WO2019242253A1 - 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法 - Google Patents

一种屈服强度500MPa级厚规格热轧H型钢及其制备方法 Download PDF

Info

Publication number
WO2019242253A1
WO2019242253A1 PCT/CN2018/121101 CN2018121101W WO2019242253A1 WO 2019242253 A1 WO2019242253 A1 WO 2019242253A1 CN 2018121101 W CN2018121101 W CN 2018121101W WO 2019242253 A1 WO2019242253 A1 WO 2019242253A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
steel
rolling
rolled
mpa
Prior art date
Application number
PCT/CN2018/121101
Other languages
English (en)
French (fr)
Inventor
赵培林
王中学
郭伟达
李超
韩文习
方金林
郭秀辉
赵传东
李传振
杨栋
Original Assignee
山东钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东钢铁股份有限公司 filed Critical 山东钢铁股份有限公司
Priority to KR1020217000064A priority Critical patent/KR102481712B1/ko
Priority to JP2020568800A priority patent/JP7150066B2/ja
Priority to EP18923099.8A priority patent/EP3795710B1/en
Publication of WO2019242253A1 publication Critical patent/WO2019242253A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention belongs to the technical field of metallurgy, and specifically relates to a hot-rolled H-section steel with a yield strength of 500 MPa and a thick specification and a preparation method thereof.
  • Marine environment equipment is used in harsh environments. In addition to facing high and low temperature, high pressure, high humidity, chlorine salt corrosion, microbial corrosion, and withstanding sea wind, waves, and ocean currents, it also faces natural disasters such as typhoons, ice floes, and earthquakes. Therefore, marine engineering steels used to prepare marine engineering equipment must have higher comprehensive properties, including higher strength, low temperature toughness, and corrosion resistance.
  • H-shaped steel is an indispensable structural material for offshore petroleum engineering.
  • Currently published patents mainly include two types.
  • One type is mainly microalloyed and normalized rolling. This type of steel has stable performance and good weldability, but its strength is generally relatively high. low.
  • a certain bainite structure is obtained by reducing the micro-alloy composition design and controlling water cooling in the later stage.
  • the performance stability of this type of steel products is poor, and the difference in bainite content in different parts results in poor stability of the steel. Therefore, the preparation of high-strength H-shaped steel requires a combination of two processes, and the prepared steel has not only high strength but good stability. For larger thickness H-shaped steel products, production is more difficult.
  • the purpose of the present invention is to provide a hot-rolled H-shaped steel with a yield strength of 500 MPa and a thick specification for marine engineering.
  • the H-shaped steel has good mechanical properties and is suitable for preparing offshore oil platforms in different sea areas, ocean shipping vessels, and the like. Required support structure.
  • the chemical composition of the hot-rolled H-section steel with a yield strength of 500 MPa and thick specification according to the present invention is: C: 0.10% to 0.20%, Si: 0.15% to 0.30%, Mn: 0.8% to 1.30%, and Nb: 0.02 % To 0.05%, V: 0.10% to 0.16%, Ni: 0.40% to 1.0%, P ⁇ 0.015%, S ⁇ 0.01%, Mo: 0.15% to 0.35%, Al: ⁇ 0.05%, O ⁇ 0.004%, N: 0.01% to 0.02%, and the rest is Fe and inevitable impurities.
  • Ni + Mo ⁇ 1.0%.
  • the hot-rolled H-section steel having a yield strength of 500 MPa and a thick gauge according to the present invention has a chemical composition composition by weight percentage of: C: 0.10% to 0.20%, Si: 0.15% to 0.30%, and Mn: 0.8% to 1.20%, Nb: 0.02% to 0.05%, V: 0.10% to 0.14%, Ni: 0.40% to 0.7%, P ⁇ 0.015%, S ⁇ 0.01%, Mo: 0.20% to 0.35%, Al: ⁇ 0.05%, O ⁇ 0.004%, N: 0.01% ⁇ 0.02%; it also contains one or more of Cr and Ti, where Cr: ⁇ 0.5%, Ti: ⁇ 0.05%, and the rest are Fe and Inevitable impurities. Among them, it is further preferred that Ni + Mo ⁇ 1.0% and Nb + V + Ti ⁇ 0.18%.
  • the above-mentioned components are used for normalizing rolling of profiled billets, and the thickness of the flange of the H-shaped steel prepared reaches 20 to 40 mm.
  • Carbon is a key element to ensure the formation and strength of fine flaky pearlite and granular bainite structures of 500MPa grade high-strength H-shaped steel. Due to the need to obtain appropriate amounts of bainite and pearlite multiphase structures, it is necessary to increase the strength of H-beams with larger thicknesses, so the carbon content cannot be too low, and is controlled between 0.10% and 0.20%.
  • Si is a deoxidizing element and contributes to the improvement of strength. Therefore, the lower limit of the Si content is set to 0.15% or more. On the other hand, in order to ensure that a large amount of Si-containing Fe 2 SiO 4 is not formed on the surface to affect the surface quality, the upper limit of the Si content is set to 0.30% or less. It is preferably 0.2% or less, and more preferably 0.25% or less.
  • Mn can stabilize the austenite structure and increase the hardenability of the steel. While delaying the transformation of pearlite, the transformation of ferrite is also delayed, and the bainite region shifts to the right, which makes the steel more sensitive to process conditions.
