WO2019240092A1 - Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device - Google Patents

Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device Download PDF

Info

Publication number
WO2019240092A1
WO2019240092A1 PCT/JP2019/022973 JP2019022973W WO2019240092A1 WO 2019240092 A1 WO2019240092 A1 WO 2019240092A1 JP 2019022973 W JP2019022973 W JP 2019022973W WO 2019240092 A1 WO2019240092 A1 WO 2019240092A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
sealing material
mass
thermosetting resin
Prior art date
Application number
PCT/JP2019/022973
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 藤安
彩 笠原
一也 木口
藤本 大輔
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020525561A priority Critical patent/JP7351297B2/en
Publication of WO2019240092A1 publication Critical patent/WO2019240092A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a thermosetting resin composition for a semiconductor sealing material, a semiconductor sealing material, and a semiconductor device.
  • a resin for sealing elements of a semiconductor device such as a transistor or an IC (Integrated Circuit)
  • a resin has been widely used in terms of productivity and cost.
  • an epoxy resin composition is widely used as a sealing material (for example, Patent Document 1).
  • Patent Document 1 JP 2003-138106 A
  • An object of the present disclosure is to provide a thermosetting resin composition for a semiconductor encapsulation material from which a semiconductor encapsulation material having a low dielectric loss tangent is obtained, and a semiconductor encapsulation material obtained by curing the thermosetting resin composition for a semiconductor encapsulation material And a semiconductor device provided with the hardened
  • thermosetting resin composition for semiconductor sealing materials
  • an inorganic filler having a volume ratio of 60% to 95% by volume and a curing initiator, and has a mass reduction rate of 5% by mass or less when heated at 180 ° C. for 1 hour.
  • Resin composition ⁇ 2> The thermosetting resin composition for a semiconductor sealing material according to ⁇ 1>, wherein the polyimide compound has a weight average molecular weight of 800 to 1500.
  • ⁇ 6> A semiconductor device comprising: a semiconductor element; and a cured product of the thermosetting resin composition for a semiconductor sealing material according to any one of ⁇ 1> to ⁇ 4>, which seals the semiconductor element. .
  • thermosetting resin composition for a semiconductor sealing material from which a semiconductor sealing material having a low dielectric loss tangent is obtained, and a semiconductor sealing material formed by curing the thermosetting resin composition for a semiconductor sealing material And a semiconductor device provided with the hardened
  • each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • thermosetting resin composition for semiconductor sealing material comprises a compound having two or more N-substituted maleimide groups and a compound having two or more amino groups. Mass at the time of heating at 180 ° C. for 1 hour, including at least a polyimide compound obtained by copolymerization, an inorganic filler having a content of 60% by volume to 95% by volume with respect to the entire resin composition, and a curing initiator
  • the reduction rate (hereinafter also simply referred to as “mass reduction rate”) is 5% by mass or less.
  • the “mass reduction rate” is a ratio of the mass reduced by heating the resin composition at 180 ° C. for 1 hour, and is a value based on the mass of the resin composition before heating. Specifically, for example, 1.0 g to 1.1 g of the resin composition is weighed into an aluminum cup and left in a dryer set at a temperature of 180 ° C. for 1 hour, and the measurement before heating. Based on the quantity, the following formula is used.
  • Mass reduction rate (%) ⁇ (measured amount before heating ⁇ measured amount after leaving) / measured amount before heating ⁇ ⁇ 100
  • the said mass decreasing rate in a resin composition is 5 mass% or less means that the volatile matter (for example, solvent) which volatilizes at 180 degreeC among the components contained in a resin composition is with respect to the whole resin composition. It means 5 mass% or less.
  • production of the void in the process in which a resin composition is hardened and it is set as a sealing material is suppressed because the mass decreasing rate in a resin composition is 5 mass% or less.
  • the mass reduction rate in the resin composition is preferably 3% by mass or less, and more preferably 1% by mass or less.
  • the resin composition of this indication is not limited to these.
  • the polyimide compound is obtained by copolymerizing at least a compound having two or more N-substituted maleimide groups (hereinafter also referred to as “polymaleimide compound”) and a compound having two or more amino groups (hereinafter also referred to as “polyamino compound”). It will be. That is, the polyimide compound is a polymer obtained by polymerizing a composition containing a polymaleimide compound and a polyamino compound. A composition containing a polymaleimide compound and a polyamino compound may be referred to as a “monomer composition”. Hereinafter, each component contained in the monomer composition will be described.
