WO2019242511A1 - 一种参数配置方法及装置 - Google Patents

一种参数配置方法及装置 Download PDF

Info

Publication number
WO2019242511A1
WO2019242511A1 PCT/CN2019/090427 CN2019090427W WO2019242511A1 WO 2019242511 A1 WO2019242511 A1 WO 2019242511A1 CN 2019090427 W CN2019090427 W CN 2019090427W WO 2019242511 A1 WO2019242511 A1 WO 2019242511A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
bwp
frequency domain
domain resource
parameter
Prior art date
Application number
PCT/CN2019/090427
Other languages
English (en)
French (fr)
Inventor
王婷
彭金磷
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19821574.1A priority Critical patent/EP3799496A4/en
Publication of WO2019242511A1 publication Critical patent/WO2019242511A1/zh
Priority to US17/125,221 priority patent/US20210105783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a parameter configuration method and device.
  • the bandwidth part may be a part of the system bandwidth.
  • the first type of BWP includes continuous frequency domain resources.
  • a terminal device When a terminal device performs data transmission with a network device, it can transmit data at a frequency domain position of the first type of BWP according to parameters of the first type of BWP.
  • the existing communication protocol defines a second type of BWP including discrete frequency domain resources, so that terminal devices can perform data transmission on discontinuous frequency domain resources to improve Spectral efficiency.
  • the prior art does not specify a technical solution of how to determine the frequency domain position and parameters of the second type of BWP in the discrete frequency spectrum.
  • the embodiments of the present application provide a parameter configuration method and device, which solves the problem of how to determine the frequency domain position and parameters of the second type of BWP in a discrete frequency spectrum.
  • an embodiment of the present application provides a parameter configuration method.
  • the method can be applied to a terminal device, and / or the method can be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip system.
  • the method may be applied to a network device, and / or the method may be applied to a communication device that can support the network device to implement the method, for example, the communication device includes a chip system, and the method includes: for the parameters of the second type of BWP
  • the parameter value of the second type of BWP may be determined according to the parameter determination rule, wherein the parameter determination rule is determined according to the parameter type of the second type of BWP.
  • the second type of BWP includes N frequency band resources, N is a positive integer, and N is greater than or equal to 2. Therefore, the network device or the terminal device can determine the parameters of the second type of BWP in the discrete spectrum, and receive or send data on the second type of BWP according to the parameter values of the second type of BWP, which effectively improves the use of the discrete spectrum. Rate and improve system performance.
  • the downlink control information downlink control information (DCI)
  • DCI downlink control information
  • DCI downlink control information
  • Using a DCI to schedule a second type of BWP effectively reduces the indication overhead in DCI compared to using multiple DCIs to schedule multiple first type BWPs.
  • the corresponding parameter determination rules may be different or the same.
  • the parameter determination rule is a first rule
  • the parameter value of the second type of BWP is determined according to the parameter determination rule, including: determining the parameter value of the second type of BWP according to the parameter value of the M-band frequency domain resource
  • the M-band frequency domain resource is the M-band frequency domain resource in the N-band frequency domain resource, where M is an integer greater than or equal to 1 and less than or equal to N.
  • the determination of the parameter value of the second type of BWP according to the parameter value of the M-band frequency domain resource may specifically include the following implementation manners.
  • Method one (corresponding parameter determination rule is rule A), determining the parameter values of the second type of BWP according to the M parameter values of the M band frequency domain resources, or according to the M band frequency domain resources; Identification: determining the parameter value of the second type of BWP according to one or more parameter values of the M parameter values of the M-band frequency domain resource.
  • the parameter values of the second type of BWP are determined according to the M-band frequency domain resource identifiers according to the M-band frequency domain resource identifiers, and specifically include: according to the frequency of the M-band frequency domain resource identifier corresponding to the largest identifier.
  • the parameter value of the domain resource determines the parameter value of the second type of BWP (the corresponding parameter determination rule is rule A1); or, the second type of BWP is determined according to the parameter value of the frequency domain resource corresponding to the smallest identifier among the M-band frequency domain resource identifiers.
  • the corresponding parameter determination rule is rule A2; or the parameter value of the second type of BWP is determined according to the parameter value of the frequency domain resource corresponding to the specific identifier in the M-band frequency domain resource identifier, where the specific identifier is a pre- The configured identity or received identity or sent identity (the corresponding parameter determination rule is rule A3).
  • the received identifier may be an identifier received from a network device; accordingly, in the method, the network device sends information indicating the identifier to the terminal device or sends the identifier.
  • Method two determine the parameter value of the second type of BWP according to the largest parameter value of the parameter values of the M-band frequency domain resources (the corresponding parameter determination rule is rule B1); or, according to the M-band frequency
  • the smallest parameter value of the parameter value of the domain resource determines the parameter value of the second type of BWP (the corresponding parameter determination rule is rule B2); or, the average value of the parameter value of the M-band frequency domain resource is used to determine the parameter value of the second type of BWP.
  • the corresponding parameter determination rule is rule B3.
  • Method three (the corresponding parameter determination rule is rule C), determining the candidate value of the parameter value of the second type of BWP according to the candidate value of the parameter value of the M-band frequency domain resource; specifically, according to the parameter value of the M-band frequency domain resource
  • the union of candidate values determines the candidate value of the parameter value of the second type of BWP (the corresponding parameter determination rule is rule C1); or determines the second type according to the intersection of the candidate value values of the parameter values of the M-band frequency domain resources
  • Candidate values for parameter values of BWP (the corresponding parameter determination rule is rule C2).
  • the parameter determination rule is a second rule, and the parameter value of the second type of BWP is determined according to the parameter determination rule, including: determining the second type of BWP according to the parameter value of the frequency domain resource used for initial access. Or a parameter value of the second type of BWP according to the parameter value corresponding to the main frequency domain resource.
  • the main frequency domain resource may be a frequency domain resource for transmitting a physical downlink control channel (PDCCH), or the main frequency domain resource may be a frequency domain of a common search space including the PDCCH. Resources.
  • PDCCH physical downlink control channel
  • the parameter value of the second type of BWP is determined according to the parameter value of the frequency domain resource for initial access
  • the parameter value of the main frequency domain resource, or the parameter value of the default frequency domain resource is The domain resource, the main frequency domain resource, or the default frequency domain resource may be a frequency domain resource that does not belong to the second type of BWP, or a frequency domain resource that belongs to the second type of BWP, which is not limited in this application. It is assumed that the second type of BWP includes two frequency domain resources, a first frequency domain resource and a second frequency domain resource.
  • the corresponding parameter value of the first frequency domain resource is determined as the parameter value of the second type of BWP. If the second frequency domain resource is an initial accessed frequency domain resource, the corresponding parameter value of the second frequency domain resource is used to determine the parameter value of the second type of BWP.
  • the parameter values of the second type of BWP may be determined in advance according to the protocol definition, or the parameter values of the second type of BWP may be determined according to the indication of the received signaling, or the parameter values of the second type of BWP may be determined according to the preset settings.
  • the received signaling may be a signaling received from a network device; accordingly, in the method, the network device sends the signaling to the terminal device.
  • the terminal device may pre-configure the parameter values of the N-band frequency domain resources and the identifiers corresponding to the N-band frequency domain resources, and determine the second type according to the parameter values of the M-band frequency domain resources.
  • M frequency domain resource identifiers sent by the network device can be received, and the parameter values of M frequency domain resources are obtained according to the M frequency domain resource identifiers.
  • the frequency domain resources corresponding to the M frequency domain resource identifiers are terminal devices. Frequency-domain resources among the pre-configured N-band frequency-domain resources.
  • the terminal device may also receive the parameter value of the M-band frequency domain resource sent by the network device.
  • the parameter type of the second type of BWP is the first type, and the parameter determination rule is one type of rule; the parameter type of the second type of BWP is the second type, and the parameter determination rule is another type of rule.
  • one kind of rule and the other kind can be any one of the above first rules and the first rule (such as rule A, rule A1, rule A2, rule A3, rule B, rule B1, rule B2, rule B3 , Rule C, rule C1 or rule C2), or a second rule, the one rule is different from the other rule.
  • the first type or the second type includes a data scrambling identifier, a downlink demodulation reference signal (DMRS) configuration, a transmission configuration indication (TCI) status configuration, and a virtual resource block (virtual resource block).
  • block (VRB) to physical resource block (PRB) interleaver resource allocation type, physical downlink shared channel (physical downlink shared channel, PDSCH) time domain resource allocation list, PDSCH aggregation factor, rate matching pattern, RBG size , Modulation and coding scheme (MCS) table configuration, maximum number of codewords during DCI scheduling, pre-coded RB aggregation type, zero-power CSI-RS resources, transmission configuration, uplink power control, frequency hopping configuration, Frequency hopping offset, transformPrecoder, codebook subset configuration, maximum rank value, uplink control information is carried in physical uplink shared channel (PUSCH), set of offset values, Scale factor, period, number of HARQ processes, physical uplink control Channel (physical uplink control channel, PUCCH) resource identification
  • the parameter types are data scrambling identification, downlink demodulation reference signal (DMRS) configuration, transmission configuration indication (TCI) status configuration, VRB to PRB interleaver, resource allocation type, physical Downlink shared channel (physical downlink shared channel, PDSCH) time domain resource allocation list, PDSCH aggregation factor, rate matching pattern, RBG size, MCS table configuration, maximum number of codewords during DCI scheduling, precoded RB aggregation type, zero power CSI-RS resources, transmission configuration, uplink power control, frequency hopping configuration, frequency hopping offset, transformPrecoder, codebook subset configuration, maximum rank value, and uplink control information carried on the physical uplink shared channel (physical uplink shared channel) , PUSCH), offset value set, scale factor, period, number of HARQ processes, physical uplink control channel (physical uplink control channel, PUCCH) resource identification, power configuration parameters, power parameters, number of repetitions, repeated redundancy Yu version, uplink scheduling information configured by RRC, time Domain offset, path loss reference indication,
  • the parameter types are data scrambling identification, downlink DMRS configuration, VRB to PRB interleaver, PDSCH aggregation factor, maximum number of codewords during DCI scheduling, maximum number of codewords during DCI scheduling, and pre-encoded RB aggregation.
  • Type uplink power control, frequency hopping offset, uplink control information carried in the PUSCH, scale factor, period, number of HARQ processes, power configuration parameters, power parameters, number of repetitions, RRC configuration uplink scheduling information, time domain bias
  • the combination of one or more information in the shift, precoding and number of layers, SRS resource indication, modulation mode code rate and TBS, TBS overhead, and frequency hopping offset configuration can be determined by method two.
  • the parameter type is TCI state configuration, PDSCH time domain resource allocation list, rate matching pattern, RBG size, zero-power CSI-RS resources, codebook subset configuration, maximum rank value, and uplink control information carried in the PUSCH , Offset value set, period, PUCCH resource identifier, duplicate redundant version, uplink scheduling information configured by RRC, path loss reference indication, time domain resource allocation, frequency domain resource allocation, antenna port indication, DMRS sequence initialization,
  • the combination of the precoding and the number of layers, the SRS resource indication, the TBS overhead, the modulation mode code rate, and one or more information in the TBS can be used to determine the parameter value.
  • an embodiment of the present application further provides a resource configuration method.
  • the method can be applied to a terminal device, and / or the method can be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip.
  • System, and / or, the method may be applied to a network device, and / or the method may be applied to a communication device that can support the network device to implement the method, for example, the communication device includes a chip system, and the method includes: determining a second type of BWP Determine the resource location of the second type of BWP according to the resource configuration of the second type of BWP.
  • the resource configuration includes: at least one reference point, at least one second offset offset2, and N frequency-domain resource information; wherein the N frequency-domain resource information corresponds to N-band frequency-domain resources, and the second type of BWP includes N-band In the frequency domain, N is a positive integer and N is greater than or equal to 2.
  • determining the resource configuration of the second type of BWP may be the resource configuration of the second type of BWP received by the network device; accordingly, the network device sends the resource configuration of the second type of BWP for the terminal device.
  • the network device or the terminal device can determine the frequency domain position of the second type BWP in the discrete frequency spectrum according to the resource configuration method provided in the embodiment of the present application, and receive or Sending data effectively improves the utilization of the discrete spectrum and improves system performance.
  • an embodiment of the present application further provides a resource configuration method.
  • the method may be applied to a terminal device, and / or the method may be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip.
  • the method may be applied to a network device, and / or the method may be applied to a communication device capable of supporting the network device to implement the method, for example, the communication device includes a chip system, and the method includes: according to M-band frequency domain resources
  • the identifier of the second type of BWP is determined according to the M parameter values of the M-band frequency domain resource, and the data is received or sent on the second type of BWP according to the parameter value of the second type of BWP.
  • the second type of BWP It includes N frequency band resources, N is a positive integer, N is greater than or equal to 2, M frequency band resources are M frequency band resources in the N frequency band resources, M is an integer greater than or equal to 1, and less than Or equal to N.
  • receiving or sending data on the second type of BWP according to the parameter values of the second type of BWP can also be described as: according to the parameter values of the second type of BWP, using the corresponding Parameters, receive or send data on the second type of BWP.
  • the parameter values of the second type of BWP are determined according to the M-band frequency domain resource identifiers according to the M-band frequency domain resource identifiers, and specifically include: according to the frequency of the M-band frequency domain resource identifier corresponding to the largest identifier.
  • the parameter value of the domain resource determines the parameter value of the second type of BWP; or, the parameter value of the second type of BWP is determined according to the parameter value of the frequency domain resource corresponding to the smallest identifier among the identifiers of the frequency domain resources of the M band; or, according to the M segment
  • the parameter value of the frequency domain resource corresponding to the specific identifier in the identifier of the frequency domain resource determines the parameter value of the second type of BWP, where the specific identifier is a pre-configured identifier or a received identifier.
  • the received identifier may be an identifier received from a network device; accordingly, the network device sends information indicating the identifier to the terminal device.
  • an embodiment of the present application further provides a resource configuration method.
  • the method may be applied to a terminal device, and / or the method may be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip.
  • the method may be applied to a network device, and / or the method may be applied to a communication device capable of supporting the network device to implement the method, for example, the communication device includes a chip system, and the method includes: according to M-band frequency domain resources
  • the parameter value of the largest type of BWP determines the parameter value of the second type of BWP, or the parameter value of the second type of BWP is determined based on the smallest parameter value of the parameter values of the M band frequency domain resources, or according to the frequency value of the M band frequency domain resources
  • the average value of the parameter values of the BWP determines the parameter values of the second type of BWP, and receives or sends data on the second type of BWP according to the parameter values of the second type of BWP, where the second type of BWP includes N-band frequency domain resources, N is a positive integer, N is greater than or equal to 2, the M-band frequency domain resource is the M-band frequency domain resource in the N-band frequency domain resource, and M is an integer
  • an embodiment of the present application further provides a resource configuration method.
  • the method may be applied to a terminal device, and / or the method may be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip.
  • the method may be applied to a network device, and / or the method may be applied to a communication device capable of supporting the network device to implement the method, for example, the communication device includes a chip system, and the method includes: according to M-band frequency domain resources
  • the candidate value of the parameter value of the BWP determines the candidate value of the parameter value of the second type of BWP, and receives or sends data on the second type of BWP according to the candidate value of the parameter value of the second type of BWP.
  • the BWP includes N frequency band resources, N is a positive integer, N is greater than or equal to 2, M frequency band resources are M frequency band resources in the N frequency band resources, and M is an integer greater than or equal to 1, and Less than or equal to N.
  • receiving or sending data on the second-type BWP according to the candidate value of the second-type BWP parameter includes: determining the second-type BWP parameter from the second-type BWP parameter value candidate value Value, according to the parameter value of the second type BWP, receive or send data on the second type BWP.
  • the parameter value of the second type of BWP is determined from the candidate values of the parameter values of the second type of BWP.
  • the parameter value of the second type of BWP may be determined through a pre-configuration method, or the network device may indicate the parameter value of the second type of BWP to the terminal device.
  • the candidate value of the parameter value of the second type of BWP is determined according to the candidate value of the parameter value of the M-band frequency domain resource. Specifically, it includes: determining the first value according to the union of the candidate value of the parameter value of the M-band frequency domain resource.
  • an embodiment of the present application further provides a resource configuration method.
  • the method may be applied to a terminal device, and / or the method may be applied to a communication device that can support the terminal device to implement the method.
  • the communication device includes a chip.
  • the method can be applied to a network device, and / or the method can be applied to a communication device that can support the network device to implement the method, for example, the communication device includes a chip system, and the method includes: Determine the parameter value of the second type of BWP according to the parameter value of the frequency domain resource, or determine the parameter value of the second type of BWP according to the parameter value corresponding to the main frequency domain resource, and according to the parameter value of the second type of BWP, in the second type Data is received or sent on the BWP.
  • the second type of BWP includes N frequency band resources, where N is a positive integer and N is greater than or equal to 2.
  • the frequency domain resources initially accessed are the frequency domain resources in the N-band frequency domain resources, or the main frequency domain resources are the frequency domain resources in the N-band frequency domain resources.
  • the parameters of the second type of BWP may be data scrambling identification, downlink demodulation reference signal (DMRS) configuration, and transmission configuration indication (TCI) State configuration, virtual resource block (VRB) to physical resource block (PRB) interleaver, resource allocation type, physical downlink shared channel (PDSCH) time domain resource allocation list, PDSCH Aggregation factor, rate matching pattern, RBG size, modulation and coding scheme (MCS) table configuration, maximum number of codewords during DCI scheduling, precoding RB aggregation type, zero power CSI-RS resources, transmission configuration, Uplink power control, frequency hopping configuration, frequency hopping offset, transformPrecoder, codebook subset configuration, maximum rank value, uplink control information carried on physical uplink shared channel (PUSCH) , Offset value set, scale factor, period, HA Number of RQ processes, physical uplink control channel (PUCCH) resource identifier, power configuration parameters, power parameters, number of repetitions, repeated redundant versions, uplink scheduling information
  • VRB virtual resource block
  • PRB physical
  • an embodiment of the present application further provides a communication device, which is configured to implement the methods described in the first aspect and the third to sixth aspects.
  • the communication device is a terminal device or a communication device that supports the terminal device to implement the methods described in the first aspect and the third aspect to the sixth aspect.
  • the communication device includes a chip system, and / or the communication device is a network device or a support network.
  • the device is a communication device that implements the methods described in the first aspect and the third to sixth aspects, for example, the communication device includes a chip system.
  • the communication device includes a processing unit.
  • the processing unit is configured to determine a parameter determination rule according to the parameter type of the second type BWP for the parameters of the second type of bandwidth part BWP, where the second type of BWP includes N band frequency domain resources, N is a positive integer, N Greater than or equal to 2; the processing unit is further configured to determine a parameter value of the second type of BWP according to a parameter determination rule.
  • the parameter determination rule and / or the method for determining the parameter value of the second type of BWP according to the parameter determination rule is the same as that described in the first aspect, and is not repeated here.
  • the communication device may further include a communication interface for sending or receiving data.
  • an embodiment of the present application further provides a communication apparatus for implementing the method described in the second aspect.
  • the communication device is a terminal device and / or a communication device supporting the terminal device to implement the method described in the second aspect, for example, the communication device includes a chip system, and / or the communication device is a network device or supports the network device to implement the second aspect description.
  • a communication device of the method for example, the communication device includes a chip system.
  • the communication device includes a processing unit.
  • the processing unit is configured to determine a resource configuration of the second type of BWP, where the resource configuration includes: at least one reference point, at least one second offset offset2, and N frequency domain resource information; wherein N frequency domain resource information Corresponding to N-band frequency-domain resources, the second type of BWP includes N-band frequency-domain resources, where N is a positive integer and N is greater than or equal to 2; the processing unit is further configured to determine the second type of BWP according to the resource configuration of the second type of BWP Resource location.
  • the communication device may further include a communication interface for sending or receiving data.
  • the functional modules of the seventh aspect and the eighth aspect may be implemented by hardware, and may also be implemented by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the transceiver is used to complete the functions of the receiving unit and the sending unit
  • the processor is used to complete the functions of the processing unit
  • the memory is used for the processor to process the program instructions of the method in the embodiment of the present application.
  • the processor, the transceiver, and the memory are connected and communicate with each other through a bus.
  • an embodiment of the present application further provides a communication device, which is configured to implement the methods described in the first aspect and the third to sixth aspects.
  • the communication device is a terminal device or a communication device that supports the terminal device to implement the methods described in the first aspect and the third aspect to the sixth aspect.
  • the communication device includes a chip system
  • the communication device is a network device or A communication device that supports a network device to implement the methods described in the first aspect and the third to sixth aspects, for example, the communication device includes a chip system.
  • the communication device includes a processor for implementing the functions of the methods described in the first aspect and the third to sixth aspects.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor may call and execute program instructions stored in the memory to implement functions in the method described in the first aspect.
  • the communication device may further include a communication interface, where the communication interface is used for the communication device to communicate with other devices. Exemplarily, if the communication device is a network device, the other device is a terminal device. If the communication device is a terminal device, the other device is a network device.
  • the communication device includes: a communication interface, where the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver for transmitting or receiving data.
  • Memory for storing program instructions.
  • a processor configured to determine a parameter determination rule according to a parameter type of the second type BWP, and determine a parameter value of the second type BWP according to the parameter determination rule.
  • the second type of BWP includes N frequency band resources, N is a positive integer, and N is greater than or equal to 2.
  • the parameter determination rule and the method for determining the parameter value of the second type of BWP according to the parameter determination rule are the same as those described in the first aspect, and are not repeated here.
  • an embodiment of the present application further provides a communication apparatus for implementing the method described in the second aspect.
  • the communication device is a terminal device or a communication device that supports the terminal device to implement the method described in the second aspect, for example, the communication device includes a chip system, or the communication device is a network device or that supports the network device to implement the second aspect.
  • a communication device of the method such as a chip system included in the communication device.
  • the communication device includes a processor, configured to implement functions in the method described in the second aspect.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor may call and execute program instructions stored in the memory to implement functions in the method described in the second aspect above.
  • the communication device may further include a communication interface, where the communication interface is used for the communication device to communicate with other devices.
  • the communication device is a network device
  • the other device is a terminal device. If the communication device is a terminal device, the other device is a network device.
  • the communication device includes: a communication interface, where the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver.
  • Memory for storing program instructions.
  • a processor for determining a resource configuration of the second type of BWP, where the resource configuration includes: at least one reference point, at least one second offset offset2, and N frequency domain resource information; wherein the N frequency domain resource information corresponds to N-band frequency-domain resources.
  • the second type of BWP includes N-band frequency-domain resources. N is a positive integer and N is greater than or equal to 2.
  • the resource location of the second type of BWP is determined according to the resource configuration of the second type of BWP.
  • an embodiment of the present application further provides a computer-readable storage medium, including: computer software instructions; when the computer software instructions are executed in a communication device, causing the communication device to perform any of the foregoing first to sixth aspects.
  • a computer-readable storage medium including: computer software instructions; when the computer software instructions are executed in a communication device, causing the communication device to perform any of the foregoing first to sixth aspects.
  • an embodiment of the present application further provides a computer program product including instructions.
  • the computer program product runs in a communication device, the communication device is caused to execute the method according to any one of the first to sixth aspects. .
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing functions of a network device or a terminal device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application further provides a communication system including the terminal device described in the seventh aspect or supporting the terminal device to implement the first aspect, and the methods described in the third to sixth aspects.
  • the communication system includes the terminal device described in the ninth aspect or a communication device supporting the terminal device to implement the methods described in the first aspect and the third to sixth aspects, and the network device or the supported network device described in the ninth aspect A communication device implementing the methods described in the first aspect and the third to sixth aspects;
  • the communication system includes the terminal device described in the eighth aspect or a communication device supporting the terminal device to implement the method described in the second aspect, and the network device described in the eighth aspect or a network device supporting the network device to implement the method described in the second aspect Communication device
  • the communication system includes the terminal device described in the tenth aspect or a communication device supporting the terminal device to implement the method described in the second aspect, and the network device described in the tenth aspect or a network device supporting the network device to implement the method described in the second aspect Communication device.
  • the names of the terminal equipment, network equipment, and communication device do not limit the equipment itself. In actual implementation, these equipments may appear under other names. As long as the functions of each device are similar to the embodiments of the present application, they fall into the scope of the claims of the present application and their equivalent technologies.
  • FIG. 1 is an example diagram of a bandwidth resource in a system bandwidth according to an embodiment of the present application
  • FIG. 2 is a structural example diagram of a time-frequency resource grid according to an embodiment of the present application.
  • FIG. 3 is a structural example diagram of a first-type BWP provided by an embodiment of the present application.
  • FIG. 4 is a structural example diagram of a second type of BWP provided by an embodiment of the present application.
  • FIG. 5 is a structural example diagram of overlapping frequency domain resources according to an embodiment of the present application.
  • FIG. 6 is a structural example diagram of a discrete spectrum according to an embodiment of the present application.
  • FIG. 7 is a simplified example diagram of a communication system according to an embodiment of the present application.
  • FIG. 8 is a composition example diagram of a smart phone provided by an embodiment of the present application.
  • FIG. 9 is a composition example diagram of a base station according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a parameter configuration method according to an embodiment of the present application.
  • FIG. 11 is a flowchart of another parameter configuration method according to an embodiment of the present application.
  • FIG. 12 is a flowchart of still another parameter configuration method according to an embodiment of the present application.
  • 21 is a flowchart of still another parameter configuration method according to an embodiment of the present application.
  • FIG. 22 is an example diagram of a resource location of a BWP according to an embodiment of the present application.
  • FIG. 23 is an example diagram of a resource location of a second type of BWP according to an embodiment of the present application.
  • FIG. 24 is an example diagram of another type of BWP resource location provided by an embodiment of the present application.
  • FIG. 25 is a diagram illustrating an example of resource locations of a second type of BWP according to an embodiment of the present application.
  • FIG. 26 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 27 is a structural example diagram of a communication device according to an embodiment of the present application.
  • FIG. 28 is a structural example diagram of another communication device according to an embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • the BWP can be part of the system bandwidth.
  • the BWP may also be referred to as a bandwidth resource, a carrier bandwidth part (CBWP), a frequency resource part, a part of a frequency resource, a carrier bandwidth part, a subband, or a narrowband.
  • CBWP carrier bandwidth part
  • FIG. 1 is an example diagram of a bandwidth resource in a system bandwidth provided by an embodiment of the present application.
  • the system bandwidth includes three different bandwidth resources, namely, bandwidth resource 0, bandwidth resource 1, and bandwidth resource 2. Any one of the bandwidth resource 0, the bandwidth resource 1, and the bandwidth resource 2 can be considered as the above-mentioned bandwidth part.
  • the system bandwidth may include multiple bandwidth resources. For different bandwidth resources, taking bandwidth resource 0 and bandwidth resource 1 as examples, the frequency domain resources of bandwidth resource 0 and bandwidth resource 1 may partially or completely overlap, or they may not overlap at all.