  • the Mn content is preferably set to 0.80% or more, and more preferably 0.90% or more. Mn element has a higher tendency to segregation in steel, and excessive addition of mechanical properties such as toughness and plasticity is impaired. Therefore, considering comprehensively, the content of Mn in this steel is controlled from 0.8% to 1.30%.
  • the P content is preferably limited to 0.015% or less, and a more preferred upper limit is 0.012% or less.
  • sulfur easily forms MnS inclusions and becomes the origin of cracks to deteriorate processability.
  • the S content is preferably limited to 0.01% or less, and more preferably 0.005% or less.
  • the lower limit values of P and S are not particularly limited, depending on the equipment capacity and cost control, and both can exceed 0%.
  • Aluminum is used as a strong deoxidizing element in the preparation of steel. In order to ensure that the oxygen content in the steel is as low as possible, the probability of inclusions is reduced, and the excess aluminum after deoxidation can also form AlN precipitates with the nitrogen element in the steel, which can improve the strength of the steel and can be heated during heat treatment. Refine the austenite grain size of steel. Therefore, in the present invention, the content of aluminum is controlled to within 0.05%.
  • Titanium is a strong carbide-forming element. Adding a small amount of Ti to the steel is beneficial to fix the N in the steel. The formed TiN can make the austenite grains not grow too much when the slab is heated, and thus refine the original Purpose of austenite grains. Titanium can also form compounds such as TiC, TiS, Ti 4 C 2 S 2 with carbon and sulfur in steel, which exist in the form of inclusions and second phase particles. These carbonitride precipitates of titanium can also prevent the growth of grains in the heat-affected zone during welding, and can also improve the welding performance of the finished steel sheet. Therefore, in the present invention, titanium is selected to be added in an amount of 0.05% or less.
  • Niobium significantly increases the austenite non-recrystallization temperature, and cooperates with controlled rolling to refine the grain. Improving the strength of steel can significantly improve the toughness of steel, especially the effect of low temperature toughness; a very small amount of Nb can significantly refine the matrix structure grains and increase the strength.
  • the Nb content of the present invention is controlled to be 0.02% to 0.045%.
  • V is a strong carbonitride-forming element in steel, and a large amount of V-containing carbonitrides are formed in the late rolling to play a role of precipitation strengthening, especially the effect of adding VN alloy is better.
  • VN can be used as the nucleation particle of the matrix tissue, which helps to refine the tissue. Considering the need to increase strength, its content is controlled to be above 0.10%. However, too much V also causes a coarse second phase, which deteriorates toughness. The V content is 0.10% to 0.16%.
  • Nickel is an extremely effective element for improving the strength and low temperature toughness of steel. As the thickness of H-beams increases, the requirements for their microstructure uniformity become more prominent. On the one hand, Ni has the effect of expanding the austenite region and improving the hardenability, and on the other hand, it can refine the pearlite sheet to refine the pearlite and play a role of fine grain strengthening. On the other hand, the addition of nickel also plays a certain role in corrosion resistance, improving the service life of steel. Therefore, the Ni content is controlled in the range of 0.40% to 1.0%.
  • Mo is an element that is solid-dissolved in steel to improve hardenability and plays a role in improving strength.
  • the lower limit of the Mo content is set to 0.2% or more. Even if the steel contains more than 0.35% Mo, Mo carbides (Mo 2 C) will be quantitatively precipitated, and the effect of improving the hardenability by solid solution Mo will be saturated. Therefore, the upper limit of the Mo content is set to 0.35% or less. In consideration of cost and the like, the upper limit of the Mo content is preferably 0.35% or less, and more preferably 0.30% or less.
  • VN alloy In order to match the use of V element, the addition of VN alloy has a precipitation strengthening effect and improves the strength, so it will increase the N content.
  • the N content is too high, and it is easy to induce quality defects in the slab. Therefore, the present invention requires a nitrogen content of 0.01% to 0.02%.
  • Oxygen In order to avoid oxide inclusions that form large particles with strong oxidizing elements and deteriorate the toughness and plasticity of steel, the present invention requires a nitrogen content of ⁇ 0.004%.
  • Chromium can increase the strength and hardness of steel and wear resistance. Chromium added to the steel can significantly improve the hardenability of the steel, and together with Mo is beneficial to the formation of granular bainite structure. Too high or too low Cr content is not good for hardenability and delayed fracture of steel, and easily causes defects. In this steel, Cr is controlled to be 0.5% or less, and it is appropriately added according to the amount of bainite required.