  • the polymaleimide compound is not limited as long as it is a compound having two or more N-substituted maleimide groups, and may be a compound having two N-substituted maleimide groups, or a compound having three or more N-substituted maleimide groups It may be. From the viewpoint of availability, the polymaleimide compound is preferably a compound having two N-substituted maleimide groups.
  • polymaleimide compound examples include, for example, bis (4-maleimidophenyl) methane, bis (3-maleimidophenyl) methane, polyphenylmethanemaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) Sulfone, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, 2 , 2-bis [4- (4-maleimidophenoxy) phenyl] propane, 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, 1,12-bismaleimide dodecane, 1,6-bismaleimide- (2 , 2,4-Trimethyl) hexane, 1,6-bismaleimide (2,4,4-trimethyl) hex
  • a preferable polymaleimide compound from the viewpoint of low cost includes, for example, bis (4-maleimidophenyl) methane.
  • a preferred polymaleimide compound having excellent dielectric properties and low hygroscopicity is, for example, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide.
  • a preferred polymaleimide compound is, for example, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, from the viewpoint of excellent mechanical properties such as high adhesion to a conductor, elongation, and breaking strength. .
  • polymaleimide compounds may be used alone or in combination of two or more.
  • a form which uses together 2 or more types of polymaleimide compounds the form which uses together an aliphatic polymaleimide compound and an aromatic polymaleimide compound is mentioned, for example.
  • the aliphatic polymaleimide compound is a polymaleimide compound having no aromatic ring.
  • a polymaleimide compound having an alkylene group is preferable, and a polymaleimide compound having an alkylene group having 3 to 12 carbon atoms is more preferable.
  • a polymaleimide compound having a branched alkylene group having 3 to 12 carbon atoms is more preferable.
  • the aromatic polymaleimide compound is a polymaleimide compound having an aromatic ring.
  • a polymaleimide compound having a phenylene group is preferable, a polymaleimide compound having two or more phenylene groups is more preferable, and three or more phenylene groups are present. More preferred are polymaleimide compounds.
  • the ratio of the number of N-substituted maleimide groups in the aliphatic polymaleimide compound to the number of N-substituted maleimide groups in the entire polymaleimide compound is, for example, 10%. Up to 50%, preferably 20% to 40%.
  • the polyamino compound is not limited as long as it is a compound having two or more amino groups, and may be a compound having two amino groups or a compound having three or more amino groups. From the viewpoint of availability, the polyamino compound is preferably a compound having two amino groups.
  • polyamino compound examples include, for example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyl-diphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3, 3′-dimethyl-5,5′-diethyl-4,
  • preferred polyamine compounds from the viewpoint of excellent solubility in organic solvents, reactivity during synthesis, and heat resistance include, for example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3. '-Dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-[1,3- And phenylenebis (1-methylethylidene)] bisaniline and 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline.
  • a preferred polyamine compound from the viewpoint of excellent dielectric properties and low water absorption is, for example, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanediamine.
  • a preferred polyamine compound is, for example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, from the viewpoint of high adhesion to a conductor and excellent mechanical properties such as elongation and breaking strength.
  • polyamine compound in addition to being excellent in solubility in organic solvents, reactivity during synthesis, heat resistance, and high adhesion to conductors, as a preferred polyamine compound from the standpoint of exhibiting excellent high-frequency characteristics and low hygroscopicity
  • examples thereof include 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline and 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline.
  • These polyamine compounds may be used alone or in combination of two or more.
  • the monomer composition contains a compound having a group containing two or more ethylenically unsaturated double bonds (hereinafter also referred to as “ethylenic compound”) as another component. Also good. By including an ethylenic compound in the monomer composition, it is easy to adjust the degree of polymerization of the polyimide compound.
  • Examples of the group containing an ethylenically unsaturated double bond include a vinyl group, an allyl group, a vinyloxy group, an allyloxy group, an acryloyl group, and a methacryloyl group.
  • the ethylenic compound may have only one kind or two or more kinds of groups containing an ethylenically unsaturated double bond in one molecule.
  • the ethylenic compound may have another group in addition to the group containing an ethylenically unsaturated double bond. Examples of other groups include an amino group, an ether group, and a sulfide group.
