WO2019242083A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2019242083A1
WO2019242083A1 PCT/CN2018/100264 CN2018100264W WO2019242083A1 WO 2019242083 A1 WO2019242083 A1 WO 2019242083A1 CN 2018100264 W CN2018100264 W CN 2018100264W WO 2019242083 A1 WO2019242083 A1 WO 2019242083A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
common electrode
display panel
thin film
electrode plate
Prior art date
Application number
PCT/CN2018/100264
Other languages
English (en)
French (fr)
Inventor
周宏玉
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/099,201 priority Critical patent/US10705636B2/en
Publication of WO2019242083A1 publication Critical patent/WO2019242083A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal display
  • OLED has the advantages of more power saving, thinner, and wide viewing angle, which is incomparable with LCD.
  • people are increasingly demanding the fineness of display, that is, the resolution, but the production of high-quality, high-resolution OLED displays still faces many challenges.
  • the touch sensors used in flexible OLED panels are mainly plug-in, that is, the sensor module is completed on the film structure and then attached to the OLED panel.
  • the influence of the OLED's electron emission layer (ie, the cathode) on the signal of the touch sensor needs to be considered.
  • touch sensors are divided into two types: self-capacitance and mutual capacitance:
  • the mutual capacitance touch screen has a large capacitance between the OLED's electron emission layer (ie, the cathode) and the touch sensor, which results in a large capacitance and affects the sensitivity of touch;
  • the self-capacitive touch screen divides the entire screen into M * N areas, each area is an independent transparent conductive electrode block, and each transparent conductive electrode block passes a signal line on the same layer Connected to the touch IC, that is, each transparent conductive electrode block independently forms a ground capacitance with the surrounding environment; when a finger approaches a transparent conductive electrode at a certain location, a coupling capacitance will be introduced, resulting in an increase in the detected capacitance.
  • the IC judges that a touch occurs at this position; however, because the signal line occupies a part of the touch screen, the touch cannot be achieved at this position, so the single-layer multi-point self-capacitive touch screen has a problem of poor touch accuracy.
  • the invention provides a display panel and a display device to solve the technical problem of poor touch accuracy of the existing display panel.
  • the present invention provides a display panel, wherein the display panel includes:
  • a wire formed between the cover plate and the first common electrode plate, or between the first common electrode plate and the thin film encapsulation layer, the wire and the first common electrode plate One-to-one correspondence
  • the first common electrode plate of the first common electrode layer is used to output a touch signal according to a touch operation, and is transmitted to the driving chip through the wire.
  • At least one insulating layer is disposed between the lead and the first common electrode plate.
  • the insulation layer further includes at least one through hole
  • the lead is electrically connected to the first common electrode plate through the through hole.
  • the present invention also provides a display device, which includes a display panel, wherein the display panel includes:
  • Lead wires are formed on one side of the first common electrode layer, and the lead wires are in one-to-one correspondence with the first common electrode plate;
  • the first common electrode plate of the first common electrode layer is used to output a touch signal according to a touch operation, and is transmitted to the driving chip through the wire.
  • the lead is formed between the cover plate and the first common electrode plate.
  • the conductive line is formed between the first common electrode plate and the thin film encapsulation layer.
  • At least one insulating layer is disposed between the lead and the first common electrode plate.
  • the insulation layer further includes at least one through hole
  • the lead is electrically connected to the first common electrode plate through the through hole.
  • the invention also provides a display panel, wherein the display panel includes:
  • Lead wires are formed on one side of the first common electrode layer, and the lead wires are in one-to-one correspondence with the first common electrode plate;
  • the first common electrode plate of the first common electrode layer is used to output a touch signal according to a touch operation, and is transmitted to the driving chip through the wire.
  • the lead is formed between the cover plate and the first common electrode plate.
  • the insulation layer further includes at least one through hole, and the wire is electrically connected to the first common electrode plate through the through hole.
  • a plurality of wires are provided on one side of the first common electrode plate, the wires and the first common electrode plate are respectively placed on two film layers, and are electrically connected through the vias of the insulating layer, thereby eliminating the touch of the display panel.
  • the functional area improves the touch accuracy of the OLED touch screen.
  • FIG. 1 is a structural diagram of a film layer of a display panel according to a first embodiment of the present invention
  • FIG. 2 is a structural diagram of a film layer of a display panel according to a second embodiment of the present invention.
  • FIG. 3 is a connection diagram of a touch electrode layer and a touch signal line of a display panel of the present invention
  • FIG. 4 is a structural diagram of a film layer of a display panel according to a third embodiment of the present invention.
  • FIG. 5 is a structural diagram of a film layer of a display panel according to a fourth embodiment of the present invention.
  • FIG. 1 shows a display panel according to the present invention.
  • the display panel includes a substrate 101, a thin film transistor layer, an OLED layer 113, a thin film encapsulation layer 115, a first common electrode layer 116, a cover plate 117, and a lead 118.
  • the substrate 101 may be one of a glass substrate, a quartz substrate, and a resin substrate.
  • a thin film transistor layer is formed on the substrate 101; the thin film transistor layer includes an ESL (etch stop layer type), a BCE (back channel etch type), or a top-gate (top gate thin film transistor type) structure, and there is no specific limitation In this embodiment, a top-gate thin film transistor type is taken as an example for description;
  • the thin film transistor layer includes a buffer layer 102, an active layer 103, a first insulating layer 104, a first gate 105, a second insulating layer 106, a second gate 107, a third insulating layer 108, a source and drain 110, and Flat layer
  • the buffer layer 102 is formed on the substrate 101, and is mainly used for buffering the pressure between the layer structure of the membrane, and may also have a function of blocking water and oxygen to a certain extent;
  • the active layer 103 is formed on the buffer layer, and the active layer 103 includes a doped region doped with ions;
  • the first insulating layer 104 is formed on the active layer 103.
