WO2019240324A1 - Terminal mobile - Google Patents

Terminal mobile Download PDF

Info

Publication number
WO2019240324A1
WO2019240324A1 PCT/KR2018/008934 KR2018008934W WO2019240324A1 WO 2019240324 A1 WO2019240324 A1 WO 2019240324A1 KR 2018008934 W KR2018008934 W KR 2018008934W WO 2019240324 A1 WO2019240324 A1 WO 2019240324A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
voice
pattern
information
touch
Prior art date
Application number
PCT/KR2018/008934
Other languages
English (en)
Korean (ko)
Inventor
한종우
이태호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019240324A1 publication Critical patent/WO2019240324A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/28Constructional details of speech recognition systems
    • G10L15/30Distributed recognition, e.g. in client-server systems, for mobile phones or network applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/40Electronic components, circuits, software, systems or apparatus used in telephone systems using speech recognition

Definitions

  • the present invention relates to a mobile terminal, and more particularly, to a mobile terminal capable of automatically training a voice pattern for which speech recognition has failed.
  • Data mining, pattern recognition, and situation recognition techniques including devices that use machine learning to recognize or predict a user's needs based on past information, the user's environment, the situation of the user's current state, or the user's specific schedule. And other intelligent algorithms and technologies.
  • An object of the present invention is to provide a mobile terminal capable of automatically training by recognizing a redundant speech pattern in which speech recognition has failed.
  • An object of the present invention is to provide a mobile terminal capable of improving speech recognition rate through automatic training.
  • a mobile terminal includes a microphone, a memory for receiving a voice command of a user, and a controller for controlling the microphone and the memory, wherein the controller receives a first voice command and receives the first voice command.
  • the recognition of the voice command fails, the first voice pattern of the first voice command is stored in the memory, a second voice command is received, and the second voice pattern of the second voice command is the first voice pattern.
  • the voice recognition threshold indicating the ability of speech recognition is adjusted, and when the second voice command is recognized according to the adjustment of the voice recognition threshold, the first voice pattern stored in the memory and the adjusted The voice recognition threshold may be sent to the server.
  • the performance of speech recognition may be effectively improved by lowering the speech recognition threshold for repeated speech patterns for which speech recognition has failed.
  • FIG. 1A is a block diagram illustrating a mobile terminal related to the present invention.
  • 1B and 1C are conceptual views of one example of a mobile terminal, viewed from different directions.
  • FIG. 2 is a conceptual diagram illustrating another example of a deformable mobile terminal according to the present invention.
  • FIG. 3 is a perspective view illustrating an example of a watch-type mobile terminal according to another embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating an example of a glass type mobile terminal according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of operating a mobile terminal according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of operating a mobile terminal according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of operating a mobile terminal according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a process of performing voice recognition retraining in a server according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating cases in which recognition of a conventional voice starting word fails.
  • the mobile terminal described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant, a portable multimedia player, a navigation, a slate PC , Tablet PCs, ultrabooks, wearable devices, such as smartwatches, glass glasses, head mounted displays, and the like. have.
  • FIG. 1A is a block diagram illustrating a mobile terminal according to the present invention
  • FIGS. 1B and 1C are conceptual views of one example of the mobile terminal, viewed from different directions.
  • the mobile terminal 100 includes a wireless communication unit 110, an input unit 120, a running data unit 130, a detection unit 140, an output unit 150, an interface unit 160, a memory 170, and a control unit ( 180 and the power supply unit 190 may be included.
  • FIG. 1A The components shown in FIG. 1A are not essential to implementing a mobile terminal, so a mobile terminal described herein may have more or fewer components than those listed above.
  • the wireless communication unit 110 of the components, between the mobile terminal 100 and the wireless communication system, between the mobile terminal 100 and another mobile terminal 100, or the mobile terminal 100 and the external server It may include one or more modules that enable wireless communication therebetween.
  • the wireless communication unit 110 may include one or more modules for connecting the mobile terminal 100 to one or more networks.
  • the wireless communication unit 110 may include at least one of the broadcast receiving module 111, the mobile communication module 112, the wireless internet module 113, the short range communication module 114, and the location information module 115. .
  • the input unit 120 may include a camera 121 or an image input unit for inputting an image signal, a microphone 122 for inputting an audio signal, an audio input unit, or a user input unit 123 for receiving information from a user. , Touch keys, mechanical keys, and the like.
  • the voice data or the image data collected by the input unit 120 may be analyzed and processed as a control command of the user.
  • the learning data unit 130 may be configured to receive, classify, store, and output information to be used for data mining, data analysis, intelligent decision making, and machine learning algorithms and techniques.
  • the running data unit 130 is received, detected, sensed, generated, predefined or otherwise outputted by the terminal, or communicated with other components, devices, terminals or terminals in a received, detected, detected, generated, predefined or otherwise manner. It may include one or more memory units configured to store data output by the entity.
  • the running data unit 130 may include a memory integrated or implemented in the terminal. In some embodiments, the running data unit 130 may be implemented using the memory 170.
  • the running data unit 130 may be implemented using a memory associated with the terminal, such as an external memory directly coupled to the terminal, or a memory maintained in a server communicating with the terminal.
  • the running data unit 130 may be implemented using a memory maintained in a cloud computing environment or another remote memory location accessible by the terminal through a communication scheme such as a network.
  • the running data portion 130 generally includes one or more pieces of data to identify, index, categorize, manipulate, store, retrieve, and output the data for use in supervised or unsupervised learning, data mining, predictive analytics, or other machines. It can be configured to store in a database.
  • the information stored in the running data portion 130 may be used by the controller 180 or one or more other controllers of the terminal using any of a variety of different types of data analysis and machine learning algorithms and techniques.
  • Examples of such algorithms and techniques include k-near neighbor systems, fuzzy logic (e.g. probability theory), neural networks, Boltzmann machines, vector quantization, pulse neural networks, support vector machines, maximum margin classifiers, hill climbing, inductive logic systems Bayesian Network, peritnet (e.g., finite state machine, millie machine, Moore finite state machine), classifier tree (e.g. Perceptron tree, support vector tree, Markov tree, decision tree forest, arbitrary forest), stake model and system, Various types of information can be provided, including artificial fusion, sensor fusion, image fusion, reinforcement learning, augmented reality, pattern recognition, automated planning, and the like.
  • fuzzy logic e.g. probability theory
  • neural networks Boltzmann machines, vector quantization, pulse neural networks, support vector machines, maximum margin classifiers, hill climbing, inductive logic systems Bayesian Network, peritnet (e.g., finite state machine, millie machine, Moore finite state machine), classifier tree (e.g. Perceptron tree, support
  • the controller 180 requests data from the running data unit 130 to determine or predict at least one executable operation of the terminal based on the information generated or determined using data analysis and machine learning algorithms and techniques,
  • the terminal may be searched, received or utilized, and the terminal may be controlled to execute a predicted or desired one of the at least one executable operation.
  • the controller 180 may perform various functions for implementing an emulation of intelligence (that is, a knowledge base system, an inference system, and a knowledge acquisition system). This can be applied to various types of systems (eg, fuzzy logic systems), including adaptive systems, machine learning systems, artificial neural networks, and the like.
  • the controller 180 also carries voice and natural language speech processing, such as an I / O processing module, an environmental condition module, a speech-text (STT) processing module, a natural language processing module, a workflow processing module, and a service processing module. It may include submodules to enable performance and / or execution.
  • voice and natural language speech processing such as an I / O processing module, an environmental condition module, a speech-text (STT) processing module, a natural language processing module, a workflow processing module, and a service processing module. It may include submodules to enable performance and / or execution.
  • Each of these submodules may also have access to one or more systems or data and models, or a subset or superset thereof, at a terminal, and include lexical indexes, user data, workflow models, service models, and automatic speech recognition. It can provide a variety of functions, including (ASR) systems.
  • ASR automatic speech recognition
  • controller 180 or another aspect of the terminal may be implemented with the sub module, system, or data and model.
  • the controller 180 may be configured to detect and detect a need based on a context condition expressed by a user input or a natural language input or a user's intention.
  • the controller 180 can actively derive and obtain information needed to fully determine needs based on contextual conditions or the user's intent (eg, historical input and output, pattern matching, unambiguous words, inputs). By analyzing historical data, including intent, etc.).
  • intent eg, historical input and output, pattern matching, unambiguous words, inputs.
  • the controller 180 may determine a task flow for executing a function in response to a need based on the context condition or the user's intention, and execute the task flow to satisfy the need according to the context condition or the user's intention.
  • the controller 180 may include members, memristors, mutual conductance amplifiers, pulsed neural circuits, artificially intelligent nanotechnology systems (such as autonomic nanomachines) or artificially intelligent quantum mechanical systems (such as quantum neural networks). And the like.
  • the controller 180 may include a pattern recognition system such as a machine vision system, an acoustic recognition system, a handwriting recognition system, a data fusion system, a sensor fusion system, and a soft sensor.
  • Machine vision systems may also include content-based image retrieval, optical character recognition, augmented reality, egomotion, tracking or optical flow, and the like.
  • the controller 180 collects, detects, extracts, or collects signals or data used in data analysis and machine learning through one or more sensing components in order to collect information for processing and storage in the running data unit 130. It may be configured to detect and / or receive.
  • Information collection may include sensing information through a sensor, extracting information stored in the memory 170, or receiving information from another terminal, entity or external storage device via a communication means.
  • the controller 180 may collect history usage information from the terminal and store history usage information for use in data analysis.
  • the controller 180 may determine the best match for executing a specific function by using predictive modeling based on the stored information in the future generation based on the stored historical usage information.