  • Ni + Mo ⁇ 1.0% makes the hardenability of the steel uniform and the matrix structure state is stably controlled; Nb + V + Ti ⁇ 0.18% makes the second phase structure in the steel controlled at an appropriate level; too high content is easy Combined with N, too many nitrides are formed, and a large amount of precipitates easily deteriorate the toughness of the steel. Therefore, it is reasonable to set Nb + V + Ti ⁇ 0.18% as the upper limit of this type of steel.
  • the H-shaped steel has a yield strength of ⁇ 500MPa, a tensile strength of ⁇ 650MPa, an elongation of ⁇ 20%, and an impact energy of -40 ° C of ⁇ 100J.
  • the invention also provides a method for preparing the above-mentioned 500-MPa H-shaped steel, which includes the following steps: hot metal pretreatment ⁇ converter smelting ⁇ ladle blowing argon ⁇ LF refining ⁇ profile casting ⁇ continuous casting slab slow cooling pit for slow cooling Or hot delivery and hot charging ⁇ section steel rolling ⁇ cold bed dense slow cooling;
  • the continuous casting slab can be hot-lined and hot-loaded into the heating furnace to avoid large cooling rates and excessive cooling to cause defects.
  • the soaking temperature of the heating furnace is 1230 ⁇ 1270 °C
  • the time of casting slab in the furnace is 150 ⁇ 200min
  • the finishing rolling rolling temperature is 1120 ⁇ 1180 °C
  • the water cooling between the finishing rolling stands is turned on, and the finishing rolling is finished
  • the temperature is 750 ⁇ 820 °C.
  • the last two passes of finishing rolling use extremely low compression ratio, preferably the compression ratio is 5% to 10%; after finishing rolling, it enters the roller table with insulation cover to keep the temperature to ensure the temperature drop. Evenly, then enter the cooling bed for slow cooling.
  • profiled billets are used for rolling production, and the compression is relatively small, so the organization control must be achieved by ensuring the final rolling temperature. By reducing the rolling rhythm, the final rolling temperature can reach the phase transition point. Finally, the required microstructure and mechanical properties are obtained; entering the cooling bed for slow cooling is conducive to the later phase precipitation of the second phase.
  • the invention realizes the industrialized production of large, medium and high strength and toughness H-shaped steel products for marine engineering through the design of a low-carbon microalloying process, combined with the profile rolling.
  • the medium-C content suitable for normalizing rolling is combined with high Ni and high-V composite microalloying components to ensure stable control on hot-rolled H-shaped steel mills.
  • the final structure of H-shaped steel is mainly refined pearlite + pre-eutectoid ferrite, which contains a small amount of bainite structure, which is easier to control.
  • phase transformation strengthening and precipitation strengthening the good effect of low temperature impact toughness greater than 100J at -40 °C under the condition of high strength and large thickness of H-shaped steel is achieved.
  • FIG. 1 is an OM micrograph of a hot-rolled H-section steel prepared in Example 2 of the present invention.
  • FIG. 2 is an SEM micrograph of a hot-rolled H-section steel prepared in Example 2 of the present invention.
  • FIG. 3 is a second phase TEM image of the hot-rolled H-section steel prepared in Example 2 of the present invention.
  • the continuous casting slabs in the following examples were prepared according to the following process flow: According to the set chemical composition range (Table 1), the chemical components C, Si, Mn, S, P, and Fe were used as raw materials for converter smelting and refining. , Continuous casting, slab heating directly or soaking.
  • the preparation steps of Examples 1-5 are as follows:
  • the steel is subjected to hot metal pretreatment ⁇ converter smelting ⁇ ladle blowing argon ⁇ LF refining ⁇ profile casting ⁇ section steel line rolling ⁇ cold bed slow cooling.
  • the section steel rolling includes rough rolling and finishing rolling.
  • the hot rolling process is mainly to control the temperature. Two passes are added on the original basis, and the compression ratio is extremely low, so that the final rolling temperature of the H-beam can be better controlled. The temperature is measured outside the flange, and the rolled material is slowly cooled in a cooling bed after rolling.
  • the final structure of the obtained H-shaped steel is mainly fine-grained pearlite and contains a small amount of granular bainite structure.
  • the chemical composition and specific process of Example 1-5 are shown in Table 1 below, and the specific organization is shown in Figure 1-3.
  • Example 3 The hot rolling process conditions of Examples 1-3 are shown in Table 2.
  • BS EN ISO 377-1997 Standard ISO 377-1997 "Sampling position and preparation of test specimens for mechanical properties”
  • the test methods for yield strength, tensile strength, and elongation refer to the standard ISO6892-1-2009 “Room tensile test method for metal materials”
  • the impact energy test method refers to the standard ISO148-1 "Charpy Pendulum Impact Test for Metal Materials”. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