  • the first insulating layer 104 is an inter-insulating layer, and the inter-insulating layer covers the active layer 103.
  • An inter-insulating layer is used to isolate the active layer 103 from other metal layers;
  • the first gate 105 is formed on the first insulating layer 104.
  • the metal material of the first gate 105 can generally be metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum tungsten alloy, chromium, or copper. A combination of the above-mentioned metal materials can also be used;
  • a second insulating layer 106 is formed on the first gate 105.
  • the second insulating layer 106 is a first gate insulating layer, and the second gate insulating layer connects the active layer 103.
  • the first gate insulating layer is mainly used to isolate the first gate 105 and the second gate 107; preferably, the thickness of the second insulating layer 106 is 50-200 nm, and the first gate
  • the material of the insulating layer is usually silicon nitride, and silicon oxide and silicon oxynitride can also be used;
  • the second gate 107 is formed on the second insulating layer 106.
  • the material of the second gate 107 is the same as that of the first gate 105.
  • the first gate The metal material of the gate 105 and the second gate 107 is molybdenum;
  • the metal layer forming the second gate 107 is patterned to form the second gate 107 having an area larger than that of the first gate 105, that is, the first gate 105 is in the second
  • the orthographic projection on the grid 107 is within the second grid 107;
  • a third insulating layer 108 is formed on the second insulating layer 106.
  • the third insulating layer 108 is a second gate insulating layer, and the third gate insulating layer connects the second gate 107, the second gate insulating layer is mainly used to isolate the second gate 107 from the source and drain 110; preferably, the thickness of the second insulating layer 106 is 50-200 nm;
  • the material of the second gate insulating layer is the same as that of the first gate insulating layer;
  • the source and drain electrodes 110 are formed on the third insulating layer 108.
  • the metal materials of the source and drain electrodes 110 may generally be metals such as molybdenum, aluminum, aluminum nickel alloy, molybdenum tungsten alloy, chromium, copper, or titanium aluminum alloy. A combination of the above-mentioned metal materials may also be used; preferably, in this embodiment, the metal material of the source and drain electrodes 110 is a titanium aluminum alloy; the source and drain electrodes 110 communicate with all of the sources through the first via 109. Said doped region connection;
  • a flat layer 111 is formed on the source and drain electrodes 110.
  • the flat layer 111 is used to ensure the flatness of the thin film transistor process.
  • the OLED layer 113 is formed on the thin film transistor layer, and adjacent OLED layers 113 are separated by a pixel definition layer.
  • the OLED layer 113 includes a first common layer, a light emitting layer, and a second common layer. ;
  • the first common layer is used to inject and transport the holes, and the first common layer includes a hole injection layer and a hole transport layer. Therefore, the first common layer may be referred to as a hole transport Functional layer
  • the second common layer is formed on the first common layer, and the first common layer is used for injection and transmission of the electrons.
  • the second common layer includes an electron injection layer and an electron transport layer.
  • the second common layer may be referred to as an electron transmission functional layer;
  • the light-emitting layer is formed between the first common layer and the second common layer.
  • the light-emitting layer is an organic semiconductor and has a special band structure. After absorbing electrons migrated from the anode, , And then emit photons of a certain wavelength, and these photons enter our eyes is the color we see.
  • a thin film encapsulation layer 115 is formed on the OLED layer 113.
  • the thin film encapsulation layer 115 mainly plays a role of blocking water and oxygen, and prevents external water vapor from eroding the organic light emitting layer.
  • the thin film encapsulation layer 115 includes at least one organic layer And at least one inorganic layer is alternately stacked; usually an organic encapsulation layer is located in the middle of the thin film encapsulation layer 115, an inorganic encapsulation layer is located on both sides of the thin film encapsulation layer 115, and the organic encapsulation layer is wrapped in the middle; in this embodiment,
  • the thin film encapsulation layer includes an organic layer 1151 and an inorganic layer 1152.
  • the organic encapsulation layer is very flexible, its ability to block water and oxygen is very limited, while the dense and pinhole-free inorganic encapsulation layer has high ability to block water and oxygen, but it is difficult to produce a dense and high-quality film when it reaches a certain thickness Layer, thin film performance is a rigid structure and fragile; therefore, most of the international flexible packaging materials are based on organic or inorganic multilayer film alternating composite structure packaging structure.
  • the display panel further includes an anode layer 112 and a cathode layer 114.
  • the anode layer 112 is formed between the OLED layer 113 and the thin film transistor layer.
  • the cathode layer 114 is formed between the OLED layer 113 and Between the thin film encapsulation layers 115;
  • the anode layer 112 is formed on the flat layer 111.
  • the anode layer 112 includes at least two anodes arranged in an array.
  • the anode layer 112 is mainly used to provide holes for absorbing electrons.
  • the OLED device is a top emission OLED device, and the OLED device is a white light OLED device that emits white light. Therefore, the anode layer 112 is a non-transparent light blocking layer;
  • the cathode layer 114 is formed on the OLED layer 113, and the cathode layer 114 is used to provide the electrons.
  • the cathode layer 114 is a transparent material, and the light generated by the light-emitting layer passes through the cathode. Layer 114 projects outward.
  • the first common electrode layer 116 is formed on the thin film encapsulation layer.
  • the first common electrode layer 116 includes at least two first common electrode plates.
  • the first common electrode plate is formed on the thin film encapsulation layer. Array distribution.
  • the cover plate 117 is formed on the first common electrode layer 116, and the cover plate 117 is used to protect the film structure of the display panel and improve the life of the display panel.
  • the display panel further includes a plurality of wires 118 formed on one side of the first common electrode layer 116, and each of the wires 118 corresponds to a first common electrode plate; as shown in FIG. 1 As shown, the lead wire 118 is formed between the cover plate 117 and the first common electrode plate; as shown in FIG. 2, the lead wire 118 may also be formed between the first common electrode plate and the film. Between encapsulation layers;
  • At least one insulating layer 119 is provided between the lead wire 118 and the first common electrode plate; in this embodiment, between the lead wire 118 and the first common electrode plate An insulation layer 119 is provided between the boards.