  • the controller 180 may also receive or detect surrounding environment information or other information through the sensing unit 140.
  • the controller 180 may receive a broadcast signal and / or broadcast related information, a wireless signal, and wireless data through the wireless communication unit 110.
  • the controller 180 may receive image information (or a corresponding signal), audio information (or a corresponding signal), data, or user input information from the input unit.
  • the controller 180 collects information in real time, processes or classifies the information (for example, a knowledge graph, a command policy, a personalization database, a dialogue engine, etc.), and processes the processed information into a memory 170 or a running data unit ( 130).
  • information for example, a knowledge graph, a command policy, a personalization database, a dialogue engine, etc.
  • the controller 180 may control the components of the terminal to execute the determined operation.
  • the controller 180 may control the terminal according to the control command to perform the determined operation.
  • the controller 180 analyzes historical information indicating execution of the specific operation through data analysis and machine learning algorithms and techniques, and updates the previously learned information based on the analyzed information. Can be.
  • the controller 180 may improve the accuracy of future performance of data analysis and machine learning algorithms and techniques based on the updated information.
  • the sensing unit 140 may include one or more sensors for sensing at least one of information in the mobile terminal, surrounding environment information surrounding the mobile terminal, and user information.
  • the sensing unit 140 may include a proximity sensor 141, an illumination sensor 142, an illumination sensor, a touch sensor, an acceleration sensor, a magnetic sensor, and gravity.
  • the mobile terminal disclosed herein may use a combination of information sensed by at least two or more of these sensors.
  • the output unit 150 is used to generate an output related to sight, hearing, or tactile sense, and includes at least one of a display unit 151, an audio output unit 152, a hap tip module 153, and an optical output unit 154. can do.
  • the display unit 151 forms a layer structure with or is integrally formed with the touch sensor, thereby implementing a touch screen.
  • the touch screen may function as a user input unit 123 that provides an input interface between the mobile terminal 100 and the user, and may also provide an output interface between the mobile terminal 100 and the user.
  • the interface unit 160 serves as a path to various types of external devices connected to the mobile terminal 100.
  • the interface unit 160 connects a device equipped with a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, and an identification module. It may include at least one of a port, an audio input / output (I / O) port, a video input / output (I / O) port, and an earphone port.
  • I / O audio input / output
  • I / O video input / output
  • earphone port an earphone port
  • the memory 170 stores data supporting various functions of the mobile terminal 100.
  • the memory 170 may include a plurality of application programs or applications that are driven in the mobile terminal 100, data for operating the mobile terminal 100, instructions, and the operation of the running data unit 130. Data for, for example, at least one algorithm information for machine learning, and the like. At least some of these applications may be downloaded from an external server via wireless communication. In addition, at least some of these application programs may exist on the mobile terminal 100 from the time of shipment for basic functions of the mobile terminal 100 (for example, a call forwarding, a calling function, a message receiving, and a calling function). The application program may be stored in the memory 170 and installed on the mobile terminal 100 to be driven by the controller 180 to perform an operation (or function) of the mobile terminal.
  • the controller 180 In addition to the operation related to the application program, the controller 180 typically controls the overall operation of the mobile terminal 100.
  • the controller 180 may provide or process information or a function appropriate to a user by processing signals, data, information, and the like, which are input or output through the above-described components, or by driving an application program stored in the memory 170.
  • controller 180 may control at least some of the components described with reference to FIG. 1A in order to drive an application program stored in the memory 170. In addition, the controller 180 may operate by combining at least two or more of the components included in the mobile terminal 100 to drive the application program.
  • the power supply unit 190 receives power from an external power source and an internal power source under the control of the controller 180 to supply power to each component included in the mobile terminal 100.
  • the power supply unit 190 includes a battery, which may be a built-in battery or a replaceable battery.
  • the broadcast receiving module 111 of the wireless communication unit 110 receives a broadcast signal and / or broadcast related information from an external broadcast management server through a broadcast channel.
  • the broadcast channel may include a satellite channel and a terrestrial channel.
  • Two or more broadcast receiving modules may be provided to the mobile terminal 100 for simultaneous broadcast reception or switching of broadcast channels for at least two broadcast channels.
  • the broadcast management server may mean a server that generates and transmits a broadcast signal and / or broadcast related information or a server that receives a previously generated broadcast signal and / or broadcast related information and transmits the same to a terminal.
  • the broadcast signal may include not only a TV broadcast signal, a radio broadcast signal, and a data broadcast signal, but also a broadcast signal having a data broadcast signal combined with a TV broadcast signal or a radio broadcast signal.
  • the broadcast signal may be encoded according to at least one of technical standards (or broadcast methods, for example, ISO, IEC, DVB, ATSC, etc.) for transmitting and receiving digital broadcast signals, and the broadcast receiving module 111 may
  • the digital broadcast signal may be received by using a method suitable for a technical standard set by technical standards.
  • the broadcast associated information may mean information related to a broadcast channel, a broadcast program, or a broadcast service provider.
  • the broadcast related information may also be provided through a mobile communication network. In this case, it may be received by the mobile communication module 112.
  • the broadcast related information may exist in various forms such as an electronic program guide (EPG) of digital multimedia broadcasting (DMB) or an electronic service guide (ESG) of digital video broadcast-handheld (DVB-H).
  • EPG electronic program guide
  • ESG electronic service guide
  • the broadcast signal and / or broadcast related information received through the broadcast receiving module 111 may be stored in the memory 160.
  • the mobile communication module 112 may include technical standards or communication schemes (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), and EV).
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A (Long Term Evolution-Advanced) and the like to transmit and receive a radio signal with at least one of a base station, an external terminal, a server on a mobile communication network.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO)
  • WCDMA Wideband CDMA
  • HSDPA High
  • the wireless signal may include various types of data according to transmission and reception of a voice call signal, a video call call signal, or a text / multimedia message.
  • the wireless internet module 113 refers to a module for wireless internet access and may be embedded or external to the mobile terminal 100.
  • the wireless internet module 113 is configured to transmit and receive wireless signals in a communication network according to wireless internet technologies.
  • wireless Internet technologies include Wireless LAN (WLAN), Wireless-Fidelity (Wi-Fi), Wireless Fidelity (Wi-Fi) Direct, Digital Living Network Alliance (DLNA), Wireless Broadband (WiBro), and WiMAX (World).
  • the wireless Internet module 113 for performing a wireless Internet access through the mobile communication network 113 May be understood as a kind of mobile communication module 112.
  • the short range communication module 114 is for short range communication, and includes Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and NFC. (Near Field Communication), at least one of Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, Wireless USB (Wireless Universal Serial Bus) technology can be used to support short-range communication.
  • the short-range communication module 114 may be configured between a mobile terminal 100 and a wireless communication system, between the mobile terminal 100 and another mobile terminal 100, or through the wireless area networks. ) And a network in which the other mobile terminal 100 (or an external server) is located.
  • the short range wireless communication network may be short range wireless personal area networks.
  • the other mobile terminal 100 is a wearable device capable of exchanging (or interworking) data with the mobile terminal 100 according to the present invention (for example, smartwatch, smart glasses). (smart glass), head mounted display (HMD).
  • the short range communication module 114 may sense (or recognize) a wearable device that can communicate with the mobile terminal 100, around the mobile terminal 100.
  • the controller 180 may include at least a portion of data processed by the mobile terminal 100 in the short range communication module ( The transmission may be transmitted to the wearable device through 114. Therefore, the user of the wearable device may use data processed by the mobile terminal 100 through the wearable device.
  • the user when a user receives a phone call, the user performs a phone call through the wearable device, or when a message is received by the mobile terminal 100, the user receives the received call through the wearable device. It is possible to check the message.
  • the location information module 115 is a module for obtaining a location (or current location) of a mobile terminal, and a representative example thereof is a Global Positioning System (GPS) module or a Wireless Fidelity (WiFi) module.
  • GPS Global Positioning System
  • WiFi Wireless Fidelity
  • the mobile terminal may acquire the location of the mobile terminal using a signal transmitted from a GPS satellite.
  • the mobile terminal may acquire the location of the mobile terminal based on information of the wireless access point (AP) transmitting or receiving the Wi-Fi module and the wireless signal. If necessary, the location information module 115 may perform any function of other modules of the wireless communication unit 110 to substitute or additionally obtain data regarding the location of the mobile terminal.
  • the location information module 115 is a module used to obtain the location (or current location) of the mobile terminal, and is not limited to a module that directly calculates or obtains the location of the mobile terminal.
  • the input unit 120 is for inputting image information (or signal), audio information (or signal), data, or information input from a user.
  • the mobile terminal 100 is one.
  • the plurality of cameras 121 may be provided.
  • the camera 121 processes image frames such as still images or moving images obtained by the image sensor in the video call mode or the photographing mode.
  • the processed image frame may be displayed on the display unit 151 or stored in the memory 170.
  • the plurality of cameras 121 provided in the mobile terminal 100 may be arranged to form a matrix structure, and through the camera 121 forming a matrix structure in this way, the mobile terminal 100 may have various angles or focuses.
  • the plurality of pieces of image information may be input.
  • the plurality of cameras 121 may be arranged in a stereo structure to acquire a left image and a right image for implementing a stereoscopic image.
  • the microphone 122 processes external sound signals into electrical voice data.
  • the processed voice data may be variously used according to a function (or an application program being executed) performed by the mobile terminal 100. Meanwhile, various noise reduction algorithms may be implemented in the microphone 122 to remove noise generated in the process of receiving an external sound signal.