  • bandwidth resource 0 and bandwidth resource 1 completely overlap, but the frame structure (such as the subcarrier interval
  • the spacing (SCS) and / or cyclic prefix (CP) length are different, which is not limited in this embodiment of the present application.
  • each subband configured with a different numerology can be referred to as a BWP.
  • numerology is defined as a combination of subcarrier spacing and cyclic prefix.
  • BWP can be divided into two types according to the type of frequency domain resources included in the BWP. The two types include the first type of BWP and the second type of BWP. In some scenarios, the frequency domain resources may also be referred to as frequency resources.
  • the first type of BWP includes continuous frequency domain resources, and the unit of the frequency domain resources may be a subcarrier, a resource block (RB), a resource block group (RBG), or a hertz.
  • One RB may include a positive integer (eg, 12) subcarriers, and one RBG may include a positive integer RB.
  • FIG. 2 is a structural example diagram of a time-frequency resource grid according to an embodiment of the present application.
  • the minimum unit in the frequency domain is a subcarrier, and the subcarrier interval between adjacent subcarriers may be 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, or 480kHz.
  • the smallest unit in the time domain is a symbol. One or more symbols can be included in a slot.
  • a slot can be 0.5 milliseconds (ms) or 1 ms.
  • the length of the time slot may be different or the same under different subcarrier intervals, which is not limited in this application. Under different subcarrier intervals, the number of symbols included in a time slot may be different or the same, which is not limited in this application.
  • Each small square in the time-frequency resource grid represents a resource element (RE).
  • the bandwidth of a RE in the frequency domain is a subcarrier, for example, it can be 15kHz, which is the same as SCS, and in the time domain, The length of one OFDM symbol. Twelve consecutive subcarriers in the frequency domain may be included in a resource block (RB). Two slots can be included in one subframe.
  • a slot may include 7 OFDM symbols or 14 symbols.
  • NCP normal cyclic prefix
  • a slot may include 7 OFDM symbols or 14 symbols.
  • Table 1 When the subcarrier interval is 15 kHz, one slot may include 14 symbols, one radio frame may include 10 slots, and one sub frame may include 1 slot.
  • the subcarrier interval is 30 kHz, one slot may include 14 symbols, one radio frame may include 20 slots, and one sub frame may include 2 slots.
  • the subcarrier interval is 60 kHz
  • one slot may include 14 symbols, one radio frame may include 40 slots, and one sub frame may include 4 slots.
  • one slot may include 14 symbols
  • one radio frame may include 80 slots
  • one sub frame may include 8 slots.
  • one slot may include 14 symbols
  • one radio frame may include 160 slots
  • one sub frame may include 16 slots.
  • a slot may include 6 OFDM symbols or 12 symbols.
  • a radio frame may include 40 time slots, and a sub frame may include 4 time slots.
  • Each OFDM symbol may include a data portion and a CP.
  • network devices can configure up to four first-class BWPs for terminal devices in a serving cell, which can be activated.
  • One of the first type of BWP is used for data transmission.
  • the terminal device transmits and receives data on the activated first-type BWP.
  • the first type of BWP may be continuous RB resources defined on a carrier, that is, the resources of a first type of BWP are located in one carrier resource.
  • FIG. 3 is a structural example diagram of a first-type BWP provided by an embodiment of the present application.
  • the second type of BWP can also be called X-BWP, BWP bundle (BWP bundle), BWP set (BWP set), or BWP group (BWP group).
  • the second type of BWP includes N frequency band resources, where N is a positive integer and N is greater than or equal to 2.
  • the N-band frequency-domain resources may be N first-type BWPs, that is, the second-type BWP includes N first-type BWPs.
  • the N-band frequency domain resources may be discontinuous or discrete.
  • the discrete frequency domain resources can also be described as discrete spectrum. Understandably, any two frequency domain resources in the non-contiguous N-band frequency domain resources are discontinuous.
  • the N-band frequency-domain resources include at least two frequency-domain resources that are discontinuous.
  • non-contiguous N-band frequency domain resources may be located in one component carrier (CC), or may be located in multiple CCs.
  • CC component carrier
  • Component carriers can also be referred to as carriers.
  • the second type of BWP may include resources of multiple CCs, and data transmitted through the second type of BWP may be transmitted on non-contiguous frequency domain resources, or may be transmitted on multiple CCs.
  • data transmission across CCs in the discrete spectrum is realized.
  • the DCI is effectively reduced when the scheduling overhead is large. Indication overhead in.
  • transmission may include uplink transmission and / or downlink transmission.
  • transmission may include a network device sending a signal to a terminal device, and / or a terminal device sending a signal to a network device.
  • FIG. 4 is a structural example diagram of a second type of BWP provided by an embodiment of the present application.
  • the two frequency domain resources in the N-band frequency domain resources may overlap.
  • FIG. 5 is a structural example diagram of overlapping frequency domain resources according to an embodiment of the present application.
  • the discrete spectrum may be a plurality of non-continuous spectrum resources.
  • operators have a lot of discrete spectrum in the low frequency band.
  • TDD time division duplexing
  • LTE long term evolution
  • NR NR
  • 5MHz can be configured for NR
  • LTE long term evolution
  • NR NR
  • FIG. 6 is a structural example of a discrete frequency spectrum provided by an embodiment of the present application. For example, among frequency domain resources used by NR, there are frequency domain resources used by LTE and idle frequency domain resources.
  • the embodiment of the present application provides a method for configuring the bandwidth part.
  • the basic principle is: for the parameters of the second type of BWP, the parameters can be determined according to the parameters
  • the rule determines the parameter value of the second type of BWP, wherein the parameter determination rule is determined according to the parameter type of the second type of BWP.
  • the resources of the second type of BWP determine the resource configuration of the second type of BWP, and determine the resource location of the second type of BWP according to the resource configuration of the second type of BWP.
  • the resource configuration includes: at least one reference point, at least one second offset offset2, and N frequency domain resource information.
  • the N frequency-domain resource information corresponds to N-band frequency-domain resources.
  • the second type of BWP includes N-band frequency-domain resources, where N is a positive integer and N is greater than or equal to 2.
  • the method can be applied to a terminal device, or the method can be applied to a communication device that can support the terminal device to implement the method, for example, the communication device includes a chip system, or the method can be applied to a network device, or the method can be applied to a device that can A communication device supporting a network device to implement the method, for example, the communication device includes a chip system.
  • the network device or the terminal device can determine the frequency domain position and parameters of the second type BWP in the discrete frequency spectrum according to the bandwidth partial configuration method provided in the embodiment of the present application, and according to the parameter values of the second type BWP, Receiving or sending data at the frequency domain position effectively improves the utilization of the discrete spectrum and improves the system performance.
  • FIG. 7 is a simplified example diagram of a communication system to which embodiments of the present application can be applied.
  • the communication system may include: one or more terminal devices 701 and a network device 702.
  • the connection between each terminal device 701 and the network device 702 is a wireless connection.
  • the terminal device communicates with the network device through wireless communication technology.
  • Wireless communication between communication devices may include: wireless communication between network devices and terminal devices, wireless communication between network devices and network devices, and wireless communication between terminal devices and terminal devices.
  • wireless communication may also be simply referred to as “communication”
  • communication may also be described as “data transmission”, “information transmission”, or “transmission”.
  • the terminal device 701 may be a wireless terminal device capable of receiving base station scheduling and instruction information.
  • the wireless terminal device may be a device that provides voice and / or data connectivity to the user, or a handheld device with a wireless connection function, or connected to Wireless modem other processing equipment.
  • a wireless terminal device can communicate with one or more core networks or the Internet via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or a "cellular" phone), Computers and data cards, for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange languages and / or data with a wireless access network.
  • the wireless terminal device may be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, or a personal digital assistant. (personal digital assistant, PDA) and other devices.
  • a wireless terminal device can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • AP remote terminal equipment
  • access terminal equipment access terminal
  • user terminal equipment user terminal
  • user agent user agent
  • user station subscriber station
  • CPE customer terminal premises
  • UE user equipment
  • the terminal device shown in FIG. 7 may be a mobile phone.
  • the network device 702 may be a base station (BS), a base station controller, or the like for wireless communication. It can also be called a wireless access point, a transceiver station, a relay station, a cell, a transmit and receive point (TRP), and so on.
  • the network device 702 may be a device that is deployed in a wireless access network to provide wireless communication functions for the terminal device 701. Its main functions may include one or more of the following functions: management of wireless resources, Internet protocol (Internet protocol, IP) header compression and user data stream encryption, mobility management entity (MME) selection when user equipment is attached, routing of user plane data to service gateway (SGW), organization of paging messages, and Transmission, organization and transmission of broadcast messages, measurement and configuration of measurement reports for mobility or scheduling purposes, etc.
  • MME mobility management entity
  • the network device 702 may include various forms of cellular base stations, home base stations, cells, wireless transmission points, macro base stations, micro base stations, relay stations, wireless access points, and so on.
  • the names of devices with network device capabilities may vary.
  • a 5G base station generation NodeB, gNB
  • gNB generation NodeB
  • an access point in a wireless local access system, it is called an access point.
  • the network device 702 may further include a central unit (CU) and a distribution unit (DU). There can be multiple DUs under one CU. Each DU and terminal device can use the method described in the embodiment of the present application.
  • the difference between the CU-DU separation scenario and the multi-TRP scenario is that the TRP can be a radio frequency unit or an antenna device, and the protocol stack function can be implemented in the DU, for example, the physical layer function can be implemented in the DU.
  • the names of network devices may change.
  • the network device 702 may be another device that provides a wireless communication function for the terminal device 701.
  • a device that provides a wireless communication function for the terminal device 701 is referred to as a network device 702.
  • the terminal device shown in FIG. 7 may be a smart phone, and each constituent component of the smart phone is specifically described below with reference to FIG. 8.
  • the smart phone includes a processor 801, a radio frequency (RF) circuit 802, a power source 803, a memory 804, an input unit 805, a display unit 806, and an audio circuit 807.
  • RF radio frequency
  • FIG. 8 does not constitute a limitation on the smart phone, and may include more or fewer parts such as those shown in FIG. 8, or may be combined as shown in FIG. 8. Some of the components shown may be different from the component arrangement shown in FIG. 8.
  • the processor 801 is a control center of the smart phone, and uses various interfaces and lines to connect various parts of the entire smart phone. By running or executing software programs and / or modules stored in the memory 804, and calling data stored in the memory 804, To perform various functions and process data of the smart phone, so as to monitor the smart phone as a whole.
  • the processor 801 may include one or more processing units.
  • the processor 801 may integrate an application processor and a modem processor.
  • the application processor mainly deals with the operating system, user interface and application programs, etc .
  • the modem processor mainly deals with wireless communication.
  • the application processor and the modem processor may be provided independently of each other, or may be integrated in the same device.
  • the processor is configured to determine a parameter determination rule according to a parameter type of the second type of BWP, and determine a parameter value of the second type of BWP according to the parameter determination rule. Determine the resource configuration of the second type of BWP, and determine the resource location of the second type of BWP according to the resource configuration of the second type of BWP.
  • the RF circuit 802 may be used for receiving and sending signals during information transmission and reception or during a call.
  • the downlink information of the base station is received and processed by the processor 801.
  • uplink data is sent to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 802 can also communicate with a network and other devices through wireless communication.
  • Wireless communication can use any communication standard or protocol, including but not limited to Global System (GSM), General Packet Radio Service (GPRS), code division multiple access access (CDMA), wideband code division multiple access (WCDMA), LTE, email, short message service (SMS), and so on.
  • GSM Global System
  • GPRS General Packet Radio Service
  • CDMA code division multiple access access
  • WCDMA wideband code division multiple access
  • LTE email, short message service (SMS), and so on.
  • SMS short message service
  • the smart phone includes a power source 803 (such as a battery) for supplying power to various components.
  • the power source can be logically connected to the processor 801 through a power management system, thereby implementing functions such as managing charging, discharging, and power consumption management through the power management system.
  • the memory 804 may be used to store software programs and modules.
  • the processor 801 runs the software programs and modules stored in the memory 804 to execute various functional applications and data processing of the smart phone.
  • the memory 804 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a mail receiving function), and the like; the storage data area may store data stored in accordance with the use of the smartphone Created data (such as audio data, phone book), etc.
  • the memory 804 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 805 can be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of a smart phone.
  • the input unit 805 may include a touch screen 8051 and other input devices 8052.
  • the touch screen 8051 also known as the touch panel, can collect the user's touch operations on or near it (such as the operation of the user on the touch screen 8051 or near the touch screen 8051 using any suitable object or accessory such as a finger, a stylus), A preset program drives the corresponding connected device.
  • the touch screen 8051 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 801, and can receive the command sent by the processor 801 and execute it.
  • the touch screen 8051 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the display unit 806 may be used to display information input by the user or information provided to the user and various menus of the smartphone.
  • the display unit 806 may include a display panel 8061.
  • the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch screen 8051 may cover the display panel 8061. After the touch screen 8051 detects a touch operation on or near the touch screen 8051, the touch screen 8051 transmits the touch operation to the processor 801 to determine the type of the touch event, and then the processor 801 displays the type of the touch event on the display panel
  • the 8061 provides corresponding visual output.
  • the touch screen 8051 and the display panel 8061 are implemented as two independent components to implement the input and output functions of the smart phone, in some embodiments, the touch screen 8051 and the display panel 8061 can be integrated to realize intelligence. Input and output functions of mobile phones.
  • the audio circuit 807, the speaker 8071, and the microphone 8072 are used to provide an audio interface between the user and the smart phone.
  • the audio circuit 807 can transmit the received electrical data converted electrical signal to the speaker 8071, which is converted by the speaker 8071 into a sound signal and output; on the other hand, the microphone 8072 converts the collected sound signal into an electrical signal, and the audio circuit 807 After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 802 for sending to, for example, another smart phone, or the audio data is output to the memory 804 for further processing.
  • the smart phone may further include various sensors (such as a gyroscope sensor, a hygrometer sensor, an infrared sensor, or a magnetometer sensor), a Wi-Fi module, a Bluetooth module, a casing, and the like. It is not shown in FIG. 8.
  • the network device 702 shown in FIG. 7 may be a base station, and each constituent component of the base station is specifically described below with reference to FIG. 9.
  • the base station includes: a baseband processing unit (BBU), a radio remote unit (RRU), and an antenna.
  • BBU baseband processing unit
  • RRU radio remote unit
  • the BBU and RRU can be connected by optical fibers, and the RRU is then connected through a coaxial cable.
  • the power divider is connected to the antenna, generally one BBU can connect multiple RRUs.
  • the RRU can include four modules: a digital intermediate frequency module, a transceiver module, a power amplifier module, and a filter module.
  • the digital IF module is used for modulation and demodulation, digital up-down conversion, digital-to-analog conversion, etc. of the optical transmission;
  • the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal; and then it is amplified by the power amplifier module and filtered by the filter module to pass the radio frequency signal through the antenna Launch out.
  • the BBU is used to complete the baseband processing functions (coding, multiplexing, modulation, and spreading, etc.) of the Uu interface (that is, the interface between the terminal device and the base station), the radio network controller (RNC), and the base station.
  • the parameter configuration method in the terminal and network device configuration bandwidth section will be described in detail below with reference to the drawings.
  • the parameter configuration method may also be executed by a chip built in a terminal device or a chip built in a network device, which is not limited in the embodiment of the present application.
  • FIG. 10 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 10, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP.
  • the parameters of the second type of BWP may include BWP public parameters or BWP specific parameters.
  • BWP public parameters refer to parameters sent through public information, or may be parameters configured for a group of terminal devices.
  • a group of terminal devices may include one or more devices.
  • a group of terminal devices may be all terminal devices in a cell or some terminal devices in a cell.
  • the BWP common parameters can be indicated by the network device to the terminal device through high-level signaling.
  • the high-level signaling may be radio resource control (RRC) signaling or media access control (MAC) layer signaling.
  • RRC radio resource control
  • MAC media access control
  • a BWP common (bwp-common) domain in RRC signaling is used to indicate to the terminal device.
  • the BWP common parameters may be broadcast to each terminal device through a system message, and the BWP common parameters received by each terminal device are the same.
  • physical downlink control channel physical downlink control channel, PDCCH
  • physical downlink shared channel PDSCH
  • physical uplink control channel physical uplink control channel
  • PUCCH physical uplink control channel
  • the common parameters (channle, PUSCH) configuration may be BWP common parameters.
  • BWP special parameters refer to the parameters sent by the network equipment to the terminal equipment through dedicated information or terminal equipment level signaling. Different terminal equipment parameter values are independently configured. Different terminal equipment parameter values may be the same or different. This application is not limited.
  • the BWP-specific parameters may be parameters that can be configured for each BWP, and the specific parameters of different BWPs may be different or the same, which is not limited in the embodiment of the present application.
  • the BWP-specific parameters can be indicated by the network device to the terminal device through high-level signaling.
  • Higher layer signaling can be RRC signaling or MAC layer signaling.
  • the BWP-dedicated domain in the RRC signaling indicates the terminal device.
  • the dedicated parameters may be indicated to the terminal equipment through RRC signaling, and the dedicated parameters received by each terminal equipment may be the same or different.
  • the dedicated parameters configured for the PDCCH and PDSCH may be BWP-specific parameters.
  • the parameter types of the second type of BWP are used to distinguish two different parameters. It can be understood that the parameters of the two types of BWPs with different functions can be regarded as two different parameter types. In the embodiment of the present application, the parameter determination rules corresponding to different parameter types of the second type of BWP may be different or the same.
  • the parameter value of the parameter of the second type of BWP may be determined according to the parameter determination rule.
  • the parameter determination rule may also be called a rule, a parameter rule, or another name, which is not limited in the present application.
  • the parameter value of the second type of BWP may be a parameter value or a candidate value of the parameter value, where the candidate value may be composed of multiple parameter values.
  • the candidate value of the parameter value may be expressed as a parameter value list.
  • the N frequency band resources may be N first type BWPs. Therefore, for each frequency band of the N frequency band resources, Resources can be configured with BWP public parameters and BWP specific parameters.
  • the parameter determination rule may be a first rule, that is, a parameter value of the second type of BWP is determined according to a parameter value of the M-band frequency domain resource.
  • the M-band frequency domain resource is an M-band frequency domain resource included in the N-band frequency domain resource, where M is an integer greater than or equal to 1 and less than or equal to N.
  • the M-band frequency domain resource is the M-1 band frequency domain resource and the main frequency domain resource included in the N-band frequency domain resource, or the M-band frequency domain resource is the M-1 band frequency included in the N-band frequency domain resource.
  • Domain resources and default frequency domain resources, or M band frequency domain resources are M-1 band frequency domain resources and frequency domain resources used for initial access included in N band frequency domain resources, and M is an integer greater than or equal to 1.
  • the parameter value of the second type of BWP is determined according to the parameter value of the N-band frequency domain resource included in the second type of BWP.
  • a second type of BWP includes a first frequency domain resource and a second frequency domain resource.
  • the parameter value of the second type of BWP may be determined according to the parameter value of the first frequency band resource and / or the parameter value of the second frequency band resource.
  • a second type of BWP includes three frequency domain resources in a first frequency domain resource, a second frequency domain resource, and a third frequency domain resource.
  • the parameter value of the second type of BWP may be determined according to the parameter value of the first frequency domain resource and the parameter value of the second frequency domain resource.
  • the parameter value of the second type of BWP is determined according to the parameter value of the first frequency domain resource and the parameter value of the third frequency domain resource.
  • a parameter value of the second type of BWP is determined according to a parameter value of the second frequency domain resource and a parameter value of the third frequency domain resource.
  • parameter values of the second type of BWP may be pre-configured or determined according to preset rules based on the parameter values of the frequency band resources of the N frequency band resources included in the second type of BWP. The determination may also be notified to the terminal device by the base station through signaling.
  • the parameter values of the second type of BWP can be determined according to at least two frequency domain resource parameter values.
  • the preset rule may include determining The value of M, and determine which frequency-domain resources the M-band frequency-domain resources are.
  • any one of the determined M-band frequency domain resources may be a frequency domain resource included in the second type of BWP, or may be a frequency domain resource not included in the second type of BWP.
  • it may be Frequency domain resources for initial access, main frequency domain resources or default frequency domain resources.
  • the determination of the value of M may be determined according to at least one of the following methods:
  • It can be predefined, such as specifying the number of frequency domain resources included in the second type BWP, or +1 the number of frequency domain resources included in the second type BWP (for example, if the second type BWP does not When the initial access frequency domain resource or the main frequency domain resource or the default frequency domain resource is included, it can be determined not only according to the parameters of the included frequency domain resources, but also according to the parameters of the frequency domain resources not included).
  • a predefined number for example, the protocol is predefined as M frequency domain resources, and M may be a positive integer.
  • the base station may indicate M frequency domain resources, and M may be a positive integer.
  • the determination of which frequency domain resources of the M-band frequency domain resources can be determined according to the following methods:
  • the frequency domain resources are determined according to the identifier size of the frequency domain resources. For example, if the frequency domain resources included in the second BWP are frequency domain resources X1, frequency domain resources X2, and frequency domain resources X3. If the determined value of M is less than 3, which frequency domain resources can be determined according to the size of the frequency domain resource identifier. For example, if the frequency domain resource identifier is small, if X1 ⁇ X2 ⁇ X3, then the parameter value of the second BWP is determined according to the parameter value of the frequency domain resource X1 and the parameter value of the frequency domain resource X2.
  • the parameter value of the second BWP is determined according to the parameter value of the frequency domain resource X2 and the parameter value of the frequency domain resource X3.
  • the base station can indicate M, and M can be a positive integer.
  • the parameter values of the second type of BWP are related to the parameter values of the frequency domain resources, and the parameter values can be determined according to the method in this application.
  • the terminal device may pre-configure the parameter values of the N-band frequency domain resources and the identifiers corresponding to the N-band frequency domain resources, and determine the second type of BWP according to the parameter values of the M-band frequency domain resources.
  • M frequency domain resource identifiers sent by the network device can be received, and the parameter values of M frequency domain resources are obtained according to the M frequency domain resource identifiers.
  • the frequency domain resources corresponding to the M frequency domain resource identifiers are pre-configured for the terminal device. Frequency-domain resources in the N-band frequency-domain resources.
  • the terminal device may also receive the parameter value of the M-band frequency domain resource sent by the network device.
  • the second type may also be determined only according to the parameter values of the frequency-domain resources not included in the second-type BWP.
  • the parameter value of the BWP for example, the terminal device may determine the parameter value of the second type of BWP according to the parameter value of the frequency domain resource used for initial access, the parameter value of the main frequency domain resource, or the parameter value of the default frequency domain resource.
  • the parameter value of the frequency domain resource used for initial access, the parameter value of the main frequency domain resource, or the parameter value of the default frequency domain resource determines that the parameter value of the second type of BWP is not included in the second type of BWP. .
  • the parameter determination rule may be a second rule, that is, the terminal device determines a parameter value of the second type of BWP according to an attribute of a frequency domain resource.
  • the attribute of the frequency domain resource may refer to whether the frequency domain resource is a frequency domain resource used for initial access, or whether the frequency domain resource is a main frequency domain resource, or whether the frequency domain resource is Is the default frequency domain resource.
  • the terminal device determines a parameter value of the second type of BWP according to a parameter value of a frequency domain resource used for initial access, or determines a parameter value of the second type of BWP according to a parameter value corresponding to a main frequency domain resource or a pre-configured frequency domain resource.
  • the frequency domain resources used for initial access may refer to the frequency domain resources used by the terminal device to perform synchronization and / or access, or to receive a synchronization signal, or to transmit a system information block (system information block (SIB) 1).
  • SIB system information block
  • a BWP whose BWP identifier is 0 may be a frequency domain resource used for initial access.
  • the main frequency domain resource may refer to a frequency domain resource for transmitting a PDCCH, or the main frequency domain resource may be a frequency domain resource of a common search space including the PDCCH.
  • SIB1 is used to transmit system information. Terminal equipment can obtain parameters or information related to cell access according to SIB1.
  • the incoming frequency domain resources, main frequency domain resources, or default frequency domain resources may be frequency domain resources that do not belong to the second type of BWP, or may be frequency domain resources that belong to the second type of BWP. This application is not limited. . It is assumed that the second type of BWP includes two frequency domain resources, a first frequency domain resource and a second frequency domain resource.
  • the corresponding parameter value of the first frequency domain resource is determined as the parameter value of the second type of BWP. If the second frequency domain resource is a frequency domain resource used for initial access, the corresponding parameter value of the second frequency domain resource is determined as the parameter value of the second type of BWP.
  • the parameter values of the second-type BWP may also be determined according to the parameter values of the frequency-domain resources not included in the second-type BWP and the parameter values of the frequency-domain resources included in the second-type BWP.
  • the parameter configuration method provided in the embodiment of the present application enables a network device or a terminal device to determine parameters of a second type of BWP in a discrete frequency spectrum, and receives or Sending data effectively improves the utilization of the discrete spectrum and improves system performance.
  • determining the parameter value of the second type of BWP according to the parameter value of the M-band frequency domain resource may specifically include the following implementation manners.
  • a parameter value of the second type of BWP may be determined from M parameter values of the M-band frequency domain resource according to the identifier of the M-band frequency domain resource.
  • FIG. 11 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 11, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1102. Determine the parameter value of the second type of BWP according to the parameter value of the frequency domain resource corresponding to the largest identifier among the identifiers of the M-band frequency domain resources.
  • the identification of the frequency domain resource may also be referred to as an index of the frequency domain resource.
  • a second type of BWP includes two frequency domain resources.
  • the first frequency domain resource is identified by 0 and the second frequency domain resource is identified by 1.
  • the identifier of the first frequency domain resource and the identifier of the second frequency domain resource are compared. Since the identifier of the second frequency domain resource is greater than the identifier of the first frequency domain resource, the parameter value of the second frequency domain resource is determined as
  • the parameter value of the second type of BWP that is, the terminal device or the network device uses the parameter value of the second frequency band resource included in the second type of BWP when sending or receiving data through the frequency domain resource of the second type of BWP.
  • the parameters or parameter types of the second type of BWP may include data scrambling identifiers.
  • the data scrambling identifier may be used to determine an initial value of a data scrambling sequence according to the data scrambling identifier.
  • a second type of BWP includes two frequency domain resources.
  • the data scrambling identifier of the first frequency domain resource configuration is D1
  • the data scrambling identifier of the second frequency domain resource configuration is D2.
  • the terminal device or the network device uses the frequency domain resources of the second type of BWP to send or receive data
  • the terminal device or the network device may use the parameter value of the second frequency domain resource included in the second type of BWP.
  • the data scrambling identifier configured with the second frequency domain resource configuration may be D2.
  • the parameters or parameter types of the second type of BWP may include a resource block group (RBG) size.
  • the RBG size refers to the number of RBs included in the RBG, such as a positive integer such as 2, 4, and 8.
  • the RBG size may be related to the downlink system bandwidth or the BWP bandwidth, etc., or may be configured by the network device to the terminal device.