  • the ethylenic compound examples include diallylamine, diallyl ether, diallyl sulfide, triallyl isocyanurate and the like.
  • the monomer composition contains an ethylenic compound
  • Equivalent ratio (Ta3 / Ta1) is, for example, in the range of 0.05 to 0.2.
  • the monomer composition may contain a solvent as another component.
  • the solvent include organic solvents.
  • the organic solvent is not particularly limited, and specifically, alcohols such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
  • Aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl And nitrogen-containing compounds such as -2-pyrrolidone. These may be used alone or in combination of two or more. These organic solvents are preferably methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide, and N, N-dimethylacetamide from the viewpoint of solubility.
  • the monomer composition may contain, as another component, a reaction catalyst that promotes the reaction between the polymaleimide compound and the polyamino compound.
  • the reaction catalyst is not particularly limited, and examples thereof include acidic catalysts such as p-toluenesulfonic acid, amines such as triethylamine, pyridine and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and triphenylphosphine. And phosphorus-based catalysts. These may be used alone or in combination of two or more.
  • the content of the reaction catalyst with respect to 100 parts by mass of the total amount of the polymaleimide compound and the polyamino compound is not particularly limited, and examples thereof include a range of 0.01 parts by mass to 5.0 parts by mass.
  • -Blending amount- Equivalent ratio of polymaleimide compound and polyamino compound in the monomer composition that is, the number of N-substituted maleimide groups (Ta1) of the polymaleimide compound in the monomer composition relative to the number of amino groups (Ta2) of the polyamino compound in the monomer composition
  • the equivalent ratio (Ta1 / Ta2) is preferably in the range of 1.0 to 10.0, and more preferably in the range of 2.0 to 10.0.
  • a polyimide compound is obtained by charging the monomer composition into a synthesis kettle and subjecting the polymaleimide compound and the polyamino compound in the monomer composition to a Michael addition reaction.
  • the polymerization conditions are not particularly limited.
  • the reaction temperature is 50 ° C. to 160 ° C. and the reaction time is 1 hour to 10 hours from the viewpoint of workability such as reaction rate and suppression of gelation. preferable.
  • the solid content concentration and the solution viscosity of the monomer composition may be adjusted by adding a solvent or concentrating the monomer composition.
  • the solid content concentration of the monomer composition is not particularly limited, and is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass.
  • the “solid content” means a component excluding the solvent.
  • the solid content concentration of the monomer composition is 10% by mass or more, the polymerization reaction rate does not become too slow, which is advantageous in terms of the production cost of the polyimide compound.
  • the solid content concentration of the monomer composition is 90% by mass or less, good solubility of the solid content is obtained, the stirring efficiency in the process of polymerization is good, and gelation is less likely.
  • a polyimide compound after manufacture of a polyimide compound, it may concentrate by removing a part or all of a solvent according to the objective, and may add and dilute a solvent.
  • the solvent used additionally the organic solvent exemplified as the solvent contained in the monomer composition can be applied. These may be used alone or in combination of two or more. Among these, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable from the viewpoint of solubility.
  • the weight average molecular weight of the polyimide compound obtained as the polymer of the monomer composition is not particularly limited, and may be, for example, in the range of 800-1500, in the range of 800-1300, 800 It may be in the range of ⁇ 1100.
  • the weight average molecular weight of a polyimide compound can be calculated
  • the polyimide compound obtained as described above is a compound obtained by Michael addition reaction between the polymaleimide compound and the polyamino compound, and at least a structural unit derived from the polymaleimide compound (hereinafter referred to as “structural unit (a1)”). And a structural unit derived from the polyamino compound (hereinafter also referred to as “structural unit (a2)”).
  • structural unit (a1) include a structural unit represented by the following general formula (1-1) and a structural unit represented by the following general formula (1-2).
  • the structural unit (a2) examples thereof include a structural unit represented by the following general formula (2-1) and a structural unit represented by the following general formula (2-2).
  • A represents a residue of the polymaleimide compound.
  • B represents the polyamino compound. Indicates residue. That is, a preferable structure of A is a structure derived from a preferable compound exemplified as the polymaleimide compound, and a preferable structure of B is a structure derived from a preferable compound exemplified as the polyamino compound.
  • * represents a bond.