  • the user input unit 123 is for receiving information from a user. When information is input through the user input unit 123, the controller 180 may control an operation of the mobile terminal 100 to correspond to the input information. .
  • the user input unit 123 may be a mechanical input unit (or a mechanical key, for example, a button, a dome switch, or a jog wheel located at the front or rear or side of the mobile terminal 100). , Jog switch, etc.) and touch input means.
  • the touch input means may include a virtual key, a soft key, or a visual key displayed on the touch screen through a software process, or a portion other than the touch screen.
  • the virtual key or the visual key may be displayed on the touch screen while having various forms, for example, graphic or text. ), An icon, a video, or a combination thereof.
  • the sensing unit 140 senses at least one of information in the mobile terminal, surrounding environment information surrounding the mobile terminal, and user information, and generates a sensing signal corresponding thereto.
  • the controller 180 may control driving or operation of the mobile terminal 100 or perform data processing, function or operation related to an application program installed in the mobile terminal 100 based on the sensing signal. Representative sensors among various sensors that may be included in the sensing unit 140 will be described in more detail.
  • the proximity sensor 141 refers to a sensor that detects the presence or absence of an object approaching a predetermined detection surface or an object present in the vicinity without using a mechanical contact by using an electromagnetic force or infrared rays.
  • the proximity sensor 141 may be disposed in an inner region of the mobile terminal covered by the touch screen described above or near the touch screen.
  • the proximity sensor 141 examples include a transmission photoelectric sensor, a direct reflection photoelectric sensor, a mirror reflection photoelectric sensor, a high frequency oscillation proximity sensor, a capacitive proximity sensor, a magnetic proximity sensor, and an infrared proximity sensor.
  • the proximity sensor 141 may be configured to detect the proximity of the object by the change of the electric field according to the proximity of the conductive object.
  • the touch screen (or touch sensor) itself may be classified as a proximity sensor.
  • the proximity sensor 141 may detect a proximity touch and a proximity touch pattern (for example, a proximity touch distance, a proximity touch direction, a proximity touch speed, a proximity touch time, a proximity touch position, and a proximity touch movement state). have.
  • the controller 180 processes data (or information) corresponding to the proximity touch operation and the proximity touch pattern detected through the proximity sensor 141 as described above, and further, provides visual information corresponding to the processed data. It can be output on the touch screen. Further, the controller 180 may control the mobile terminal 100 to process different operations or data (or information) according to whether the touch on the same point on the touch screen is a proximity touch or a touch touch. .
  • the touch sensor applies a touch (or touch input) applied to the touch screen (or the display unit 151) using at least one of various touch methods such as a resistive film method, a capacitive method, an infrared method, an ultrasonic method, and a magnetic field method. Detect.
  • the touch sensor may be configured to convert a change in pressure applied to a specific portion of the touch screen or capacitance generated at the specific portion into an electrical input signal.
  • the touch sensor may be configured to detect a position, an area, a pressure at the touch, a capacitance at the touch, and the like, when the touch object applying the touch on the touch screen is touched on the touch sensor.
  • the touch object is an object applying a touch to the touch sensor and may be, for example, a finger, a touch pen or a stylus pen, a pointer, or the like.
  • the touch controller processes the signal (s) and then transmits the corresponding data to the controller 180.
  • the controller 180 can know which area of the display unit 151 is touched.
  • the touch controller may be a separate component from the controller 180 or may be the controller 180 itself.
  • the controller 180 may perform different control or perform the same control according to the type of touch object that touches the touch screen (or a touch key provided in addition to the touch screen). Whether to perform different control or the same control according to the type of touch object may be determined according to the operation state of the mobile terminal 100 or an application program being executed.
  • the touch sensor and the proximity sensor described above may be independently or combined, and may be a short (or tap) touch, a long touch, a multi touch, a drag touch on a touch screen. ), Flick touch, pinch-in touch, pinch-out touch, swipe touch, hovering touch, etc. A touch can be sensed.
  • the ultrasonic sensor may recognize location information of a sensing object using ultrasonic waves.
  • the controller 180 can calculate the position of the wave generation source through the information detected from the optical sensor and the plurality of ultrasonic sensors.
  • the position of the wave source can be calculated using the property that the light is much faster than the ultrasonic wave, that is, the time that the light reaches the optical sensor is much faster than the time when the ultrasonic wave reaches the ultrasonic sensor. More specifically, the position of the wave generation source may be calculated using a time difference from the time when the ultrasonic wave reaches the light as the reference signal.
  • the camera 121 which has been described as the configuration of the input unit 120, includes at least one of a camera sensor (eg, CCD, CMOS, etc.), a photo sensor (or an image sensor), and a laser sensor.
  • a camera sensor eg, CCD, CMOS, etc.
  • a photo sensor or an image sensor
  • a laser sensor e.g., a laser sensor
  • the camera 121 and the laser sensor may be combined with each other to detect a touch of a sensing object with respect to a 3D stereoscopic image.
  • the photo sensor may be stacked on the display element, which is configured to scan the movement of the sensing object in proximity to the touch screen. More specifically, the photo sensor mounts a photo diode and a transistor (TR) in a row / column to scan contents loaded on the photo sensor by using an electrical signal that changes according to the amount of light applied to the photo diode. That is, the photo sensor calculates coordinates of the sensing object according to the amount of light change, and thus, the position information of the sensing object can be obtained.
  • TR transistor
  • the display unit 151 displays (outputs) information processed by the mobile terminal 100.
  • the display unit 151 may display execution screen information of an application program driven in the mobile terminal 100 or user interface (UI) and graphical user interface (GUI) information according to the execution screen information. .
  • UI user interface
  • GUI graphical user interface
  • the display unit 151 may be configured as a stereoscopic display unit for displaying a stereoscopic image.
  • the stereoscopic display unit may be a three-dimensional display method such as a stereoscopic method (glasses method), an auto stereoscopic method (glasses-free method), a projection method (holographic method).
  • a 3D stereoscopic image is composed of a left image (left eye image) and a right image (right eye image).
  • a top-down method in which the left and right images are arranged up and down in one frame according to the way in which the left and right images are merged into three-dimensional stereoscopic images.
  • L-to-R (left-to-right, side by side) method to be arranged as a checker board method to arrange the pieces of the left and right images in the form of tiles, a column unit of the left and right images Or an interlaced method of alternately arranging rows, and a time sequential (frame by frame) method of alternately displaying left and right images by time.
  • the 3D thumbnail image may generate a left image thumbnail and a right image thumbnail from the left image and the right image of the original image frame, respectively, and may be generated as one image as they are combined.
  • a thumbnail refers to a reduced image or a reduced still image.
  • the left image thumbnail and the right image thumbnail generated as described above are displayed with a left and right distance difference on the screen by a depth corresponding to the parallax of the left image and the right image, thereby representing a three-dimensional space.
  • the left image and the right image necessary for implementing the 3D stereoscopic image may be displayed on the stereoscopic display by the stereoscopic processing unit.
  • the stereoscopic processor is configured to receive a 3D image (the image of the base view and the image of the extended view) and set a left image and a right image therefrom, or to receive a 2D image and convert the image into a left image and a right image.
  • the sound output unit 152 may output audio data received from the wireless communication unit 110 or stored in the memory 170 in a call signal reception, a call mode or a recording mode, a voice recognition mode, a broadcast reception mode, and the like.
  • the sound output unit 152 may also output a sound signal related to a function (for example, a call signal reception sound or a message reception sound) performed in the mobile terminal 100.
  • the sound output unit 152 may include a receiver, a speaker, a buzzer, and the like.
  • the haptic module 153 generates various haptic effects that a user can feel.
  • a representative example of the tactile effect generated by the haptic module 153 may be vibration.
  • the intensity and pattern of vibration generated by the haptic module 153 may be controlled by the user's selection or the setting of the controller. For example, the haptic module 153 may output different synthesized vibrations or sequentially output them.
  • the haptic module 153 may be used to stimulate pins that vertically move with respect to the contact skin surface, jetting force or suction force of air through the jetting or suction port, grazing to the skin surface, contact of electrodes, and electrostatic force.
  • Various tactile effects can be generated, such as effects by the endothermic and the reproduction of a sense of cold using the elements capable of endotherm or heat generation.
  • the haptic module 153 may not only deliver a tactile effect through direct contact, but also may allow a user to feel the tactile effect through a muscle sense such as a finger or an arm. Two or more haptic modules 153 may be provided according to a configuration aspect of the mobile terminal 100.
  • the light output unit 154 outputs a signal for notifying occurrence of an event by using light of a light source of the mobile terminal 100.
  • Examples of events occurring in the mobile terminal 100 may be message reception, call signal reception, missed call, alarm, schedule notification, email reception, information reception through an application, and the like.
  • the signal output from the light output unit 154 is implemented as the mobile terminal emits light of a single color or a plurality of colors to the front or the rear.
  • the signal output may be terminated by the mobile terminal detecting the user's event confirmation.
  • the interface unit 160 serves as a path to all external devices connected to the mobile terminal 100.
  • the interface unit 160 receives data from an external device, receives power, transfers the power to each component inside the mobile terminal 100, or transmits the data inside the mobile terminal 100 to an external device.
  • the port, audio input / output (I / O) port, video input / output (I / O) port, earphone port, etc. may be included in the interface unit 160.
  • the identification module is a chip that stores a variety of information for authenticating the usage rights of the mobile terminal 100, a user identification module (UIM), subscriber identity module (SIM), universal user authentication And a universal subscriber identity module (USIM).
  • a device equipped with an identification module (hereinafter referred to as an 'identification device') may be manufactured in the form of a smart card. Therefore, the identification device may be connected to the terminal 100 through the interface unit 160.
  • the interface unit 160 may be a passage for supplying power from the cradle to the mobile terminal 100 or may be input from the cradle by a user.
  • Various command signals may be a passage through which the mobile terminal 100 is transmitted.
  • Various command signals or power input from the cradle may operate as signals for recognizing that the mobile terminal 100 is correctly mounted on the cradle.