一种屈服强度500MPa级厚规格热轧H型钢及其制备方法。热轧H型钢化学成分组成按重量百分比为:C:0.10%~0.20%,Si:0.15%~0.30%,Mn:0.8%~1.30%,Nb:0.02%~0.05%,V:0.10%~0.16%,Ni:0.40%~1.0%,P≤0.015%,S≤0.01%,Mo:0.15%~0.35%,Al:≤0.05%,O≤0.004%,N:0.01%~0.02%,其余为Fe和不可避免杂质。该H型钢采用适合正火轧制的中C含量配合高Ni,高V复合微合金化成分设计,从而得到稳定控制的500MPa级别以上高强韧性海工用热轧H型钢。H型钢最终组织以细化珠光体+先共析铁素体为主,包含少量的贝氏体组织,通过组织细化和相变强化、沉淀强化,实现H型钢高强度大厚度条件下-40℃低温冲击韧性大于100J的良好效果。

Description

一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
相关申请的交叉参考
该申请要求2018年6月19日提交的中国专利申请号为201810628873.5的优先权,该专利申请在此被完全引入作为参考。
技术领域
本发明属于冶金技术领域,具体地,本发明涉及一种屈服强度500MPa级厚规格热轧H型钢及其制备方法。
背景技术
海洋区域内的石油和天然气开采离不开高端海洋工程装备。海洋环境装备使用环境恶劣,除要面对高低温、高压、高湿、氯盐腐蚀、微生物腐蚀以及承受海风、海浪、洋流作用,还要面对台风、浮冰、地震等自然灾害。因此,用于制备海洋工程装备的海洋工程用钢必须具备较高的综合性能,包括较高的强度,耐低温韧性以及耐蚀性能等。
H型钢作为海洋石油工程必备的结构材料,目前公开的专利主要包括两类,一类主要是微合金化采用正火轧制,这类钢的性能稳定,可焊接性好,但是强度一般较低。另外一类,通过减量化微合金成分设计,后期水冷控制获得一定的贝氏体组织。这类型钢产品的性能稳定性差,不同部位贝氏体含量的差异造成钢的稳定性较差。因此,高强度H型钢的制备需要进行两种工艺的结合,制备的钢材不仅强度高,而且稳定性好。对于较大厚度的H型钢产品,生产难度更大。
发明内容
本发明的目的在于,提供了一种海洋工程用屈服强度500MPa级厚规格热轧H型钢,所述H型钢力学性能良好,适用于制备不同海域海洋石油平台、海洋远洋运输船舶等具有超高强韧性要求的支撑结构件。
本发明的技术方案如下:
本发明的屈服强度500MPa级厚规格热轧H型钢,其化学成分组成按重量百分比为:C:0.10%~0.20%,Si:0.15%~0.30%,Mn:0.8%~1.30%,Nb:0.02%~0.05%,V:0.10%~0.16%,Ni:0.40%~1.0%,P≤0.015%,S≤0.01%, Mo:0.15%~0.35%,Al:≤0.05%,O≤0.004%,N:0.01%~0.02%,其余为Fe和不可避免杂质。
其中优选地,Ni+Mo≤1.0%。
进一步地,作为另一种选择,本发明的屈服强度500MPa级厚规格热轧H型钢,其化学成分组成按重量百分比为:C:0.10%~0.20%,Si:0.15%~0.30%,Mn:0.8%~1.20%,Nb:0.02%~0.05%,V:0.10%~0.14%,Ni:0.40%~0.7%,P≤0.015%,S≤0.01%,Mo:0.20%~0.35%,Al:≤0.05%,O≤0.004%,N:0.01%~0.02%;还含有Cr和Ti中的一种或几种,其中,Cr:≤0.5%,Ti:≤0.05%,所述其余为Fe和不可避免杂质。其中,进一步优选地,Ni+Mo≤1.0%,并且Nb+V+Ti≤0.18%。
本发明利用上述成分采用异型坯正火轧制,所制备的H型钢翼缘厚度达到20~40mm。
本发明所述的高强度热轧H型钢中各化学元素设计原理如下:
碳:碳是确保500MPa级高强度H型钢细片状珠光体和粒状贝氏体组织形成和实现强度的关键元素。由于需要获得适量的贝氏体和珠光体复相组织,对于厚度较大的H型钢强度提高非常必要,因此碳的含量不能太低,控制在0.10%~0.20%。
硅:Si是脱氧元素,有助于强度的提高,因此将Si含量的下限设定为0.15%以上。另一方面,为了保证表面不形成大量含Si的Fe 2SiO 4影响表面质量,将Si含量的上限设定为0.30%以下。优选0.2%以下,更优选为0.25%以下。
锰:Mn能够稳定奥氏体组织,增加钢的淬透性。在推迟珠光体转变的同时,也推迟铁素体的转变,贝氏体区右移,使钢对工艺条件的敏感性变大。为了保证强度和裂纹敏感性,优选将Mn含量设定为0.80%以上,更优选为0.90%以上。Mn元素在钢中具有较高的偏析倾向,添加过多损害韧性、塑性等力学性能指标。因此,综合考虑,本钢中控制Mn含量0.8%~1.30%。
磷:P≤0.015%;
硫:S≤0.01%;
作为钢中不可避免的P、S元素,由于会因凝固偏析而引起焊接开裂、韧性下降。制备过程带来的夹杂物对钢的低温韧性影响严重,因此应该尽量减少其的含量。结合生产实践及设备能力,P含量优选被限制为0.015%以下,更优选的上限为0.012%以下。另外,硫容易形成MnS夹杂,成为裂纹的起点而使加工性 能恶化,S含量优选被限制为0.01%以下,更优选被限制为0.005%以下。P、S的下限值没有特别限定,取决于设备能力和成本控制,均超过0%即可。
铝:Al在钢的制备过程中作为强脱氧元素使用。为了保证钢中的氧含量尽可能地低,降低夹杂物产生几率,并且脱氧后多余的铝还可以和钢中的氮元素能形成AlN析出物,其能提高钢的强度并且在热处理加热时能细化钢的奥氏体晶粒度。所以,在本发明中将铝的含量控制在0.05%以内。
钛:钛是强碳化物形成元素,在钢中加入微量的Ti有利于固定钢中的N,所形成的TiN能使钢坯加热时奥氏体晶粒不过分长大,从而起到细化原始奥氏体晶粒的目的。钛在钢中还可分别与碳和硫生成TiC、TiS、Ti 4C 2S 2等化合物,它们以夹杂物和第二相粒子的形式存在。钛的这些碳氮化物析出物在焊接时还可阻止热影响区晶粒长大,也能起到改善成品钢板的焊接性能作用。因此,本发明中选择添加0.05%以下的钛。