  • the material of the insulation layer 119 may be an inorganic film layer such as silicon dioxide or silicon nitride.
  • the insulation layer 119 further includes a plurality of through holes 120 through which the wires 118 pass. The through hole 120 is electrically connected to the first common electrode plate.
  • a protective film layer 121 is also formed on the first common electrode layer 116, and the material of the protective film layer 121 may be an inorganic film layer such as silicon dioxide or silicon nitride.
  • the first common electrode plate of the first common electrode layer 116 is configured to output a touch signal according to a touch operation, and pass the touch signal through The wire 118 is transmitted to the driving chip.
  • the present invention also provides a display device including a display panel.
  • the display panel includes a substrate 201, a thin film transistor layer, an OLED layer 213, a thin film encapsulation layer 215, and a first common electrode.
  • the substrate 201 may be one of a glass substrate, a quartz substrate, and a resin substrate.
  • a thin film transistor layer is formed on the substrate 201; the thin film transistor layer includes an ESL (etch stop layer type), a BCE (back channel etch type) or a top-gate (top gate thin film transistor type) structure, and there is no specific limitation In this embodiment, a top-gate thin film transistor type is taken as an example for description;
  • the thin film transistor layer includes a buffer layer 202, an active layer 203, a first insulating layer 204, a first gate 205, a second insulating layer 206, a second gate 207, a third insulating layer 208, a source and drain 210, and Flat layer
  • the buffer layer 202 is formed on the substrate 201, and is mainly used for buffering the pressure between the layer structure of the membrane, and may also have a function of blocking water and oxygen to a certain extent;
  • the active layer 203 is formed on the buffer layer, and the active layer 203 includes a doped region doped with ions;
  • the first insulating layer 204 is formed on the active layer 203.
  • the first insulating layer 204 is an inter-insulating layer, and the inter-insulating layer covers the active layer 203.
  • An inter-insulating layer is used to isolate the active layer 203 from other metal layers;
  • the first gate electrode 205 is formed on the first insulating layer 204.
  • the metal material of the first gate electrode 205 can generally be metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum tungsten alloy, chromium, or copper. A combination of the above-mentioned metal materials can also be used;
  • a second insulating layer 206 is formed on the first gate 205.
  • the second insulating layer 206 is a first gate insulating layer, and the second gate insulating layer connects the active layer 203.
  • the first gate insulating layer is mainly used to isolate the first gate 205 and the second gate 207; preferably, the thickness of the second insulating layer 206 is 50-200 nm, and the first gate
  • the material of the insulating layer is usually silicon nitride, and silicon oxide and silicon oxynitride can also be used;
  • the second gate 207 is formed on the second insulating layer 206.
  • the material of the second gate 207 is the same as that of the first gate 205.
  • the first gate The metal material of the gate 205 and the second gate 207 is molybdenum;
  • the metal layer forming the second gate electrode 207 is subjected to a patterning process to form the second gate electrode 207 having an area larger than that of the first gate electrode 205, that is, the first gate electrode 205 is in the second gate electrode.
  • the orthographic projection on the grid 207 is within the second grid 207;
  • a third insulating layer 208 is formed on the second insulating layer 206.
  • the third insulating layer 208 is a second gate insulating layer, and the third gate insulating layer connects the second gate Covered by 207, the second gate insulating layer is mainly used to isolate the second gate 207 from the source and drain 210; preferably, the thickness of the second insulating layer 206 is 50-200 nm; The material of the second gate insulating layer is the same as that of the first gate insulating layer;
  • the source and drain electrodes 210 are formed on the third insulating layer 208.
  • the metal materials of the source and drain electrodes 210 can generally be metals such as molybdenum, aluminum, aluminum nickel alloy, molybdenum tungsten alloy, chromium, copper, or titanium aluminum alloy. A combination of the above-mentioned several metal materials may also be used; preferably, in this embodiment, the metal material of the source and drain electrodes 210 is a titanium aluminum alloy; the source and drain electrodes 210 communicate with all of the sources through the first via 209. Said doped region connection;
  • a flat layer 211 is formed on the source and drain 210, and the flat layer 211 is used to ensure the flatness of the thin film transistor process.
  • the OLED layer 213 is formed on the thin film encapsulation layer, and adjacent OLED layers 213 are separated by a pixel definition layer.
  • the first common layer is used to inject and transport the holes, and the first common layer includes a hole injection layer and a hole transport layer. Therefore, the first common layer may be referred to as a hole transport Functional layer
  • the second common layer is formed on the first common layer, and the first common layer is used for injection and transmission of the electrons.
  • the second common layer includes an electron injection layer and an electron transport layer.
  • the second common layer may be referred to as an electron transmission functional layer;
  • the light-emitting layer is formed between the first common layer and the second common layer.
  • the light-emitting layer is an organic semiconductor and has a special band structure. After absorbing electrons migrated from the anode, , And then emit photons of a certain wavelength, and these photons enter our eyes is the color we see.
  • a thin film encapsulation layer 215 is formed on the OELD layer 213.
  • the thin film encapsulation layer 215 mainly plays a role of blocking water and oxygen, and prevents external water vapor from eroding the organic light emitting layer.
  • the thin film encapsulation layer 215 includes at least one organic layer And at least one inorganic layer is alternately stacked; usually an organic encapsulation layer is located in the middle of the thin film encapsulation layer 215, an inorganic encapsulation layer is located on both sides of the thin film encapsulation layer 215, and an organic encapsulation layer is wrapped in the middle;
  • the thin film encapsulation layer includes an organic layer 2151 and an inorganic layer 2152.