  • the memory 170 may store a program for the operation of the controller 180 and may temporarily store input / output data (for example, a phone book, a message, a still image, a video, etc.).
  • the memory 170 may store data regarding vibration and sound of various patterns output when a touch input on the touch screen is performed.
  • the memory 170 may include a flash memory type, a hard disk type, a solid state disk type, an SSD type, a silicon disk drive type, and a multimedia card micro type. ), Card-type memory (e.g., SD or XD memory), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read It may include at least one type of storage medium of -only memory (PROM), programmable read-only memory (PROM), magnetic memory, magnetic disk and optical disk.
  • the mobile terminal 100 may be operated in connection with a web storage that performs a storage function of the memory 170 on the Internet.
  • the controller 180 controls the operation related to the application program, and generally the overall operation of the mobile terminal 100. For example, if the state of the mobile terminal satisfies a set condition, the controller 180 may execute or release a lock state that restricts input of a user's control command to applications.
  • controller 180 may perform control and processing related to voice call, data communication, video call, or the like, or may perform pattern recognition processing for recognizing handwriting input or drawing input performed on a touch screen as text and images, respectively. Can be. Furthermore, the controller 180 may control any one or a plurality of components described above in order to implement various embodiments described below on the mobile terminal 100 according to the present invention.
  • the power supply unit 190 receives an external power source and an internal power source under the control of the controller 180 to supply power for operation of each component.
  • the power supply unit 190 includes a battery, and the battery may be a built-in battery configured to be rechargeable, and may be detachably coupled to the terminal body for charging.
  • the power supply unit 190 may be provided with a connection port, the connection port may be configured as an example of the interface 160 is electrically connected to the external charger for supplying power for charging the battery.
  • the power supply unit 190 may be configured to charge the battery in a wireless manner without using the connection port.
  • the power supply unit 190 uses one or more of an inductive coupling based on a magnetic induction phenomenon or a magnetic resonance coupling based on an electromagnetic resonance phenomenon from an external wireless power transmitter. Power can be delivered.
  • various embodiments of the present disclosure may be implemented in a recording medium readable by a computer or a similar device using, for example, software, hardware, or a combination thereof.
  • the disclosed mobile terminal 100 includes a terminal body in a bar shape.
  • the present invention is not limited thereto, and the present invention can be applied to various structures such as a watch type, a clip type, a glass type, or a folder type, a flip type, a slide type, a swing type, a swivel type, and two or more bodies which are coupled to be movable relative.
  • a description of a particular type of mobile terminal may generally apply to other types of mobile terminals.
  • the terminal body may be understood as a concept that refers to the mobile terminal 100 as at least one aggregate.
  • the mobile terminal 100 includes a case (eg, a frame, a housing, a cover, etc.) forming an external appearance. As shown, the mobile terminal 100 may include a front case 101 and a rear case 102. Various electronic components are disposed in the internal space formed by the combination of the front case 101 and the rear case 102. At least one middle case may be additionally disposed between the front case 101 and the rear case 102.
  • a case eg, a frame, a housing, a cover, etc.
  • the mobile terminal 100 may include a front case 101 and a rear case 102.
  • Various electronic components are disposed in the internal space formed by the combination of the front case 101 and the rear case 102.
  • At least one middle case may be additionally disposed between the front case 101 and the rear case 102.
  • the display unit 151 may be disposed in front of the terminal body to output information. As shown, the window 151a of the display unit 151 may be mounted to the front case 101 to form a front surface of the terminal body together with the front case 101.
  • an electronic component may be mounted on the rear case 102.
  • Electronic components attachable to the rear case 102 include a removable battery, an identification module, a memory card, and the like.
  • the rear cover 102 may be detachably coupled to the rear case 102 to cover the mounted electronic component. Therefore, when the rear cover 103 is separated from the rear case 102, the electronic components mounted on the rear case 102 are exposed to the outside.
  • the rear cover 103 when the rear cover 103 is coupled to the rear case 102, a portion of the side surface of the rear case 102 may be exposed. In some cases, the rear case 102 may be completely covered by the rear cover 103 during the coupling. On the other hand, the rear cover 103 may be provided with an opening for exposing the camera 121b or the sound output unit 152b to the outside.
  • the cases 101, 102, and 103 may be formed by injecting a synthetic resin, or may be formed of a metal, for example, stainless steel (STS), aluminum (Al), titanium (Ti), or the like.
  • STS stainless steel
  • Al aluminum
  • Ti titanium
  • the mobile terminal 100 may be configured such that one case may provide the internal space, unlike the above example in which a plurality of cases provide an internal space for accommodating various electronic components.
  • the mobile terminal 100 of the unibody that the synthetic resin or metal from the side to the rear may be implemented.
  • the mobile terminal 100 may be provided with a waterproof portion (not shown) to prevent water from seeping into the terminal body.
  • the waterproof portion is provided between the window 151a and the front case 101, between the front case 101 and the rear case 102 or between the rear case 102 and the rear cover 103, and a combination thereof. It may include a waterproof member for sealing the inner space.
  • the mobile terminal 100 includes a display unit 151, first and second sound output units 152a and 152b, a proximity sensor 141, an illuminance sensor 142, an optical output unit 154, and first and second units.
  • the cameras 121a and 121b, the first and second manipulation units 123a and 123b, the microphone 122, the interface unit 160, and the like may be provided.
  • the display unit 151, the first sound output unit 152a, the proximity sensor 141, the illuminance sensor 142, and the light output unit may be disposed on the front surface of the terminal body.
  • the first camera 121a and the first operation unit 123a are disposed, and the second operation unit 123b, the microphone 122, and the interface unit 160 are disposed on the side of the terminal body.
  • the mobile terminal 100 in which the second sound output unit 152b and the second camera 121b are disposed on the rear surface of the mobile terminal 100 will be described as an example.
  • first manipulation unit 123a may not be provided on the front surface of the terminal body, and the second sound output unit 152b may be provided on the side of the terminal body instead of the rear surface of the terminal body.
  • the display unit 151 displays (outputs) information processed by the mobile terminal 100.
  • the display unit 151 may display execution screen information of an application program driven in the mobile terminal 100 or user interface (UI) and graphical user interface (GUI) information according to the execution screen information. .
  • UI user interface
  • GUI graphical user interface
  • the display unit 151 may include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (flexible display). display, a 3D display, or an e-ink display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • flexible display flexible display
  • display a 3D display, or an e-ink display.
  • two or more display units 151 may exist according to an implementation form of the mobile terminal 100.
  • the plurality of display units may be spaced apart or integrally disposed on one surface of the mobile terminal 100, or may be disposed on different surfaces.
  • the display unit 151 may include a touch sensor that senses a touch on the display unit 151 so as to receive a control command by a touch method.
  • the touch sensor may sense the touch, and the controller 180 may generate a control command corresponding to the touch based on the touch sensor.
  • the content input by the touch method may be letters or numbers or menu items that can be indicated or designated in various modes.
  • the touch sensor is formed of a film having a touch pattern and disposed between the window 151a and the display (not shown) on the rear surface of the window 151a or directly patterned on the rear surface of the window 151a. It can also be Alternatively, the touch sensor may be integrally formed with the display. For example, the touch sensor may be disposed on a substrate of the display or provided in the display.
  • the display unit 151 may form a touch screen together with the touch sensor.
  • the touch screen may function as the user input unit 123 (see FIG. 1A).
  • the touch screen may replace at least some functions of the first manipulation unit 123a.
  • the first sound output unit 152a may be implemented as a receiver for transmitting a call sound to the user's ear, and the second sound output unit 152b may include a loud speaker for outputting various alarm sounds or multimedia reproduction sounds. It can be implemented in the form of).
  • a sound hole for emitting sound generated from the first sound output unit 152a may be formed in the window 151a of the display unit 151.
  • the present invention is not limited thereto, and the sound may be configured to be emitted along an assembly gap between the structures (for example, a gap between the window 151a and the front case 101).
  • an externally formed hole may be invisible or hidden for sound output, thereby simplifying the appearance of the mobile terminal 100.
  • the light output unit 154 is configured to output light for notifying when an event occurs. Examples of the event may include message reception, call signal reception, missed call, alarm, schedule notification, email reception, and information reception through an application.
  • the controller 180 may control the light output unit 154 to end the light output.
  • the first camera 121a processes an image frame of a still image or a moving image obtained by the image sensor in a shooting mode or a video call mode.
  • the processed image frame may be displayed on the display unit 151 and stored in the memory 170.
  • the first and second manipulation units 123a and 123b may be collectively referred to as a manipulating portion as an example of the user input unit 123 operated to receive a command for controlling the operation of the mobile terminal 100. have.
  • the first and second manipulation units 123a and 123b may be adopted in any manner as long as the user is operating in a tactile manner such as touch, push, and scroll.
  • the first and second manipulation units 123a and 123b may be employed in such a manner that the first and second manipulation units 123a and 123b are operated without a tactile feeling by the user through proximity touch, hovering touch, or the like.
  • the first operation unit 123a is illustrated as being a touch key, but the present invention is not limited thereto.
  • the first manipulation unit 123a may be a mechanical key or a combination of a touch key and a push key.
  • the contents input by the first and second manipulation units 123a and 123b may be variously set.
  • the first operation unit 123a receives a command such as a menu, a home key, a cancellation, a search, and the like
  • the second operation unit 123b is output from the first or second sound output units 152a and 152b.
  • the user may receive a command such as adjusting the volume of the sound and switching to the touch recognition mode of the display unit 151.
  • a rear input unit (not shown) may be provided on the rear surface of the terminal body.
  • the rear input unit is manipulated to receive a command for controlling the operation of the mobile terminal 100, and the input content may be variously set. For example, commands such as power on / off, start, end, scroll, etc., control of the volume of sound output from the first and second sound output units 152a and 152b, and the touch recognition mode of the display unit 151. Commands such as switching can be received.
  • the rear input unit may be implemented in a form capable of input by touch input, push input, or a combination thereof.
