剤
KR101123178B1 (ko) 2-아릴벤조싸이오펜 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 퇴행성 뇌질환의 진단 또는 치료용 약학적 조성물
Robertson et al. Dihydropyridazinone cardiotonics: synthesis and inotropic activity of 5'-(1, 4, 5, 6-tetrahydro-6-oxo-3-pyridazinyl)-spiro [cycloalkane-1, 3'-[3H] indol]-2'(1'H)-ones
TW202237591A (zh) 苯并咪唑類衍生物、包括其的藥物組合物及其用途
US11926618B2 (en) Halogen-substituted phenylate compound and applications thereof
TWI763147B (zh) 1,2,4-三嗪-3,5-二酮類化合物及其製備方法和應用
CN110092740B (zh) 一种稠环化合物及其应用
CN106432229A (zh) 一类用于治疗或预防高尿酸血症或痛风的化合物
CN110092779B (zh) 一种取代的苯基化合物及其应用
JP2012180365A (ja) 1−アリール−4−置換イソキノリン類
WO2023198066A1 (zh) 氘代杂环酮类化合物及其用途
TWI782504B (zh) (三氟甲基)嘧啶-2-胺化合物
KR20210006956A (ko) 중수소화 데팍티닙 화합물 및 이의 용도
CN115551845A (zh) Phd抑制剂化合物、组合物和用途
JP2021522265A (ja) c−MET阻害剤の結晶形、及びその塩形、並びに調製方法
WO2023104009A1 (zh) 一类线粒体靶向的正电子发射或荧光探针、其制备方法及应用
WO2024067781A1 (zh) 一种四氢萘类衍生物的可药用盐、晶型及制备方法
CN110423213B (zh) 一种阿普斯特衍生物及其制备方法与应用
CN116425682A (zh) 一种嘧啶-1(2h)-氧代类化合物及其制备方法与应用
WO2021254483A1 (zh) 布鲁顿酪氨酸激酶抑制剂及其制备方法
CN116323583A (zh) 用于对亨廷顿蛋白成像的杂联芳基化合物和显像剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823099

Country of ref document: EP

Kind code of ref document: A1