  • the organic encapsulation layer is very flexible, its ability to block water and oxygen is very limited, while the dense and pinhole-free inorganic encapsulation layer has high ability to block water and oxygen, but it is difficult to produce a dense and high-quality film when it reaches a certain thickness.
  • Layer, thin film performance is a rigid structure and fragile; therefore, most of the international flexible packaging materials are based on organic or inorganic multilayer film alternating composite structure packaging structure.
  • the display panel further includes an anode layer 212 and a cathode layer 214, the anode layer 212 is formed between the OLED layer 213 and the thin film transistor layer, and the cathode layer 214 is formed between the OLED layer 213 and Between the thin film encapsulation layers 215;
  • the anode layer 212 is formed on the flat layer 211.
  • the anode layer 212 includes at least two anodes arranged in an array.
  • the anode layer 212 is mainly used to provide holes for absorbing electrons.
  • the OLED device is a top emission OLED device, and the OLED device is a white light OLED device that emits white light. Therefore, the anode layer 212 is a non-transparent light blocking layer;
  • a cathode layer 214 is formed on the OLED layer 213, and the cathode layer 214 is used to provide the electrons.
  • the cathode layer 214 is a transparent material, and the light generated by the light-emitting layer passes through the cathode layer. 214 projected outward.
  • the first common electrode layer 216 is formed on the thin film encapsulation layer.
  • the first common electrode layer 216 includes at least two first common electrode plates.
  • the first common electrode layer is formed on the thin film encapsulation layer. Array distribution.
  • the cover plate 217 is formed on the first common electrode layer 216, and the cover plate 217 is used to protect the film structure of the display panel and improve the life of the display panel.
  • the display panel further includes a plurality of wires 218 formed on one side of the first common electrode layer 216, and each of the wires 218 corresponds to a first common electrode plate; as shown in FIG. 3
  • the lead wire 218 is formed between the cover plate 217 and the first common electrode plate; as shown in FIG. 4, the lead wire 218 may also be formed between the first common electrode plate and the film. Between encapsulation layers;
  • At least one insulating layer 219 is provided between the lead 218 and the first common electrode plate.
  • An insulating layer 219 is provided between the boards.
  • the material of the insulating layer 219 may be an inorganic film layer such as silicon dioxide or silicon nitride.
  • the insulating layer 219 further includes a plurality of through holes 220 through which the wires 218 pass. The through hole 220 is electrically connected to the first common electrode plate;
  • a protective film layer 221 is also formed on the first common electrode layer 216, and a material of the protective film layer 221 may be an inorganic film layer such as silicon dioxide or silicon nitride.
  • the first common electrode plate of the first common electrode layer 216 is configured to output a touch signal according to a touch operation, and pass the The wire 218 is transmitted to the driving chip.