  • the rear input unit may be disposed to overlap the front display unit 151 in the thickness direction of the terminal body.
  • the rear input unit may be disposed at the rear upper end of the terminal body so that the user can easily manipulate the index body when the user grips the terminal body with one hand.
  • the present invention is not necessarily limited thereto, and the position of the rear input unit may be changed.
  • the rear input unit when the rear input unit is provided at the rear of the terminal body, a new type user interface using the same may be implemented.
  • the touch screen or the rear input unit described above replaces at least some functions of the first operation unit 123a provided in the front of the terminal body, the first operation unit 123a is not disposed on the front of the terminal body.
  • the display unit 151 may be configured with a larger screen.
  • the mobile terminal 100 may be provided with a fingerprint recognition sensor for recognizing a user's fingerprint, and the controller 180 may use fingerprint information detected through the fingerprint recognition sensor as an authentication means.
  • the fingerprint recognition sensor may be embedded in the display unit 151 or the user input unit 123.
  • the microphone 122 is configured to receive a user's voice, other sounds, and the like.
  • the microphone 122 may be provided at a plurality of locations and configured to receive stereo sound.
  • the interface unit 160 serves as a path for connecting the mobile terminal 100 to an external device.
  • the interface unit 160 may be connected to another device (eg, an earphone or an external speaker), a port for short-range communication (for example, an infrared port (IrDA port), a Bluetooth port (Bluetooth). Port), a wireless LAN port, or the like, or a power supply terminal for supplying power to the mobile terminal 100.
  • the interface unit 160 may be implemented in the form of a socket for receiving an external card such as a subscriber identification module (SIM) or a user identity module (UIM), a memory card for storing information.
  • SIM subscriber identification module
  • UIM user identity module
  • the second camera 121b may be disposed on the rear surface of the terminal body. In this case, the second camera 121b has a photographing direction substantially opposite to that of the first camera 121a.
  • the second camera 121b may include a plurality of lenses arranged along at least one line.
  • the plurality of lenses may be arranged in a matrix format.
  • Such a camera may be referred to as an 'array camera'.
  • the second camera 121b is configured as an array camera, images may be photographed in various ways using a plurality of lenses, and images of better quality may be obtained.
  • the flash 124 may be disposed adjacent to the second camera 121b.
  • the flash 124 shines light toward the subject when the subject is photographed by the second camera 121b.
  • the second sound output unit 152b may be additionally disposed on the terminal body.
  • the second sound output unit 152b may implement a stereo function together with the first sound output unit 152a and may be used to implement a speakerphone mode during a call.
  • the terminal body may be provided with at least one antenna for wireless communication.
  • the antenna may be built in the terminal body or formed in the case.
  • an antenna that forms part of the broadcast receiving module 111 (refer to FIG. 1A) may be configured to be pulled out from the terminal body.
  • the antenna may be formed in a film type and attached to the inner side of the rear cover 103, or may be configured such that a case including a conductive material functions as an antenna.
  • the terminal body is provided with a power supply unit 190 (see FIG. 1A) for supplying power to the mobile terminal 100.
  • the power supply unit 190 may include a battery 191 embedded in the terminal body or detachably configured from the outside of the terminal body.
  • the battery 191 may be configured to receive power through a power cable connected to the interface unit 160.
  • the battery 191 may be configured to enable wireless charging through a wireless charger.
  • the wireless charging may be implemented by a magnetic induction method or a resonance method (magnetic resonance method).
  • the rear cover 103 is coupled to the rear case 102 to cover the battery 191 to limit the detachment of the battery 191 and to protect the battery 191 from external shock and foreign matter.
  • the rear cover 103 may be detachably coupled to the rear case 102.
  • An accessory may be added to the mobile terminal 100 to protect the appearance or to assist or expand the function of the mobile terminal 100.
  • An example of such an accessory may be a cover or pouch that covers or accommodates at least one surface of the mobile terminal 100.
  • the cover or pouch may be configured to be linked with the display unit 151 to expand the function of the mobile terminal 100.
  • Another example of the accessory may be a touch pen for assisting or extending a touch input to a touch screen.
  • the information processed by the mobile terminal can be displayed using a flexible display.
  • this will be described in more detail with reference to the accompanying drawings.
  • FIG. 2 is a conceptual diagram illustrating another example of a deformable mobile terminal 200 according to the present invention.
  • the display unit 251 may be configured to be deformable by an external force.
  • the deformation may be at least one of bending, bending, folding, twisting, and curling of the display unit 251.
  • the deformable display unit 251 may be referred to as a 'flexible display unit'.
  • the flexible display unit 251 may include both a general flexible display, an electronic paper, and a combination thereof.
  • the mobile terminal 200 may include the features of the mobile terminal 100 of FIGS. 1A-1C or similar features.
  • a general flexible display is a light and durable display that is fabricated on a thin and flexible substrate that can be bent, bent, folded, twisted or curled like a paper while maintaining the characteristics of a conventional flat panel display.
  • electronic paper is a display technology to which the characteristics of general ink are applied, and the use of reflected light may be different from that of a conventional flat panel display.
  • Electronic paper can change information by using twist balls or electrophoresis using capsules.
  • the display area of the flexible display unit 251 is flat.
  • the display area may be a curved surface.
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the flexible display unit 251 may be placed in a bent state (eg, bent vertically or horizontally) instead of being flat in the first state. In this case, when an external force is applied to the flexible display unit 251, the flexible display unit 251 may be deformed into a flat state (or less curved state) or more curved state.
  • the flexible display unit 251 may be combined with a touch sensor to implement a flexible touch screen.
  • the controller 180 (refer to FIG. 1A) may perform control corresponding to the touch input.
  • the flexible touch screen may be configured to detect a touch input not only in the first state but also in the second state.
  • the mobile terminal 200 may be provided with deformation detection means for detecting the deformation of the flexible display unit 251.
  • deformation detection means may be included in the sensing unit 140 (see FIG. 1A).
  • the deformation detecting means may be provided in the flexible display unit 251 or the case 201 to sense information related to deformation of the flexible display unit 251.
  • the information related to the deformation may include a direction in which the flexible display unit 251 is deformed, a degree of deformation, a deformation position, a deformation time, and an acceleration in which the flexible display 251 is restored.
  • due to the bending of the flexible display unit 251 may be a variety of information that can be detected.
  • the controller 180 changes the information displayed on the flexible display unit 251 or changes the information displayed on the flexible display unit 251 based on the information related to the deformation of the flexible display unit 251 detected by the deformation detecting means. It can generate a control signal for controlling the function of.
  • the mobile terminal 200 may include a case 201 for accommodating the flexible display unit 251.
  • the case 201 may be configured to be deformable together with the flexible display unit 251 by an external force in consideration of characteristics of the flexible display unit 251.
  • a battery (not shown) included in the mobile terminal 200 may also be configured to be deformable together with the flexible display unit 251 by an external force in consideration of characteristics of the flexible display unit 251.
  • a stack and folding method in which battery cells are stacked up may be applied.
  • the state deformation of the flexible display unit 251 is not limited only by external force.
  • the flexible display unit 251 may be transformed into the second state by a command of a user or an application.
  • the mobile terminal can be extended to a wearable device that can be worn on the body beyond the user mainly holding in the hand.
  • wearable devices include a smartwatch, smart glass, and head mounted display (HMD).
  • HMD head mounted display
  • the wearable device may be configured to exchange (or interlock) data with another mobile terminal 100.
  • the short range communication module 114 may detect (or recognize) a wearable device that can communicate around the mobile terminal 100.
  • the controller 180 transmits at least a portion of data processed by the mobile terminal 100 through the short range communication module 114. Can be sent to. Therefore, the user may use data processed by the mobile terminal 100 through the wearable device. For example, when a call is received by the mobile terminal 100, a phone call may be performed through the wearable device, or when the message is received by the mobile terminal 100, the received message may be confirmed through the wearable device. .
  • FIG. 3 is a perspective view illustrating an example of a watch type mobile terminal 300 according to another embodiment of the present invention.
  • the watch type mobile terminal 300 includes a main body 301 having a display unit 351 and a band 302 connected to the main body 301 so as to be worn on a wrist.
  • the mobile terminal 300 may include the features of the mobile terminal 100 of FIGS. 1A to 1C or similar features.
  • the main body 301 includes a case forming an external appearance.
  • the case may include a first case 301a and a second case 301b that provide an interior space for accommodating various electronic components.
  • the present invention is not limited thereto, and one case may be configured to provide the internal space so that the mobile terminal 300 of the unibody may be implemented.
  • the watch type mobile terminal 300 is configured to enable wireless communication, and the main body 301 may be provided with an antenna for the wireless communication.
  • the antenna can extend the performance using a case.
  • a case containing a conductive material may be configured to be electrically connected with the antenna to extend the ground area or the radiation area.
  • the display unit 351 may be disposed on the front surface of the main body 301 to output information, and the display unit 351 may be provided with a touch sensor and implemented as a touch screen. As illustrated, the window 351a of the display unit 351 may be mounted on the first case 301a to form the front surface of the terminal body together with the first case 301a.
  • the main body 301 may include a sound output unit 352, a camera 321, a microphone 322, a user input unit 323, and the like.
  • the display unit 351 When the display unit 351 is implemented as a touch screen, the display unit 351 may function as the user input unit 323, and thus a separate key may not be provided in the main body 301.
  • the band 302 is made to be worn on the wrist to surround the wrist, and may be formed of a flexible material to facilitate wearing.
  • the band 302 may be formed of leather, rubber, silicone, synthetic resin, or the like.
  • the band 302 is configured to be detachable to the main body 301, the user can be configured to be replaced with various types of bands according to taste.
  • the band 302 can be used to extend the performance of the antenna.
  • the band may include a ground extension (not shown) electrically connected to the antenna to extend the ground area.
  • the band 302 may be provided with a fastener 302a.
  • the fastener 302a may be implemented by a buckle, a snap-fit hook structure, a velcro (trade name), or the like, and may include elastic sections or materials. . In this figure, an example in which the fastener 302a is implemented in the form of a buckle is shown.