铌:Nb显著提高奥氏体未再结晶温度,配合控制轧制起到细化晶粒作用。改善钢材的强度,能够显著提高钢的韧性,尤其是低温韧性效果明显;极微量的Nb就能显著细化基体组织晶粒并提高强度,本发明Nb含量控制为0.02%~0.045%。
钒:V在钢中是强碳氮化物形成元素,轧制后期形成大量含V的碳氮化物起到沉淀强化作用,尤其是加入VN合金效果更佳。同时VN可以作为基体组织形核质点,有助于组织的微细化。考虑到提高强度需要,其含量控制在0.10%以上。但是过多的V也会带来粗大的第二相,恶化韧性。V含量为0.10%~0.16%。
镍:Ni是用于提高钢材的强度和低温韧性极其有效元素。随着H型钢厚度增加,其组织均匀性要求非常突出。Ni一方面起到扩大奥氏体区,提高淬透性作用,另一方面能够细化珠光体片层细化珠光体,起到细晶强化作用。另外一方面,镍的加入也起到一定的耐蚀作用,提高钢材的使用寿命。因此,将Ni含量控制在0.40%~1.0%范围内。
钼:Mo是固溶于钢中而提高淬透性的元素,起到提高强度作用。将Mo含量的下限设定为0.2%以上。钢中即使含有超过0.35%的Mo,也会定量析出Mo碳化物(Mo 2C),由固溶Mo所带来的淬透性提高的效果也达到饱和,因此将Mo含量的上限设定为0.35%以下。考虑到成本等因素,Mo含量的上限优选为0.35%以下,更优选为0.30%以下。
氮:为了配合V元素的使用,添加VN合金起到沉淀强化效果,提高强度, 因此会造成N含量的增加。N含量太高,容易诱发铸坯质量缺陷,因此,本发明要求氮含量0.01%~0.02%。
氧:为了避免与强氧化元素形成大颗粒的氧化物夹杂,恶化钢的韧性和塑性,本发明要求氮含量≤0.004%。
铬:Cr可提高钢的强度和硬度以及耐磨性。铬加入钢中能显著提高钢的淬透性,与Mo元素一起有利于粒状贝氏体组织的形成。Cr含量太高或者太低对钢的淬透性、延迟断裂性不利,容易引起缺陷。该钢中Cr控制在0.5%以下根据需求的贝氏体的量适当添加。
本发明Ni+Mo≤1.0%,使得钢的淬透性均匀,基体组织状态稳定控制;Nb+V+Ti≤0.18%,使得钢中的第二相组织控制在适当的水平;太高含量容易与N结合形成太多的氮化物,大量的析出物容易恶化钢的韧性。因此,Nb+V+Ti≤0.18%设为此类钢的上限较为合理。
所述H型钢屈服强度≥500MPa,抗拉强度≥650MPa,延伸率≥20%,-40℃冲击功≥100J。
发明还提供了上述屈服强度500MPa级H型钢的制备方法,所述制备方法包括以下步骤:铁水预处理→转炉冶炼→钢包吹氩→LF精炼→异型坯浇铸→连铸坯缓冷坑进行缓冷或者热送热装→型钢线轧制→冷床密集缓冷;
其中,在连铸工序,考虑到合金量较多,因此需要进保温坑进行缓冷,降低表面缺陷的产生几率。另外也可以进行连铸坯在线热送热装进加热炉,避免出现冷却速率较大,冷却过快造成缺陷产生。
在轧制过程中,加热炉均热温度为1230~1270℃,铸坯在炉时间为150~200min;精轧开轧温度为1120~1180℃,精轧机架间水冷全部开启,精轧终轧温度为750~820℃,为保证终轧温度控制,精轧最后两道次采用极低压缩比,优选压缩比为5%~10%;精轧后进入带保温罩辊道保温,保证温降均匀,随后进入冷床进行缓冷。
本发明采用异型坯进行轧制生产,压缩比较小,因此组织控制必须以保证终轧温度来实现。通过降低轧制节奏,使得终轧温度达到相变点要求。最终得到需要的组织和力学性能;进入冷床进行缓冷,有利于第二相的后期弥散析出。
本发明通过低碳微合金化工艺设计,结合型钢孔型轧制,实现海洋工程用大中规格高强韧H型钢产品的工业化生产。
本发明未提及的工序,均可采用现有技术。
本发明技术方案的优点在于:
1、结合异型坯轧制大规格厚壁H型钢特点,采用适合正火轧制的中C含量配合高Ni,高V复合微合金化成分设计,从而在热轧H型钢轧机上得到稳定控制的500MPa级别以上高强韧性海工用热轧H型钢。
2、H型钢最终组织以细化珠光体+先共析铁素体为主,包含少量的贝氏体组织,更加容易控制。
3、通过组织细化和相变强化、沉淀强化,实现H型钢高强度大厚度条件下-40℃低温冲击韧性大于100J的良好效果。
附图说明
图1是本发明实施例2制备的热轧H型钢的OM组织图。
图2是本发明实施例2制备的热轧H型钢的SEM组织图。
图3是本发明实施例2制备的热轧H型钢的第二相TEM图。
具体实施方式
下述实施例中的连铸坯均按以下工艺流程制备:根据设定的化学成分范围(表1),以化学成分C,Si,Mn,S,P和Fe为原料,进行转炉冶炼、精炼、连铸、铸坯直接加热或者均热。实施例1-5的制备步骤如下:
该钢经过铁水预处理→转炉冶炼→钢包吹氩→LF精炼→异型坯浇铸→型钢线轧制→冷床缓冷。其中,型钢线轧制包括粗轧和精轧两道轧制。本发明未提及的工序,均可采用现有技术。热轧工序以控制温度为主,在原来基础上增加两道次,压缩比极低,使得H型钢终轧温度能够得到较好控制。温度检测翼缘外侧,轧后轧材在冷床缓冷。所得H型钢最终组织以细片珠光体为主,包含少量粒状贝氏体组织。实施例1-5的化学成分及具体工艺见下表1,具体组织参见附图1-3。
表1 化学成分(wt%,余量铁)
Figure PCTCN2018121101-appb-000001
Figure PCTCN2018121101-appb-000002
实施例1-3的热轧工艺条件见表2。按照标准为BS EN ISO 377-1997《力学性能试验试样的取样位置和制备》;屈服强度、抗拉强度、延伸率的试验方法参照标准ISO6892-1-2009《金属材料室温拉伸试验方法》;冲击功试验方法参照标准ISO 148-1《金属材料夏比摆锤冲击试验》,结果见表3。
表2 实施例热轧工艺
Figure PCTCN2018121101-appb-000003
表3 实施例力学性能试验结果
Figure PCTCN2018121101-appb-000004
从表3中可见,本发明实施例1-5屈服强度保持500MPa级别,其-40℃冲击功较高。可以满足制备海洋工程构件在极低环境下的使用条件,适用于制作海洋石油平台、海洋远洋运输船舶等具有较高低温韧性要求的支撑结构件。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本 发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