  • the present invention also provides a display panel and a display device.
  • the display device includes a display panel, and the display panel includes a substrate, a thin film transistor layer, an OLED layer, and a thin film encapsulation layer, a first common electrode layer, a cover plate, and a lead.
  • the present invention eliminates the non-contact of the display panel by providing a plurality of wires on one side of the first common electrode plate, by placing the wires and the first common electrode plate in two film layers, and electrically connecting the vias through the insulating layer.
  • the control function area improves the touch accuracy of the OLED touch screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板以及显示装置,显示面板包括基板(101,201)、薄膜晶体管层、OLED层(113,213)、薄膜封装层(115,215)、第一公共电极层(116,216)、盖板(117,217)以及导线(118,218)。第一公共电极层(116,216)包括至少两个第一公共电极板。显示面板通过在第一公共电极板的一侧设置若干导线(118,218),通过将导线(118,218)与第一公共电极板分别放置在两个膜层,并通过绝缘层(119,219)的过孔(120,220)电性连接,从而消除显示面板无触控功能区。

Description

显示面板及显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种显示面板及显示装置。
背景技术
在平板显示技术中,有机发光二极管(Organic Light-Emitting Diode,OLED)显示器具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高和功耗低等众多优点,逐渐成为继液晶显示器后的第三代显示技术。相对于LCD(Liquid crystal displays,液晶显示器),OLED具有更省电,更薄,且视角宽的优势,这是LCD无法比拟的。目前,人们对显示的细腻程度即分辨率要求越来越高,但生产高质量、高分辨率的OLED显示屏仍然面临着许多挑战。
随着显示技术的发展,OLED面板被越来越多的电子产品所采用,而柔性OLED更是由于其可挠性而备受关注。柔性OLED面板所采用的触控传感器主要为外挂式,即在膜层结构上完成传感器模组后再贴合到OLED面板上。其中,在柔性OLED面板上直接进行触控传感器的制作,需要考虑OLED的电子发射层(即阴极)对触控传感器信号的影响。
现有技术中,触控传感器分为自电容式与互电容式两种:
一、互电容式触摸屏存在OLED的电子发射层(即阴极)与触控传感器之间电容较大,导致电容较大,影响了触控的灵敏性;
二、自容式触摸屏(单层多点)将整个屏幕划分为M*N个区域,每个区域为一个独立的透明导电电极区块,每个透明导电电极区块通过位于同一层的信号线与触控IC相连通,即每一个透明导电电极区块都独立地与周围环境形成一个对地电容;当手指靠近某一位置透明导电电极时,会引入一个耦合电容,导致探测到的电容增加,IC即判断此位置发生触控;但是,由于信号线占据了触摸屏的部分区域,导致此位置无法实现触控,因此单层多点自容式触摸屏存在触控精度较差的问题。
技术问题
本发明提供了一种显示面板及显示装置,以解决现有显示面板触控精度较差的技术问题。
技术解决方案
本发明提供一种显示面板,其中,所述显示面板包括:
基板;
薄膜晶体管层,形成于所述基板上;
OLED层,形成于所述薄膜晶体管层上;
薄膜封装层,形成于所述阴极层上;
第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
盖板,形成于所述第一公共电极层上;
以及
导线,所述导线形成于所述盖板与所述第一公共电极板之间、或所述第一公共电极板与所述薄膜封装层之间,所述导线与所述第一公共电极板一一对应;
其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
根据本发明一优选实施例,所述导线与所述第一公共电极板之间设置有至少一绝缘层。
根据本发明一优选实施例,所述绝缘层上还包括至少一通孔,
所述导线通过所述通孔与所述第一公共电极板电性连接。
本发明还提出了一种显示装置,所述显示装置包括显示面板,其中,所述显示面板包括:
基板;
薄膜晶体管层,形成于所述基板上;
OLED层,形成于所述薄膜晶体管层上;
薄膜封装层,形成于所述阴极层上;
第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
盖板,形成于所述第一公共电极层上;
以及
导线,形成于所述第一公共电极层的一侧,所述导线与所述第一公共电极板一一对应;
其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
根据本发明一优选实施例,所述导线形成于所述盖板与所述第一公共电极板之间。
根据本发明一优选实施例,所述导线形成于所述第一公共电极板与所述薄膜封装层之间。
根据本发明一优选实施例,所述导线与所述第一公共电极板之间设置有至少一绝缘层。
根据本发明一优选实施例,所述绝缘层上还包括至少一通孔,
所述导线通过所述通孔与所述第一公共电极板电性连接。
本发明还提出了一种显示面板,其中,所述显示面板包括:
基板;
薄膜晶体管层,形成于所述基板上;
OLED层,形成于所述薄膜晶体管层上;
薄膜封装层,形成于所述阴极层上;
第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
盖板,形成于所述第一公共电极层上;
以及
导线,形成于所述第一公共电极层的一侧,所述导线与所述第一公共电极板一一对应;
其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
根据本发明一优选实施例,所述导线形成于所述盖板与所述第一公共电极板之间。
根据本发明一优选实施例,所述绝缘层上还包括至少一通孔,所述导线通过所述通孔与所述第一公共电极板电性连接。
有益效果
本发明通过在第一公共电极板的一侧设置若干导线,通过将导线与第一公共电极板分别放置在两个膜层,并通过绝缘层的过孔电性连接,消除显示面板无触控功能区,提高了OLED触摸屏的触控精度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一显示面板的膜层结构图;
图2为本发明实施例二显示面板的膜层结构图;
图3为本发明显示面板的触控电极层和触控信号线连接图;
图4为本发明实施例三显示面板的膜层结构图;
图5为本发明实施例四显示面板的膜层结构图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
图1所示为本发明一种显示面板,所述显示面板包括基板101、薄膜晶体管层、OLED层113、薄膜封装层115、第一公共电极层116、盖板117以及导线118;
基板101,所述基板101的原材料可以为玻璃基板、石英基板、树脂基板等中的一种。