  • FIG. 4 is a perspective view illustrating an example of a glass type mobile terminal 400 according to another embodiment of the present invention.
  • Glass-type mobile terminal 400 is configured to be worn on the head of the human body, it may be provided with a frame portion (case, housing, etc.) for this.
  • the frame portion may be formed of a flexible material to facilitate wearing.
  • the frame part includes a first frame 401 and a second frame 402 of different materials.
  • the mobile terminal 400 may include features of or similar to the features of the mobile terminal 100 of FIGS. 1A-1C.
  • the frame part is supported by the head, and provides a space for mounting various components.
  • electronic components such as the control module 480, the sound output module 452, and the like may be mounted in the frame unit.
  • the lens 403 covering at least one of the left eye and the right eye may be detachably mounted to the frame part.
  • the control module 480 is configured to control various electronic components provided in the mobile terminal 400.
  • the control module 480 may be understood as a configuration corresponding to the controller 180 described above.
  • the control module 480 is illustrated to be installed in the frame portion on one side head.
  • the position of the control module 480 is not limited thereto.
  • the display unit 451 may be implemented in the form of a head mounted display (HMD).
  • HMD type refers to a display method mounted on the head and showing an image directly in front of the user.
  • the display unit 451 may be disposed to correspond to at least one of the left eye and the right eye so as to provide an image directly in front of the user's eyes.
  • the display unit 451 is located at a portion corresponding to the right eye so that an image can be output toward the right eye of the user.
  • the display unit 451 may project an image to the eyes of a user using a prism.
  • the prism can be formed translucent so that the user can see the projected image together with the general field of view (the range the user sees through the eye) together.
  • the mobile terminal 400 may provide an augmented reality (AR) that displays a single image by superimposing a virtual image on a real image or a background using the characteristics of the display.
  • AR augmented reality
  • the camera 421 is disposed adjacent to at least one of the left eye and the right eye, and is formed to capture an image of the front. Since the camera 421 is located adjacent to the eye, the camera 421 may acquire a scene viewed by the user as an image.
  • the camera 421 is provided in the control module 480, but is not necessarily limited thereto.
  • the camera 421 may be installed in the frame portion, or may be provided in plural to acquire a stereoscopic image.
  • the glass type mobile terminal 400 may include user input units 423a and 423b operated to receive a control command.
  • the user input units 423a and 423b may be adopted in any manner as long as it is a tactile manner in which the user operates while having a tactile feeling such as touch or push.
  • the frame unit and the control module 480 are provided with push and touch input user input units 423a and 423b, respectively.
  • the glass-type mobile terminal 400 may be provided with a microphone (not shown) for receiving sound and processing it as electrical voice data and a sound output module 452 for outputting sound.
  • the sound output module 452 may be configured to transmit sound in a general sound output method or a bone conduction method. When the sound output module 452 is implemented in a bone conduction manner, when the user wears the mobile terminal 400, the sound output module 452 is in close contact with the head and vibrates the skull to transmit sound.
  • the communication system may use different air interfaces and / or physical layers.
  • a radio interface that can be used by a communication system includes frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA). ), Universal Mobile Telecommunications Systems (UMTS) (especially Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A)), Global System for Mobile Communications (GSM), etc. This may be included.
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • CDMA code division multiple access
  • UMTS Universal Mobile Telecommunications Systems
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • GSM Global System for Mobile Communications
  • the CDMA wireless communication system includes at least one terminal 100, at least one base station (Base Station, BS (also referred to as Node B or Evolved Node B)), and at least one Base Station Controllers (BSCs). ), And may include a mobile switching center (MSC).
  • the MSC is configured to connect with the Public Switched Telephone Network (PSTN) and BSCs.
  • PSTN Public Switched Telephone Network
  • the BSCs may be connected to the BS through a backhaul line.
  • the backhaul line may be provided according to at least one of E1 / T1, ATM, IP, PPP, Frame Relay, HDSL, ADSL, or xDSL.
  • Each of the plurality of BSs may include at least one sector, and each sector may include an omnidirectional antenna or an antenna pointing in a radial direction from the BS.
  • each sector may include two or more antennas of various types.
  • Each BS may be configured to support a plurality of frequency assignments, and the plurality of frequency assignments may each have a specific spectrum (eg, 1.25 MHz, 5 MHz, etc.).
  • BSs may be called Base Station Transceiver Subsystems (BTSs).
  • BTSs Base Station Transceiver Subsystems
  • one BSC and at least one BS may be collectively referred to as a "base station”.
  • the base station may also indicate “cell site”.
  • each of the plurality of sectors for a particular BS may be called a plurality of cell sites.
  • the broadcast transmitter transmits a broadcast signal to the terminals 100 operating in the system.
  • the broadcast receiving module 111 illustrated in FIG. 1A is provided in the terminal 100 to receive a broadcast signal transmitted by BT.
  • a satellite positioning system for identifying the position of the mobile terminal 100 may be linked to the CDMA wireless communication system.
  • the satellite 300 helps to locate the mobile terminal 100.
  • Useful location information may be obtained by up to two or more satellites.
  • the location of the mobile terminal 100 may be tracked using all the technologies capable of tracking the location as well as the GPS tracking technology.
  • at least one of the GPS satellites may optionally or additionally be responsible for satellite DMB transmission.
  • the location information module 115 provided in the mobile terminal is used to detect, calculate, or identify the location of the mobile terminal.
  • Examples of the location information module 115 may include a Global Position System (GPS) module and a Wireless Fidelity (WiFi) module. If necessary, the location information module 115 may perform any function of other modules of the wireless communication unit 110 to substitute or additionally obtain data regarding the location of the mobile terminal.
  • GPS Global Position System
  • WiFi Wireless Fidelity
  • the GPS module 115 calculates distance information and accurate time information away from three or more satellites, and then triangulates the calculated information to accurately calculate three-dimensional current position information according to latitude, longitude, and altitude. can do.
  • a method of calculating position and time information using three satellites and correcting the error of the calculated position and time information using another satellite is widely used.
  • the GPS module 115 may calculate speed information by continuously calculating the current position in real time.
  • a WPS WiFi Positioning System
  • the Wi-Fi Positioning System uses a WiFi module provided in the mobile terminal 100 and a wireless access point (AP) for transmitting or receiving a wireless signal with the WiFi module.
  • AP wireless access point
  • a technology for tracking the location of a it refers to a WLAN (Wireless Local Area Network) based location positioning technology using WiFi.
  • the Wi-Fi location tracking system may include a Wi-Fi location server, a mobile terminal 100, a wireless AP connected to the mobile terminal 100, and a database in which any wireless AP information is stored.
  • the mobile terminal 100 connected to the wireless AP may transmit a location information request message to the Wi-Fi location server.
  • the Wi-Fi positioning server extracts the information of the wireless AP connected to the mobile terminal 100 based on the location information request message (or signal) of the mobile terminal 100.
  • Information of the wireless AP connected to the mobile terminal 100 may be transmitted to the Wi-Fi positioning server through the mobile terminal 100, or may be transmitted from the wireless AP to the Wi-Fi positioning server.
  • the extracted information of the wireless AP is MAC Address, Service Set IDentification (SSID), Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), RSRQ ( It may be at least one of Reference Signal Received Quality, Channel Information, Privacy, Network Type, Signal Strength, and Noise Strength.
  • SSID Service Set IDentification
  • RSSI Received Signal Strength Indicator
  • RSRP Reference Signal Received Power
  • RSRQ It may be at least one of Reference Signal Received Quality, Channel Information, Privacy, Network Type, Signal Strength, and Noise Strength.
  • the Wi-Fi location server receives the information of the wireless AP connected to the mobile terminal 100, and extracts the wireless AP information corresponding to the wireless AP to which the mobile terminal is connected from a pre-established database.
  • the information of any wireless AP stored in the database is MAC address, SSID, channel information, Privacy, Network Type, latitude and longitude coordinates of the wireless AP, building name, floor number, indoor detailed location information (GPS coordinates) Available), the AP owner's address, telephone number, and the like.
  • the Wi-Fi positioning server may extract only a predetermined number of wireless AP information in the order of high RSSI.
  • the Wi-Fi location server may extract (or analyze) location information of the mobile terminal 100 using at least one piece of wireless AP information extracted from a database.
  • the location information of the mobile terminal 100 is extracted (or analyzed) by comparing the included information with the received wireless AP information.
  • a cell-ID method As a method for extracting (or analyzing) the location information of the mobile terminal 100, a cell-ID method, a finger print method, a triangulation method, a landmark method, or the like may be utilized.
  • the Cell-ID method is a method of determining a location of a mobile AP having the strongest signal strength among neighboring wireless AP information collected by the mobile terminal.
  • the simple implementation no additional cost, and quick location information can be obtained.
  • the low installation density of the wireless AP reduces the positioning accuracy.
  • the fingerprint method is a method of selecting a reference location in a service area to collect signal strength information and estimating a location based on signal strength information transmitted from a mobile terminal based on the collected information. In order to use the fingerprint method, it is necessary to database propagation characteristics in advance.
  • the triangulation method calculates the position of the mobile terminal based on the coordinates of at least three wireless APs and the distance between the mobile terminals.
  • the signal strength is converted into distance information, the time at which the radio signal is transmitted (Time of Arrival, ToA), and the time difference at which the signal is transmitted (TDoA).
  • Angle of signal transmission may be used.
  • the landmark method is a method of measuring the location of a mobile terminal using a landmark transmitter that knows the location.
  • various algorithms may be utilized as a method for extracting (or analyzing) location information of a mobile terminal.
  • the extracted location information of the mobile terminal 100 is transmitted to the mobile terminal 100 through the Wi-Fi positioning server, the mobile terminal 100 can obtain the location information.
  • the mobile terminal 100 may obtain location information by being connected to at least one wireless AP.
  • the number of wireless APs required to obtain location information of the mobile terminal 100 may be variously changed according to a wireless communication environment in which the mobile terminal 100 is located.
  • a mobile terminal includes Bluetooth TM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, and NFC (Near).
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • NFC Near
  • Short-range communication technologies such as Field Communication, Wireless USB (Wireless Universal Serial Bus), and the like may be applied.