  • the unit In the resource allocation time-frequency domain, the unit may be RB, or the unit may be RBG.
  • the configuration information RBG size (such as rbg-size) may be used to indicate the size of the RBG used by the terminal device or the network device under the resource allocation type 0, for example, the size of configuration 1 or the size of configuration 2 may be used. For example, as shown in Table 2, under different BWP bandwidths, the corresponding RBG size under configuration 1 or configuration 2 can be used.
  • a second type of BWP includes two frequency domain resources.
  • the RBG size of the first frequency domain resource configuration corresponds to configuration 1 and the RBG size of the second frequency domain resource configuration corresponds to configuration 2.
  • the terminal device or the network device uses the frequency domain resources of the second type of BWP to send or receive data
  • the terminal device or the network device may use the parameter value of the second frequency domain resource included in the second type of BWP.
  • the size of the RBG configured by using the second-band frequency domain resource may be the RBG size determined according to the bandwidth and configuration 2 of the second-band frequency domain resource.
  • FIG. 12 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 12, the method may include:
  • a parameter determination rule is determined according to a parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1202. Determine the parameter value of the second type of BWP according to the parameter value of the frequency domain resource corresponding to the smallest identifier in the M-band frequency domain resource identifier.
  • a second type of BWP includes two frequency domain resources.
  • the first frequency domain resource is identified by 0 and the second frequency domain resource is identified by 1.
  • the identifier of the first frequency domain resource and the identifier of the second frequency domain resource are compared. Since the identifier of the first frequency domain resource is smaller than the identifier of the second frequency domain resource, the parameter value of the first frequency domain resource is determined as
  • the parameter values of the second type of BWP that is, when a terminal device or a network device uses the frequency domain resources of the second type of BWP to send or receive data, the parameter values of the first frequency domain resources included in the second type of BWP are used.
  • the parameter or parameter type of the second type of BWP is a resource block group (RBG) size.
  • a second type of BWP includes two frequency domain resources.
  • the RBG size of the first frequency domain resource configuration corresponds to configuration 1 in Table 1.
  • the RBG size of the second frequency domain resource configuration corresponds to configuration 2 in Table 1. .
  • the terminal device or the network device may use the parameter value of the first frequency domain resource included in the second type of BWP.
  • the RBG size configured using the first frequency domain resource may be the RBG size determined according to the bandwidth and configuration 1 of the first frequency domain resource.
  • the parameter or parameter type of the second type of BWP is a data scrambling identifier.
  • a second type of BWP includes two frequency domain resources.
  • the data scrambling identifier of the first frequency domain resource configuration is D1
  • the data scrambling identifier of the second frequency domain resource configuration is D2.
  • the terminal device or the network device may use the parameter value of the first frequency domain resource included in the second type of BWP.
  • the data scrambling identifier configured with the first band of frequency domain resources may be D1.
  • FIG. 13 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 13, the method may include:
  • a parameter determination rule is determined according to a parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1302. Determine the parameter value of the second type of BWP according to the parameter value of the frequency domain resource corresponding to the specific identifier among the identifiers of the M-band frequency domain resources.
  • the specific identifier may be an identifier pre-configured for the terminal device and the network device, for example, may be preset by a protocol.
  • the parameter value of the frequency domain resource corresponding to the first identifier of the M-band frequency domain resource identifier is determined as the parameter value of the second type of BWP.
  • a second type of BWP includes three frequency domain resources, the first frequency domain resource identifier is 0, the second frequency domain resource identifier is 1, and the third frequency domain resource identifier is 2.
  • the parameter value of the frequency domain resource corresponding to the first identifier of the three segments of the frequency domain resource identifier is determined as the parameter value of the second type of BWP.
  • the parameters of the second type of BWP are data scrambling identifiers.
  • the first type of BWP is used.
  • the specific identifier may be an identifier received from a network device.
  • the network device may send instruction information to indicate the specific identifier, and the terminal device determines the specific identifier according to the instruction information, and then determines the parameter value of the second type of BWP according to the parameter value of the frequency domain resource corresponding to the specific identifier.
  • the indication information may be sent through high-level signaling, or may be sent through physical layer information.
  • the specific identifier may be an identifier of a frequency domain resource that is initially accessed.
  • the parameter values of the second-type BWP may be determined from the M parameter values of the M-band frequency domain resources according to the parameter values of the M-band frequency domain resources.
  • FIG. 14 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 14, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1402. Determine the parameter value of the second type of BWP according to the largest parameter value among the parameter values of the M-band frequency domain resources.
  • the parameter or parameter type of the second type of BWP is a PDSCH aggregation factor (pdsch-aggregation factor).
  • the PDSCH aggregation factor is used to indicate the number of timeslots of PDSCH continuous transmission in one scheduling. For example, if the aggregation factor is set to 2, it means that the PDSCH can be transmitted on 2 time slots.
  • a second type of BWP includes a first frequency domain resource and a second frequency domain resource.
  • the aggregation factor for frequency domain resource allocation in the first stage is f1
  • the aggregation factor for frequency domain resource allocation in the second stage is f2.
  • the terminal device or network device may use the aggregation factor of the first frequency domain resource configuration, which may be f1. For transmitting PDSCH in this second type of BWP.
  • FIG. 15 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 15, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1502. Determine the parameter value of the second type of BWP according to the smallest parameter value among the parameter values of the M-band frequency domain resources.
  • the parameter or parameter type of the second type of BWP is a PDSCH aggregation factor.
  • a second type of BWP includes two frequency domain resources in the first frequency domain resource and the second frequency domain resource.
  • the aggregation factor for frequency domain resource allocation in the first stage is f1
  • the aggregation factor for frequency domain resource allocation in the second stage is f2. If the aggregation factor f1 of the first frequency domain resource configuration is greater than the aggregation factor f2 of the second frequency domain resource configuration, at this time, the terminal device or the network device may use the aggregation factor of the second frequency domain resource configuration, which may be f2. For transmitting PDSCH in this second type of BWP.
  • FIG. 16 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 16, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1602. Determine the parameter value of the second type of BWP according to the average value of the parameter values of the M-band frequency domain resources.
  • the parameters of the second type of BWP are or parameter type PDSCH aggregation factors.
  • a second type of BWP includes two frequency domain resources, a first frequency domain resource and a second frequency domain resource.
  • the aggregation factor for frequency domain resource allocation in the first stage is f1
  • the aggregation factor for frequency domain resource allocation in the second stage is f2.
  • the terminal device or the network device may use the average value of the aggregation factor of the first frequency band resource configuration and the aggregation factor of the second frequency band resource configuration as the aggregation factor of the second type of BWP, that is, (f1 + f2) / 2. Used to transmit PDSCH in this second type of BWP.
  • the average value of the parameter values of the M-band frequency domain resources may also be multiplied by the scale factor as the aggregation factor of the second type of BWP, or the parameter values of the candidate values and the M-band frequency domain resources may also be used.
  • the candidate value with the smallest difference in the average value is used as the aggregation factor of the second type of BWP, or the parameter value after rounding up or down the average value of the parameter value of the M-band frequency domain resource is used as the second type of BWP Aggregation factor.
  • the average value of f1 and f2 in 1, 2, 4, and 8 can be calculated.
  • the value with the smallest difference is used as the aggregation factor of the second type of BWP, or the value with the smallest absolute value of the difference from the average value of f1 and f2 in 1, 2, 4, and 8 can be used as the aggregation of the second type of BWP.
  • the aggregation factor of this second type of BWP is 4, and PDSCH is transmitted in the second type of BWP.
  • FIG. 17 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 17, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1702. Determine the candidate value of the parameter value of the second type BWP according to the union of the candidate value of the parameter value of the M-band frequency domain resource.
  • the parameters or parameter types of the second type of BWP are time domain resource allocation of PDSCH.
  • a time domain resource allocation list (pdsch-time domain allocation list) is used to indicate a candidate time domain resource allocation set for PDSCH.
  • the network device may configure one or more candidate time domain resource allocations for the terminal device through high-level signaling, and may indicate one of the candidates in the DCI as a PDSCH time domain resource allocation configured by the network device for the terminal device.
  • a second type of BWP includes two frequency domain resources in the first frequency domain resource and the second frequency domain resource.
  • the time domain resource allocation list of the first frequency domain resource configuration includes x1 to x16 lines, and the second frequency
  • the time domain resource allocation list for domain resource configuration includes lines y1 to y16.
  • the number of rows included in the specific time domain resource allocation list may refer to the introduction of the existing technology or its evolution, which is not limited in the embodiment of the present application.
  • a row of the time domain resource allocation list may correspond to a specific time domain resource allocation.
  • the time-frequency resource list may also exist in a column manner.
  • a column of the time-domain resource allocation list may correspond to a specific time-domain resource allocation.
  • the time domain resource allocation list included in the first frequency domain resource allocation list includes rows x1 to x8 and the time domain resource allocation list included in the second frequency domain resource allocation list includes y1 to y8.
  • the candidate values of the time domain resource allocation list of the second type of BWP may include x1 to x8 lines or y1 to y8 lines, x9 to x16, and y9 to y16.
  • the number of rows included in the time domain resource allocation list of the second type of BWP can be determined according to the following method.
  • the candidate values of the parameter values of each frequency domain resource can be taken as half each.
  • the above-mentioned time domain resource allocation list of the second type of BWP may include x1 to x8 lines and the second paragraph included in the time domain resource allocation list of the first frequency domain resource configuration.
  • the time-domain resource allocation list for frequency-domain resource configuration includes y1 to y8.
  • the remaining number of rows included in each time-domain resource allocation list of each frequency-domain resource configuration is taken as half.
  • the above-mentioned time domain resource allocation list of the second type of BWP may include x1 to x8 or y1 to y8, x9 to x12, and y9 to y12.
  • the order of the candidate values obtained by the combination needs to be determined. Or it may be called identifying the multiple candidate values.
  • the network device indicates the parameter value of the second type of BWP for the terminal device through the DCI, the identifier of at least one candidate value among the multiple candidate values may be indicated, and the terminal device determines the network device according to the identifier of the at least one candidate value The parameter value configured for it.
  • the ranking of the candidate values of the parameter values of the second type of BWP may be determined according to the identifier of the M-band frequency domain resource, or determined according to the attributes of the M-band frequency domain resource.
  • a second type of BWP includes two frequency domain resources, a first frequency domain resource and a second frequency domain resource.
  • the identifier of the first frequency domain resource is X1
  • the identifier of the second frequency domain resource is X2.
  • the order of the small identifier is first, and the order of the large identifier is later, then the parameters of the second type of BWP
  • the order of the candidate values of the values is that the candidate value of the parameter value corresponding to the frequency domain resource X1 comes first, and the candidate value of the parameter value corresponding to the frequency domain resource X2 comes later.
  • the third column of Table 3 is optional.
  • the overlapping candidate values in Table 3 may be sorted before the candidate value of the frequency domain resource X1, or after the candidate value of the frequency domain resource X1, or may be sorted by the candidate value of the frequency domain resource X2. Before, or after the candidate values of the frequency domain resource X2 are sorted, there is no specific limitation.
  • a sorting rule of candidate values of parameter values of the second type of BWP may be predefined, or may be notified by the base station to the UE.
  • FIG. 18 is a flowchart of a parameter configuration method according to an embodiment of the present application. As shown in FIG. 18, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a first rule.
  • S1802. Determine the candidate value of the parameter value of the second type of BWP according to the intersection of the candidate value of the parameter value of the M-band frequency domain resource.
  • the parameters or parameter types of the second type of BWP are time domain resource allocation of PDSCH.
  • a second type of BWP includes a first frequency domain resource and a second frequency domain resource.
  • the time domain resource allocation list of the first frequency domain resource configuration includes x1 to x16 lines
  • the time domain resource allocation list of the second frequency domain resource configuration includes y1 to y16 lines.
  • the time domain resource allocation list included in the first frequency domain resource allocation list includes the lines x1 to x4
  • the time domain resource allocation list included in the second frequency domain resource allocation list includes the same line y10 to y14.
  • the x12 to x16 lines included in the time domain resource allocation list are the same as the y4 to y8 lines included in the time domain resource allocation list of the second frequency domain resource configuration.
  • the candidate values in the time domain resource allocation list of the second type of BWP may include x1 to x4 lines or 10 to y14, and x12 to x16 lines or y4 to y8 lines.
  • the candidate value of a parameter value may sometimes be referred to as a candidate value of a parameter.
  • the order of the candidate values obtained by the combination needs to be determined, or It may be referred to as identifying the multiple candidate values.
  • the network device indicates the parameter value of the second type of BWP for the terminal device through the DCI, the identifier of at least one candidate value among the multiple candidate values may be indicated, and the terminal device determines the network device according to the identifier of the at least one candidate value The parameter value configured for it.
  • the ranking of the candidate values of the parameters in the second type of BWP may be determined according to the identifier of the frequency domain resource, or determined according to the attributes of the frequency domain resource. For example, for the frequency domain resource where the candidate value of the parameter in the second type of BWP is located, it is determined according to the order of the candidate value of the parameter in the frequency domain resource corresponding to the smallest identifier in the identifier of the frequency domain resource in which it is located, or The candidate value of the parameter in the frequency domain resource corresponding to the largest identifier in the identifier of the frequency domain resource in which it is located is determined, or is determined according to the order of the candidate value of the parameter in the frequency domain resource corresponding to the specific identifier.
  • the ordering of the candidate values of the parameters of the second type of BWP may be according to the order in the first frequency domain resource, as shown in the first column and the second column of Table 4.
  • the ranking of the candidate values of the parameters of the second type of BWP may be based on the ranking in the second frequency domain resource, as shown in the first and third columns of Table 4.
  • each frequency domain resource can use a unified time domain resource allocation for data transmission. To ensure that the time domain resources of each frequency domain resource are available.
  • a portion of the candidate value of the parameter value of each frequency-domain resource may be selected from the candidate value of the M-band frequency domain resource as a second value.
  • Candidate values for parameter values of class BWP. Further, the number or proportion of candidate values taken may be determined according to the priorities of the M-band frequency domain resources.
  • the priority and / or parameter selection method may be predefined by the protocol, or may be notified by the base station to the terminal through signaling. For example, the priority of selecting candidate values is determined according to the identifier of the frequency domain resource and / or the attributes of the frequency domain resource.
  • the priority of the frequency domain resource (or the main frequency domain resource or the default frequency domain resource) used for initial access may be higher than the priority of the normal frequency domain resource, or the priority of the frequency domain resource with a small identifier It may have a larger priority than the identification of the frequency domain resource.
  • the second type of BWP including the M-band frequency domain resource is included.
  • the candidate values of the time domain resource allocation list may include some or all of the candidate values of the time domain resource allocation list of the frequency domain resource configuration.
  • X / M rows may be taken from each frequency domain resource included in the second type of BWP. Or round up to X / M or round down to X / M, as a parameter of the time domain resource allocation list of the second type of BWP. Or, select the parameter value in each frequency domain resource according to the proportion.
  • some or all of the candidate values are selected from the candidate values of the parameters of a section of the frequency domain resource, and some or all of the candidates of the parameter values of the second type of BWP where the section of the frequency domain resource is located
  • the value can also be described as: some or all of the candidate values of the parameters of the second type of BWP where the frequency domain resource is located include the candidate values of the parameters of the frequency domain resource.
  • the parameter values of the Q-band frequency domain resources can also be selected from the M-band frequency domain resources, and the second type is determined according to the union of the candidate values of the parameter values of the Q-band frequency domain resources in the M-band frequency domain resources.
  • Candidate values for parameter values of BWP are determined according to the intersection of the candidate values of the parameter values of the Q-band frequency domain resources in the M-band frequency domain resources.
  • Q is an integer greater than or equal to 2 and less than or equal to M.
  • the method for calculating the transmission block size (TBS) in the parameters of the second type of BWP is used as an example to describe the method in the embodiment of the present application.
  • the overhead configuration for calculating the transmission block size is used to indicate the number of REs occupied by the overhead.
  • the value of the overhead parameter for calculating the transmission block size may be other positive integers such as 0, 6, 8, 12, and 18.
  • the TBS is calculated according to the time frequency resources scheduled by the data minus the number of REs occupied by the overhead.
  • the second type of BWP includes two frequency domain resources, namely the first frequency domain resource X1 and the second frequency domain resource X2. If the cost configured for frequency domain resource X1 is set to o1, the cost configured for frequency domain resource X2 is set to o2.
  • the specific value of the cost may be at least one of the values described in the above description, or may be other values. The specific value is not limited.
  • the method for determining the parameters of the second type of BWP may be at least one of the following methods:
  • Method 1) Determine according to the maximum value of the parameter values of the frequency domain resources.
  • the parameter value of the second type of BWP overhead can be o1.
  • the maximum value of the overhead of each frequency domain resource can be considered when data transmission on the second type of BWP, and the overhead of all unavailable REs can be considered when transmitting data.
  • the calculated TBS will be small, and the code The rate is reduced, which will not cause the performance to deteriorate due to exceeding the maximum code rate.
  • the disadvantage is that the amount of data transmitted is smaller.
  • Method 2 Determine according to the minimum value of the parameter values of the frequency domain resources.
  • the parameter value of the second type of BWP overhead can be o2.
  • the minimum value of the overhead of each frequency domain resource can be considered when data transmission on the second type of BWP, and the minimum unavailable RE overhead can be considered when transmitting data.
  • the calculated TBS will be too large. Maximize data transmission and improve data throughput.
  • the disadvantage is that the bit rate becomes larger, which may result in poor performance due to the large bit rate.
  • Method 3 Determine according to an average value or a sum or multiplication of a parameter value of at least two frequency domain resources.
  • a parameter value of the second type of BWP is determined according to an average of parameter values of at least two frequency domain resources. For example (o1 + o2) / 2, or round up or down. Or after averaging, if the specified values are only 6, 8, 12, and 16, the smallest absolute value of the difference between (6, 8, 12, and 16) and (o1 + o2) / 2 can be used as the value.
  • the parameter value of the second type of BWP is 8. That is, the value of the overhead parameter of the second type of BWP can be (o1 + o2) / 2, or rounded up or down, or the nearest qualified value can be found after further value.
  • the parameter values of the second type of BWP are determined according to the parameter values of at least two frequency domain resources multiplied by the scale factor. For example, o1 * w1 + o2 * w2, or (o1 + o2) * w3, or you can further round up or down. Or multiply by the scale factor if the specified values are only 6, 8, 12, and 16. Then find the value with the smallest absolute value of the difference from 6, 8, 12, and 16 as the parameter value of the second type of BWP.
  • the scale factors w1, w2, and w3 are real numbers, such as 0.2, 0.8, 0.4, and so on.
  • the scale factor values can be predefined by the protocol or can be notified to the terminal device by the network device through signaling.
  • the cost parameter value of the second type of BWP or BWP bundle or BWP group can be o1 * w1 + o2 * w2, or (o1 + o2) * w3, or the nearest qualified value can be found after further value selection.
  • the parameter values of the overhead of each frequency domain resource can be fully taken into account when performing data transmission on the second type of BWP, and the overhead of reasonable unavailable REs can be taken into account when transmitting data. It will not be too small, so it can carry out data transmission reasonably and effectively and improve data throughput.
  • Method 4 Determine according to parameter values of at least two frequency domain resources.
  • multiple TBS values can be determined for the parameter values of multiple frequency domain resources allocated in the second type of BWP or BWP bundle or BWP group, and then the multiple TBS values can be added together.
  • the second type of BWP or BWP bundle or BWP group includes frequency domain resource X1 and frequency domain resource X2. If the cost of the frequency domain resource X1 is set to o1, the cost of the frequency domain resource X2 is set to o2.
  • Resources allocated according to data scheduling for example, the time-frequency resource allocated on the frequency domain resource X1 in the second type of BWP is R1, and the number of available REs when calculating the TBS for the resource on the frequency domain resource X1 can be determined according to R1-o1 Or, you can further subtract RE of other reference signals, such as DMRS, etc., or have other operations, which are not limited in this application, and the TBS on the frequency domain resource X1 is TBS1.
  • the time-frequency resource allocated on the frequency domain resource X2 in the second BWP is R2, and the number of available REs when calculating the TBS for the resource on the frequency domain resource X2 can be determined according to R2-o2, or further can be subtracted from other
  • the RE of the reference signal, such as DMRS, or other operations, is not limited in this application, and the TBS on the frequency domain resource X2 is TBS2.
  • TBSs corresponding to multiple frequency domain resources can be determined according to the respective scheduled resources and respective overheads of multiple frequency domain resources.
  • the TBS of the second type of BWP may be further determined according to at least one of the following methods:
  • A1 Add multiple TBSs to obtain a temporary TBS, and then perform at least one of the subsequent TBS processing, such as finding the nearest TBS according to the table, or quantifying the temporary TBS by 8 times, or cutting the code block And so on.
  • the processed TBS is used as the TBS of the second type of BWP.
  • A2 Perform at least one of the subsequent TBS processing on multiple TBSs separately, such as finding the nearest TBS according to the table, or quantifying the TBS by 8 times, or performing other processing such as coding block cutting. Then add the processed TBSs to get the TBS of the second type of BWP.
  • the above-mentioned method A1 is specifically adopted, which method of the method A2 may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • the corresponding TBS on each frequency domain resource can be calculated for the parameter value of the cost on each frequency domain resource during data transmission on the second type of BWP, which can make it possible to consider a reasonable unavailable RE when transmitting data.
  • the calculated TBS will be too large and not too small, and data transmission is performed reasonably and efficiently to improve data throughput.
  • which one of the above methods 1), 2), 3), and 4) is specifically adopted may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application This is not limited.
  • any one of the above methods 1), 2), 3), and 4) can also be applied to other parameters of the second type of BWP.
  • this application does not limit this.
  • the other parameters may be any parameters described in the embodiments of the present application.
  • the parameter determination rule is the second rule
  • the following specific implementation manners may be included, for example, the following method 1 to method 3.
  • FIG. 19 is a flowchart of a parameter configuration method (method 1 of a second implementable manner) according to an embodiment of the present application. As shown in FIG. 19, the method may include:
  • a parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is a second rule.
  • S1902. Determine a parameter value of the second type of BWP according to a parameter value of a frequency domain resource used for initial access.
  • FIG. 20 is a flowchart of a parameter configuration method (method 2 in a second implementable manner) according to an embodiment of the present application. As shown in FIG. 20, the method may include:
  • the embodiment of the present application may also provide a parameter configuration method (method 3 of the second implementable manner), which may include:
  • the parameter determination rule is determined according to the parameter type of the second type of BWP, and the parameter determination rule is the second rule.
  • the parameter value of the second type of BWP is determined according to the parameter value corresponding to the default frequency domain resource.
  • the frequency domain resource or the main frequency domain resource or the default frequency domain resource that is initially accessed may be a frequency domain resource included in the second type of BWP.
  • a second type of BWP includes two frequency domain resources, a first frequency domain resource and a second frequency domain resource. If the first frequency domain resource is a frequency domain resource used for initial access, the corresponding parameter value of the first frequency domain resource is used to determine the parameter value of the second type of BWP. If the second frequency domain resource is a frequency domain resource used for initial access, the corresponding parameter value of the second frequency domain resource is used to determine the parameter value of the second type of BWP.
  • the parameter values of the second type of BWP may also be determined by referring to both the identifier of the M-band frequency domain resource and the attributes of the frequency domain resource. For example, if there are two main frequency domain resources in the second type of BWP, a parameter value that identifies a smaller frequency domain resource in the main frequency domain resource may be selected as the parameter value of the second type of BWP.
  • the corresponding parameter determination rules may be different or the same.
  • the configuration for PDSCH or PUSCH or semi-persistent scheduling (SPS) or configuration scheduling may include one or more of the following parameters:
  • the data scrambling identifier may be determined by using method 1 or method 2 in the first implementable manner, or any method in the second implementable manner.
  • a downlink demodulation reference signal (demodulation reference signal, DMRS) configuration is used to indicate a related configuration of the downlink DMRS.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or the method 1 or the second method in the second implementation manner.
  • Transmission configuration indication (TCI) status configuration is used to indicate quasi-colocation (QCL) information.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • the VRB to PRB interleaver is used to indicate that the interleaving is the size of the RB aggregation. For example, it can be 2 RBs or 4 RBs.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • Resource allocation used to indicate a resource allocation type, which may be a resource allocation type 0, a resource allocation type 1, or a resource allocation type 0 and a type 1 dynamic switching.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • a rate matching pattern which is used to indicate a position of a rate-matched resource during data transmission, and no data is transmitted (or received) at the position of the resource.
  • High-level signaling may be configured with one or more rate matching patterns (or sets), and the DCI may instruct one rate matching pattern (or set) to perform rate matching.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • MCS table configuration used to indicate the MCS table used in the DCI scheduling.
  • the modulation mode and / or code rate of the data transmission can be determined.
  • MCS tables for QAM64 and MCS tables for QAM256 there can be MCS tables for QAM64 and MCS tables for QAM256.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • the maximum number of codewords during DCI scheduling is used to indicate the maximum number of codewords during DCI scheduling. For example, it can be 1 codeword or 2 codewords, which will determine the information field in DCI.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • Precoding RB aggregation type used to indicate the number of RB aggregation during precoding. For example, it can be the same precoding for 2 RBs, or the same precoding for 4 RBs, or it can be full bandwidth. Use the same precoding. Joint channel estimation can be performed on RBs using the same precoding to improve channel estimation performance, and different RBs using different precoding can also obtain precoding gain.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • a zero-power channel state information-reference signal (CSI-RS) resource is used to indicate a zero-power CSI-RS resource, and a rate matching indication can be further performed according to the zero-power CSI-RS resource.
  • Sending time can be divided into periodic, aperiodic and semi-persistent.
  • High-level signaling can be configured with one or more zero-power CSI-RS resources, and one can be triggered in DCI for rate matching.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • the physical uplink shared channel (physical uplink shared channel (PUSCH)) may include one or more of the following parameters or parameter types:
  • Transmission configuration which can include pre-coded transmission or non-pre-coded transmission. Can be used to indicate the type of uplink signal transmission.
  • the parameter value may be determined by using the first method in the first implementable manner described above or any method in the second implementable manner.
  • Upstream power control which can be used to indicate related parameters of uplink power configuration.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • Frequency hopping (frequency hopping) configuration which can be mode 1 and mode 2. Used to indicate frequency hopping mode.
  • the parameter value may be determined by using the first method in the first implementable manner described above or any method in the second implementable manner.
  • Frequency hopping offset which is used to indicate the offset of the frequency hopping RB.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • Transform precoder used to indicate whether the uplink transmission is single carrier or multicarrier. If transformPrecoder is enabled, the uplink is a single carrier transmission.
  • the parameter value may be determined by using the first method in the first implementable method or any one of the second implementable methods.
  • Codebook subset configuration used to indicate the type of uplink codebook. For example, it can be non-coherent codebook (nonCoherent), partially coherent codebook and non-coherent codebook (partialAndNonCoherent), coherent codebook and partially coherent. Codebook and non-coherent codebook (fullyAndPartialAndNonCoherent).