薄膜晶体管层,形成于所述基板101上;所述薄膜晶体管层包括ESL(蚀刻阻挡层型)、BCE(背沟道蚀刻型)或Top-gate(顶栅薄膜晶体管型)结构,具体没有限制,本实施例以顶栅薄膜晶体管型为例进行说明;
所述薄膜晶体管层包括缓冲层102、有源层103、第一绝缘层104、第一栅极105、第二绝缘层106、第二栅极107、第三绝缘层108、源漏极110以及平坦层;
所述缓冲层102形成于所述基板101上,主要用于缓冲膜层质结构之间的压力,并且还可以具有一定阻水氧的功能;
所述有源层103形成于所述缓冲层上,所述有源层103包括经离子掺杂的掺杂区;
所述第一绝缘层104形成于所述有源层103上;本实施例中,所述第一绝缘层104为间绝缘层,所述间绝缘层将所述有源层103覆盖,所述间绝缘层用于将所述有源层103与其他金属层隔离;
所述第一栅极105形成于所述第一绝缘层104上,所述第一栅极105的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属,也可以使用上述几种金属材料的组合物;
第二绝缘层106,形成于所述第一栅极105上;本实施例中,所述第二绝缘层106为第一栅绝缘层,所述第二栅绝缘层将所述有源层103覆盖,所述第一栅绝缘层主要用于将所述第一栅极105和第二栅极107隔离;优选的,所述第二绝缘层106的厚度为50~200nm,所述第一栅绝缘层的材料通常为氮化硅,也可以使用氧化硅和氮氧化硅等;
所述第二栅极107形成于所述第二绝缘层106上,所述第二栅极107的材料和所述第一栅极105的相同,优选的,本实施例中,所述第一栅极105和所述第二栅极107的金属材料为钼;
另外,形成所述第二栅极107的金属层经图案化处理,形成面积大于所述第一栅极105的所述第二栅极107,即所述第一栅极105在所述第二栅极107上的正投影在所述第二栅极107内;
第三绝缘层108,形成于所述第二绝缘层106上;本实施例中,所述第三绝缘层108为第二栅绝缘层,所述第三栅绝缘层将所述第二栅极107覆盖,所述第二栅绝缘层主要用于将所述第二栅极107和源漏极110隔离;优选的,所述第二绝缘层106的厚度为50~200nm;其中,所述第二栅绝缘层的材料和所述第一栅绝缘层的材料相同;
源漏极110,形成于所述第三绝缘层108上,所述源漏极110的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、铜或钛铝合金等金属,也可以使用上述几种金属材料的组合物;优选的,本实施例中,所述源漏极110的金属材料为钛铝合金;所述源漏极110通过所述第一过孔109与所述掺杂区连接;
平坦层111,形成于所述源漏极110上,所述平坦层111用于保证所述薄膜晶体管工艺上的平整性。
所述OLED层113形成于所述薄膜晶体管层上,相邻的OLED层113被像素定义层所分离;本实施例中,所述OLED层113包括第一公共层、发光层以及第二公共层;
其中,所述第一公共层用于所述空穴的注入和传输,所述第一公共层包括空穴注入层和空穴传输层,因此,所述第一公共层可以称为空穴传输功能层;
所述第二公共层形成于所述第一公共层上,所述第一公共层用于所述电子的注入和传输,所述第二公共层包括电子注入层和电子传输层,因此,所述第二公共层可以称为电子传输功能层;
所述发光层位于形成于所述第一公共层和所述第二公共层之间,所述发光层为有机物半导体,其具有特殊的能带结构,可以在吸收所述阳极迁移过来的电子后,再散发出来一定波长的光子,而这些光子进入我们眼睛就是我们看到的色彩。
薄膜封装层115,形成于所述OLED层113上,所述薄膜封装层115主要起阻水阻氧的作用,防止外部水汽对有机发光层的侵蚀,所述薄膜封装层115包括至少一有机层和至少一无机层交替叠加构成;通常有机封装层位于所述薄膜封装层115的中间,无机封装层位于所述薄膜封装层115的两侧,将有机封装层包裹在中间;本实施例中,所述薄膜封装层包括一有机层1151和一层无机层1152形成。
所述有机封装层虽然柔性很好,但阻挡水氧渗透能力非常有限,而致密无针孔的无机封装层阻挡水氧能力虽较高,但达到一定厚度时很难制备出致密高质量的膜层,薄膜性能表现为刚性结构且易碎裂;因此,目前国际上绝大多数的柔性封装材料都是基于有机或无机多层膜交替复合结构的封装结构。
另外,所述显示面板还包括阳极层112和阴极层114,所述阳极层112形成于所述OLED层113与所述薄膜晶体管层之间,所述阴极层114形成于所述OLED层113与所述薄膜封装层115之间;
所述阳极层112形成于所述平坦层111上,所述阳极层112包括至少两个成阵列排布的阳极,所述阳极层112主要用于提供吸收电子的空穴;本实施例中,所述OLED器件为顶发射型OLED器件,所述OLED器件为发射白光的白光OLED器件,因此,所述阳极层112非透明的挡光层;
所述阴极层114形成于所述OLED层113上,所述阴极层114用于提供所述电子;本实施例中,所述阴极层114为透明材料,让发光层产生的光线经过所述阴极层114向外投射。
所述第一公共电极层116形成于所述薄膜封装层上,所述第一公共电极层116包括至少两个第一公共电极板,所述第一公共电极板在所述薄膜封装层上成阵列分布。
所述盖板117形成于所述第一公共电极层116上,所述盖板117用于保护所述显示面板的膜层结构,提高所述显示面板的寿命。
另外,所述显示面板还包括若干导线118,所述导线118形成于所述第一公共电极层116的一侧,每一所述导线118与一所述第一公共电极板对应;如图1所示,所述导线118形成于所述盖板117与所述第一公共电极板之间;如图2所示,所述导线118还可以形成于所述第一公共电极板与所述薄膜封装层之间;
另外,如图1或图2所示,所述导线118与所述第一公共电极板之间设置有至少一绝缘层119;本实施例中,在所述导线118与所述第一公共电极板之间设置有一绝缘层119,所述绝缘层119的材料可以为二氧化硅、氮化硅等无机膜层;所述绝缘层119上还包括若干通孔120,所述导线118通过所述通孔120与第一公共电极板电性连接;
另外,所述第一公共电极层116上还形成有一保护膜层121,所述保护膜层121的材料可以为二氧化硅、氮化硅等无机膜层。
如图3所示本实施例中,当所述显示面板处于触控状态时,所述第一公共电极层116的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线118传输至驱动芯片。
本发明还提出了一种显示装置,所述显示装置包括显示面板;如图3所示,所述显示面板包括基板201、薄膜晶体管层、OLED层213、及薄膜封装层215、第一公共电极层216、盖板217以及导线218;
基板201,所述基板201的原材料可以为玻璃基板、石英基板、树脂基板等中的一种。
薄膜晶体管层,形成于所述基板201上;所述薄膜晶体管层包括ESL(蚀刻阻挡层型)、BCE(背沟道蚀刻型)或Top-gate(顶栅薄膜晶体管型)结构,具体没有限制,本实施例以顶栅薄膜晶体管型为例进行说明;
所述薄膜晶体管层包括缓冲层202、有源层203、第一绝缘层204、第一栅极205、第二绝缘层206、第二栅极207、第三绝缘层208、源漏极210以及平坦层;
所述缓冲层202形成于所述基板201上,主要用于缓冲膜层质结构之间的压力,并且还可以具有一定阻水氧的功能;
所述有源层203形成于所述缓冲层上,所述有源层203包括经离子掺杂的掺杂区;
所述第一绝缘层204形成于所述有源层203上;本实施例中,所述第一绝缘层204为间绝缘层,所述间绝缘层将所述有源层203覆盖,所述间绝缘层用于将所述有源层203与其他金属层隔离;
所述第一栅极205形成于所述第一绝缘层204上,所述第一栅极205的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属,也可以使用上述几种金属材料的组合物;