  1. 一种屈服强度500MPa级厚规格热轧H型钢,其特征在于,所述H型钢的化学成分组成按重量百分比为:C:0.10%~0.20%,Si:0.15%~0.30%,Mn:0.8%~1.30%,Nb:0.02%~0.05%,V:0.10%~0.16%,Ni:0.40%~1.0%,P≤0.015%,S≤0.01%,Mo:0.15%~0.35%,Al:≤0.05%,O≤0.004%,N:0.01%~0.02%,其余为Fe和不可避免杂质。
  2. 根据权利要求1所述H型钢,其特征在于,Ni+Mo≤1.0%。
  3. 一种屈服强度500MPa级厚规格热轧H型钢,其特征在于,所述H型钢的化学成分组成按重量百分比为:C:0.10%~0.20%,Si:0.15%~0.30%,Mn:0.8%~1.30%,Nb:0.02%~0.05%,V:0.10%~0.16%,Ni:0.40%~1.0%,P≤0.015%,S≤0.01%,Mo:0.15%~0.35%,Al:≤0.05%,O≤0.004%,N:0.01%~0.02%,还含有Cr和Ti中的一种或几种,其中,Cr:≤0.5%,Ti:≤0.05%,所述其余为Fe和不可避免杂质。
  4. 根据权利要求3所述的H型钢,其特征在于,Ni+Mo≤1.0%,并且Nb+V+Ti≤0.18%。
  5. 根据权利要求1-4任一项所述H型钢,其特征在于,所述H型钢的翼缘厚度为20~40mm。
  6. 一种权利要求1-5任一项所述H型钢的制备方法,依次包括铁水预处理、转炉冶炼、钢包吹氩、LF精炼、异型坯浇铸、型钢线轧制与冷床密集缓冷步骤,
    其中,在轧制过程中,加热炉均热温度为1230~1270℃,铸坯在炉时间为150~200min;精轧开轧温度为1120~1180℃,精轧机架间水冷全部开启,精轧终轧温度为750~820℃。
  7. 根据权利要求6所述的制备方法,其特征在于,精轧最后两道次采用极低压缩比。
  8. 根据权利要求6所述的制备方法,其特征在于,精轧后的钢材出精轧机后进入带保温罩辊道保温,随后进入冷床进行缓冷。
PCT/CN2018/121101 2018-06-19 2018-12-14 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法 WO2019242253A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217000064A KR102481712B1 (ko) 2018-06-19 2018-12-14 항복 강도가 500 메가파스칼 급인 시크 열간 압연 에이치빔 및 이의 제조 방법
JP2020568800A JP7150066B2 (ja) 2018-06-19 2018-12-14 500MPaグレードの降伏強度を有する厚いゲージの熱間圧延されるH字型鋼及びその製造方法
EP18923099.8A EP3795710B1 (en) 2018-06-19 2018-12-14 Hot-rolled thick h-beam with yield strength grade of 500 mpa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810628873.5 2018-06-19
CN201810628873.5A CN108893675B (zh) 2018-06-19 2018-06-19 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2019242253A1 true WO2019242253A1 (zh) 2019-12-26

Family

ID=64345557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121101 WO2019242253A1 (zh) 2018-06-19 2018-12-14 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法

Country Status (5)