  • the NFC module provided in the mobile terminal supports contactless short-range wireless communication between terminals at a distance of about 10 cm.
  • the NFC module may operate in any one of a card mode, a reader mode, and a P2P mode.
  • the mobile terminal 100 may further include a security module for storing card information.
  • the security module may be a physical medium such as a universal integrated circuit card (UICC) (for example, a subscriber identification module (SIM) or a universal SIM (USIM)), a secure micro SD, and a sticker, or a logical medium embedded in a mobile terminal ( For example, it may be an embedded SE (Secure Element). Data exchange based on a single wire protocol (SWP) may be performed between the NFC module and the security module.
  • UICC universal integrated circuit card
  • SIM subscriber identification module
  • USB universal SIM
  • SWP Secure Element
  • the mobile terminal can transmit the card information stored like the conventional IC card to the outside.
  • the mobile terminal storing the card information of the payment card such as a credit card or bus card
  • the mobile short-range payment can be processed, and the mobile terminal storing the card information of the access card is approved for access. Close to the flag, the approval process can be started.
  • Cards such as credit cards, transportation cards, and access cards are mounted in the security module in the form of applets, and the security module may store card information about the mounted cards.
  • the card information of the payment card may be at least one of a card number, balance, and usage history
  • the card information of the access card may include at least one of a user's name, number (eg, student's student number or company number), and access history. It can be one.
  • the mobile terminal can read data from an external tag.
  • the data received by the mobile terminal from the tag may be coded in a data exchange format (NFC Data Exchange Format) determined by the NFC forum.
  • NFC Forum defines four record types. Specifically, the NFC forum defines four record type definitions (RTDs) such as smart poster, text, uniform resource identifier (URI), and general control.
  • RTDs record type definitions
  • the controller may execute a browser (eg, an Internet browser).
  • the controller may execute a text viewer.
  • the controller executes a browser or makes a phone call
  • the data received from the tag is a general control type
  • the controller can execute an appropriate operation according to the control content.
  • the mobile terminal may perform P2P communication with another mobile terminal.
  • LLCP Logical Link Control Protocol
  • a connection may be created between the mobile terminal and another mobile terminal for P2P communication.
  • the generated connection may be classified into a connectionless mode in which one packet is exchanged and terminated, and a connection-oriented mode in which packets are continuously exchanged.
  • P2P communication data such as electronic business cards, contact information, digital photos, URLs, and setup parameters for Bluetooth and Wi-Fi connections can be exchanged.
  • the P2P mode may be effectively used for exchanging small data.
  • FIG. 5 is a flowchart illustrating a method of operating a mobile terminal according to an embodiment of the present invention.
  • the microphone 122 of the mobile terminal 100 receives a first voice command of a user (S501).
  • the controller 180 determines whether recognition of the received first voice command has failed (S503).
  • the controller 180 may determine whether a first voice pattern corresponding to the received first voice command is stored in the memory 170.
  • the voice pattern may be a signal pattern corresponding to the voice command.
  • the controller 180 may determine that the recognition of the first voice command is successful when the voice pattern matching the first voice pattern corresponding to the first voice command and a predetermined reference value or more is stored in the memory 170.
  • the controller 180 may determine that the recognition of the first voice command has failed.
  • the controller 180 may determine that the recognition of the first voice command is successful.
  • the controller 180 performs a function corresponding to the first voice command (505).
  • the memory 170 may store a function corresponding to the voice pattern.
  • the memory 170 may store functions corresponding to each of the plurality of voice patterns.
  • the function may be a specific function that may be performed in the mobile terminal 100, such as power on / off, opening a web browser, and making a call.
  • the controller 180 stores the first voice pattern of the first voice command in the memory 170 (S507).
  • the controller 180 may store the first voice pattern in order to increase the voice recognition rate due to pronunciation, intonation, and speed that fall outside the assumed range during the voice recognition training.
  • the microphone 122 receives the second voice command (S509), and the controller 180 determines whether the second voice pattern of the received second voice command is similar to the first voice pattern (S511).
  • the controller 180 may determine that the second voice pattern is similar to the first voice pattern when the similarity between the first voice pattern and the second voice pattern is greater than or equal to the reference similarity.
  • the controller 180 may determine that the second voice pattern is not similar to the first voice pattern.
  • the controller 180 adjusts the voice recognition threshold (S513).
  • the speech recognition threshold may be a numerical value representing confidence in the speech recognition rate.
  • the speech recognition threshold may indicate the ability of speech recognition.
  • the voice command can be recognized only when the voice command of the correct pronunciation and intonation is received.
  • the voice recognition threshold is lowered, the voice command can be recognized, even if a relatively accurate pronunciation, intonation voice command is received.
  • the voice recognition threshold set by default may be 0.9, but this is only an example.
  • the controller 180 can lower the voice recognition threshold to increase the recognition rate of the voice command.
  • the lowering of the speech recognition threshold may determine that the reference similarity for determining the degree of matching between speech patterns is lowered.
  • the controller 180 determines whether the second voice command is recognized based on the adjusted voice recognition threshold (S515).
  • the controller 180 determines that the recognition of the second voice command is successful when the similarity between the second voice pattern of the second voice command and the voice pattern stored in the memory 170 is greater than or equal to the changed reference voice according to the decrease of the voice recognition threshold. can do.
  • the controller 180 may fail to recognize the voice command, and may output a notification to utter the voice command again.
  • the controller 180 transmits the first voice pattern and the adjusted voice recognition threshold to the server (S517).
  • the controller 180 may transmit the first voice pattern or the second voice pattern and the adjusted voice recognition threshold to the server.
  • the server may retrain the user-specific speech recognition model using the received information. For example, the server may match and store the adjusted voice recognition threshold and the first voice pattern with the corresponding user.
  • FIG. 6 is a flowchart illustrating a method of operating a mobile terminal according to another embodiment of the present invention.
  • the controller 180 continuously acquires a voice pattern of a voice command (S601).
  • the controller 180 is a repeating speech pattern Whether it was discovered It is determined (S603).
  • the repeated voice pattern may be It can be determined that the search was made.
  • the acquisition time of the first voice pattern and the acquisition time of the second voice pattern may be within a predetermined time interval.
  • the time interval may be 5 seconds, but this is only an example.
  • the controller 180 is a repeating speech pattern Explored Times Counting (S605).
  • the controller 180 may count the number of times the repeated voice pattern is searched in real time.
  • the controller 180 is Counting According to the number of times Priorities Determine and transmit to the server (S607).
  • the controller 180 may give a higher priority to the corresponding speech pattern as the counting number increases.
  • the controller 180 may set the priority to 2, and if the counting number is 2, the controller 180 may set the priority to 1.
  • the controller 180 may transmit the repeated voice pattern, the counting count and priority of the voice pattern to the server through the wireless communication unit 110.
  • the server may perform voice recognition retraining based on the information received from the mobile terminal 100.
  • FIG. 7 is a flowchart illustrating a method of operating a mobile terminal according to another embodiment of the present invention.
  • the controller 180 continuously acquires a voice pattern of a voice command (S701).
  • the controller 180 is a repeating speech pattern Whether it was discovered It is determined (S703).
  • the controller 180 is a repeating speech pattern Explored Times Counting (S705).
  • the controller 180 is Counting
  • the voice recognition threshold is adjusted according to the number of times (S707).
  • the controller 180 may lower the voice recognition threshold as the counting count increases.
  • the controller 180 may change the voice recognition threshold value from 0.9 to 0.8.
  • the controller 180 may change the voice recognition threshold value from 0.8 to 0.7.
  • the controller 180 may readjust the voice recognition threshold to 0.9, which is the initial voice recognition threshold.
  • the voice recognition rate may be improved by lowering the voice recognition threshold to a specific value.
  • FIG. 8 is a diagram illustrating a process of performing voice recognition retraining in a server according to an embodiment of the present invention.
  • the server 800 may receive failure data for which speech recognition has failed from each of the plurality of mobile terminals.
  • the server 800 may cluster (group) failed data based on the plurality of classification items.
  • the server 800 may group failure data according to a plurality of classification items, that is, a specific region, gender, and specific household.
  • the server 800 may generate a retraining speech recognition model according to the grouping result.
  • the retraining speech recognition model may be a process of setting a speech recognition threshold for a specific speech pattern.
  • the server 800 may set a voice recognition threshold of each group classified according to the grouping result.
  • the server 800 sets a first voice recognition threshold on a voice pattern corresponding to the first classification item, sets a second voice recognition threshold on a voice pattern corresponding to the second classification item, and sets a third classification.
  • a third voice recognition threshold may be set in the voice pattern corresponding to the item.
  • the server 800 may set different voice recognition thresholds for the same voice pattern according to the classification item.
  • the server 800 may transmit the set voice recognition threshold to the corresponding terminal in response to the voice pattern and the voice pattern.
  • FIG. 9 is a diagram illustrating cases in which recognition of a conventional voice starting word fails.
  • the user speaks the voice startup word slowly or quickly, so that voice recognition may fail.
  • speech recognition may fail when a voice accent is uttered by giving a unique accent to a user.
  • failed cases of speech recognition may be automatically labeled to increase efficiency of retraining.
  • the speech recognition threshold may be lowered to increase the speech recognition rate.
  • Unnecessarily lowering the speech recognition threshold may increase the probability of malfunction of speech recognition.
  • the speech recognition threshold is adjusted only when necessary, i.e., only when the speech recognition pattern is repeated, the recognition performance may be improved.
  • the present invention described above can be embodied as computer readable codes on a medium in which a program is recorded.
  • the computer-readable medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable media include hard disk drives (HDDs), solid state disks (SSDs), silicon disk drives (SDDs), ROMs, RAMs, CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and the like. There is this.
  • the computer may include the controller 180 of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