第二绝缘层206,形成于所述第一栅极205上;本实施例中,所述第二绝缘层206为第一栅绝缘层,所述第二栅绝缘层将所述有源层203覆盖,所述第一栅绝缘层主要用于将所述第一栅极205和第二栅极207隔离;优选的,所述第二绝缘层206的厚度为50~200nm,所述第一栅绝缘层的材料通常为氮化硅,也可以使用氧化硅和氮氧化硅等;
所述第二栅极207形成于所述第二绝缘层206上,所述第二栅极207的材料和所述第一栅极205的相同,优选的,本实施例中,所述第一栅极205和所述第二栅极207的金属材料为钼;
另外,形成所述第二栅极207的金属层经图案化处理,形成面积大于所述第一栅极205的所述第二栅极207,即所述第一栅极205在所述第二栅极207上的正投影在所述第二栅极207内;
第三绝缘层208,形成于所述第二绝缘层206上;本实施例中,所述第三绝缘层208为第二栅绝缘层,所述第三栅绝缘层将所述第二栅极207覆盖,所述第二栅绝缘层主要用于将所述第二栅极207和源漏极210隔离;优选的,所述第二绝缘层206的厚度为50~200nm;其中,所述第二栅绝缘层的材料和所述第一栅绝缘层的材料相同;
源漏极210,形成于所述第三绝缘层208上,所述源漏极210的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、铜或钛铝合金等金属,也可以使用上述几种金属材料的组合物;优选的,本实施例中,所述源漏极210的金属材料为钛铝合金;所述源漏极210通过所述第一过孔209与所述掺杂区连接;
平坦层211,形成于所述源漏极210上,所述平坦层211用于保证所述薄膜晶体管工艺上的平整性。
所述OLED层213形成于所述薄膜封装层上,相邻的OLED层213被像素定义层所分离;本实施例中,所述OLED层213、第一公共电极层216、盖板217以及导线218;
其中,所述第一公共层用于所述空穴的注入和传输,所述第一公共层包括空穴注入层和空穴传输层,因此,所述第一公共层可以称为空穴传输功能层;
所述第二公共层形成于所述第一公共层上,所述第一公共层用于所述电子的注入和传输,所述第二公共层包括电子注入层和电子传输层,因此,所述第二公共层可以称为电子传输功能层;
所述发光层位于形成于所述第一公共层和所述第二公共层之间,所述发光层为有机物半导体,其具有特殊的能带结构,可以在吸收所述阳极迁移过来的电子后,再散发出来一定波长的光子,而这些光子进入我们眼睛就是我们看到的色彩。
薄膜封装层215,形成于所述OELD层213上,所述薄膜封装层215主要起阻水阻氧的作用,防止外部水汽对有机发光层的侵蚀,所述薄膜封装层215包括至少一有机层和至少一无机层交替叠加构成;通常有机封装层位于所述薄膜封装层215的中间,无机封装层位于所述薄膜封装层215的两侧,将有机封装层包裹在中间;本实施例中,所述薄膜封装层包括一有机层2151和一层无机层2152形成。
所述有机封装层虽然柔性很好,但阻挡水氧渗透能力非常有限,而致密无针孔的无机封装层阻挡水氧能力虽较高,但达到一定厚度时很难制备出致密高质量的膜层,薄膜性能表现为刚性结构且易碎裂;因此,目前国际上绝大多数的柔性封装材料都是基于有机或无机多层膜交替复合结构的封装结构。
另外,所述显示面板还包括阳极层212和阴极层214,所述阳极层212形成于所述OLED层213与所述薄膜晶体管层之间,所述阴极层214形成于所述OLED层213与所述薄膜封装层215之间;
所述阳极层212形成于所述平坦层211上,所述阳极层212包括至少两个成阵列排布的阳极,所述阳极层212主要用于提供吸收电子的空穴;本实施例中,所述OLED器件为顶发射型OLED器件,所述OLED器件为发射白光的白光OLED器件,因此,所述阳极层212非透明的挡光层;
阴极层214,形成于所述OLED层213上,所述阴极层214用于提供所述电子;本实施例中,所述阴极层214为透明材料,让发光层产生的光线经过所述阴极层214向外投射。
所述第一公共电极层216形成于所述薄膜封装层上,所述第一公共电极层216包括至少两个第一公共电极板,所述第一公共电极板在所述薄膜封装层上成阵列分布。
所述盖板217形成于所述第一公共电极层216上,所述盖板217用于保护所述显示面板的膜层结构,提高所述显示面板的寿命。
另外,所述显示面板还包括若干导线218,所述导线218形成于所述第一公共电极层216的一侧,每一所述导线218与一所述第一公共电极板对应;如图3所示,所述导线218形成于所述盖板217与所述第一公共电极板之间;如图4所示,所述导线218还可以形成于所述第一公共电极板与所述薄膜封装层之间;
另外,如图1或图2所示,所述导线218与所述第一公共电极板之间设置有至少一绝缘层219;本实施例中,在所述导线218与所述第一公共电极板之间设置有一绝缘层219,所述绝缘层219的材料可以为二氧化硅、氮化硅等无机膜层;所述绝缘层219上还包括若干通孔220,所述导线218通过所述通孔220与第一公共电极板电性连接;
另外,所述第一公共电极层216上还形成有一保护膜层221,所述保护膜层221的材料可以为二氧化硅、氮化硅等无机膜层。
如图3所示,本实施例中,当所述显示面板处于触控状态时,所述第一公共电极层216的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线218传输至驱动芯片。
本发明还提出了一种显示面板以及显示装置,所述显示装置包括显示面板,所述显示面板包括基板、薄膜晶体管层、OLED层、及薄膜封装层、第一公共电极层、盖板以及导线;本发明通过在第一公共电极板的一侧设置若干导线,通过将导线与第一公共电极板分别放置在两个膜层,并通过绝缘层的过孔电性连接,消除显示面板无触控功能区,提高了OLED触摸屏的触控精度。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (11)

  1. 一种显示面板,其中,所述显示面板包括:
    基板;
    薄膜晶体管层,形成于所述基板上;
    OLED层,形成于所述薄膜晶体管层上;
    薄膜封装层,形成于所述阴极层上;
    第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
    盖板,形成于所述第一公共电极层上;
    以及
    导线,所述导线形成于所述盖板与所述第一公共电极板之间、或所述第一公共电极板与所述薄膜封装层之间,所述导线与所述第一公共电极板一一对应;
    其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
  2. 根据权利要求1所述的显示面板,其中,所述导线与所述第一公共电极板之间设置有至少一绝缘层。
  3. 根据权利要求2所述的显示面板,其中,所述绝缘层上还包括至少一通孔,
    所述导线通过所述通孔与所述第一公共电极板电性连接。
  4. 一种显示装置,所述显示装置包括显示面板,其中,所述显示面板包括:
    基板;
    薄膜晶体管层,形成于所述基板上;
    OLED层,形成于所述薄膜晶体管层上;
    薄膜封装层,形成于所述阴极层上;
    第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
    盖板,形成于所述第一公共电极层上;
    以及
    导线,形成于所述第一公共电极层的一侧,所述导线与所述第一公共电极板一一对应;
    其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
  5. 根据权利要求4所述的显示装置,其中,所述导线形成于所述盖板与所述第一公共电极板之间。
  6. 根据权利要求4所述的显示装置,其中,所述导线形成于所述第一公共电极板与所述薄膜封装层之间。
  7. 根据权利要求4所述的显示装置,其中,所述导线与所述第一公共电极板之间设置有至少一绝缘层。
  8. 根据权利要求7所述的显示装置,其中,所述绝缘层上还包括至少一通孔,
    所述导线通过所述通孔与所述第一公共电极板电性连接。