Country Link
EP (1) EP3795710B1 (zh)
JP (1) JP7150066B2 (zh)
KR (1) KR102481712B1 (zh)
CN (1) CN108893675B (zh)
WO (1) WO2019242253A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795755A (zh) * 2020-12-30 2021-05-14 日照钢铁控股集团有限公司 一种柔性生产低合金高强度热轧h型钢的方法
CN113249637A (zh) * 2021-05-17 2021-08-13 新疆八一钢铁股份有限公司 一种50-80mm厚度中板高强钢Q390D的制造方法
CN113462987A (zh) * 2021-07-19 2021-10-01 新疆八一钢铁股份有限公司 一种提高风电钢q355组织性能的工艺
CN114574672A (zh) * 2022-03-30 2022-06-03 马鞍山钢铁股份有限公司 一种高效经济型铁路车轮热加工方法及铁路车轮
CN115323282A (zh) * 2022-07-06 2022-11-11 包头钢铁(集团)有限责任公司 一种高级建筑结构用q345gjc/d热轧h型钢及其生产方法
CN115652193A (zh) * 2022-09-28 2023-01-31 马鞍山钢铁股份有限公司 一种q500级重型热轧h型钢及其组织细化生产方法
CN115652192A (zh) * 2022-09-28 2023-01-31 马鞍山钢铁股份有限公司 一种q355级重型热轧h型钢及其组织细化生产方法
CN116334475A (zh) * 2021-12-22 2023-06-27 中国石油天然气集团有限公司 一种超深井井架用经济型550MPa热轧H型钢和生产方法
CN116657035A (zh) * 2023-05-11 2023-08-29 包头钢铁(集团)有限责任公司 一种铁路货车用高强、耐低温yq500nqr1钢生产制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893675B (zh) * 2018-06-19 2020-02-18 山东钢铁股份有限公司 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
CN110438397A (zh) * 2019-08-12 2019-11-12 山东钢铁股份有限公司 一种大断面含铝热轧h型钢及其制备方法
CN110499468A (zh) * 2019-09-22 2019-11-26 江苏方圆型钢有限公司 一种高屈服强度热轧型钢及其生产工艺
CN110578090A (zh) * 2019-09-25 2019-12-17 马鞍山钢铁股份有限公司 一种屈服强度500MPa级热轧H型钢及生产方法
CN110791711B (zh) * 2019-11-14 2023-11-21 舞阳钢铁有限责任公司 一种特厚vl e460级别调质型高强船板生产方法
CN110938778A (zh) * 2019-12-09 2020-03-31 山东钢铁股份有限公司 一种基于异型坯轧制成型的热轧h型钢及其制备方法
CN111187988B (zh) * 2020-02-28 2021-07-06 鞍钢股份有限公司 一种低成本高强韧性压力容器钢板及其生产方法
CN112410665B (zh) * 2020-11-10 2021-10-29 马鞍山钢铁股份有限公司 一种抑制晶粒长大的厚重热轧h型钢及其生产方法
CN113094870B (zh) * 2021-03-08 2022-07-12 山东钢铁股份有限公司 一种热轧宽带钢生产工艺的设计方法
CN113604735B (zh) * 2021-07-20 2022-07-12 山东钢铁股份有限公司 一种屈服强度420MPa级热轧耐低温H型钢及其制备方法
CN113604746B (zh) * 2021-08-12 2023-03-28 马鞍山钢铁股份有限公司 一种耐高温热轧h型钢及其生产方法
CN117626116B (zh) * 2023-10-18 2024-07-16 山东钢铁股份有限公司 一种船舶结构用厚规格高强韧耐低温热轧h型钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337478A (zh) * 2010-07-15 2012-02-01 宝山钢铁股份有限公司 强韧性、强塑性优良的100公斤级调质钢板及其制造方法
CN104046902A (zh) * 2014-06-30 2014-09-17 莱芜钢铁集团有限公司 一种低钼高钛590MPa级建筑用耐火钢板及其制造方法
CN105018861A (zh) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 一种低成本正火轧制热轧h型钢及其制备方法
US20160273066A1 (en) * 2013-05-14 2016-09-22 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
CN106834944A (zh) * 2017-02-10 2017-06-13 山东钢铁股份有限公司 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
CN107747043A (zh) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 一种屈服强度650MPa及以上级别耐候热轧H型钢及其制造方法
CN108893675A (zh) * 2018-06-19 2018-11-27 山东钢铁股份有限公司 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765097B2 (ja) * 1990-07-27 1995-07-12 新日本製鐵株式会社 耐火性及び溶接部靭性の優れたh形鋼の製造方法
JP2579841B2 (ja) * 1991-03-08 1997-02-12 新日本製鐵株式会社 圧延ままで耐火性及び靱性の優れた粒内フェライト系形鋼の製造方法
JP3520818B2 (ja) 1999-10-08 2004-04-19 Jfeスチール株式会社 耐歪時効脆化性に優れた高強度支保工用h形鋼
KR101205144B1 (ko) * 2010-06-28 2012-11-26 현대제철 주식회사 건축구조용 h형강 및 그 제조방법
JP5574059B2 (ja) * 2011-12-15 2014-08-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
US9482005B2 (en) * 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
JP5867651B2 (ja) * 2013-03-14 2016-02-24 新日鐵住金株式会社 H形鋼及びその製造方法
JPWO2014175122A1 (ja) * 2013-04-26 2017-02-23 新日鐵住金株式会社 H形鋼及びその製造方法
EP3085803B1 (en) 2013-12-16 2019-09-04 Nippon Steel Corporation H-shaped steel and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337478A (zh) * 2010-07-15 2012-02-01 宝山钢铁股份有限公司 强韧性、强塑性优良的100公斤级调质钢板及其制造方法
US20160273066A1 (en) * 2013-05-14 2016-09-22 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
CN104046902A (zh) * 2014-06-30 2014-09-17 莱芜钢铁集团有限公司 一种低钼高钛590MPa级建筑用耐火钢板及其制造方法
CN105018861A (zh) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 一种低成本正火轧制热轧h型钢及其制备方法
CN106834944A (zh) * 2017-02-10 2017-06-13 山东钢铁股份有限公司 一种海洋工程用耐低温高韧性热轧角钢及其制造方法
CN107747043A (zh) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 一种屈服强度650MPa及以上级别耐候热轧H型钢及其制造方法
CN108893675A (zh) * 2018-06-19 2018-11-27 山东钢铁股份有限公司 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795710A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795755A (zh) * 2020-12-30 2021-05-14 日照钢铁控股集团有限公司 一种柔性生产低合金高强度热轧h型钢的方法
CN113249637A (zh) * 2021-05-17 2021-08-13 新疆八一钢铁股份有限公司 一种50-80mm厚度中板高强钢Q390D的制造方法
CN113462987A (zh) * 2021-07-19 2021-10-01 新疆八一钢铁股份有限公司 一种提高风电钢q355组织性能的工艺
CN116334475A (zh) * 2021-12-22 2023-06-27 中国石油天然气集团有限公司 一种超深井井架用经济型550MPa热轧H型钢和生产方法
CN114574672A (zh) * 2022-03-30 2022-06-03 马鞍山钢铁股份有限公司 一种高效经济型铁路车轮热加工方法及铁路车轮
CN114574672B (zh) * 2022-03-30 2023-06-27 马鞍山钢铁股份有限公司 一种高效经济型铁路车轮热加工方法及铁路车轮
CN115323282A (zh) * 2022-07-06 2022-11-11 包头钢铁(集团)有限责任公司 一种高级建筑结构用q345gjc/d热轧h型钢及其生产方法
CN115323282B (zh) * 2022-07-06 2024-06-11 包头钢铁(集团)有限责任公司 一种高级建筑结构用q345gjc/d热轧h型钢及其生产方法
CN115652192A (zh) * 2022-09-28 2023-01-31 马鞍山钢铁股份有限公司 一种q355级重型热轧h型钢及其组织细化生产方法
CN115652193B (zh) * 2022-09-28 2024-05-10 马鞍山钢铁股份有限公司 一种q500级重型热轧h型钢及其组织细化生产方法
CN115652192B (zh) * 2022-09-28 2024-05-10 马鞍山钢铁股份有限公司 一种q355级重型热轧h型钢及其组织细化生产方法
CN115652193A (zh) * 2022-09-28 2023-01-31 马鞍山钢铁股份有限公司 一种q500级重型热轧h型钢及其组织细化生产方法
CN116657035A (zh) * 2023-05-11 2023-08-29 包头钢铁(集团)有限责任公司 一种铁路货车用高强、耐低温yq500nqr1钢生产制备方法