  • the parameter value may be determined by using the first method in the first implementable manner described above or any method in the second implementable manner.
  • the maximum rank value (maxrank) is used to indicate the maximum number of uplink data transmission layers.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • the uplink control information is carried in the PUSCH, and is used to indicate related parameters when the uplink control information is carried on the PUSCH.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • the offset value set There can be two types, one is dynamic, and multiple sets can be configured at a high level, and DCI indicates another set. The other is semi-static, that is, only one set is configured at a high level, and no DCI indication is required.
  • the set may include at least one of the following: acknowledgement (ACK) / negative acknowledgement (NACK), that is, the offset of ACK / NACK feedback, channel state information (channel state information, CSI) reporting the first part of the offset, and CSI reporting The second part is offset and so on.
  • the value of the offset is used to determine the number of resources used for ack / nack and CSI when ack / nack and / or CSI is multiplexed on the PUSCH.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • a scaling factor is used to indicate a limit on the number of resources allocated to uplink control information (uplink control information (UCI)) on the PUSCH.
  • uplink control information uplink control information (UCI)) on the PUSCH.
  • the value f0p5 indicates 0.5, which means that the number of UCI resources cannot exceed 1/2 of the PUSCH resources.
  • the value f0p65 represents 0.65, which means that the number of UCI resources cannot exceed 0.65 of the PUSCH resources.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • the SPS may include one or more of the following parameters:
  • Period used to configure the period of SPS transmission.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • hybrid automatic repeat request hybrid automatic repeat request (HARQ) processes
  • HARQ hybrid automatic repeat request
  • a PUCCH resource identifier used to indicate a PUCCH resource.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • the configuration for configuring the scheduling may include one or more of the following parameters:
  • the parameter value can be determined by using the first method or the second method in the first implementation manner, or any one of the second implementation methods.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • the number of repetitions is used to indicate the number of slots or the number of repetitions occupied by one scheduling.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • Repeated redundant version used to indicate the redundant version of each transmission when repeated transmission.
  • the parameter value may be determined by using the first method in the first implementable manner described above or any method in the second implementable manner.
  • Period used to indicate the period of data transmission.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • RRC configured uplink scheduling information.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • the parameter value may be determined by using the first method, the second method, or the third method in the first implementation manner, or any method in the second implementation manner.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • Antenna port indication used to indicate the antenna port and / or the number of layers for data transmission.
  • the parameter value may be determined by using the first method or the second method in the first implementation manner, or any method in the second implementation manner.
  • DMRS sequence initialization used to instruct the DMRS sequence to initialize the scrambling flag.
  • the parameter value may be determined by using the first method, the second method, or the third method in the first implementation manner, or any method in the second implementation manner.
  • Precoding and number of layers used to indicate uplink precoding and number of layers.
  • the parameter value may be determined by using the first method or the third method in the first implementable manner described above, or any one of the second implementable methods.
  • SRS resource indication used to indicate SRS resources and then determine SRS resources with the same large-scale characteristics as the data.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • modulation mode code rate and TBS used to indicate MCS.
  • the parameter value may be determined by using the first method or the second method or the second method.
  • Frequency hopping offset configuration The parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • Path loss reference indication used to indicate the reference signal that the path loss of data transmission can refer to.
  • the parameter value may be determined by using the first implementable manner described above, or the second implementable manner.
  • the parameter value corresponding to the frequency domain resource indicated by the network device may also be determined as the parameter value of the second type BWP, and the terminal device determines the parameter value of the parameter corresponding to the second type BWP according to the indicated parameter value.
  • the network device indicates the first frequency domain resource included in the second type of BWP as a parameter value of the second type of BWP.
  • the network device may send signaling to indicate the frequency domain resource through high-level signaling or physical layer signaling, and the terminal device determines a parameter value of the second type of BWP according to a parameter value corresponding to the frequency domain resource indicated by the network device. .
  • some parameters may be configured for the first type of BWP level, and other parameters may be configured for the second type of BWP level. This can reduce the signaling configuration overhead.
  • the parameters configured for the second type of BWP for a second type of BWP, you can determine the parameters for data transmission on the second type of BWP based on only one parameter value. value.
  • the second-type BWP includes N first-type BWPs.
  • the parameter value of the parameter when the parameter value of the parameter is configured for the second-type BWP, the parameter value of the parameter may be configured for each first-type BWP in the second-type BWP.
  • the second-type BWP includes N first-type BWPs.
  • the parameter value of the parameter is configured for the second-type BWP, and the parameter value of the configuration is adopted when data transmission is performed in the first-type BWP in the second-type BWP.
  • At least one of the following parameters may be configured for the first type of BWP level.
  • the downlink for the downlink, at least one of the following can be configured: the identifier of the BWP, the number of the first PRB (starting RB) and consecutive PRBs, and the configuration of the downlink control channel.
  • the configuration of the downlink control channel may be only for the main BWP or the default BWP configuration.
  • At least one of the following can be configured for the uplink: the BWP identifier, the first PRB (starting RB) and the number of consecutive PRBs, and the configuration of the uplink control channel.
  • the configuration of the uplink control channel may be only for the main BWP or the default BWP configuration.
  • At least one of the following parameters may be configured for the second type of BWP level.
  • At least one of the following can be configured for downlink: subcarrier interval, CP length, PDSCH configuration, SPS configuration, and radio link detection configuration.
  • At least one of the following can be configured for uplink: subcarrier interval, CP length, PUSCH configuration, SRS configuration, and beam failure reconstruction configuration.
  • a parameter value used for data transmission of the second type of BWP may be determined according to a default parameter value.
  • a data scrambling identifier which is used to indicate data scrambling, may be predefined as a cell ID or a UE ID.
  • the parameter value of the downlink DMRS configuration can be predefined as configuration 1, single symbol.
  • TCI status configuration is used to indicate quasi co-location QCL information. It may not be configured by default, and the QCL of the data is determined according to the QCL of the PDCCH.
  • a VRB to PRB interleaver is used to indicate that the interleaving is the size of RB aggregation. For example, it can be 2 RBs or 4 RBs.
  • resource allocation is used to indicate the resource allocation type, which can be resource allocation type 0, resource allocation type 1, resource allocation type 0, and type 1 dynamically switch. Can default to type 1 or default to dynamic switching.
  • PDSCH time domain resource allocation list You can use the predefined time domain resource allocation table or the system information configuration time domain resource allocation table by default.
  • the default value is 1 without aggregation, or the default value is F, and F is a positive integer.
  • rate matching patterns can be not configured by default, and no rate matching is performed.
  • RBG size Such as RBG size. Can default to configuration 1.
  • MCS table configuration Can default to 64QAM MCS table.
  • the maximum number of codewords during DCI scheduling You can default the maximum number of codewords to 1.
  • the precoding RB aggregation type can default to full bandwidth.
  • parameters of the second type of BWP may be determined according to default parameters.
  • the parameters of the second type of BWP may be determined according to the configured parameters.
  • the resource configuration method can also be implemented by other communication devices supporting terminal devices, such as chips in the terminal device, or the resource configuration method can also be implemented by other communication devices supporting network devices, such as being executed by a chip in a network device.
  • Embodiments of the present application This is not limited.
  • the network device and the terminal device can perform data transmission on the resource, for example, can perform downlink data transmission and / or uplink data transmission.
  • FIG. 21 is a flowchart of a resource configuration method according to an embodiment of the present application. As shown in FIG. 21, the method may include:
  • the second type of BWP includes N frequency band resources, where N is a positive integer and N is greater than or equal to 2.
  • a frequency domain resource in the N frequency domain resources may be a first-type BWP.
  • the first type of BWP is a segment of continuous frequency domain resources.
  • the configuration of the first type of BWP may include a frequency starting RB, a bandwidth (BW), and a corresponding parameter (numerology) of the first type of BWP.
  • the bandwidth refers to the number of RBs included in the first type of BWP, and the parameters include at least one of a subcarrier interval and a cyclic prefix.
  • the network device may configure a bandwidth part for the terminal device through the following three offset values (offset).
  • First offset (offset1) the terminal device determines a reference point A according to the reference frequency position (reference location) and the first offset (offset1) relative to the reference frequency position, and determines a common point according to the reference point A
  • 15kHz RB0 and RB1 can correspond to 30kHz RB0
  • 30kHz RB0 and RB1 can correspond to 60kHZ RB0.
  • the reference frequency position is determined according to the RB with the lowest frequency of the synchronization signal block received by the terminal device; for the uplink carrier of the unpaired spectrum primary cell, the reference frequency position is according to the frequency of the synchronization signal block received by the terminal device The lowest RB is determined.
  • the reference frequency position is determined according to the frequency position configured by the base station.
  • This frequency position may correspond to an absolute radio frequency channel number (ARFCN); for the secondary cell, the reference frequency The position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number; for the supplementary uplink carrier, the reference frequency position is determined according to the frequency position configured by the base station, and the frequency position may correspond to an absolute frequency point number.
  • the aforementioned unpaired spectrum may be that in a TDD scenario, the uplink carrier and the downlink carrier are the same carrier, and the uplink carrier and the downlink carrier are unpaired spectrum.
  • the above paired spectrum may be in an FDD scenario, the uplink carrier and the downlink carrier are two carriers, and the uplink carrier and the downlink carrier are the paired spectrum.
  • Second offset (offset2): The terminal device determines the lowest RB position of the virtual carrier according to the reference point A or the common RB0 and a second offset from the reference point A or the common RB0.
  • the terminal device may also The virtual carrier bandwidth configured by the network device determines the virtual carrier. Among them, the virtual carrier can also be called a logical carrier, a terminal device specific carrier, an available RB, an available bandwidth, and the like.
  • the terminal device may determine a resource grid, an OFDM baseband signal, place an RF transceiver and / or perform filtering based on the virtual carrier. Exemplarily, the generation of the OFDM baseband signal is determined according to the size of the virtual carrier, that is, the number of RBs included in the virtual carrier. Taking a virtual carrier with continuous frequency as an example, it is assumed that the virtual carrier contains RBs, the OFDM baseband signal can be expressed as:
  • Represents the number of subcarriers included in an RB, such as k 0 represents the subcarrier-level offset configured by the network device; ⁇ f represents the subcarrier interval; N CP, l represents the CP length of the l symbol; T c represents a predefined time domain unit, according to the maximum subcarrier interval supported by the system And the number of FFT points, for example, the maximum subcarrier interval supported by the system is 480kHz, and the number of FFT points is 4096, then T c 1 / (480 ⁇ 10 3 ⁇ 4096); t start, l represents the time domain position of the lth symbol, Or the time domain offset from the 0th symbol.
  • Second offset (offset3): the offset of the lowest RB position of the BWP relative to the lowest RB position of the virtual carrier, and the terminal device determines the starting RB of the BWP according to the offset. Further, the bandwidth of the BWP can be configured, so that the terminal device can determine the position of the BWP in the carrier according to the starting RB and the RB length.
  • offset1, offset2, and offset3 can be used for the first type of BWP.
  • FIG. 22 is an example diagram of a resource location of a second type of BWP provided by an embodiment of the present application.
  • resource allocation can be performed for each frequency domain resource of the N frequency band resources included in the second type of BWP.
  • the resource configuration information for resource configuration for a segment of frequency domain resources should at least include the starting position and bandwidth of the segment of frequency domain resources.
  • the bandwidth may be the number of RBs or the length of the RB included in the segment of frequency domain resources.
  • the resource configuration also includes at least one second offset and at least one reference point.
  • the resource configuration is used to indicate a reference point, a second offset (offset2), and N frequency domain resource information.
  • the N pieces of frequency-domain resource information correspond to N-band frequency-domain resources, respectively.
  • a reference point and a second offset (offset2) can be shared.
  • the frequency domain resource information includes a start position and a bandwidth of a corresponding frequency domain resource. The bandwidth may be the number of RBs or the RB length included in the frequency domain resources.
  • FIG. 23 is an example diagram of a resource location of a second type of BWP provided by an embodiment of the present application.
  • the indication of the reference point, the second offset, and the frequency domain resource information may be in the same signaling or in different information. Order.
  • the resource configuration is used to indicate a reference point, N offset2, and N frequency domain resource information.
  • one reference point and N offset2 can be shared.
  • the frequency domain resource information includes a start position and a bandwidth of a corresponding frequency domain resource.
  • N offset2 respectively correspond to N-band frequency domain resources.
  • the N frequency-domain resource information corresponds to N-band frequency-domain resources, respectively.
  • FIG. 24 is an example diagram of a resource location of a second type of BWP provided by an embodiment of the present application.
  • the resource configuration may also be used to indicate one reference point, R offset2, and N frequency domain resource information.
  • a reference point may be shared when determining the resource position of the N-band frequency domain resource
  • an offset2 may be shared when determining the resource position of at least two frequency band resources in the N-band frequency domain resource.
  • a second type of BWP includes a first frequency domain resource, a second frequency domain resource, and a third frequency domain resource.
  • the resource configuration can also be used to indicate a reference point, 2 offset2, and 3 frequency domain resource information.
  • a common reference point can be used when determining the resource position of the frequency band of the three bands, and the first offset2 can be used when determining the resource position of the band of the first frequency band resources.
  • the second offset2 can be used when the resource position of the three-band frequency domain resource.
  • the frequency domain resource information includes a start position and a bandwidth of a corresponding frequency domain resource.
  • the indication of the reference point, the second offset, and the frequency domain resource information may be in the same signaling or in different information. Order.
  • the resource configuration is used to indicate N reference points, N offset2, and N frequency domain resource information corresponding to the N-band frequency domain resources.
  • N reference points and N offset2 may be used when determining the resource position of the N-band frequency domain resource
  • reference points corresponding to the frequency domain resource and the offset 2 may be used when determining the resource position of the frequency domain resource.
  • the frequency domain resource information includes a start position and a bandwidth of a corresponding frequency domain resource.
  • the N pieces of frequency-domain resource information correspond to N-band frequency-domain resources, respectively.
  • FIG. 25 is an example diagram of a resource location of a second type of BWP provided by an embodiment of the present application.
  • the indication of the reference point, the second offset, and the frequency domain resource information may be in the same signaling or in different information. Order.
  • the reference point, the second offset, and the frequency domain resource information may be configured for each first-type BWP included in the second-type BWP.
  • the reference point and / or the second offset may be configured at the first type of BWP level.
  • the second-type BWP includes N first-type BWPs.
  • the resource location of the second-type BWP is determined by indicating the identifiers of the N first-type BWPs.
  • an identifier of the first-type BWP, and a reference point, a second offset, and frequency domain resource information corresponding to the first-type BWP may be configured.
  • the frequency domain resource information includes a resource indication value (RIV).
  • the resource indication value is used to indicate the start position of the frequency domain resource and the RB length included in the frequency domain resource.
  • RIV can be defined as follows:
  • RB start indicates a starting position of a frequency domain resource.
  • L RBs indicates the RB length included in the frequency domain resource.
  • the resource information is used to indicate N carrier information and N frequency domain resource information
  • the carrier information is used to indicate a carrier where the frequency domain resource is located.
  • the carrier information includes a reference point and an offset value (offset2).
  • the N carrier information corresponds to the N segment resources.
  • the resource configuration is used to indicate at least one reference point corresponding to N-band frequency domain resources, at least one offset corresponding to M-band frequency domain resources, and at least one offset 2 corresponding to NM-band frequency domain resources. , N band frequency domain resource information.
  • the resource information is used to indicate at least one carrier information and at least one frequency domain resource information
  • the carrier information is used to indicate a carrier where the frequency domain resources are located.
  • the carrier information includes a reference point and an offset value (offset2).
  • the N-band frequency domain resources included in the second-type BWP may be located on the same carrier; or at least one frequency-domain resource of the N-band frequency-domain resources included in the second-type BWP is located on at least one carrier.
  • At least two segments of the N-band frequency domain resources included in the second type of BWP may be located on different carriers.
  • S2102. Determine the resource location of the second-type BWP according to the resource configuration of the second-type BWP.
  • the network device or the terminal device can determine the frequency domain position of the second type BWP in the discrete frequency spectrum according to the resource allocation method provided in the embodiment of the present application, and in the frequency domain of the second type BWP according to the parameter value of the second type BWP. Receive or send data at the location, which effectively improves the utilization of the discrete spectrum and improves system performance.
  • the embodiments of the present application provide a communication method.
  • the communication method may be applied to a terminal device or a chip built in the terminal device, or the communication method may be applied to a network device or a chip built in the network device, which is not limited in the embodiment of the present application.
  • This embodiment of the present application uses a terminal device and a network device as examples to describe a communication method.
  • FIG. 26 is a flowchart of a communication method according to an embodiment of the present application. As shown in FIG. 26, the method may include:
  • the network device determines a resource configuration of the second type of BWP.
  • the network device determines the resource location of the second-type BWP according to the resource configuration of the second-type BWP.
  • the network device determines a parameter determination rule according to a parameter type of the second type of BWP.
  • S2604 The network device determines a parameter value of the second type of BWP according to a parameter determination rule.
  • the network device sends data at the resource location of the second-type BWP according to the parameter value of the second-type BWP.
  • S2606 The terminal device determines a resource configuration of the second type of BWP.
  • the terminal device determines the resource location of the second type BWP according to the resource configuration of the second type BWP.
  • S2608 The terminal device determines a parameter determination rule according to a parameter type of the second type of BWP.
  • S2609 The terminal device determines a parameter value of the second type of BWP according to a parameter determination rule.
  • the terminal device receives data at the resource location of the second-type BWP according to the parameter value of the second-type BWP.
  • the data can be transmitted with reference to the process according to the communication method shown in FIG. 26, but is different from the communication direction shown in FIG.
  • the determination of the resource location of the second-type BWP and the determination of the parameter values of the second-type BWP can be detailed descriptions of the above-mentioned embodiments of the present application, which are not repeatedly described in this embodiment of the present application.
  • the network device may also determine the parameter value of the second type of BWP through the configuration of the operator or the network-side algorithm, which is not limited in this application.
  • the method for determining parameter values of the second type of BWP provided in the embodiments of the present application or the method for determining parameter parameters provided in the embodiments of the present application is included, for example, including steps S1002, S1102, S1202, S1302, S1402
  • the method for determining the parameter value of the second type of BWP corresponding to one or more steps in S1502, S1602, S1702, S1802, S1902, S2002, and S2102 is also within the protection scope of this application.
  • each network element such as a network device and a terminal device, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. A professional technician can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 27 shows a possible composition diagram of the communication device involved in the foregoing and embodiments, and the communication device can execute any method in each method embodiment of the present application. Steps performed by a network device or a terminal device in the embodiment.
  • the communication device is a terminal device or a communication device that supports the terminal device to implement the method provided in the embodiment.
  • the communication device may be a chip system, or the communication device is a network device or a supported network device.
  • a communication device implementing the method provided in the embodiment, for example, the communication device may be a chip system.
  • the communication device may include a processing unit 2701.
  • the processing unit 2701 is configured to support a communication device to execute a method described in an embodiment of the present application.
  • the processing unit 2701 is configured to execute or support the communication device to execute S1001 and S1002 in the parameter configuration method shown in FIG. 10, S1101 and S1102 in the parameter configuration method shown in FIG. 11, and the parameters shown in FIG. S1201 and S1202 in the configuration method, S1301 and S1302 in the parameter configuration method shown in FIG. 13, S1401 and S1402 in the parameter configuration method shown in FIG. 14, S1501 and S1502 in the parameter configuration method shown in FIG. 15, S1601 and S1602 in the parameter configuration method shown in FIG. 16, S1701 and S1702 in the parameter configuration method shown in FIG.
  • the communication device may further include a sending unit 2702 and a receiving unit 2703.
  • the sending unit 2702 is configured to send data, for example, to support a communication device to execute S2605 in the method shown in FIG. 26.
  • the receiving unit 2703 is configured to receive data, for example, to support a communication device to execute S2610 in the method shown in FIG. 26.
  • the communication device provided in the embodiment of the present application is configured to execute the method in any of the foregoing embodiments, and thus can achieve the same effect as the method in the foregoing embodiment.
  • a communication device 2800 is used to implement the functions of the network device in the foregoing method.
  • the communication device 2800 may be a network device or a device in the network device.
  • the communication device 2800 may be a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the communication device 2800 is configured to implement a function of a terminal device in the foregoing method.
  • the communication device 2800 may be a terminal device or a device in the terminal device.
  • the communication device 2800 may be a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the communication device 2800 includes at least one processor 2801, and is configured to implement functions of a network device or a terminal device in the method provided in the embodiment of the present application.
  • the processor 2801 may be configured to determine a parameter determination rule according to a parameter type of the second type BWP, determine a parameter value of the second type BWP according to the parameter determination rule, and determine a resource configuration of the second type BWP, and The resource allocation of the second-type BWP determines the resource location of the second-type BWP, and so on.
  • the communication device 2800 may further include at least one memory 2802 for storing program instructions and / or data.
  • the memory 2802 is coupled to the processor 2801.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 2801 may operate in cooperation with the memory 2802.
  • the processor 2801 may execute program instructions stored in the memory 2802. At least one of the at least one memory may be included in a processor.
  • the communication device 2800 may further include a communication interface 2803 for communicating with other devices through a transmission medium, so that the devices used in the communication device 2800 can communicate with other devices.
  • a communication interface 2803 for communicating with other devices through a transmission medium, so that the devices used in the communication device 2800 can communicate with other devices.
  • the communication device is a network device
  • the other device is a terminal device.
  • the communication device is a terminal device
  • the other device is a network device.
  • the processor 2801 uses the communication interface 2803 to send and receive data, and is used to implement the method performed by the network device or the terminal device described in the embodiments corresponding to FIG. 10 to FIG. 21.
  • the embodiments of the present application are not limited to the specific connection medium between the communication interface 2803, the processor 2801, and the memory 2802.
  • the communication interface 2803, the processor 2801, and the memory 2802 are connected by a bus 2804 in FIG. 28.
  • the bus is indicated by a thick line in FIG. 28.
  • the connection between other components is only a schematic description. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 28, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The disclosed methods, steps and logic block diagrams in the embodiments of the present application are executed.
  • a general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or may be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, and is configured to store program instructions and / or data.
  • the terminal device involved in the embodiment of the present application may be a smart phone shown in FIG. 8.
  • the network device involved in the embodiment of the present application may be a base station shown in FIG. 9.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may be divided.