  • a residue means the part remove
  • the content ratio of the structural unit (a1) and the structural unit (a2) in the polyimide compound is the same as the content ratio of the polymaleimide compound and the polyamino compound in the monomer composition. That is, in the polyimide compound, the total number (Ta2 ′) of groups obtained by Michael addition of the amino group derived from the polyamino compound and the amino group of the polyamino compound, the maleimide group derived from the polymaleimide compound, and the maleimide of the polymaleimide compound
  • the equivalent ratio (Ta1 ′ / Ta2 ′) of the total number (Ta1 ′) of groups formed by Michael addition of the group may be in the range of 1.0 to 10.0, or 2.0 to 10. It may be in the range of 0.
  • the equivalent ratio (Ta1 '/ Ta2') within the above range, a resin composition having good high-frequency characteristics, heat resistance, flame retardancy, and glass transition temperature tends to be obtained.
  • the total content of the structural unit (a1) and the structural unit (a2) in the polyimide compound may be 60% by mass to 100% by mass, 80% by mass to 100% by mass, or 90% by mass. % To 100% by mass.
  • the polyimide compound preferably contains a polyaminobismaleimide compound represented by the following general formula (3) from the viewpoints of solubility in an organic solvent, high-frequency characteristics, high adhesion with a conductor, and handleability during kneading. .
  • a 3 is the following general formula (4), (5), a residue represented by (6), or (7), A 4 is represented by the following general formula (8) Residue.
  • each R 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom.
  • R 2 and R 3 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom
  • a 5 represents an alkylene group having 1 to 5 carbon atoms or An alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbooxy group, a ketone group, a single bond, or a residue represented by the following general formula (5-1).
  • R 4 and R 5 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom
  • a 6 represents an alkylene having 1 to 5 carbon atoms.
  • i is an integer of 1 to 10.
  • R 6 and R 7 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8.
  • R 8 and R 9 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom; 7 represents an alkylene group or alkylidene group having 1 to 5 carbon atoms, ether group, sulfide group, sulfonyl group, carbooxy group, ketone group, fluorenylene group, single bond, the following general formula (8-1), or the following general formula (8 -2).
  • R 10 and R 11 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom
  • a 8 represents an alkylene having 1 to 5 carbon atoms.
  • each R 12 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom
  • a 9 and A 10 are alkylene having 1 to 5 carbon atoms.
  • the inorganic filler may be generally used for a molding material for sealing, and is not particularly limited.
  • Specific examples of the inorganic filler include silica (eg, spherical silica, crystalline silica), glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, and zircon.
  • non-powder of inorganic substances such as fosterite, steatite, spinel, mullite, titania, talc, clay and mica, and beads formed by spheroidizing these inorganic substances.
  • An inorganic filler having a flame retardant effect may be used.
  • the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, zinc borate and the like.
  • silica is preferable from the viewpoint of reducing the linear expansion coefficient, and spherical silica is more preferable among them.
  • Alumina is preferred from the viewpoint of high thermal conductivity.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the content of the inorganic filler is 60 volume% to 95 volume% in the total amount of the resin composition, preferably 60 volume% to 90 volume%, and more preferably 65 volume% to 85 volume%. .
  • the content of the inorganic filler is 60% by volume or more, characteristics such as thermal expansion coefficient, thermal conductivity, and elastic modulus in the cured product of the resin composition tend to be further improved.
  • the content of the inorganic filler is 95% by volume or less, an increase in the viscosity of the resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better.
  • the volume average particle diameter of the inorganic filler is preferably 0.1 ⁇ m to 80 ⁇ m, and more preferably 0.3 ⁇ m to 50 ⁇ m.
  • the volume average particle size may be measured by a dry particle size distribution measuring device, or may be measured by a wet particle size distribution measuring device using a slurry in which an inorganic filler is dispersed in water or an organic solvent.
  • the particle shape of the inorganic filler is preferably spherical rather than square, and the particle size distribution of the inorganic filler is preferably distributed over a wide range.
  • the content of the inorganic filler is 75% by volume or more with respect to the entire resin composition, 70% by volume or more of them is formed as spherical particles, and the particle diameter of the spherical particles is 0.1 ⁇ m to 80 ⁇ m. It is preferable to be distributed over a wide range. Since such inorganic fillers are likely to have a close-packed structure, even if the blending amount is increased, there is little increase in the viscosity of the material, and a resin composition excellent in fluidity can be obtained.