Also Published As

Publication number Publication date
JP7150066B2 (ja) 2022-10-07
KR102481712B1 (ko) 2022-12-27
EP3795710A1 (en) 2021-03-24
CN108893675B (zh) 2020-02-18
EP3795710A4 (en) 2021-06-23
EP3795710B1 (en) 2022-06-08
KR20210018414A (ko) 2021-02-17
CN108893675A (zh) 2018-11-27
JP2021526587A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2019242253A1 (zh) 一种屈服强度500MPa级厚规格热轧H型钢及其制备方法
WO2019218657A1 (zh) 一种屈服强度460MPa级热轧高韧性耐低温H型钢及其制备方法
CN111057945B (zh) 一种500MPa级强韧耐候桥梁钢及其制备方法
CN111748728B (zh) 一种易焊接高强高韧耐磨钢板及其制造方法
CN107988562A (zh) 一种x65级低成本海底管线钢及其制造方法
JP6152375B2 (ja) 低温靭性及び硫化水素応力腐食割れ抵抗性に優れた圧力容器用鋼材、その製造方法及び深絞り製品の製造方法
CN114107825A (zh) 一种低碳当量含钛q420md钢板及其制备方法
KR101778406B1 (ko) 극저온인성이 우수한 후물 고강도 라인파이프 강재 및 제조방법
KR20140023787A (ko) 저온 인성이 우수한 저탄소 고강도 강판 및 그 제조방법
KR100452303B1 (ko) 극저온 충격인성이 우수한 라인 파이프용 고장력 강재의제조방법
CN115369323B (zh) 一种800MPa级抗氢致裂纹容器钢板及其生产方法
WO2024088380A1 (zh) 一种光伏桩基用高强度耐蚀钢及其制造方法
CN115852246B (zh) 一种焊接气瓶用含硼热轧钢板及其制造方法
KR101505290B1 (ko) 라인파이프용 강판 및 그 제조 방법
KR101185222B1 (ko) 고강도 api 열연강판 및 그 제조 방법
KR20110130972A (ko) 저온 dwtt 특성이 우수한 고강도 라인파이프강 및 그 제조 방법
KR101412376B1 (ko) 열간압연 방법 및 이를 이용하여 제조된 라인파이프용 강판
CN118326252A (zh) 1100MPa级耐酸性介质腐蚀高强钢板及其生产方法
CN116875882A (zh) 一种690MPa级抗H2S应力腐蚀油套管用卷板及其制造方法
KR101412372B1 (ko) 열연강판 및 그 제조 방법
CN118127419A (zh) 一种地面集输用l415级管线钢热轧板卷及其生产方法
KR101185333B1 (ko) 도금성이 우수한 api 강판 및 그 제조 방법
KR101377890B1 (ko) 고강도 열연강판 및 그 제조 방법
CN118326250A (zh) 一种正火型抗酸管线钢板及其制造方法
KR20120044121A (ko) 저항복비를 갖는 고강도 api 열연강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923099

Country of ref document: EP

Effective date: 20201215

ENP Entry into the national phase

Ref document number: 20217000064

Country of ref document: KR

Kind code of ref document: A