  • the combination can either be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be a physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, an SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种参数配置方法,涉及通信领域,解决了在离散频谱下如何确定第二类带宽部分BWP的参数的问题。具体方案为:对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;根据参数确定规则确定第二类BWP的参数值。本申请实施例涉及配置第二类BWP的参数过程。

Description

一种参数配置方法及装置
本申请要求于2018年06月22日提交国家知识产权局、申请号为201810654748.1、申请名称为“一种参数配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种参数配置方法及装置。
背景技术
带宽部分(bandwidth part,BWP)可以是***带宽的一部分。第一类BWP中包括连续的频域资源。终端设备在和网络设备进行数据传输时,可以根据该第一类BWP的参数在该第一类BWP的频域位置上传输数据。目前,为了提高离散频谱下数据传输的频谱效率,现有通信协议定义了包括离散频域资源的第二类BWP,从而,使得终端设备可以在非连续的频域资源上进行数据传输,以提高频谱效率。但是,现有技术并未规定在离散频谱下如何确定第二类BWP的频域位置以及参数的技术方案。
发明内容
本申请实施例提供一种参数配置方法及装置,解决了在离散频谱下如何确定第二类BWP的频域位置以及参数的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供了一种参数配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,方法包括:对于第二类BWP的参数,可以根据参数确定规则确定第二类BWP的参数值,其中,参数确定规则是根据第二类BWP的参数类型确定的。其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。从而,使得网络设备或终端设备可以在离散频谱下能够确定第二类BWP的参数,根据第二类BWP的参数值,在第二类BWP上接收或发送数据,有效地提高了离散频谱的利用率,并提高了***性能。同时,相对使用多个第一类BWP进行数据传输的设计,当通过下行控制信息(downlink control information,DCI)指示数据传输的参数时,用第二类BWP进行数据传输的情况下,如果使用一个DCI调度一个第二类BWP,用一个DCI调度一个第二类BWP相比于用多个DCI调度多个第一类BWP,有效地降低了DCI中的指示开销。
对于不同的第二类BWP的参数类型,对应的参数确定规则可以是不同的也可以是相同的。
在第一种可能的设计中,参数确定规则是第一规则,根据参数确定规则确定第二类BWP的参数值,包括:根据M段频域资源的参数值确定第二类BWP的参数值,M段频域资源是N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或 等于N。
对于根据M段频域资源的参数值确定第二类BWP的参数值具体的可以包括以下实现方式。
方法一(对应参数确定规则是规则A),根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类BWP的参数值;或者,根据M段频域资源的标识,根据M段频域资源的M个参数值中的一个或多个参数值确定第二类BWP的参数值。
示例的,根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类BWP的参数值,具体包括:根据M段频域资源的标识中最大的标识对应的频域资源的参数值确定第二类BWP的参数值(对应参数确定规则是规则A1);或者,根据M段频域资源的标识中最小的标识对应的频域资源的参数值确定第二类BWP的参数值(对应参数确定规则是规则A2);或者,根据M段频域资源的标识中的特定标识对应的频域资源的参数值确定第二类BWP的参数值,其中,特定标识为预配置的标识或者接收的标识或者发送的标识(对应参数确定规则是规则A3)。其中,该方法是针对终端设备时,该接收的标识可以是从网络设备接收的标识;相应地,在该方法中,网络设备为终端设备发送指示该标识的信息或者发送该标识。
方法二(对应参数确定规则是规则B),根据M段频域资源的参数值中最大的参数值确定第二类BWP的参数值(对应参数确定规则是规则B1);或者,根据M段频域资源的参数值中最小的参数值确定第二类BWP的参数值(对应参数确定规则是规则B2);或者,根据M段频域资源的参数值的平均值确定第二类BWP的参数值(对应参数确定规则是规则B3)。
方法三(对应参数确定规则是规则C),根据M段频域资源的参数值的候选取值确定第二类BWP的参数值的候选取值;具体包括:根据M段频域资源的参数值的候选取值的并集确定第二类BWP的参数值的候选取值(对应参数确定规则是规则C1);或者,根据M段频域资源的参数值的候选取值的交集确定第二类BWP的参数值的候选取值(对应参数确定规则是规则C2)。
在第二种可能的设计中,参数确定规则是第二规则,根据参数确定规则确定第二类BWP的参数值,包括:根据用于初始接入的频域资源的参数值确定第二类BWP的参数值;或者,根据主频域资源对应的参数值确定第二类BWP的参数值。在本申请实施例中,主频域资源可以是用于传输物理下行控制信道(physical downlink control channel,PDCCH)的频域资源,或者,主频域资源可以是包括PDCCH的公共搜索空间的频域资源。
需要说明的是,根据进行初始接入的频域资源的参数值、主频域资源的参数值或默认频域资源的参数值确定第二类BWP的参数值时,所述初始接入的频域资源、主频域资源或默认频域资源可以是不属于该第二类BWP内的频域资源,也可以是属于该第二类BWP内的频域资源,本申请不做限制。假设第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源。若第一段频域资源为初始接入的频域资源,将第一段频域资源的对应的参数值确定第二类BWP的参数值。若第二段频域资源为初始接入的频域资源,将第二段频域资源的对应的参数值确定第二类BWP的参数值。
可选的,也可以是根据协议预先定义确定第二类BWP的参数值,或者根据接收 的信令所指示确定第二类BWP的参数值,或者根据预先设置确定第二类BWP的参数值。其中,该方法是针对终端设备时,该接收的信令可以是从网络设备接收的信令;相应地,在该方法中,网络设备为终端设备发送该信令。
需要说明的是,该方法是针对终端设备时,终端设备可以预先配置N段频域资源的参数值以及N段频域资源对应的标识,在根据M段频域资源的参数值确定第二类BWP的参数值之前,可以接收网络设备发送的M个频域资源标识,根据M个频域资源标识获取M段频域资源的参数值,M个频域资源标识对应的频域资源为终端设备预先配置的N段频域资源中的频域资源。终端设备也可以接收网络设备发送的M段频域资源的参数值。
可选地,第二类BWP的参数类型是第一类型,参数确定规则是一种规则;第二类BWP的参数类型是第二类型,参数确定规则是另一种规则。其中,一种规则和另一种可以是上述第一规则、第一规则中的任何一种子规则(如规则A、规则A1、规则A2、规则A3、规则B、规则B1、规则B2、规则B3、规则C、规则C1或规则C2)、或第二规则,该一种规则和该另一种规则不同。
可选地,第一类型或第二类型包括数据加扰标识,下行解调参考信号(demodulation reference signal,DMRS)配置,传输配置指示(transmission configuration indication,TCI)状态配置,虚拟资源块(virtual resource block,VRB)到物理资源块(physical resource block,PRB)交织器,资源分配类型,物理下行共享信道(physical downlink shared channel,PDSCH)时域资源分配列表,PDSCH聚合因子,速率匹配图案,RBG大小,调制编码机制(modulation and coding scheme,MCS)表格配置,DCI调度时最大的码字个数,预编码RB聚合类型,零功率CSI-RS资源,传输配置,上行功率控制,频率跳频配置,频率跳频偏移,转换预编码(transformPrecoder),码本子集配置,最大秩取值,上行控制信息携带在物理上行共享信道(physical uplink shared channle,PUSCH)中,偏移的取值集合,比例因子,周期,HARQ process的数目,物理上行控制信道(physical uplink control channel,PUCCH)资源标识,功率配置参数,功率参数,重复次数,重复的冗余版本,RRC配置的上行调度信息,时域偏移,路损参考指示,时域资源分配,频域资源分配,天线端口指示,DMRS序列初始化,预编码和层数,SRS资源指示,调制方式码率和TBS,TBS的开销,或频率跳频偏移配置。第一类型和第二类型不同。
可选地,参数类型是数据加扰标识,下行解调参考信号(demodulation reference signal,DMRS)配置,传输配置指示(transmission configuration indication,TCI)状态配置,VRB到PRB交织器,资源分配类型,物理下行共享信道(physical downlink shared channel,PDSCH)时域资源分配列表,PDSCH聚合因子,速率匹配图案,RBG大小,MCS表格配置,DCI调度时最大的码字个数,预编码RB聚合类型,零功率CSI-RS资源,传输配置,上行功率控制,频率跳频配置,频率跳频偏移,transformPrecoder,码本子集配置,最大秩取值,上行控制信息携带在物理上行共享信道(physical uplink shared channle,PUSCH)中,偏移的取值集合,比例因子,周期,HARQ process的数目,物理上行控制信道(physical uplink control channel,PUCCH)资源标识,功率配置参数,功率参数,重复次数,重复的冗余版本,RRC配置的上行调度信息,时域偏 移,路损参考指示,时域资源分配,频域资源分配,天线端口指示,DMRS序列初始化,预编码和层数,SRS资源指示,调制方式码率和TBS,TBS的开销,频率跳频偏移配置中的一个或多个参数组合,可以采用方法一确定参数值。
可选地,参数类型是数据加扰标识,下行DMRS配置,VRB到PRB交织器,PDSCH聚合因子,DCI调度时最大的码字个数,DCI调度时最大的码字个数,预编码RB聚合类型,上行功率控制,频率跳频偏移,上行控制信息携带在PUSCH中,比例因子,周期,HARQ process的数目,功率配置参数,功率参数,重复次数,RRC配置的上行调度信息,时域偏移,预编码和层数,SRS资源指示,调制方式码率和TBS,TBS的开销,频率跳频偏移配置中一个或多个信息的组合,可以采用方法二确定参数值。
可选地,参数类型是TCI状态配置,PDSCH时域资源分配列表,速率匹配图案,RBG大小,零功率CSI-RS资源,码本子集配置,最大秩取值,上行控制信息携带在PUSCH中,偏移的取值集合,周期,PUCCH资源标识,重复的冗余版本,RRC配置的上行调度信息,路损参考指示,时域资源分配,频域资源分配,天线端口指示,DMRS序列初始化,预编码和层数,SRS资源指示,TBS的开销,调制方式码率和TBS中的一个或多个信息的组合,可以采用方法三确定参数值。
第二方面,本申请实施例还提供了一种资源配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,该方法包括:确定第二类BWP的资源配置,根据第二类BWP的资源配置确定第二类BWP的资源位置。其中,资源配置包括:至少一个参考点、至少一个第二偏移offset2和N个频域资源信息;其中,N个频域资源信息对应于N段频域资源,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。其中,该方法是针对终端设备时,该确定第二类BWP的资源配置可以是接收网络设备发送的第二类BWP的资源配置;相应地,网络设备为终端设备发送第二类BWP的资源配置。从而,使得网络设备或终端设备可以根据本申请实施例提供的资源配置方法在离散频谱下确定第二类BWP的频域位置,根据第二类BWP的参数值,在第二类BWP上接收或发送数据,有效地提高了离散频谱的利用率,并提高了***性能。
第三方面,本申请实施例还提供了一种资源配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,方法包括:根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类BWP的参数值,并根据第二类BWP的参数值,在第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。可选地,在本申请实施例或发明内容中,根据第二类BWP的参数值,在第二类BWP上接收或发送数据,还可以描述为:根据第二类BWP的参数值,使用相应的参数,在第二类BWP上接收或发送数据。
示例的,根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类BWP的参数值,具体包括:根据M段频域资源的标识中最大的标识对应的频域资源的参数值确定第二类BWP的参数值;或者,根据M段频域资源的标识中最小的标识对应的频域资源的参数值确定第二类BWP的参数值;或者,根据M段频域资源的标识中的特定标识对应的频域资源的参数值确定第二类BWP的参数值,其中,特定标识为预配置的标识或者接收的标识。其中,该方法是针对终端设备时,该接收的标识可以是从网络设备接收的标识;相应地,网络设备为终端设备发送指示该标识的信息。
第四方面,本申请实施例还提供了一种资源配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,方法包括:根据M段频域资源的参数值中最大的参数值确定第二类BWP的参数值,或者,根据M段频域资源的参数值中最小的参数值确定第二类BWP的参数值,或者,根据M段频域资源的参数值的平均值确定第二类BWP的参数值,并根据第二类BWP的参数值,在第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
第五方面,本申请实施例还提供了一种资源配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,方法包括:根据M段频域资源的参数值的候选取值确定第二类BWP的参数值的候选取值,并根据第二类BWP的参数值的候选取值,在第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。可选地,根据第二类BWP的参数值的候选取值,在第二类BWP上接收或发送数据,包括:从第二类BWP的参数值的候选取值中确定第二类BWP的参数值,根据第二类BWP的参数值,在第二类BWP上接收或发送数据。其中,从第二类BWP的参数值的候选取值中确定第二类BWP的参数值,可以是通过预配置的方法,也可以是网络设备为终端设备指示第二类BWP的参数值。
示例的,根据M段频域资源的参数值的候选取值确定第二类BWP的参数值的候选取值;具体包括:根据M段频域资源的参数值的候选取值的并集确定第二类BWP的参数值的候选取值;或者,根据M段频域资源的参数值的候选取值的交集确定第二类BWP的参数值的候选取值。
第六方面,本申请实施例还提供了一种资源配置方法,该方法可应用于终端设备,和/或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片***,和/或者,该方法可应用于网络设备,和/或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***,方法包括:根据用于 初始接入的频域资源的参数值确定第二类BWP的参数值,或者,根据主频域资源对应的参数值确定第二类BWP的参数值,并根据第二类BWP的参数值,在第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。可选的,初始接入的频域资源是N段频域资源中的频域资源,或者,主频域资源是N段频域资源中的频域资源。
上述第三方面和第六方面涉及的方法中,第二类BWP的参数可以是数据加扰标识,下行解调参考信号(demodulation reference signal,DMRS)配置,传输配置指示(transmission configuration indication,TCI)状态配置,虚拟资源块(virtual resource block,VRB)到物理资源块(physical resource block,PRB)交织器,资源分配类型,物理下行共享信道(physical downlink shared channel,PDSCH)时域资源分配列表,PDSCH聚合因子,速率匹配图案,RBG大小,调制编码机制(modulation and coding scheme,MCS)表格配置,DCI调度时最大的码字个数,预编码RB聚合类型,零功率CSI-RS资源,传输配置,上行功率控制,频率跳频配置,频率跳频偏移,转换预编码(transformPrecoder),码本子集配置,最大秩取值,上行控制信息携带在物理上行共享信道(physical uplink shared channle,PUSCH)中,偏移的取值集合,比例因子,周期,HARQ process的数目,物理上行控制信道(physical uplink control channel,PUCCH)资源标识,功率配置参数,功率参数,重复次数,重复的冗余版本,RRC配置的上行调度信息,时域偏移,路损参考指示,时域资源分配,频域资源分配,天线端口指示,DMRS序列初始化,预编码和层数,SRS资源指示,调制方式码率和TBS,TBS的开销,或频率跳频偏移配置。
第七方面,本申请实施例还提供了一种通信装置,用于实现上述第一方面、以及第三方面至第六方面描述的方法。通信装置为终端设备或支持终端设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,例如该通信装置包括芯片***,和/或者,通信装置为网络设备或支持网络设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,例如该通信装置包括芯片***。例如,该通信装置包括:处理单元。所述处理单元,用于对于第二类带宽部分BWP的参数,根据第二类BWP的参数类型确定参数确定规则,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;处理单元,还用于根据参数确定规则确定第二类BWP的参数值。
可选地,参数确定规则和/或根据参数确定规则确定第二类BWP的参数值的方法同第一方面中相应的描述,这里不再赘述。
可选地,通信装置还可以包括通信接口,用于发送或接收数据。
第八方面,本申请实施例还提供了一种通信装置,用于实现上述第二方面描述的方法。通信装置为终端设备和/或支持终端设备实现该第二方面描述的方法的通信装置,例如该通信装置包括芯片***,和/或者,通信装置为网络设备或支持网络设备实现该第二方面描述的方法的通信装置,例如该通信装置包括芯片***。例如,通信装置包括:处理单元。所述处理单元,用于确定第二类BWP的资源配置,其中,资源配置包括:至少一个参考点、至少一个第二偏移offset2和N个频域资源信息;其中,N个频域资源信息对应于N段频域资源,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;处理单元,还用于根据第二类BWP的资源配置确定第二类BWP的 资源位置。
可选地,通信装置还可以包括通信接口,用于发送或接收数据。
需要说明的是,上述第七方面和第八方面的功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。例如,收发器,用于完成接收单元和发送单元的功能,处理器,用于完成处理单元的功能,存储器,用于处理器处理本申请实施例的方法的程序指令。处理器、收发器和存储器通过总线连接并完成相互间的通信。具体的,可以参考第一方面所述的方法至第六方面所述的方法中的终端设备或网络设备的行为的功能。
第九方面,本申请实施例还提供了一种通信装置,用于实现上述第一方面、以及第三方面至第六方面描述的方法。所述通信装置为终端设备或支持终端设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,例如该通信装置包括芯片***,或者,所述通信装置为网络设备或支持网络设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,例如该通信装置包括芯片***。例如所述通信装置包括处理器,用于实现上述第一方面、以及第三方面至第六方面描述的方法的功能。所述通信装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法中的功能。所述通信装置还可以包括通信接口,所述通信接口用于该通信装置与其它设备进行通信。示例性地,若所述通信装置为网络设备,该其它设备为终端设备。若所述通信装置为终端设备,该其它设备为网络设备。
在一种可能的设备中,该通信装置包括:通信接口,所述通信接口用于所述通信装置和其它装置进行通信。示例性地,该通信接口可以是收发器,所述收发器用于发送或接收数据。存储器,用于存储程序指令。处理器,用于根据第二类BWP的参数类型确定参数确定规则,并根据参数确定规则确定第二类BWP的参数值。其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。
可选地,参数确定规则和根据参数确定规则确定第二类BWP的参数值的方法同第一方面中相应的描述,这里不再赘述。
第十方面,本申请实施例还提供了一种通信装置,用于实现上述第二方面描述的方法。所述通信装置为终端设备或支持终端设备实现该第二方面描述的方法的通信装置,例如该通信装置包括芯片***,或者,所述通信装置为网络设备或支持网络设备实现该第二方面描述的方法的通信装置,例如该通信装置包括的芯片***。例如所述通信装置包括处理器,用于实现上述第二方面描述的方法中的功能。所述通信装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法中的功能。所述通信装置还可以包括通信接口,所述通信接口用于该通信装置与其它设备进行通信。示例性地,若所述通信装置为网络设备,该其它设备为终端设备。若所述通信装置为终端设备,该其它设备为网络设备。
在一种可能的设备中,该通信装置包括:通信接口,所述通信接口用于所述通信装置和其它装置进行通信。示例性地,该通信接口可以是收发器。存储器,用于存储程序指令。处理器,用于确定第二类BWP的资源配置,其中,资源配置包括:至少 一个参考点、至少一个第二偏移offset2和N个频域资源信息;其中,N个频域资源信息对应于N段频域资源,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;根据第二类BWP的资源配置确定第二类BWP的资源位置。
第十一方面,本申请实施例还提供了一种计算机可读存储介质,包括:计算机软件指令;当计算机软件指令在通信装置中运行时,使得通信装置执行上述第一方面至第六方面任一个所述的方法。
第十二方面,本申请实施例还提供了一种包含指令的计算机程序产品,当计算机程序产品在通信装置中运行时,使得通信装置执行上述第一方面至第六方面任一个所述的方法。
第十三方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述方法中网络设备或终端设备的功能。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,本申请实施例还提供了一种通信***,所述通信***包括第七方面描述的终端设备或支持终端设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,以及第七方面描述的网络设备或支持网络设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置;
或所述通信***包括第九方面描述的终端设备或支持终端设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置,以及第九方面描述的网络设备或支持网络设备实现该第一方面、以及第三方面至第六方面描述的方法的通信装置;
或所述通信***包括第八方面描述的终端设备或支持终端设备实现该第二方面描述的方法的通信装置,以及第八方面描述的网络设备或支持网络设备实现该第二方面描述的方法的通信装置;
或所述通信***包括第十方面描述的终端设备或支持终端设备实现该第二方面描述的方法的通信装置,以及第十方面描述的网络设备或支持网络设备实现该第二方面描述的方法的通信装置。
另外,上述任意方面的设计方式所带来的技术效果可参见第一方面和第二方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请实施例中,终端设备、网络设备和通信装置的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请实施例类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为本申请实施例提供的一种***带宽中的带宽资源的示例图;
图2为本申请实施例提供的一种时频资源格的结构示例图;
图3为本申请实施例提供的一种第一类BWP的结构示例图;
图4为本申请实施例提供的一种第二类BWP的结构示例图;
图5为本申请实施例提供的一种频域资源重叠的结构示例图;
图6为本申请实施例提供的一种离散频谱的结构示例图;
图7为本申请实施例提供的一种通信***的简化示例图;
图8为本申请实施例提供的一种智能手机的组成示例图;
图9为本申请实施例提供一种的基站的组成示例图;
图10为本申请实施例提供的一种参数配置方法的流程图;
图11为本申请实施例提供的另一种参数配置方法的流程图;
图12为本申请实施例提供的又一种参数配置方法的流程图;
图13为本申请实施例提供的再一种参数配置方法的流程图;
图14为本申请实施例提供的再一种参数配置方法的流程图;
图15为本申请实施例提供的再一种参数配置方法的流程图;
图16为本申请实施例提供的再一种参数配置方法的流程图;
图17为本申请实施例提供的再一种参数配置方法的流程图;
图18为本申请实施例提供的再一种参数配置方法的流程图;
图19为本申请实施例提供的再一种参数配置方法的流程图;
图20为本申请实施例提供的再一种参数配置方法的流程图;
图21为本申请实施例提供的再一种参数配置方法的流程图;
图22为本申请实施例提供的一种BWP的资源位置的示例图;
图23为本申请实施例提供的一种第二类BWP的资源位置的示例图;
图24为本申请实施例提供的另一种第二类BWP的资源位置的示例图;
图25为本申请实施例提供的再一种第二类BWP的资源位置的示例图;
图26为本申请实施例提供的一种通信方法的流程图;
图27为本申请实施例提供的一种通信装置的结构示例图;
图28为本申请实施例提供的另一种通信装置的结构示例图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
BWP可以是***带宽的一部分。在一些场景中,BWP也可以称为带宽资源、载波带宽部分(carrier bandwidth part,CBWP)、频率资源部分、部分频率资源、载波带宽部分、子带(subband)或窄带(narrowband)等。
图1为本申请实施例提供的一种***带宽中的带宽资源的示例图。如图1所示,***带宽包括3个不同的带宽资源,即带宽资源0、带宽资源1和带宽资源2。带宽资源0、带宽资源1和带宽资源2中的任意一个可以认为是上述的带宽部分。在实际应用中,***带宽可以包括多个带宽资源。对于不同的带宽资源,以带宽资源0和带宽资源1为例,带宽资源0与带宽资源1的频域资源可以部分或全部重叠,或完全不重叠。示例性地,在基于正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的通信***中,带宽资源0和带宽资源1的频域资源完全重叠,但是帧结构(比如子载波间隔(subcarrier spacing,SCS)和/或循环前缀(cyclic prefix,CP)长度) 不同,本申请实施例对此不作限定。
在频域上,可以将每个配置不同numerology的子带称为一个BWP。numerology定义为子载波间隔和循环前缀的组合。根据BWP包括的频域资源的类型可以将BWP分为两种类型。两种类型包括第一类BWP和第二类BWP。在一些场景中,频域资源还可以称为频率资源。
第一类BWP包括连续的频域资源,频域资源的单位可以是子载波、资源块(resource block,RB)、资源块组(resource block group,RBG)、或赫兹等。其中,一个RB中可以包括正整数(例如12)个子载波,一个RBG中可以包括正整数个RB。图2为本申请实施例提供的一种时频资源格(resource grid)的结构示例图。其中,在频域上的最小单位是子载波,相邻子载波的子载波间隔可以是15kHz、30kHz、60kHz、120kHz、240kHz或480kHz等。在时域上的最小单位是符号,一个或多个符号可以包括于一个时隙(slot)中,一个时隙可以为0.5毫秒(millisecond,ms)或1ms等。不同的子载波间隔下,时隙的长度可以不同也可以相同,本申请不做限制。不同的子载波间隔下,时隙中包括的符号个数可以不同也可以相同,本申请不做限制。时频资源格中的每一个小方格代表一个资源粒子(resource element,RE),一个RE在频域上的带宽为一个子载波,比如可以是15kHz,即与SCS相同,在时域上为一个OFDM符号的长度。频域上12个连续的子载波可以包括于一个资源块(resource block,RB)。两个slot可以包括于一个子帧中。或者,在不同的子载波间隔下,时隙与子帧的对应关系也可以不同。例如,普通循环前缀(normal cyclic prefix,NCP)情况下,对于15kHz子载波间隔,一个slot中可以包括7个OFDM符号或14个符号。如表1所示。当子载波间隔是15kHz时,一个时隙可以包括14个符号,一个无线帧可以包括10个时隙,一个子帧可以包括1个时隙。当子载波间隔是30kHz时,一个时隙可以包括14个符号,一个无线帧可以包括20个时隙,一个子帧可以包括2个时隙。当子载波间隔是60kHz时,一个时隙可以包括14个符号,一个无线帧可以包括40个时隙,一个子帧可以包括4个时隙。当子载波间隔是120kHz时,一个时隙可以包括14个符号,一个无线帧可以包括80个时隙,一个子帧可以包括8个时隙。当子载波间隔是240kHz时,一个时隙可以包括14个符号,一个无线帧可以包括160个时隙,一个子帧可以包括16个时隙。
表1
Figure PCTCN2019090427-appb-000001
扩展循环前缀(extended cyclic prefix,ECP)情况下,对于60kHz子载波间隔,一个slot中可以包括6个OFDM符号或12个符号。比如,对于60kHz子载波间隔,一个无线帧可以包括40个时隙,一个子帧可以包括4个时隙。每个OFDM符号可以 包括数据部分和CP。
示例性地,第五代移动通信(the fifth generation telecommunication,5G)新空口(new radio,NR)***中,网络设备在一个服务小区中最多可以为终端设备配置4个第一类BWP,可以激活其中一个第一类BWP用于进行数据传输。终端设备在激活的第一类BWP上进行数据的收发。第一类BWP可以是定义在一个载波上的连续的RB资源,即一个第一类BWP的资源位于一个载波资源内。图3为本申请实施例提供的一种第一类BWP的结构示例图。
第二类BWP还可以称为X-BWP、BWP聚合(BWP bundle)、BWP集合(BWP set)、或BWP组(BWP group)。第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。例如,N段频域资源可以是N个第一类BWP,即第二类BWP中包括N个第一类BWP。
需要说明的是,对于第二类BWP,N段频域资源可以是非连续的或者离散的。其中,离散的频域资源还可以描述为离散频谱。可理解的,非连续的N段频域资源中的任意两段频域资源均不连续。或者,N段频域资源中包括至少有两段频域资源不连续。另外,非连续的N段频域资源可以是位于一个成分载波(component carrier,CC)中,也可以是位于多个CC中。成分载波也可称为载波。第二类BWP中可以包含多个CC的资源,通过第二类BWP传输的数据可以在非连续的频域资源上传输,或者也可以在多CC上传输。在多个CC上传输时,实现了在离散频谱下的跨CC的数据传输,同时,相对使用多个第一类BWP进行数据传输的设计,调度开销较大的情况下,有效地降低了DCI中的指示开销。其中,在本申请实施例中,传输可以包括上行传输和/或下行传输,例如传输可以包括网络设备向终端设备发送信号,和/或包括终端设备向网络设备发送信号。图4为本申请实施例提供的一种第二类BWP的结构示例图。可选的,N段频域资源中的两段频域资源可能重叠。图5为本申请实施例提供的频域资源重叠的结构示例图。
在本申请实施例中,离散频谱可以是多段非连续的频谱资源。例如,运营商在低频段有很多离散频谱。以运营商A在时分双工(time division duplexing,TDD)1.8GHz频段为例,其中为长期演进(long term evolution,LTE)与NR配置了共享的7.5MHz连续频谱,还可以为NR另外配置5MHz连续频谱,对NR可以认为等效配置了12.5MHz的带宽。然而,对于NR,这7.5MHz和5MHz频谱之间还有5MHz频谱为运营商B占用。图6为本申请实施例提供的一种离散频谱的结构示例图,其中,比如在NR使用的频域资源间还有LTE使用的频域资源和空闲的频域资源。