Conformément à un mode de réalisation, la présente invention concerne un terminal mobile qui comprend : un microphone qui reçoit une instruction vocale d'un utilisateur ; une mémoire ; et une unité de commande qui commande le microphone et la mémoire. L'unité de commande peut : recevoir une première instruction vocale ; stocker un premier motif vocal de la première instruction vocale dans la mémoire, si la reconnaissance de la première instruction vocale reçue échoue ; recevoir une seconde instruction vocale ; ajuster un seuil de reconnaissance vocale qui indique une capacité de reconnaissance vocale si un second motif vocal de la seconde instruction vocale est similaire au premier motif vocal ; et transmettre, à un serveur, le premier motif vocal stocké dans la mémoire et le seuil de reconnaissance vocale ajusté si la seconde instruction vocale est reconnue en raison de l'ajustement du seuil de reconnaissance vocale.
PCT/KR2018/008934 2018-06-11 2018-08-07 Terminal mobile WO2019240324A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0066829 2018-06-11
KR1020180066829A KR102114064B1 (ko) 2018-06-11 2018-06-11 이동 단말기

Publications (1)

Publication Number Publication Date
WO2019240324A1 true WO2019240324A1 (fr) 2019-12-19

Family

ID=68842301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008934 WO2019240324A1 (fr) 2018-06-11 2018-08-07 Terminal mobile

Country Status (2)

Country Link
KR (1) KR102114064B1 (fr)
WO (1) WO2019240324A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816178A (zh) * 2020-07-07 2020-10-23 云知声智能科技股份有限公司 语音设备的控制方法、装置和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083572A (ko) * 2009-01-14 2010-07-22 삼성전자주식회사 신호처리장치 및 신호처리장치에서의 음성 인식 방법
US20110015927A1 (en) * 2004-01-20 2011-01-20 Microsoft Corporation System and method for efficient laser processing of a moving web-based material
KR20110010939A (ko) * 2009-07-27 2011-02-08 삼성전자주식회사 휴대용 단말기에서 음성 인식 성능을 향상시키기 위한 장치 및 방법
KR20160062588A (ko) * 2014-11-25 2016-06-02 현대모비스 주식회사 네트워크를 이용한 사용자 적응 음성 명령 인식 방법 및 그 장치
KR20170035602A (ko) * 2015-09-23 2017-03-31 삼성전자주식회사 음성인식장치, 음성인식방법 및 컴퓨터 판독가능 기록매체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015927A1 (en) * 2004-01-20 2011-01-20 Microsoft Corporation System and method for efficient laser processing of a moving web-based material
KR20100083572A (ko) * 2009-01-14 2010-07-22 삼성전자주식회사 신호처리장치 및 신호처리장치에서의 음성 인식 방법
KR20110010939A (ko) * 2009-07-27 2011-02-08 삼성전자주식회사 휴대용 단말기에서 음성 인식 성능을 향상시키기 위한 장치 및 방법
KR20160062588A (ko) * 2014-11-25 2016-06-02 현대모비스 주식회사 네트워크를 이용한 사용자 적응 음성 명령 인식 방법 및 그 장치
KR20170035602A (ko) * 2015-09-23 2017-03-31 삼성전자주식회사 음성인식장치, 음성인식방법 및 컴퓨터 판독가능 기록매체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816178A (zh) * 2020-07-07 2020-10-23 云知声智能科技股份有限公司 语音设备的控制方法、装置和设备

Also Published As

Publication number Publication date
KR102114064B1 (ko) 2020-05-22
KR20190140259A (ko) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2020032311A1 (fr) Terminal mobile
WO2016047863A1 (fr) Dispositif mobile, hmd et système
WO2018199379A1 (fr) Dispositif d'intelligence artificielle
WO2020036425A1 (fr) Dispositif d'intelligence artificielle
WO2019031707A1 (fr) Terminal mobile et procédé permettant de commander un terminal mobile au moyen d'un apprentissage machine
WO2018084351A1 (fr) Terminal mobile, et procédé de commande associé
WO2017022931A1 (fr) Terminal mobile et son procédé de commande
WO2017131261A1 (fr) Dispositif mobile et procédé de commande associé
WO2017018579A1 (fr) Terminal mobile et son procédé de commande
WO2017115960A1 (fr) Terminal mobile et son procédé de commande
WO2019083102A1 (fr) Dispositif d'intelligence artificielle
WO2015156461A1 (fr) Terminal mobile et son procédé de commande
WO2017095034A2 (fr) Terminal mobile de type montre et son procédé de commande
WO2017030244A1 (fr) Dispositif vestimentaire et son procédé de commande
WO2015108241A1 (fr) Terminal de type lunettes et système comprenant le terminal de type lunettes, et signalisation
WO2018093002A1 (fr) Terminal mobile et procédé de commande dudit terminal mobile
WO2018164301A1 (fr) Terminal mobile
WO2019031693A1 (fr) Terminal mobile
WO2016117754A1 (fr) Dispositif d'affichage et son procédé de commande
WO2015147413A1 (fr) Terminal mobile et méthode de commande de celui-ci
WO2017007050A1 (fr) Dispositif mobile et procédé de commande correspondant
WO2015133657A1 (fr) Terminal et procédé de commande de celui-ci
WO2018034406A1 (fr) Terminal mobile et procédé de commande associé
WO2017014369A1 (fr) Terminal mobile et son procédé de commande
WO2019240324A1 (fr) Terminal mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922606

Country of ref document: EP

Kind code of ref document: A1