  9. 一种显示面板,其中,所述显示面板包括:
    基板;
    薄膜晶体管层,形成于所述基板上;
    OLED层,形成于所述薄膜晶体管层上;
    薄膜封装层,形成于所述阴极层上;
    第一公共电极层,形成于所述薄膜封装层上,所述第一公共电极层包括至少两个第一公共电极板;
    盖板,形成于所述第一公共电极层上;
    以及
    导线,形成于所述第一公共电极层的一侧,所述导线与所述第一公共电极板一一对应;
    其中,当所述显示面板处于触控状态时,所述第一公共电极层的第一公共电极板用于根据触控操作输出触控信号,并通过所述导线传输至驱动芯片。
  10. 根据权利要求9所述的显示面板,其中,所述导线形成于所述盖板与所述第一公共电极板之间。
  11. 根据权利要求10所述的显示面板,其中,所述绝缘层上还包括至少一通孔,所述导线通过所述通孔与所述第一公共电极板电性连接。
PCT/CN2018/100264 2018-06-21 2018-08-13 显示面板及显示装置 WO2019242083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/099,201 US10705636B2 (en) 2018-06-21 2018-08-13 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810645723.5 2018-06-21
CN201810645723.5A CN108829287A (zh) 2018-06-21 2018-06-21 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2019242083A1 true WO2019242083A1 (zh) 2019-12-26

Family

ID=64143207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100264 WO2019242083A1 (zh) 2018-06-21 2018-08-13 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN108829287A (zh)
WO (1) WO2019242083A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696991A (zh) * 2018-12-06 2019-04-30 信利光电股份有限公司 一种oled触控显示模组的制作方法
CN109683743A (zh) * 2018-12-24 2019-04-26 武汉华星光电技术有限公司 一种触控显示面板及电子装置
CN110265455B (zh) * 2019-06-25 2020-11-24 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN113093422B (zh) * 2021-03-23 2022-12-23 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845033A (zh) * 2016-05-13 2016-08-10 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN205900544U (zh) * 2016-07-12 2017-01-18 上海天马微电子有限公司 柔性oled显示面板、柔性oled显示装置
CN205944094U (zh) * 2016-06-17 2017-02-08 上海天马微电子有限公司 一种oled显示面板及显示装置
CN107193144A (zh) * 2017-04-26 2017-09-22 武汉华星光电技术有限公司 Ltps阵列基板及其制作方法
CN107403804A (zh) * 2016-05-17 2017-11-28 群创光电股份有限公司 显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845033A (zh) * 2016-05-13 2016-08-10 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN107403804A (zh) * 2016-05-17 2017-11-28 群创光电股份有限公司 显示设备
CN205944094U (zh) * 2016-06-17 2017-02-08 上海天马微电子有限公司 一种oled显示面板及显示装置
CN205900544U (zh) * 2016-07-12 2017-01-18 上海天马微电子有限公司 柔性oled显示面板、柔性oled显示装置
CN107193144A (zh) * 2017-04-26 2017-09-22 武汉华星光电技术有限公司 Ltps阵列基板及其制作方法

Also Published As

Publication number Publication date
CN108829287A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
KR102654291B1 (ko) 유기 발광 표시 장치
KR102014179B1 (ko) 유기발광 표시장치와 그의 제조방법
US10333096B2 (en) OLED display unit and method for manufacturing the same
US10705636B2 (en) Display panel and display device
WO2020133714A1 (zh) 显示面板及显示模组、电子装置
KR102060622B1 (ko) 유기 발광 표시 장치
KR101391244B1 (ko) 유기 발광 표시 장치
WO2019242083A1 (zh) 显示面板及显示装置
US10627963B2 (en) Display device including touch sensor electrodes having a particular pitch
JP2015079758A (ja) 有機発光表示装置
KR20140104844A (ko) 가요성 표시 장치 및 그 제조방법
WO2020056803A1 (zh) 显示面板及其制作方法、显示模组
WO2021027081A1 (zh) 显示面板及显示装置
WO2021223304A1 (zh) 显示面板及显示装置
WO2019019235A1 (zh) 触控式oled显示面板以及显示装置
WO2020118817A1 (zh) 一种oled显示器
WO2021249105A1 (zh) 显示基板及显示装置
KR20160087981A (ko) 표시 장치
WO2021068337A1 (zh) 显示面板及显示装置
TW200522769A (en) Organic electroluminescent display device and method of fabricating the same
CN110212111B (zh) 显示基板及制作方法、显示面板、显示装置
CN113241361B (zh) Oled显示面板
WO2020062410A1 (zh) 有机发光二极管显示器及其制作方法
KR101804121B1 (ko) 유기 발광장치와 이의 제조방법
WO2016090747A1 (zh) Oled显示装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923341

Country of ref document: EP

Kind code of ref document: A1