为了解决在离散频谱下如何确定第二类BWP的频域位置以及参数的问题,本申请实施例提供一种带宽部分配置方法,其基本原理是:对于第二类BWP的参数,可以根据参数确定规则确定第二类BWP的参数值,其中,参数确定规则是根据第二类BWP的参数类型确定的。并且对于第二类BWP的资源,确定第二类BWP的资源配置,根据第二类BWP的资源配置确定第二类BWP的资源位置。其中,资源配置包括:至少一个参考点、至少一个第二偏移offset2和N个频域资源信息。N个频域资源信息对应于N段频域资源,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。该方法可应用于终端设备,或者该方法可应用于可以支持终端设备实现该方法 的通信装置,例如该通信装置包括芯片***,或者,该方法可应用于网络设备,或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片***。从而,使得网络设备或终端设备可以根据本申请实施例提供的带宽部分配置方法在离散频谱下确定第二类BWP的频域位置以及参数,根据第二类BWP的参数值,在第二类BWP的频域位置上接收或发送数据,有效地提高了离散频谱的利用率,并提高了***性能。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图7示出的是可以应用本申请实施例的通信***的简化示例图。参见图7,该通信***可以包括:一个或多个终端设备701和网络设备702。在实际应用中,每个终端设备701与网络设备702之间的连接为无线连接。终端设备通过无线通信技术与网络设备进行通信。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端设备间的无线通信、网络设备和网络设备间的无线通信以及终端设备和终端设备间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
其中,终端设备701可以是能够接收基站调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,无线终端设备可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、用户设备(user equipment,UE)等。作为一种实施例,图7中所示的终端设备可以为手机。
网络设备702可以是无线通信的基站(base station,BS)或基站控制器等。也可以称为无线接入点,收发站,中继站,小区,发送接收点(transmit and receive port,TRP)等等。网络设备702可以是一种部署在无线接入网中用以为终端设备701提供无线通信功能的装置,其主要功能可以包括如下一个或多个功能:进行无线资源的管理、互联网协议(internet protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行移动管理实体(mobility management entity,MME)的选择、路由用户面数据至服务网关(service gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和 发送、以移动性或调度为目的的测量及测量报告的配置等等。网络设备702可以包括各种形式的蜂窝基站、家庭基站、小区、无线传输点、宏基站、微基站、中继站、无线接入点等等。在采用不同的无线接入技术的***中,具备网络设备功能的设备的名称可能会有所不同。例如,在5G***或NR中,称为5G基站(generation Node B,gNB)等等,在无线本地接入***中,称为接入点。
需要说明的是,对于5G***,在一个NR基站(NR-NB或gNB)下,可能存在一个或多个发送接收点(transmission reception point,TRP),该一个或多个TRP属于同一个小区。另一种场景下,网络设备702还可以包括中心单元(central unit,CU)和分布单元(dsitribute unit,DU)。在一个CU下,可以存在多个DU。每个DU和终端设备都可以使用本申请实施例所述的方法。CU-DU分离场景和多TRP场景的区别在于,TRP可以是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
随着通信技术的演进,网络设备的名称可能会变化。此外,在其它可能的情况下,网络设备702可以是其它为终端设备701提供无线通信功能的装置。为方便描述,本申请实施例中,为终端设备701提供无线通信功能的装置称为网络设备702。
示例性的,在本申请实施例中,图7中所示的终端设备可以为智能手机,下面结合图8对智能手机的各个构成部件进行具体的介绍。
如图8所示,智能手机包括:处理器801,射频(radio frequency,RF)电路802、电源803、存储器804、输入单元805、显示单元806、音频电路807等部件。本领域技术人员可以理解,图8中示出的智能手机的结构并不构成对智能手机的限定,其可以包括比如图8所示的部件更多或更少的部件,或者可以组合如图8所示的部件中的某些部件,或者可以与如图8所示的部件布置不同。
处理器801是智能手机的控制中心,利用各种接口和线路连接整个智能手机的各个部分,通过运行或执行存储在存储器804内的软件程序和/或模块,以及调用存储在存储器804内的数据,执行智能手机的各种功能和处理数据,从而对智能手机进行整体监控。可选的,处理器801可包括一个或多个处理单元。优选的,处理器801可集成应用处理器和调制解调处理器。其中,应用处理器主要处理操作***、用户界面和应用程序等;调制解调处理器主要处理无线通信。可选的,应用处理器和调制解调处理器可以是相互独立设置的,也可以是集成在同一设备的。可选地,在本申请实施例中处理器用于根据第二类BWP的参数类型确定参数确定规则,并根据参数确定规则确定第二类BWP的参数值。确定第二类BWP的资源配置,并根据第二类BWP的资源配置确定第二类BWP的资源位置。
RF电路802可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器801处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路802还可以通过无线通信与网络和其他设备通信。无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分 多址(wideband code division multiple access,WCDMA)、LTE、电子邮件、短消息服务(short messaging service,SMS)等。
智能手机包括给各个部件供电的电源803(比如电池),可选的,电源可以通过电源管理***与处理器801逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
存储器804可用于存储软件程序以及模块,处理器801通过运行存储在存储器804的软件程序以及模块,从而执行智能手机的各种功能应用以及数据处理。存储器804可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如接收邮件功能)等;存储数据区可存储根据智能手机的使用所创建的数据(比如音频数据、电话本)等。此外,存储器804可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元805可用于接收输入的数字或字符信息,以及产生与智能手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元805可包括触摸屏8051和其他输入设备8052。触摸屏8051,也称为触摸面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏8051上或在触摸屏8051附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏8051可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器801,并能接收处理器801发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏8051。
显示单元806可用于显示由用户输入的信息或提供给用户的信息以及智能手机的各种菜单。显示单元806可包括显示面板8061,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板8061。进一步的,触摸屏8051可覆盖显示面板8061,当触摸屏8051检测到在其上或附近的触摸操作后,传送给处理器801以确定触摸事件的类型,随后处理器801根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然,在图8中,触摸屏8051与显示面板8061是作为两个独立的部件来实现智能手机的输入和输出功能,但是在某些实施例中,可以将触摸屏8051与显示面板8061集成而实现智能手机的输入和输出功能。
音频电路807、扬声器8071和麦克风8072,用于提供用户与智能手机之间的音频接口。音频电路807可将接收到的音频数据转换后的电信号,传输到扬声器8071,由扬声器8071转换为声音信号输出;另一方面,麦克风8072将收集的声音信号转换为电信号,由音频电路807接收后转换为音频数据,再将音频数据输出至RF电路802以发送给比如另一智能手机,或者将音频数据输出至存储器804以便进一步处理。
可选的,智能手机还可以包括各种传感器(如陀螺仪传感器、湿度计传感器、红外线传感器或磁力计传感器)、Wi-Fi模块、蓝牙模块、外壳等。图8中并未示出。
示例性的,在本申请实施例中,图7所示的网络设备702可以为基站,下面结合 图9对基站的各个构成部件进行具体的介绍。
如图9所示,基站包括:基带处理单元(base band unit,BBU)、射频拉远单元(radio remote unit,RRU)和天线,BBU和RRU之间可以用光纤连接,RRU再通过同轴电缆及功分器(耦合器)连接至天线,一般一个BBU可以连接多个RRU。
RRU可以包括4个模块:数字中频模块、收发信机模块、功放模块和滤波模块。数字中频模块用于光传输的调制解调、数字上下变频、数模转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放模块放大以及滤波模块滤波后,将射频信号通过天线发射出去。
BBU用于完成Uu接口(即终端设备与基站之间的接口)的基带处理功能(编码、复用、调制和扩频等)、无线网络控制器(radio network controller,RNC)和基站之间的逻辑接口的接口功能、信令处理、本地和远程操作维护功能,以及基站***的工作状态监控和告警信息上报功能等。
下面结合附图对终端设备和网络设备配置带宽部分中的参数配置方法进行详细阐述。当然,参数配置方法也可以由终端设备内置的芯片或网络设备内置的芯片执行,本申请实施例对此不作限定。
图10为本申请实施例提供的一种参数配置方法的流程图,如图10所示,该方法可以包括:
S1001、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则。
在本申请实施例中,第二类BWP的参数可以包括BWP公共参数或BWP专用参数。BWP公共参数是指通过公共信息发送的参数,或者可以是为一组终端设备配置的参数。其中,一组终端设备中可以包括一个或多个设备,例如一组终端设备可以是小区中的所有终端设备或者小区中的部分终端设备。BWP公共参数可以由网络设备通过高层信令为终端设备指示。高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体介入控制(media access control,MAC)层信令。例如,通过RRC信令中的BWP公共(bwp-common)域为终端设备指示。BWP公共参数可以是通过***消息广播给各终端设备,各终端设备收到的BWP公共参数是相同的。例如,针对物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channle,PUSCH)配置的公共参数可以是BWP公共参数。BWP专用参数是指网络设备通过专用信息或终端设备级别的信令为终端设备发送的参数,不同的终端设备参数值独立配置,不同的终端设备参数值可以相同也可以不同,本申请不作限制。BWP专用参数可以是每个BWP都可以配置的参数,不同BWP的专用参数可以不同也可以相同,本申请实施例不做限制。BWP专用参数可以由网络设备通过高层信令为终端设备指示。高层信令可以是RRC信令或MAC层信令。例如,通过RRC信令中的BWP专用(bwp-dedicated)域为终端设备指示。专用参数可以是通过RRC信令指示给终端设备,各终端设备收到的专用参数可以是相同的或不同的。示例的,针对PDCCH、PDSCH配置的专用参数可以是BWP专用参数。
在本申请实施例中,第二类BWP的参数类型用于区别两个不同的参数。可以理解的,两个功能不同的第二类BWP的参数可以视为两个不同的参数类型。在本申请实施例中,不同的第二类BWP的参数类型对应的参数确定规则可以是不同的也可以是相同的。
S1002、根据参数确定规则确定第二类BWP的参数值。
对于第二类BWP的参数,在根据第二类BWP的参数类型确定了参数确定规则后,可以根据参数确定规则确定该第二类BWP的参数的参数值。在本申请实施例中,参数确定规则还可以称为规则、参数规则或其它名称,本申请不作限制。
在本申请实施例中,第二类BWP的参数值可以是一个参数值,也可以是参数值的候选取值,其中所述候选取值可以是由多个参数值组成的。或者,参数值的候选取值可以表示为参数值列表。
在第一种可实现方式中,由于第二类BWP中包括N段频域资源,该N段频域资源可以是N个第一类BWP,因此,对于N段频域资源中每段频域资源可以配置BWP公共参数和BWP专用参数。参数确定规则可以是第一规则,即根据M段频域资源的参数值确定第二类BWP的参数值。M段频域资源是N段频域资源中包括的M段频域资源,M为大于等于1的整数,且小于或等于N。或者,M段频域资源是N段频域资源中包括的M-1段频域资源和主频域资源,或者,M段频域资源是N段频域资源中包括的M-1段频域资源和默认频域资源,或者,M段频域资源是N段频域资源中包括的M-1段频域资源和用于初始接入的频域资源,M为大于等于1的整数。
可理解的,当M=N时,即根据第二类BWP中包括的N段频域资源的参数值确定第二类BWP的参数值。示例的,一个第二类BWP中包括第一段频域资源和第二段频域资源共两段频域资源。此时,可以根据第一段频域资源的参数值和/或第二段频域资源的参数值确定该第二类BWP的参数值。
可理解的,当M<N时,即根据第二类BWP中包括的N段频域资源中的部分频域资源的参数值确定第二类BWP的参数值。示例的,一个第二类BWP中包括第一段频域资源、第二段频域资源和第三段频域资源共三段频域资源。此时,可以根据第一段频域资源的参数值和第二段频域资源的参数值确定该第二类BWP的参数值。或者,根据第一段频域资源的参数值和第三段频域资源的参数值确定该第二类BWP的参数值。或者,根据第二段频域资源的参数值和第三段频域资源的参数值确定该第二类BWP的参数值。
需要说明的是,具体根据第二类BWP中包括的N段频域资源中哪几段频域资源的参数值确定第二类BWP的参数值可以是预配置的,也可以是根据预设规则确定,也可以是基站通过信令告知终端设备的。
因此,第二类BWP的参数值可以根据至少两个频域资源参数值确定。
可选地,根据预设规则确定根据第二类BWP中包括的N段频域资源中哪几段频域资源的参数值确定第二类BWP的参数值时,该预设规则可以是包括确定M的值,和确定M段频域资源是哪几段频域资源。
可选的,所述确定出的M段频域资源中的任意一个可以是该第二类BWP包含的频域资源,也可以是该第二类BWP中不包含的频域资源,比如可以是初始接入的频 域资源,主频域资源或默认频域资源等。
关于确定M的值,可以是根据如下方法中的至少一项确定:
1)可以是预定义的,比如规定为该第二类BWP包含的频域资源的个数,或者为该第二类BWP包含的频域资源的个数+1(比如如果第二类BWP不包含初始接入频域资源或主频域资源或默认频域资源时,可以除了根据包含的频域资源的参数确定,也可以根据不包含的频域资源的参数确定)。
2)预定义的个数,比如协议预定义为M个频域资源,M可以为正整数。
3)根据基站的指示,比如基站可以指示M个频域资源,M可以为正整数。
关于确定M段频域资源是哪几段频域资源,可以是根据如下方法确定:
1)确定频域资源的标识,根据第二类BWP中包含的频域资源确定,比如如果第二类BWP包含的频域资源的个数为N,则即根据该N个频域资源的参数该第二类BWP的参数。
2)如果确定的M的值与第二类BWP包含的频域资源的个数不同,则可以按照如下方式确定:
根据频域资源的标识大小确定频域资源,比如如果第二BWP包含的频域资源为频域资源X1,频域资源X2,频域资源X3。如果确定的M的值小于3,则可以根据频域资源标识的大小确定哪些频域资源。比如以频域资源标识小的为准,如果X1<X2<X3,则根据频域资源X1的参数值,频域资源X2的参数值确定该第二BWP的参数值。比如以频域资源标识大的为准,如果X1<X2<X3,则根据频域资源X2的参数值,频域资源X3的参数值确定该第二BWP的参数值。
3)根据基站的指示,比如基站可以指示M个,M可以为正整数。
确定了第二类BWP的参数值与哪些频域资源的参数值相关,可以按照本申请中的方法确定参数值。
需要说明的是,对于终端设备而言,终端设备可以预先配置N段频域资源的参数值以及N段频域资源对应的标识,在根据M段频域资源的参数值确定第二类BWP的参数值之前,可以接收网络设备发送的M个频域资源标识,根据M个频域资源标识获取M段频域资源的参数值,M个频域资源标识对应的频域资源为终端设备预先配置的N段频域资源中的频域资源。终端设备也可以接收网络设备发送的M段频域资源的参数值。
另外,除了根据第二类BWP中包括的频域资源的参数值确定第二类BWP的参数值之外,还可以仅根据第二类BWP中不包括的频域资源的参数值确定第二类BWP的参数值,例如,终端设备可以根据用于初始接入的频域资源的参数值、主频域资源的参数值或默认频域资源的参数值确定第二类BWP的参数值。其中,该场景中,用于初始接入的频域资源的参数值、主频域资源的参数值或默认频域资源的参数值确定第二类BWP的参数值不包括于第二类BWP中。
在第二种可实现方式中,参数确定规则可以是第二规则,即终端设备根据频域资源的属性确定第二类BWP的参数值。
本申请实施例中,频域资源的属性可以是指该频域资源是否为用于初始接入的频域资源,或者,该频域资源是否为主频域资源,或者,该频域资源是否为默认频域资 源。
例如,终端设备根据用于初始接入的频域资源的参数值确定第二类BWP的参数值,或者,根据主频域资源或预配置的频域资源对应的参数值确定第二类BWP的参数值。用于初始接入的频域资源可以是指终端设备进行同步和/或接入,或,接收同步信号,或,用于传输***信息块(system information block,SIB)1的频域资源。比如BWP的标识为0的BWP可以为用于初始接入的频域资源。
在本申请实施例中,主频域资源可以是指用于传输PDCCH的频域资源,或者,主频域资源可以是包括PDCCH的公共搜索空间的频域资源。SIB1用于传输***信息,终端设备可以根据SIB1获取进行小区接入有关的参数或信息。
需要说明的是,根据用于初始接入的频域资源的参数值、主频域资源的参数值或默认频域资源的参数值确定第二类BWP的参数值时,所述用于初始接入的频域资源、主频域资源或默认频域资源可以是不属于该第二类BWP内的频域资源,也可以是属于该第二类BWP内的频域资源,本申请不做限制。假设第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源。例如,若第一段频域资源为用于初始接入的频域资源,将第一段频域资源的对应的参数值确定为第二类BWP的参数值。若第二段频域资源为用于初始接入的频域资源,将第二段频域资源的对应的参数值确定为第二类BWP的参数值。
可选的,还可以根据第二类BWP中不包括的频域资源的参数值和第二类BWP中包括的频域资源的参数值共同确定第二类BWP的参数值。
本申请实施例提供的参数配置方法,使得网络设备或终端设备可以在离散频谱中确定第二类BWP的参数,根据第二类BWP的参数值,在第二类BWP的频域位置上接收或发送数据,有效地提高了离散频谱的利用率,并提高了***性能。
对于第一种可实现方式,根据M段频域资源的参数值确定第二类BWP的参数值具体地可以包括以下实现方式。
方法一,可以根据M段频域资源的标识从M段频域资源的M个参数值中确定所述第二类BWP的参数值。图11为本申请实施例提供的一种参数配置方法的流程图,如图11所示,该方法可以包括:
S1101、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1102、根据M段频域资源的标识中最大的标识对应的频域资源的参数值确定第二类BWP的参数值。
在本申请实施例中,频域资源的标识还可以称为频域资源的索引(index)。
示例的,一个第二类BWP中包括两段频域资源,第一段频域资源的标识为0,第二段频域资源的标识为1。比较第一段频域资源的标识和第二段频域资源的标识,由于第二段频域资源的标识大于第一段频域资源的标识,将第二段频域资源的参数值确定为该第二类BWP的参数值,即终端设备或网络设备通过该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第二段频域资源的参数值。
可选地,第二类BWP的参数或参数类型可以包括数据加扰标识(data scrambling identity),本申请实施例中数据加扰标识可以用于根据数据加扰标识确定数据加扰序 列的初始值,进而生成数据加扰序列。例如,一个第二类BWP中包括两段频域资源,第一段频域资源配置的数据加扰标识为D1,第二段频域资源配置的数据加扰标识为D2。在终端设备或网络设备使用该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第二段频域资源的参数值的情况下,终端设备或网络设备可以使用第二段频域资源配置的数据加扰标识,即可以是D2。具体的数据加扰标识的取值可以参考现有技术的介绍或其演进,本申请实施例对此不作限定。
可选地,第二类BWP的参数或参数类型可以包括资源块组(resource block group,RBG)大小。RBG大小是指RBG中包含的RB的个数,比如2,4,8等正整数。RBG大小可以与下行***带宽或者BWP的带宽相关等,也可以是网络设备配置给终端设备的。在资源分配时频域上可以是以RB为单位,也可以是以RBG为单位。配置信息RBG大小(比如rbg-size)可以用于指示在资源分配类型0下终端设备或网络设备使用的RBG的大小,例如,可以使用配置1的大小或配置2的大小。例如,如表2所示,在不同的BWP带宽下,可以使用的配置1或配置2下对应的RBG大小。
表2
BWP的大小/带宽 配置1 配置2
1–36 2 4
37–72 4 8
73-144 8 16
145-275 16 16
例如,一个第二类BWP中包括两段频域资源,第一段频域资源配置的RBG大小对应配置1,第二段频域资源配置的RBG大小对应配置2。在终端设备或网络设备使用该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第二段频域资源的参数值的情况下,终端设备或网络设备可以使用第二段频域资源配置的RBG大小,即可以是根据第二段频域资源的带宽和配置2确定的RBG大小。具体的RBG大小的配置可以参考现有技术的介绍或其演进,本申请实施例对此不作限定。
图12为本申请实施例提供的一种参数配置方法的流程图,如图12所示,该方法可以包括:
S1201、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1202、根据M段频域资源的标识中最小的标识对应的频域资源的参数值确定第二类BWP的参数值。
示例的,一个第二类BWP中包括两段频域资源,第一段频域资源的标识为0,第二段频域资源的标识为1。比较第一段频域资源的标识和第二段频域资源的标识,由于第一段频域资源的标识小于第二段频域资源的标识,将第一段频域资源的参数值确定为该第二类BWP的参数值,即终端设备或网络设备使用该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第一段频域资源的参数值。
可选地,第二类BWP的参数或参数类型为资源块组(resource block group,RBG)大小。例如,一个第二类BWP中包括两段频域资源,第一段频域资源配置的RBG大小对应表1中的配置1,第二段频域资源配置的RBG大小对应表1中的配置2。在终 端设备或网络设备使用该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第一段频域资源的参数值的情况下,终端设备或网络设备可以使用第一段频域资源配置的RBG大小,即可以是根据第一段频域资源的带宽和配置1确应的RBG大小。
可选地,第二类BWP的参数或参数类型为数据加扰标识。例如,一个第二类BWP中包括两段频域资源,第一段频域资源配置的数据加扰标识为D1,第二段频域资源配置的数据加扰标识为D2。在终端设备或网络设备使用该第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第一段频域资源的参数值的情况下,终端设备或网络设备可以使用第一段频域资源配置的数据加扰标识,即可以是D1。
图13为本申请实施例提供的一种参数配置方法的流程图,如图13所示,该方法可以包括:
S1301、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1302、根据M段频域资源的标识中的特定标识对应的频域资源的参数值确定第二类BWP的参数值。
其中,特定标识可以是为终端设备和网络设备预配置的标识,例如,可以是协议预先设定的。例如,将M段频域资源的标识中的第一个标识对应的频域资源的参数值确定为第二类BWP的参数值。示例的,一个第二类BWP中包括三段频域资源,第一段频域资源的标识为0,第二段频域资源的标识为1,第三段频域资源的标识为2。将三段频域资源的标识中的第一个标识对应的频域资源的参数值确定为第二类BWP的参数值。例如,第二类BWP的参数为数据加扰标识,终端设备或网络设备使用本段落中描述的一个第二类BWP的频域资源发送或接收数据时,使用该第二类BWP中包括的第一段频域资源配置的数据加扰标识。
或者,对于终端设备而言,特定标识可以是从网络设备接收的标识。具体的,网络设备可以发送指示信息指示所述特定标识,终端设备根据所述指示信息确定特定标识,进而根据特定标识对应的频域资源的参数值确定第二类BWP的参数值。所述指示信息可以是通过高层信令发送的,也可以是通过物理层信息发送的。
或者,对于终端设备而言,特定标识可以是初始接入的频域资源的标识。
方法二,可以根据M段频域资源的参数值从M段频域资源的M个参数值中确定所述第二类BWP的参数值。图14为本申请实施例提供的一种参数配置方法的流程图,如图14所示,该方法可以包括:
S1401、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1402、根据M段频域资源的参数值中最大的参数值确定第二类BWP的参数值。
示例的,第二类BWP的参数或参数类型为PDSCH聚合因子(pdsch-aggregation factor)。本申请实施例中,PDSCH聚合因子用于指示一次调度中PDSCH连续传输的时隙个数。比如如果聚合因子的取值为2,表示PDSCH可以在2个时隙上传输。
假设一个第二类BWP中包括第一段频域资源和第二段频域资源共两段频域资源。第一段频域资源配置的聚合因子为f1,第二段频域资源配置的聚合因子为f2。具体的 聚合因子的取值可以参考现有技术的介绍或其演进,本申请实施例对此不作限定。若第一段频域资源配置的聚合因子f1大于第二段频域资源配置的聚合因子f2,此时,终端设备或网络设备可以使用第一段频域资源配置的聚合因子,即可以是f1,用于在该一个第二类BWP中传输PDSCH。
图15为本申请实施例提供的一种参数配置方法的流程图,如图15所示,该方法可以包括:
S1501、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1502、根据M段频域资源的参数值中最小的参数值确定第二类BWP的参数值。
示例的,第二类BWP的参数或参数类型为PDSCH聚合因子。
假设一个第二类BWP包括中第一段频域资源和第二段频域资源共两段频域资源。第一段频域资源配置的聚合因子为f1,第二段频域资源配置的聚合因子为f2。若第一段频域资源配置的聚合因子f1大于第二段频域资源配置的聚合因子f2,此时,终端设备或网络设备可以使用第二段频域资源配置的聚合因子,即可以是f2,用于在该一个第二类BWP中传输PDSCH。
图16为本申请实施例提供的一种参数配置方法的流程图,如图16所示,该方法可以包括:
S1601、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1602、根据M段频域资源的参数值的平均值确定第二类BWP的参数值。
示例的,第二类BWP的参数为或参数类型PDSCH聚合因子。
假设一个第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源。第一段频域资源配置的聚合因子为f1,第二段频域资源配置的聚合因子为f2。终端设备或网络设备可以使用第一段频域资源配置的聚合因子和第二段频域资源配置的聚合因子的平均值作为该第二类BWP的聚合因子,即可以是(f1+f2)/2,用于在该第二类BWP中传输PDSCH。
可选地,也可以是对M段频域资源的参数值的平均值乘以比例因子作为第二类BWP的聚合因子、或也可以是将候选取值中与M段频域资源的参数值的平均值的差异最小的候选取值作为第二类BWP的聚合因子、或对M段频域资源的参数值的平均值进行向上取整或向下取整后的参数值作为第二类BWP的聚合因子。例如,第二类BWP的聚合因子的候选取值为1、2、4或8时,对于上述一个第二类BWP,则可以将1、2、4和8中与f1和f2的平均值的差值最小的值作为该第二类BWP的聚合因子,或者可以将1、2、4和8中与f1和f2的平均值的差值的绝对值最小的值作为该第二类BWP的聚合因子。例如,假设f1=2,f2=8,(f1+f2)/2=5,5与4的差值最小或差值的绝对值最小,因此,该第二类BWP的聚合因子为4,用于在该第二类BWP中传输PDSCH。
方法三,可以根据M段频域资源的参数值的候选取值确定第二类BWP的参数值的候选取值。图17为本申请实施例提供的一种参数配置方法的流程图,如图17所示,该方法可以包括:
S1701、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1702、根据M段频域资源的参数值的候选取值的并集确定第二类BWP的参数值的候选取值。
示例的,第二类BWP的参数或参数类型为PDSCH的时域资源分配。本申请实施例中,时域资源分配列表(pdsch-time domain allocation list)用于指示PDSCH的候选的时域资源分配集合。例如,网络设备可以通过高层信令为终端设备配置一个或多个候选的时域资源分配,并可以在DCI中指示候选中的一个作为网络设备为该终端设备配置的PDSCH时域资源分配。
假设一个第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源,第一段频域资源配置的时域资源分配列表包括x1~x16行,第二段频域资源配置的时域资源分配列表包括y1~y16行。具体的时域资源分配列表包括的行数可以参考现有技术或其演进的介绍,本申请实施例对此不作限定。本申请实施例中,时域资源分配列表的一行可以对应一个具体的时域资源分配。当然,时频资源列表也可以以列的方式存在,例如时域资源分配列表的一列可以对应一个具体的时域资源分配。假设第一段频域资源配置的时域资源分配列表包括的x1~x8行和第二段频域资源配置的时域资源分配列表包括的y1~y8相同。此时,第二类BWP的时域资源分配列表的候选取值可以包括x1~x8行或y1~y8行,x9~x16和y9~y16。
需要说明的是,如果候选行数超出时域资源分配列表可以包括的行数,则可以根据以下方法确定第二类BWP的时域资源分配列表包括的行数。第一、可以每个频域资源的参数值的候选取值各取一半。例如,如果要求的最大行数为16行,则上述一个第二类BWP的时域资源分配列表可以包括第一段频域资源配置的时域资源分配列表包括的x1~x8行和第二段频域资源配置的时域资源分配列表包括的y1~y8。第二、除了取值重复的行数,每段频域资源配置的时域资源分配列表包括的剩余的行数各取一半。例如,上述一个第二类BWP的时域资源分配列表可以包括x1~x8或y1~y8、x9~x12和y9~y12。
在本申请实施例中,当第二类BWP的参数值的候选取值是根据至少两段频域资源的参数值的候选取值组合而成时,组合得到的候选取值的排序需要确定,或者可以称为对该多个候选取值进行标识。当网络设备通过DCI为终端设备指示第二类BWP的参数值时,可以指示该多个候选取值中的至少一个候选取值的标识,终端设备根据该至少一个候选取值的标识确定网络设备为其配置的参数值。
可选地,第二类BWP的参数值的候选取值的排序可以是按照M段频域资源的标识确定,或按照M段频域资源的属性确定。
具体的,可以是标识小的排序在前,标识大的排序在后;或者标识小的排序在后,标识大的排序在前,或者其他排序,具体的,本申请对此不做限定。比如一个第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源。第一段频域资源的标识为X1,第二段频域资源的标识为X2,如果X1<X2,按照标识小的排序在前,标识大的排序在后,则该第二类BWP的参数值的候选取值的排序为频域资源X1对应的参数值的候选取值在前,频域资源X2对应的参数值的候选取值在后。例如表3所示,其 中表3的第3列为可选项。
表3
Figure PCTCN2019090427-appb-000002
可选的,表3中重叠的候选取值可以排序在频域资源X1的候选取值前,或者排序在频域资源X1的候选取值之后,或者可以排序在频域资源X2的候选取值之前,或者排序在频域资源X2的候选取值后,具体的不做限定。
可选的,第二类BWP的参数值的候选取值的排序规则可以是预定义的,也可以是基站通知UE的。
图18为本申请实施例提供的一种参数配置方法的流程图,如图18所示,该方法可以包括:
S1801、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第一规则。
S1802、根据M段频域资源的参数值的候选取值的交集确定第二类BWP的参数值的候选取值。
示例的,第二类BWP的参数或参数类型为PDSCH的时域资源分配。
假设一个第二类BWP中包括第一段频域资源和第二段频域资源共两段频域资源。第一段频域资源配置的时域资源分配列表包括x1~x16行,第二段频域资源配置的时域资源分配列表包括y1~y16行。假设第一段频域资源配置的时域资源分配列表包括的x1~x4行和第二段频域资源配置的时域资源分配列表包括的y10~y14行相同,第一段频域资源配置的时域资源分配列表包括的x12~x16行和第二段频域资源配置的时域资源分配列表包括的y4~y8行相同。此时,该第二类BWP的时域资源分配列表中的候选取值可以包括x1~x4行或10~y14,以及x12~x16行或y4~y8行。
在本申请实施例中,参数值的候选取值有时还可以称为参数的候选取值。
在本申请实施例中,当第二类BWP的参数的候选取值是根据至少两段频域资源的参数值的候选取值组合而成时,组合得到的候选取值的排序需要确定,或者可以称为对该多个候选取值进行标识。当网络设备通过DCI为终端设备指示第二类BWP的参数值时,可以指示该多个候选取值中的至少一个候选取值的标识,终端设备根据该至少一个候选取值的标识确定网络设备为其配置的参数值。