  • Examples of the curing initiator include radical polymerization initiators that generate free radicals by heat, and specific examples include inorganic peroxides, organic peroxides, and azo compounds.
  • examples of inorganic peroxides include potassium persulfate (dipotassium peroxosulfate), sodium persulfate, and ammonium persulfate.
  • examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (4,4-di (t-butylperoxide).
  • Peroxyketals such as oxy) cyclohexyl) propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide Hydroperoxide such as ⁇ , ⁇ '-di (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcum Luperoxide, di- Dialkyl peroxides such as hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t-butyl peroxide, dibenzoyl peroxide, di (4- Diacyl peroxides such as methylbenzoyl) peroxide, per
  • azo compound examples include azobisisobutyronitrile, azobis-4-methoxy-2,4-dimethylvaleronitrile, azobiscyclohexanone-1-carbonitrile, azodibenzoyl, and the like.
  • the content of the curing initiator is preferably 0.1 parts by mass to 8.0 parts by mass with respect to 100 parts by mass of the polyimide compound, and more preferably 0.5 parts by mass to 6.0 parts by mass from the viewpoint of curability.
  • the content of the curing initiator is 8.0 parts by mass or less, volatile components are hardly generated and the generation of voids during curing tends to be further suppressed.
  • the resin composition may further contain a curing accelerator as necessary.
  • the curing accelerator is not particularly limited, and 1,8-diazabicyclo (5,4,0) -undecene-7, 1,5-diazabicyclo (4,3,0) -nonene, 5,6-dibutylamino-1, Tertiary amines such as 8-diazabicyclo (5,4,0) -undecene-7, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, 2-methylimidazole, Imidazoles such as 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and their derivatives (eg, imidazole-isocyanate adducts), tributylphosphine, methyldiphenylphosphine, triphenylphosphine , Di
  • the content is not particularly limited, and is preferably 0.1 part by mass to 8.0 parts by mass with respect to 100 parts by mass of the polyimide compound, and 0.5 parts by mass More preferably, it is ⁇ 6.0 parts by mass.
  • the resin composition may further contain various additives such as coupling agents, ion exchangers, mold release agents, stress relaxation agents, flame retardants, and colorants exemplified below.
  • various additives such as coupling agents, ion exchangers, mold release agents, stress relaxation agents, flame retardants, and colorants exemplified below.
  • the resin composition may contain various additives well known in the art as needed.
  • the resin composition may contain a coupling agent as necessary in order to enhance the adhesion between the resin component and the inorganic filler.
  • a coupling agent various known silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, acid anhydride; titanium compound; aluminum chelate compound; aluminum / zirconium compound; A coupling agent is mentioned.
  • the content of the coupling agent in the resin composition is preferably 0.05% by mass to 5% by mass with respect to the inorganic filler, and 0.1% by mass. % To 2.5% by mass is more preferable.
  • the content is 0.05% by mass or more, the adhesion between the resin component and the inorganic filler tends to be further improved, and when it is 5% by mass or less, the moldability of the package tends to be further improved. is there.
  • the resin composition may contain an ion exchanger as necessary.
  • the resin composition preferably contains an ion exchanger from the viewpoint of improving moisture resistance and high temperature storage characteristics of a semiconductor device including an element to be sealed.
  • an ion exchanger A conventionally well-known thing can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, and bismuth. These ion exchangers can be used singly or in combination of two or more.
  • the hydrotalcite shown by the following general formula (A) is preferable. Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 ⁇ mH 2 O (A) (0 ⁇ X ⁇ 0.5, m is a positive number)
  • the content is not particularly limited as long as it is an amount sufficient to trap ions such as halogen ions.
  • the content of the ion exchanger is preferably 0.1% by mass to 30% by mass and more preferably 1% by mass to 5% by mass with respect to the polyimide compound.
  • the resin composition may contain a release agent from the viewpoint of obtaining good release properties from the mold during molding.
  • a mold release agent A conventionally well-known thing can be used. Specific examples include higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. These release agents may be used alone or in combination of two or more. Of these, carnauba wax is preferred.
  • polyolefin waxes examples include low molecular weight polyethylene having a number average molecular weight of about 500 to 10,000 such as H4, PE, and PED series manufactured by Hoechst.
  • the number average molecular weight can be measured, for example, by gel permeation chromatography (GPC).