可选地,第二类BWP中的参数的候选取值的排序可以是按照频域资源的标识确定,或按照频域资源的属性确定。比如对于第二类BWP中的参数的候选取值所在的频域资源,根据该所在的频域资源的标识中的最小标识对应的频域资源中的参数的候选取值的排序确定,或者根据该所在的频域资源的标识中的最大标识对应的频域资源中的参数的候选取值的排序确定,或者根据特定标识对应的频域资源中的参数的候选取值的排序确定。示例的,对于上述一个第二类BWP,该第二类BWP的参数的候选 取值的排序可以是按照第一段频域资源中的排序,如表4的第一列和第二列所示;或者该第二类BWP的参数的候选取值的排序可以是按照第二段频域资源中的排序,如表4的第一列和第三列所示。
表4
Figure PCTCN2019090427-appb-000003
可选的,通过该方法确定第二类BWP的参数值的候选取值,可以在第二类BWP中的频域资源上传输信号时各频域资源可以采用统一的时域资源分配进行数据传输,保证各频域资源的时域资源都是可用的。
在本申请实施例中,可选的,也可以从M段频域资源的参数值的候选取值中,每段频域资源的参数值的候选取值中各取一部分候选取值作为第二类BWP的参数值的候选取值。其中,进一步地,可以根据该M段频域资源的优先级确定所取的候选取值的数量或者比例。可选的,所述优先级,和/或参数的选取方法可以是协议预定义的,也可以是基站通过信令告知终端的。例如,根据频域资源的标识和/或频域资源的属性确定选取候选取值的优先级。比如,用于初始接入的频域资源(或主频域资源或默认频域资源)的优先级可以大于普通(normal)频域资源的优先级,或者,频域资源的标识小的优先级可以大于频域资源的标识大的优先级。例如,若M段频域资源中的一段频域资源为终端设备的初始接入频域资源(或主频域资源或默认频域资源),包括该M段频域资源的第二类BWP的时域资源分配列表的候选取值可以包括该一段频域资源配置的时域资源分配列表的部分或所有候选取值。
或者,在本申请实施例中,如果第二类BWP的时域资源分配列表的最大行数为X行,则可以在第二类BWP包括的每段频域资源中各取X/M行,或对X/M向上取整行或对X/M向下取整行,作为第二类BWP的时域资源分配列表的参数。或者,按照比例选取各段频域资源中的参数值。
在本申请实施例中,从一段频域资源的参数的候选取值中取部分或者全部候选取值,作为该一段频域资源所在的第二类BWP的参数的候选取值的部分或全部候选取值,还可以描述为:该一段频域资源所在的第二类BWP的参数的候选取值中,包括该一段频域资源的参数的候选值中的部分或者全部候选取值。
需要说明的是,也可以从M段频域资源中选择Q段频域资源的参数值,根据M段频域资源中Q段频域资源的参数值的候选取值的并集确定第二类BWP的参数值的候选取值。或者,根据M段频域资源中Q段频域资源的参数值的候选取值的交集确定第二类BWP的参数值的候选取值。Q为大于等于2的整数,且小于或等于M。
可选的,根据本申请实施例提供的方法,以第二类BWP的参数中的计算传输块大小(transmission block size,TBS)的开销配置为例对本申请实施例中的方法进行示意性说明。计算传输块大小的开销配置用于指示开销所占的RE数。比如计算传输块大小的开销参数的取值可以是0,6,8,12和18等其他正整数。当计算TBS时会根 据数据调度的时频资源减去开销所占的RE数计算TBS。
具体的,针对数据传输块大小配置的开销参数,假设第二类BWP包括两段频域资源,分别为第一段频域资源X1和第二段频域资源X2。如果频域资源X1配置的开销取值为o1,频域资源X2配置的开销取值为o2。具体的开销的取值可以是上面介绍中的取值中的至少一个,也可以是其他取值,具体的,不做限定。具体的,第二类BWP的参数的确定方法可以是如下方法中的至少一项:
方法1)根据频域资源的参数值中的最大值确定。
比如如果o1>o2,则第二类BWP的开销的参数值可以是o1。
通过上述方法1,可以使得在第二类BWP上进行数据传输时考虑各频域资源上的开销的最大值,可以使得传输数据时考虑所有不可用RE的开销,计算的TBS会偏小,码率降低,不至于超过最大码率而导致性能变差,缺点是传输的数据量变小。
方法2)根据频域资源的参数值中的最小值确定。
比如如果o1>o2,则第二类BWP的开销的参数值可以是o2。
通过上述方法2,可以使得在第二类BWP上进行数据传输时考虑各频域资源上的开销的最小值,可以使得传输数据时考虑最小的不可用RE的开销,计算的TBS会偏大,最大化的进行数据传输,提高数据吞吐量,缺点是码率变大,有可能会因为码率过大而导致性能变差。
方法3)根据至少两个频域资源的参数值的平均值或求和或乘以比例因子确定。
比如根据至少两个频域资源的参数值的平均值确定第二类BWP的参数值。比如(o1+o2)/2,或进一步向上取整或向下取整。或取平均值之后,如果规定的取值仅为6,8,12和16,可以将6,8,12和16中与(o1+o2)/2的差值的绝对值最小的值作为该第二类BWP的参数值,比如如果频域资源X1的参数值o1=6,频域资源X2的参数值o2=12,则(o1+o2)/2=9,9与8的差值最小或差值的绝对值最小,因此,该第二类BWP的参数值为8。即第二类BWP的开销参数值可以是(o1+o2)/2,或向上取整或向下取整,或者进一步取值之后找到最近的符合条件的取值。
比如根据至少两个频域资源的参数值的求和确定第二类BWP的参数值。比如o1+o2,或向上取整或向下取整。或取和之后,如果规定的取值仅为6,8,12和16。则找到与6,8,12和16的差值的绝对值最小的值作为该第二类BWP的参数值,比如如果频域资源X1的参数值o1=6,频域资源X2的参数值o2=12,则取和为18,18与18差值最小,因此第二类BWP的参数值为18。
比如根据至少两个频域资源的参数值乘以比例因子确定第二类BWP的参数值。比如o1*w1+o2*w2,或者(o1+o2)*w3,或可以进一步向上取整或向下取整。或乘以比例因子之后,如果规定的取值仅为6,8,12和16。则找到与6,8,12和16的差值的绝对值最小的值作为该第二类BWP的参数值。其中,比例因子w1,w2,w3取值为实数,比如可以是0.2,0.8,0.4等,比例因子的取值可以是协议预定义的,也可以是网络设备通过信令告知终端设备的。比如如果频域资源X1的参数值o1=6,频域资源X2的参数值o2=12,则以w3为0.2为例,(o1+o2)*0.2为18*0.2=3.6,3.6与6的差值最小或差值的绝对值最小,因此,第二类BWP的参数值为6。
即第二类BWP或BWP bundle或BWP group的开销参数值可以是o1*w1+o2*w2, 或者(o1+o2)*w3,或者进一步取值之后找到最近的符合条件的取值。
通过上述方法3,可以使得在第二类BWP上进行数据传输时充分考虑各频域资源上的开销的参数值,可以使得传输数据时考虑合理的不可用RE的开销,计算的TBS时会过大也不会太小,合理有效的进行数据传输,提高数据吞吐量。
方法4)根据至少两个频域资源的参数值确定。
比如在计算TBS时,可以针对第二类BWP或BWP bundle或BWP group中分配的多个频域资源的参数值分别确定多个TBS取值,然后将多个TBS取值再相加。
比如第二类BWP或BWP bundle或BWP group包含频域资源X1和频域资源X2。如果频域资源X1的开销取值为o1,频域资源X2的开销取值为o2。根据数据调度分配的资源,比如在第二类BWP中的频域资源X1上分配的时频资源为R1,则针对频域资源X1上的资源计算TBS时的可用RE数可以根据R1-o1确定,或者进一步可以再减去其他参考信号的RE,比如DMRS等,或者有其他的操作,本申请对此不做限定,得到频域资源X1上的TBS为TBS1。比如在第二BWP中的频域资源X2上分配的时频资源为R2,则针对频域资源X2上的资源计算TBS时的可用RE数可以根据R2-o2确定,或者进一步可以再减去其他参考信号的RE,比如DMRS等,或者有其他的操作,本申请对此不做限定,得到频域资源X2上的TBS为TBS2。
即可以根据多个频域资源的各自调度的资源以及各自的开销,可以确定多个频域资源对应的多个TBS。进一步确定第二类BWP的TBS可以按照如下方法中的至少一项:
A1:将多个TBS相加得到临时的TBS,然后再进行后续的TBS的处理中的至少一项,比如根据表格查找最近的TBS,或将临时TBS进行8的倍数量化,或进行编码块切割等其他处理。将处理得到的TBS作为第二类BWP的TBS。
A2:将多个TBS分别进行后续TBS的处理中的至少一项,比如根据表格查找最近的TBS,或将TBS进行8的倍数量化,或进行编码块切割等其他处理。然后再将多个处理之后的TBS相加得到第二类BWP的TBS。
可选的,具体采用上述的方法A1,方法A2中的哪种方法可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
通过上述方法4,可以使得在第二类BWP上进行数据传输时针对各频域资源上的开销的参数值计算各频域资源上对应的TBS,可以使得传输数据时考虑合理的不可用RE的开销,计算的TBS时会过大也不会太小,合理有效的进行数据传输,提高数据吞吐量。
可选的,具体采用上述的方法1),2),3),4)中的哪种方法可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
可选的,上述的方法1),2),3),4)中的任意一种也可以适用于第二类BWP的其他参数,具体的,本申请对此不做限定。可选的,该其他参数可以是本申请实施例中描述的任意参数。
对于第二种可实现方式,参数确定规则是第二规则的情况下,可以包括以下具体实现方式,例如下述方法一至方法三。
图19为本申请实施例提供的一种参数配置方法(第二种可实现方式的方法一)的 流程图,如图19所示,该方法可以包括:
S1901、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第二规则。
S1902、根据用于初始接入的频域资源的参数值确定第二类BWP的参数值。
图20为本申请实施例提供的一种参数配置方法(第二种可实现方式的方法二)的流程图,如图20所示,该方法可以包括:
S2001、对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第二规则。
S2002、根据主频域资源对应的参数值确定第二类BWP的参数值。
本申请实施例还可以提供一种参数配置方法(第二种可实现方式的方法三),该方法可以包括:
对于第二类BWP的参数,根据第二类BWP的参数类型确定参数确定规则,参数确定规则为第二规则。
根据默认频域资源对应的参数值确定第二类BWP的参数值。
在本申请实施例中,初始接入的频域资源或主频域资源或默认频域资源可以是第二类BWP包括的频域资源。假设一个第二类BWP包括第一段频域资源和第二段频域资源共两段频域资源。若第一段频域资源为用于初始接入的频域资源,将第一段频域资源的对应的参数值确定第二类BWP的参数值。若第二段频域资源为用于初始接入的频域资源,将第二段频域资源的对应的参数值确定第二类BWP的参数值。
可选的,也可以既参考M段频域资源的标识又参考频域资源的属性确定第二类BWP的参数值。例如,如果第二类BWP中有两个主频域资源,则可以选择主频域资源中标识较小的频域资源的参数值作为第二类BWP的参数值。
对于不同的第二类BWP的参数类型,对应的参数确定规则可以是不同的也可以是相同的。
可选地,下面对确定第二类BWP的参数或参数类型可用的上述方法进行说明。
可选地,针对PDSCH或PUSCH或半静态调度(semi-persistent scheduling,SPS)或配置调度的配置可以包括如下参数中的一项或多项:
1、数据加扰标识,可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
2、下行解调参考信号(demodulation reference signal,DMRS)配置,用于指示下行DMRS的相关配置。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的方法一或方法二确定参数值。
3、传输配置指示(transmission configuration indication,TCI)状态配置,用于指示准共址QCL(quasi-colocation)信息。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
4、VRB到PRB交织器,用于指示交织是RB聚合的大小,比如可以是2个RB或4个RB等。可用上述第一种可实现方式中方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
5、资源分配,用于指示资源分配类型,可以是资源分配类型0,资源分配类型1, 或者,资源分配类型0和类型1动态切换。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
6、PDSCH时域资源分配列表。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
7、PDSCH聚合因子。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
8、速率匹配图案,用于指示数据传输时速率匹配的资源的位置,在所述资源的位置上不传输(或接收)数据。高层信令可以配置一个或多个速率匹配图案(或集合),DCI中可以指示一个速率匹配图案(或集合)进行速率匹配。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
9、RBG大小。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
10、MCS表格配置,用于指示DCI调度时采用的MCS表格,根据该MCS表格和对应的DCI中的指示可以确定数据传输的调制方式和/或码率。比如LTE或NR下,可以有针对QAM64的MCS表格和QAM256的MCS表格。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
11、DCI调度时最大的码字个数,用于指示DCI调度时最大的码字个数,比如可以是1个码字或2个码字,会决定DCI中的信息域。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
12、预编码RB聚合类型,用于指示预编码时RB聚合的个数,比如可以是2个RB采用相同的预编码,也可以是4个RB采用相同的预编码,或者也可以是全带宽采用相同的预编码。在采用相同预编码的RB上可以进行联合信道估计,提高信道估计性能,而不同RB采用不同的预编码也可以获得预编码增益。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
13、零功率信道状态信息参考信号(channel state information-reference signal,CSI-RS)资源,用于指示零功率的CSI-RS资源,进一步根据零功率CSI-RS资源可以进行速率匹配指示。发送时间上可以分为周期性,非周期性,半持续性。高层信令可以配置一个或多个零功率CSI-RS资源,DCI中可以触发一个进行速率匹配。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
可选地,针对物理上行共享信道(physical uplink shared channel,PUSCH)可以包括如下参数或参数类型中的一项或多项:
1、传输配置(txConfig),可以是包括预编码传输,或非预编码传输。可以用于指示上行信号传输类型。可用上述第一种可实现方式中的方法一,或第二种可实现方式中的任意一种方法确定参数值。
2、上行功率控制(pusch-power control),可以用于指示上行功率配置的相关参数。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
3、频率跳频(frequency jopping)配置,可以是有模式1和模式2。用于指示频率 跳频模式。可用上述第一种可实现方式中的方法一,或第二种可实现方式中的任意一种方法确定参数值。
4、频率跳频偏移(frequency hopping offset),用于指示频率跳频的RB的偏移。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
5、转换预编码(transformPrecoder),用于指示上行传输是单载波还是多载波,如果使能transformPrecoder表示上行为单载波传输。可用上述第一种可实现方式中的方式一,或第二种可实现方式中的任意一种方法确定参数值。
6、码本子集(codebook subset)配置,用于指示上行的码本类型,比如可以是非相干码本(nonCoherent),部分相干码本和非相干码本(partialAndNonCoherent),相干码本和部分相干码本以及非相干码本(fullyAndPartialAndNonCoherent)。可用上述第一种可实现方式中的方法一,或第二种可实现方式中的任意一种方法确定参数值。
7、最大秩取值(maxrank),用于指示上行最大的数据传输层数。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
8、上行控制信息携带在PUSCH中,用于指示上行控制信息携带在PUSCH上时的相关参数。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
9、偏移的取值集合。可以有两种类型,一种是动态的dynamic,可以高层配置多个集合,DCI再指示一个集合。另一种是半静态的,即高层仅配置一个集合,不需要DCI指示。集合中可以包括如下至少一种:确认(acknowledgement,ACK)/非确认(negative acknowledgement,NACK)即ACK/NACK反馈的offset,信道状态信息(channel state information,CSI)上报第一部分的offset,CSI上报第二部分的offset等。偏移的取值用于确定在PUSCH上复用ack/nack和/或CSI时用于ack/nack和CSI的资源的数目。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
10、比例因子(scaling),用于指示在PUSCH上分配给上行控制信息(uplink control information,UCI)的资源的数目的限制。比如取值f0p5表示0.5,即表明UCI的资源的数目不能超过PUSCH资源的1/2。比如取值f0p65表示0.65,即表明UCI的资源的数目不能超过PUSCH资源的0.65。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
可选地,针对SPS可以包括如下参数中的一项或多项:
1、周期,用于配置SPS传输的周期。可用上述第一种可实现方式中方法一或方法二,或第二种可实现方式中任意一种方法确定参数值。
2、混合自动重传请求(hybrid automatic repeat request,HARQ)进程)process)的数目,用于指示HARQ process的数目。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
3、PUCCH资源标识,用于指示PUCCH资源。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
可选地,针对配置调度的配置可以包括如下参数中的一项或多项:
1、功率配置参数。可用上述第一种可实现方式中的方法一或方法二,或第二种可 实现方式中的任意一种方法确定参数值。
2、功率参数。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
3、重复次数,用于指示一次调度占用的slot个数或重复次数。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
4、重复的冗余版本,用于指示重复传输时每次传输的冗余版本。可用上述第一种可实现方式中的方法一,或第二种可实现方式中的任意一种方法确定参数值。
5、周期,用于指示数据传输的周期。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
6、RRC配置的上行调度信息。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
6.1:时域偏移。可用上述第一种可实现方式中的方法一或方法二或方法三,或第二种可实现方式中的任意一种方法确定参数值。
6.2:时域资源分配。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
6.3:频域资源分配。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
6.4:天线端口指示,用于指示数据传输的天线端口和/或层数。可用上述第一种可实现方式中的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
6.5:DMRS序列初始化,用于指示DMRS序列初始化加扰标识。可用上述第一种可实现方式中的方法一或方法二或方法三,或第二种可实现方式中的任意一种方法确定参数值。
6.6:预编码和层数,用于指示上行预编码和层数。可用上述第一种可实现方式中的方法一或方法三,或第二种可实现方式中的任意一种方法确定参数值。
6.7:SRS资源指示,用于指示SRS资源进而确定与数据大尺度特性相同的SRS资源。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
6.8:调制方式码率和TBS,用于指示MCS。可用上述第一种可实现方式的方法一或方法二,或第二种可实现方式中的任意一种方法确定参数值。
6.9:频率跳频偏移配置。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
6.10:路损参考指示,用于指示数据传输的路损可以参考的参考信号。可用上述第一种可实现方式,或第二种可实现方式确定参数值。
在本申请实施例中,也可以将网络设备指示的频域资源对应的参数值确定为第二类BWP的参数值,终端设备根据指示的参数值确定第二类BWP对应的参数的参数值。例如,网络设备指示第二类BWP包括的第一个频域资源作为第二类BWP的参数值。可选的,网络设备可以通过高层信令或者物理层信令发送信令指示所述频域资源,终端设备根据网络设备指示的所述频域资源对应的参数值确定第二类BWP的参数值。
可选的,针对第二类BWP的参数配置时,部分参数可以为第一类BWP级配置,而其他部分参数可以为第二类BWP级配置的。这样可以降低信令的配置开销,针对 为第二类BWP配置的参数,对于一个第二类BWP而言,可以仅根据配置一个参数值,即可确定在第二类BWP上进行数据传输的参数值。
可选的,对于一个第二类BWP,该第二类BWP中包括N个第一类BWP。参数为第一类BWP级配置时,为该第二类BWP配置该参数的参数值时,可以为该第二类BWP中的每一个第一类BWP配置该参数的参数值。
可选的,对于一个第二类BWP,该第二类BWP中包括N个第一类BWP。参数为第二类BWP级配置时,为该第二类BWP配置该参数的参数值,在该第二类BWP中的第一类BWP中进行数据传输时采用该配置的参数值。
具体的,比如如下参数中的至少一项可以为第一类BWP级配置的。
比如针对下行可以配置如下至少一项:BWP的标识,第一个PRB(起始RB)和连续PRB的个数,下行控制信道的配置。可选的,下行控制信道的配置可以是仅针对主BWP或默认BWP配置。
比如针对上行可以配置如下至少一项:BWP的标识,第一个PRB(起始RB)和连续PRB的个数,上行控制信道的配置。可选的,上行控制信道的配置可以是仅针对主BWP或默认BWP配置。
具体的,比如如下参数中的至少一项可以为第二类BWP级配置的。
比如针对下行可以配置如下至少一项:子载波间隔,CP长度,PDSCH配置,SPS配置,无线链路检测配置。
比如针对上行可以配置如下至少一项:子载波间隔,CP长度,PUSCH配置,SRS配置,波束失败重建配置。
可选的,针对第二类BWP的参数确定时,可以根据默认的参数取值确定所述第二类BWP的数据传输所采用的参数值。
比如可以按照协议规定的预定义的参数确定。
比如数据加扰标识,用于指示数据加扰的标识,可以预定义为小区ID或UE ID。
比如下行DMRS配置的参数值可以预定义为配置1,单符号。
比如TCI状态配置,用于指示准共址QCL信息。可以默认不配置,根据PDCCH的QCL确定数据的QCL。
比如VRB到PRB交织器,用于指示交织是RB聚合的大小,比如可以是2个RB或4个RB等。
比如资源分配,用于指示资源分配类型,可以是资源分配类型0,资源分配类型1,资源分配类型0和类型1动态切换。可以默认为类型1,或默认为动态切换。
比如PDSCH时域资源分配列表。可以默认采用预定义的时域资源分配表格或者***信息配置的时域资源分配表格。
比如PDSCH聚合因子。可以默认不聚合即取值为1,或默认为取值为F,F为正整数。
比如速率匹配图案。可以默认不配置,不进行速率匹配。
比如RBG大小。可以默认为配置1。
比如MCS表格配置。可以默认为64QAM的MCS表格。
比如DCI调度时最大的码字个数。可以默认最大码字个数为1。
比如预编码RB聚合类型。可以默认为全带宽。
具体的,比如如果第二类BWP包含的多个频域资源中的至少两个频域资源配置的参数不同时,可以按照默认的参数确定第二类BWP的参数。
比如如果第二类BWP包含的多个BWP中的各BWP配置的参数相同时,可以按照配置的参数确定第二类BWP的参数。
下面结合附图对终端设备和网络设备配置带宽部分中的资源的方法进行详细阐述。当然,资源配置方法也可以由其它通信设备支持终端设备实现,例如终端设备中的芯片,或资源配置方法也可以由其它通信设备支持网络设备实现,例如网络设备中的芯片执行,本申请实施例对此不作限定。
根据资源配置方法确定资源后,网络设备和终端设备可以在该资源进行数据传输,例如可以进行下行数据传输和/或上行数据传输。
图21为本申请实施例提供的一种资源配置方法的流程图,如图21所示,该方法可以包括:
S2101、确定第二类BWP的资源配置。
第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。该N段频域资源中的一段频域资源可以是一个第一类BWP。在无线通信***中,例如5G标准的版本15(Release 15,R15)或其演进中,第一类BWP是一段连续的频域资源。第一类BWP的配置可以包括该第一类BWP的频率起始RB、带宽(bandwidth,BW)和对应的参数(numerology)。其中,带宽是指该第一类BWP包括的RB数,参数包括子载波间隔和循环前缀中至少一个。
在本申请实施例中网络设备可以通过如下三个偏移值(offset)为终端设备配置带宽部分。
第一偏移(offset1):终端设备根据参考频率位置(reference location)和相对于该参考频率位置的第一偏移(offset1)确定参考点A(reference point A),根据该参考点A确定公共RB的索引。其中,不同的子载波间隔SCS=2 μ×15kHz对应各自的公共RB索引,比如15kHz的RB0和RB1可以对应30kHz的RB0,而30kHz的RB0和RB1可以对应60kHZ的RB0,类似的,不同子载波间隔对应各自的公共RB索引,且不同的子载波间隔对应的公共RB的公共RB0的子载波0均包含该参考点A,公共RB从公共RB0按频率增大的方向编号。示例性地,对于主小区下行载波,参考频率位置根据终端设备接收的同步信号块的频率最低的RB确定;对于非配对频谱主小区上行载波,参考频率位置根据终端设备接收的同步信号块的频率最低的RB确定;对于配对频谱主小区上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号(absolute radio frequency channel number,ARFCN);对于辅小区,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号;对于增补上行载波,参考频率位置根据基站配置的频率位置确定,该频率位置可以对应一个绝对频点号。上述非配对频谱可以是在TDD场景下,上行载波和下行载波为同一载波,上行载波和下行载波为非配对频谱。上述配对频谱可以是在FDD场景下,上行载波和下行载波是两个载波,上行载波和下行载波为配对频谱。
第二偏移(offset2):终端设备根据参考点A或公共RB0以及相对于该参考点A或公共RB0的第二偏移,确定虚拟载波(virtual carrier)的最低RB位置,终端设备还可以根据网络设备配置的虚拟载波带宽确定虚拟载波,其中,虚拟载波也可以称为逻辑载波、终端设备特定载波、可用RB、可用带宽等。终端设备可以根据虚拟载波确定资源格、OFDM基带信号,放置RF收发器和/或进行滤波。示例性地,OFDM基带信号的生成根据虚拟载波的大小,即该虚拟载波中包含的RB个数确定,以频率连续的虚拟载波为例,假设该虚拟载波中包含
Figure PCTCN2019090427-appb-000004
个RB,则OFDM基带信号可以表示为:
Figure PCTCN2019090427-appb-000005
其中,
Figure PCTCN2019090427-appb-000006
表示一个RB中包括的子载波个数,例如
Figure PCTCN2019090427-appb-000007
k 0表示网络设备配置的子载波级偏移;Δf表示子载波间隔;N CP,l表示第l个符号的CP长度;T c表示预定义的时域单元,根据***支持的最大子载波间隔和FFT点数确定,例如***支持的最大子载波间隔为480kHz,FFT点数为4096,则T c=1/(480·10 3·4096);t start,l表示第l个符号的时域位置,或者和第0个符号之间的时域偏移。
第三偏移(offset3):BWP的最低RB位置相对于虚拟载波的最低RB位置的偏移,终端设备根据该偏移确定BWP的起始RB。进一步,可以配置BWP的带宽,进而终端设备可以根据起始RB和RB长度确定该BWP在载波中的位置。
在本申请实施例中,可选地,关于offset1、offset2和offset3的介绍可以参考5G标准协议或其演进。offset1、offset2和offset3可以用于第一类BWP。
图22为本申请实施例提供的一种第二类BWP的资源位置的示例图。
针对第二类BWP,为了实现非连续的资源配置,可以为第二类BWP包括的N段频域资源中每段频域资源进行资源配置。针对一段频域资源进行资源配置的资源配置信息至少应该包括该段频域资源的起始位置和带宽,例如带宽可以是该段频域资源包括的RB个数或RB长度。资源配置还包括至少一个第二偏移和至少一个参考点。
可选地,针对第二类BWP,在第一种可能的实现方式中,资源配置用于指示一个参考点、一个第二偏移(offset2)、以及N个频域资源信息。其中,N个频域资源信息分别对应于N段频域资源。在确定N段频域资源的资源位置时可以共用一个参考点、共用一个第二偏移(offset2)。对于一个频域资源信息,该频域资源信息包括其对应的频域资源的起始位置和带宽。其中,带宽可以是频域资源中包括的RB个数或RB长度。图23为本申请实施例提供的一种第二类BWP的资源位置的示例图。
可选的,网络设备通过信令为终端设备指示第二类BWP的资源配置时,参考点,第二偏移,频域资源信息的指示可以在同一条信令中,也可以在不同的信令中。
在第二种可能的实现方式中,资源配置用于指示一个参考点、N个offset2和N个频域资源信息。在确定N段频域资源的资源位置时可以共用一个参考点以及N个offset2。对于一个频域资源信息,该频域资源信息包括其对应的频域资源的起始位置和带宽。其中,N个offset2分别对应于N段频域资源。N个频域资源信息分别对应于N段频域资源。图24为本申请实施例提供的一种第二类BWP的资源位置的示例图。可选的,资源配置还可以用于指示一个参考点、R个offset2和N个频域资源信息。R为大于2的整数,且R小于N。在这种场景下,在确定N段频域资源的资源位置时可 以共用一个参考点,以及在确定N段频域资源中的至少两段频域资源的资源位置时共用一个offset2。例如,一个第二类BWP中包括第一段频域资源、第二段频域资源和第三段频域资源共三段频域资源。资源配置还可以用于指示一个参考点、2个offset2和3个频域资源信息。在确定3段频域资源的资源位置时可以共用一个参考点,以及在确定第一段频域资源的资源位置时可以使用第一个offset2,在确定第二段频域资源的资源位置和第三段频域资源的资源位置时可以使用第二个offset2。对于每个频域资源信息,该频域资源信息包括其对应的频域资源的起始位置和带宽。
可选的,网络设备通过信令为终端设备指示第二类BWP的资源配置时,参考点,第二偏移,频域资源信息的指示可以在同一条信令中,也可以在不同的信令中。
在第三种可能的实现方式中,资源配置用于指示N段频域资源对应的N个参考点、N个offset2和N个频域资源信息。在确定N段频域资源的资源位置时可以使用N个参考点以及N个offset2,确定一段频域资源的资源位置时可以使用该段频域资源对应的参考点以及offset2。对于一个频域资源信息,该频域资源信息包括其对应的频域资源的起始位置和带宽。其中,N个频域资源信息分别对应于N段频域资源。图25为本申请实施例提供的一种第二类BWP的资源位置的示例图。
可选的,网络设备通过信令为终端设备指示第二类BWP的资源配置时,参考点,第二偏移,频域资源信息的指示可以在同一条信令中,也可以在不同的信令中。
可选的,网络设备通过信令为终端设备指示第二类BWP的资源配置时,可以针对第二类BWP包括的每个第一类BWP配置参考点,第二偏移和频域资源信息。
可选的,针对第二类BWP进行资源配置时,参考点和/或第二偏移可以是第一类BWP级配置的。比如,第二类BWP包括N个第一类BWP,在第二类BWP的资源配置时,通过指示N个第一类BWP的标识确定第二类BWP的资源位置。其中,针对每个第一类BWP可以配置第一类BWP的标识,以及该第一类BWP对应的参考点,第二偏移和频域资源信息。可选的,频域资源信息包括资源指示值(resource indication value,RIV)。资源指示值用于指示频域资源的起始位置和频域资源包括的RB长度。RIV具体定义可以如下:
如果
Figure PCTCN2019090427-appb-000008
Figure PCTCN2019090427-appb-000009
否则
Figure PCTCN2019090427-appb-000010
其中,RB start表示频域资源的起始位置。L RBs表示频域资源包括的RB长度,L RBs≥1,并且不会超过
Figure PCTCN2019090427-appb-000011
表示BWP的大小,
Figure PCTCN2019090427-appb-000012
为正整数,例如为275,此时RIV的取值可以是0~275*276-1=0~37949,即可以在275个RB内指示起始RB和RB个数。
在第四种可能的实现方式中,资源信息用于指示N个载波信息、以及N个频域资源信息,载波信息用于指示频域资源所处的载波。例如,载波信息包括一个参考点和一个偏移值(offset2)。可选地,所述N个载波信息对应所述N段资源。
在第五种可能的实现方式中,资源配置用于指示N段频域资源对应的至少一个参考点、与M段频域资源对应的至少一个offset2、与N-M段频域资源对应的至少一个offset2、N段频域资源信息。
在第六种可能的实现方式中,资源信息用于指示至少一个载波信息、以及至少一 个频域资源信息,载波信息用于指示频域资源所处的载波。例如,载波信息包括一个参考点和一个偏移值(offset2)。
另外,上述第二类BWP包括的N段频域资源可以位于同一载波;或者上述第二类BWP包括的N段频域资源中至少一段频域资源位于至少一个载波。
可选的,上述第二类BWP包括的N段频域资源中的至少两段可以位于不同载波。
S2102、根据第二类BWP的资源配置确定第二类BWP的资源位置。
从而,使得网络设备或终端设备可以根据本申请实施例提供的资源配置方法在离散频谱下确定第二类BWP的频域位置,根据第二类BWP的参数值,在第二类BWP的频域位置上接收或发送数据,有效地提高了离散频谱的利用率,并提高了***性能。
结合上述各个实施例所述的参数配置方法和资源配置方法,本申请实施例提供一种通信方法。该通信方法可以应用于终端设备或终端设备内置的芯片,或者,该通信方法应用于网络设备或网络设备内置的芯片,本申请实施例对此不作限定。本申请实施例以终端设备和网络设备为例对通信方法进行说明。图26为本申请实施例提供的一种通信方法的流程图,如图26所示,该方法可以包括:
S2601、网络设备确定第二类BWP的资源配置。
S2602、网络设备根据第二类BWP的资源配置确定第二类BWP的资源位置。
S2603、网络设备根据第二类BWP的参数类型确定参数确定规则。
S2604、网络设备根据参数确定规则确定第二类BWP的参数值。
S2605、网络设备根据第二类BWP的参数值,在第二类BWP的资源位置上发送数据。
S2606、终端设备确定第二类BWP的资源配置。
S2607、终端设备根据第二类BWP的资源配置确定第二类BWP的资源位置。
S2608、终端设备根据第二类BWP的参数类型确定参数确定规则。
S2609、终端设备根据参数确定规则确定第二类BWP的参数值。
S2610、终端设备根据第二类BWP的参数值,在第二类BWP的资源位置上接收数据。
当终端设备向网络设备发送数据时,可以参考根据图26所示的通信方法的过程传输数据,只是与图26所示的通信方向不同。关于确定第二类BWP的资源位置和确定第二类BWP的参数值可以参数本申请上述各个实施例的详细阐述,本申请实施例在此不再赘述。
可选地,在本申请实施例中,对各方法中的步骤的顺序不进行限定。
可选地,在本申请实施例中,网络设备还可以通过运营商的配置或者网络侧算法实现确定第二类BWP的参数值,本申请不做限制。
可选地,包括本申请实施例中提供的确定第二类BWP的参数值的方法,或者包括本申请实施例提供的参数确定规则的方法,例如包括步骤S1002、S1102、S1202、S1302、S1402、S1502、S1602、S1702、S1802、S1902、S2002和S2102中一个或多个步骤对应的确定第二类BWP的参数值的方法,也在本申请的保护范围中。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。可以理解的是,各个网 元,例如网络设备、终端设备为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图27示出了上述和实施例中涉及的通信装置的一种可能的组成示意图,该通信装置能执行本申请各方法实施例中任一方法实施例中网络设备或终端设备所执行的步骤。如图27所示,所述通信装置为终端设备或支持终端设备实现实施例中提供的方法的通信装置,例如该通信装置可以是芯片***,或者,所述通信装置为网络设备或支持网络设备实现实施例中提供的方法的通信装置,例如该通信装置可以是芯片***。该通信装置可以包括:处理单元2701。
其中,处理单元2701,用于支持通信装置执行本申请实施例中描述的方法。例如,处理单元2701,用于执行或用于支持通信装置执行图10所示的参数配置方法中的S1001和S1002,图11所示的参数配置方法中的S1101和S1102,图12所示的参数配置方法中的S1201和S1202,图13所示的参数配置方法中的S1301和S1302,图14所示的参数配置方法中的S1401和S1402,图15所示的参数配置方法中的S1501和S1502,图16所示的参数配置方法中的S1601和S1602,图17所示的参数配置方法中的S1701和S1702,图18所示的参数配置方法中的S1801和S1802,图19所示的参数配置方法中的S1901和S1902,图20所示的参数配置方法中的S2001和S2002,图21中所示的资源配置方法中的S2101和S2102,图26所示的通信方法中的步骤S2601~S2604和S2606~S2609。
在本申请实施例中,进一步的,如图27所示,该通信装置还可以包括:发送单元2702和接收单元2703。
发送单元2702,用于发送数据,例如用于支持通信装置执行图26所示的方法中的S2605。
接收单元2703,用于接收数据,例如用于支持通信装置执行图26所示的方法中的S2610。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的通信装置,用于执行上述任意实施例的方法,因此可以达到与上述实施例的方法相同的效果。
如图28所示为本申请实施例提供的通信装置2800,用于实现上述方法中网络设 备的功能。该通信装置2800可以是网络设备,也可以是网络设备中的装置。其中,该通信装置2800可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。或者,通信装置2800用于实现上述方法中终端设备的功能。该通信装置2800可以是终端设备,也可以是终端设备中的装置。其中,该通信装置2800可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置2800包括至少一个处理器2801,用于实现本申请实施例提供的方法中网络设备或终端设备的功能。示例性地,处理器2801可以用于根据第二类BWP的参数类型确定参数确定规则,并根据参数确定规则确定第二类BWP的参数值,以及确定第二类BWP的资源配置,并根据第二类BWP的资源配置确定第二类BWP的资源位置等等,具体参见方法示例中的详细描述,此处不做赘述。
通信装置2800还可以包括至少一个存储器2802,用于存储程序指令和/或数据。存储器2802和处理器2801耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2801可能和存储器2802协同操作。处理器2801可能执行存储器2802中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置2800还可以包括通信接口2803,用于通过传输介质和其它设备进行通信,从而用于通信装置2800中的装置可以和其它设备进行通信。示例性地,示例性地,若通信装置为网络设备,该其它设备为终端设备。若通信装置为终端设备,该其它设备为网络设备。处理器2801利用通信接口2803收发数据,并用于实现图10~图21对应的实施例中所述的网络设备或终端设备所执行的方法。
本申请实施例中不限定上述通信接口2803、处理器2801以及存储器2802之间的具体连接介质。本申请实施例在图28中以通信接口2803、处理器2801以及存储器2802之间通过总线2804连接,总线在图28中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图28中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。本申请实施例所涉及的终端设备可以为图8所 示的智能手机。本申请实施例所涉及的网络设备可以为图9所示的基站。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种参数配置方法,其特征在于,所述方法包括:
    对于第二类带宽部分BWP的参数,根据所述第二类BWP的参数类型确定参数确定规则,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;
    根据所述参数确定规则确定所述第二类BWP的参数值。
  2. 根据权利要求1所述的参数配置方法,其特征在于,所述参数确定规则是第一规则,所述根据参数确定规则确定所述第二类BWP的参数值,包括:
    根据M段频域资源的参数值确定所述第二类BWP的参数值,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
  3. 根据权利要求2所述的参数配置方法,其特征在于,所述根据M段频域资源的参数值确定所述第二类BWP的参数值,包括:
    根据所述M段频域资源的标识,根据所述M段频域资源的M个参数值确定所述第二类BWP的参数值。
  4. 根据权利要求3所述的参数配置方法,其特征在于,根据所述M段频域资源的标识,根据所述M段频域资源的M个参数值确定所述第二类BWP的参数值,包括:
    根据所述M段频域资源的标识中最大的标识对应的频域资源的参数值确定所述第二类BWP的参数值;或者,
    根据所述M段频域资源的标识中最小的标识对应的频域资源的参数值确定所述第二类BWP的参数值;或者,
    根据所述M段频域资源的标识中的特定标识对应的频域资源的参数值确定所述第二类BWP的参数值,其中,所述特定标识为预配置的标识或者接收的标识。
  5. 根据权利要求2所述的参数配置方法,其特征在于,所述根据M段频域资源的参数值确定所述第二类BWP的参数值,包括:
    根据所述M段频域资源的参数值中最大的参数值确定所述第二类BWP的参数值;或者,
    根据所述M段频域资源的参数值中最小的参数值确定所述第二类BWP的参数值;或者,
    根据所述M段频域资源的参数值的平均值确定所述第二类BWP的参数值。
  6. 根据权利要求2所述的参数配置方法,其特征在于,所述根据M段频域资源的参数值确定所述第二类BWP的参数值,包括:根据所述M段频域资源的参数值的候选取值确定所述第二类BWP的参数值的候选取值;具体包括:
    根据所述M段频域资源的参数值的候选取值的并集确定所述第二类BWP的参数值的候选取值;或者,
    根据所述M段频域资源的参数值的候选取值的交集确定所述第二类BWP的参数值的候选取值。
  7. 根据权利要求1中所述的参数配置方法,其特征在于,所述参数确定规则是第二规则,所述根据参数确定规则确定所述第二类BWP的参数值,包括:
    根据用于初始接入的频域资源的参数值确定所述第二类BWP的参数值;或者,
    根据主频域资源对应的参数值确定所述第二类BWP的参数值,所述主频域资源 是用于传输物理下行控制信道PDCCH的频域资源。
  8. 一种资源配置方法,其特征在于,所述方法包括:
    确定第二类带宽部分BWP的资源配置,其中,所述资源配置包括:
    至少一个参考点、至少一个第二偏移offset2和N个频域资源信息;
    其中,所述N个频域资源信息对应于N段频域资源,所述第二类BWP中包括所述N段频域资源,N为正整数,N大于或等于2;
    根据所述第二类BWP的资源配置确定所述第二类BWP的资源位置。
  9. 一种资源配置方法,其特征在于,所述方法包括:
    根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类带宽部分BWP的参数值,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N;
    根据所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据。
  10. 一种资源配置方法,其特征在于,所述方法包括:
    根据M段频域资源的参数值中最大的参数值确定第二类带宽部分BWP的参数值,或者,根据所述M段频域资源的参数值中最小的参数值确定所述第二类BWP的参数值,或者,根据所述M段频域资源的参数值的平均值确定所述第二类BWP的参数值;
    根据所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
  11. 一种资源配置方法,其特征在于,所述方法包括:
    根据M段频域资源的参数值的候选取值确定第二类带宽部分BWP的参数值的候选取值;
    根据所述第二类BWP的参数值的候选取值,在所述第二类BWP上接收或发送数据,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
  12. 一种资源配置方法,其特征在于,所述方法包括:
    根据用于初始接入的频域资源的参数值确定第二类带宽部分BWP的参数值,或者,根据主频域资源对应的参数值确定所述第二类BWP的参数值;
    根据所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。
  13. 一种通信装置,其特征在于,用于实现如权利要求1至7中任一项所述的参数配置方法,或者用于实现如权利要求8至12任一项所述的资源配置方法。
  14. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1至7中任一项所述的参数配置方法,或者用于执行如权利要求8至12任一项所述的资源配置方法。
  15. 一种通信装置,其特征在于,所述装置包括处理单元,用于:
    对于第二类带宽部分BWP的参数,根据所述第二类BWP的参数类型确定参数确定规则,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2;
    根据所述参数确定规则确定所述第二类BWP的参数值。
  16. 一种通信装置,其特征在于,所述装置包括处理单元,用于:
    确定第二类带宽部分BWP的资源配置,其中,所述资源配置包括:
    至少一个参考点、至少一个第二偏移offset2和N个频域资源信息;
    其中,所述N个频域资源信息对应于N段频域资源,所述第二类BWP中包括所述N段频域资源,N为正整数,N大于或等于2;
    根据所述第二类BWP的资源配置确定所述第二类BWP的资源位置。
  17. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于根据M段频域资源的标识,根据M段频域资源的M个参数值确定第二类带宽部分BWP的参数值,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N;
    收发单元,用于根据所述处理单元确定的所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据。
  18. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于根据M段频域资源的参数值中最大的参数值确定第二类带宽部分BWP的参数值,或者,根据所述M段频域资源的参数值中最小的参数值确定所述第二类BWP的参数值,或者,根据所述M段频域资源的参数值的平均值确定所述第二类BWP的参数值;
    收发单元,用于根据所述处理单元确定的所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
  19. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于根据M段频域资源的参数值的候选取值确定第二类带宽部分BWP的参数值的候选取值;
    收发单元,用于根据所述处理单元确定的所述第二类BWP的参数值的候选取值,在所述第二类BWP上接收或发送数据,其中,所述第二类BWP中包括N段频域资源,N为正整数,N大于或等于2,所述M段频域资源是所述N段频域资源中的M段频域资源,M为大于等于1的整数,且小于或等于N。
  20. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于根据用于初始接入的频域资源的参数值确定第二类带宽部分BWP的参数值,或者,根据主频域资源对应的参数值确定所述第二类BWP的参数值;
    收发单元,用于根据所述处理单元确定的所述第二类BWP的参数值,在所述第二类BWP上接收或发送数据,其中,第二类BWP中包括N段频域资源,N为正整数,N大于或等于2。
  21. 一种计算机可读存储介质,其特征在于,包括计算机软件指令,当所述计算 机软件指令在计算机中运行时,使得所述计算机执行如权利要求1至7中任一项所述的参数配置方法,或者执行如权利要求8至12任一项所述的资源配置方法。
  22. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机中运行时,使得所述计算机执行如权利要求1至7中任一项所述的参数配置方法,或者执行如权利要求8至12任一项所述的资源配置方法。
  23. 一种通信***,其特征在于,包括权利要求13至20任一项所述的通信装置。
PCT/CN2019/090427 2018-06-22 2019-06-06 一种参数配置方法及装置 WO2019242511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19821574.1A EP3799496A4 (en) 2018-06-22 2019-06-06 PARAMETER CONFIGURATION PROCESS AND DEVICE
US17/125,221 US20210105783A1 (en) 2018-06-22 2020-12-17 Parameter configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810654748.1A CN110636617B (zh) 2018-06-22 2018-06-22 一种参数配置方法及装置
CN201810654748.1 2018-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/125,221 Continuation US20210105783A1 (en) 2018-06-22 2020-12-17 Parameter configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2019242511A1 true WO2019242511A1 (zh) 2019-12-26

Family

ID=68967751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090427 WO2019242511A1 (zh) 2018-06-22 2019-06-06 一种参数配置方法及装置

Country Status (4)

Country Link
US (1) US20210105783A1 (zh)
EP (1) EP3799496A4 (zh)
CN (1) CN110636617B (zh)
WO (1) WO2019242511A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243672A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Reporting a selected demodulation reference signal configuration and corelated channel state feedback
CN116195289A (zh) * 2020-07-30 2023-05-30 株式会社Ntt都科摩 无线通信节点
EP4094368A4 (en) * 2020-01-21 2023-09-20 Qualcomm Incorporated FREQUENCY JUMPING WITHIN A VIRTUAL BANDWIDTH PART
WO2023193159A1 (en) * 2022-04-07 2023-10-12 Zte Corporation System and method of mapping between different types of bandwidth parts for resource configuration

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803432B (zh) * 2017-11-17 2021-09-14 华为技术有限公司 确定传输块大小的方法及装置
US11032001B2 (en) 2018-04-05 2021-06-08 Qualcomm Incorporated Timing parameter management for bandwidth part switching
CN115549882B (zh) * 2018-11-01 2024-02-23 Oppo广东移动通信有限公司 一种数据加扰方法及装置、通信设备
US11496264B2 (en) * 2019-02-15 2022-11-08 Qualcomm Incorporated Interaction of positioning and media access control procedures
US11553474B2 (en) * 2019-08-16 2023-01-10 Qualcomm Incorporated Communicating repetitions of multiple transport blocks scheduled by single downlink control information
US11617192B2 (en) * 2019-09-30 2023-03-28 Qualcomm Incorporated Neighbor cell TCI signaling for interference coordination
CN113133121B (zh) * 2020-01-13 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115088334A (zh) * 2020-02-14 2022-09-20 高通股份有限公司 用于多个发送和接收点的联合端口选择
CN114902771A (zh) * 2020-02-17 2022-08-12 Oppo广东移动通信有限公司 通信方法及通信装置、用户设备及网络器件
CN114258132A (zh) * 2020-09-22 2022-03-29 华为技术有限公司 资源配置方法及装置
CN114339615B (zh) * 2020-09-30 2023-10-20 大唐移动通信设备有限公司 Bwp的配置方法、装置、网络侧设备及终端
CN114786271B (zh) * 2022-05-30 2024-06-07 中国联合网络通信集团有限公司 一种资源管理分配方法、装置、设备及存储介质
WO2024026691A1 (en) * 2022-08-02 2024-02-08 Zte Corporation Systems, methods, and non-transitory computer-readable media for transmission mode switching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820645A (zh) * 2010-04-14 2010-09-01 中国科学院计算技术研究所 无线mesh网络中支持服务质量的数据调度装置和方法
CN108093481A (zh) * 2017-11-28 2018-05-29 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置
CN108112080A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693430B2 (en) * 2005-09-28 2014-04-08 Neocific, Inc. Method and system for multi-carrier packet communication with reduced overhead
US7333897B2 (en) * 2005-12-07 2008-02-19 Motorola, Inc. Method and system for identifying material composition based upon polarization trajectories
US11362774B2 (en) * 2007-03-20 2022-06-14 Nokia Technologies Oy Transmission adaptation in a wireless network
US9184883B2 (en) * 2009-03-31 2015-11-10 Lg Electronics Inc. Method for allocating resource to uplink control signal in wireless communication system and apparatus therefor
US8121439B2 (en) * 2009-05-22 2012-02-21 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems using the nonequidistant discrete Fourier transform
KR20110081017A (ko) * 2010-01-05 2011-07-13 주식회사 팬택 무선통신 시스템에서 자원할당전송방법 및 그 송신장치, 이에 대응하는 수신장치
KR101829831B1 (ko) * 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
RU2546980C2 (ru) * 2010-06-21 2015-04-10 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство беспроводной связи, способ уведомления о назначенном ресурсе и способ назначения данных
US9538040B2 (en) * 2011-12-16 2017-01-03 University Of Maryland, College Park Active sensing for dynamic spectrum access
EP2992635B1 (en) * 2013-02-28 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Signal transmission with interference mitigation
US9148314B2 (en) * 2013-06-11 2015-09-29 Metanoia Communications Inc. Interference cancellation in wireless OFDMA with MIMO spatial multiplexing
US20190020913A9 (en) * 2016-06-27 2019-01-17 Facebook, Inc. Systems and methods for identifying matching content
RU2735383C1 (ru) * 2017-01-05 2020-10-30 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ передачи данных, оконечное устройство и сетевое устройство
CN108282870B (zh) * 2017-01-06 2021-04-20 华为技术有限公司 一种资源指示方法、用户设备及网络设备
WO2018170673A1 (zh) * 2017-03-20 2018-09-27 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN116614847A (zh) * 2017-03-25 2023-08-18 中兴通讯股份有限公司 传输参数确定方法及装置
CN108811173B (zh) * 2017-05-05 2021-09-03 北京三星通信技术研究有限公司 随机接入方法、基站设备及用户设备
EP3634050B1 (en) * 2017-06-02 2024-03-27 Huawei Technologies Co., Ltd. Signal transmission method, network device and terminal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820645A (zh) * 2010-04-14 2010-09-01 中国科学院计算技术研究所 无线mesh网络中支持服务质量的数据调度装置和方法
CN108112080A (zh) * 2017-11-17 2018-06-01 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质
CN108093481A (zh) * 2017-11-28 2018-05-29 中兴通讯股份有限公司 发送波束恢复信息的方法和装置、波束检测方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799496A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4094368A4 (en) * 2020-01-21 2023-09-20 Qualcomm Incorporated FREQUENCY JUMPING WITHIN A VIRTUAL BANDWIDTH PART
WO2021243672A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated Reporting a selected demodulation reference signal configuration and corelated channel state feedback
CN116195289A (zh) * 2020-07-30 2023-05-30 株式会社Ntt都科摩 无线通信节点
WO2023193159A1 (en) * 2022-04-07 2023-10-12 Zte Corporation System and method of mapping between different types of bandwidth parts for resource configuration

Also Published As

Publication number Publication date
US20210105783A1 (en) 2021-04-08
EP3799496A4 (en) 2021-08-11
EP3799496A1 (en) 2021-03-31
CN110636617A (zh) 2019-12-31
CN110636617B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2019242511A1 (zh) 一种参数配置方法及装置
US11398885B2 (en) Signal transmission method and apparatus
CN108633047B (zh) 一种信道传输方法及网络设备
JP7227297B2 (ja) データ通信方法、端末、および基地局
EP3554110B1 (en) Information sending method, information receiving method, apparatus and system
US11818695B2 (en) Signal transmission method, apparatus, terminal device, network device, and system
US12028833B2 (en) Communications method and apparatus
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
EP3627733A1 (en) Communication method, network device and terminal device
US20210258958A1 (en) Communications Method and Apparatus
US20180123759A1 (en) Method for indicating resource of multi-user superposition transmission, base station and user equipment
EP3637904A1 (en) Resource indication method and device
CN109302718B (zh) 一种数据传输方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
EP3573274A1 (en) Communication method and network device
JPWO2019159245A1 (ja) ユーザ端末及び無線通信方法
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
US20220304011A1 (en) Control Signaling for Physical Control Channel Reliability Enhancement
WO2019010762A1 (zh) 一种数据传输方法及设备
TW201813357A (zh) 用戶設備及虛擬載波的操作方法
WO2024027603A1 (zh) 非授权频谱中直通链路资源分配方法、装置及存储介质
WO2024027637A1 (zh) 资源确定方法、装置、终端及网络侧设备
US20220159680A1 (en) Control channel transmission method and apparatus
WO2023024930A1 (zh) 信道调度方法、设备、装置及存储介质
EP3897050A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019821574

Country of ref document: EP

Effective date: 20201221