  • the content of the release agent is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 5% by mass with respect to the total amount of the polyimide compound. preferable. If the content of the release agent is 0.01% by mass or more, sufficient release property tends to be obtained, and if it is 10% by mass or less, better adhesiveness tends to be obtained.
  • the resin composition may contain a stress relaxation agent such as silicone oil and silicone rubber particles as necessary.
  • a stress relaxation agent such as silicone oil and silicone rubber particles.
  • a known flexible agent (stress relaxation agent) generally used in the technical field can be appropriately selected and used.
  • the flexible agents used are thermoplastic elastomers such as silicone, polystyrene, polyolefin, polyurethane, polyester, polyether, polyamide, polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber. Rubber particles such as urethane rubber and silicone powder; Core-shell structure such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer And the like.
  • a stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • silicone-based flexible agents are preferable, and examples of the silicone-based flexible agents include those having an epoxy group, those having an amino group, and those obtained by modifying these with a polyether.
  • the resin composition may contain a flame retardant as necessary in order to impart flame retardancy.
  • the type of flame retardant is not particularly limited.
  • examples of the flame retardant include known organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, a metal hydroxide, and acenaphthylene.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the flame retardant is not particularly limited as long as the flame retardant effect is achieved.
  • the content of the flame retardant is preferably 1% by mass to 30% by mass and more preferably 2% by mass to 15% by mass with respect to the polyimide compound.
  • the resin composition may contain a colorant such as carbon black, organic dye, organic colorant, titanium oxide, red lead, bengara and the like.
  • the content of the colorant can be appropriately selected according to the purpose and the like.
  • the resin composition may contain various additives as long as it does not deteriorate the effect of the present disclosure.
  • the method for preparing the resin composition is not particularly limited, and any method may be used as long as various components can be sufficiently dispersed and mixed.
  • a method in which components are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder, or the like, cooled, and pulverized can be exemplified. More specifically, for example, the above-described components are sufficiently stirred and mixed, kneaded with a kneader, roll, extruder, or the like that has been heated to 70 ° C. to 140 ° C., cooled, and pulverized. be able to.
  • the resin composition is easy to handle if it is tableted with dimensions and mass that match the molding conditions of the package.
  • the spiral flow length of the resin composition measured according to the EMMI-1-66 method is preferably 100 cm or more, and more preferably 110 cm or more, from the viewpoint of the fluidity of the resin composition.
  • the spiral flow length is determined by using a spiral flow measurement mold in accordance with EMMI-1-66, using a transfer molding machine to mold the resin composition at a mold temperature of 180 ° C., a molding pressure of 22.5 MPa, and a curing time of 300. It refers to the flow distance obtained by molding under the condition of seconds.
  • the disk flow length of the resin composition measured by the following method is preferably 60 mm or more, and more preferably 65 mm or more, from the viewpoint of the fluidity of the resin composition.
  • the disk flow length is a disk flow measurement having an upper mold of 200 mm (W) ⁇ 200 mm (D) ⁇ 25 mm (H) and a lower mold of 200 mm (W) ⁇ 200 mm (D) ⁇ 15 mm (H). It is the value measured using the flat metal mold
  • the major axis (mm) and the minor axis (mm) of the molded product are measured with calipers, and the average value (mm) obtained from these values is defined as the disc flow length.
  • a semiconductor device of the present disclosure includes a semiconductor element and a cured product of the resin composition of the present disclosure that seals the semiconductor element. Other components may be included as necessary.
  • the cured product of the resin composition of the present disclosure has a low dielectric loss tangent, it is suitable for devices (eg, computers, information communication devices, etc.) using semiconductor devices that handle signals in a high frequency range (eg, 1 GHz to 10 GHz). It can be preferably used.
  • Examples of the method for sealing a semiconductor element using the resin composition of the present disclosure include a compression method, a low-pressure transfer molding method, an injection molding method, and a compression molding method.
  • Polymaleimide compound 1 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name: BMI-TMH, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • Polymaleimide compound 2 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Kay Kasei Co., Ltd., trade name: BMI-80)
  • Polyamino compound 1 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline (Mitsui Chemicals Fine Co., Ltd., trade name: Bisaniline M)
  • Ethylene compound 1 diallylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • reaction product was confirmed to have a weight average molecular weight of 900 to 1000 by gel permeation chromatography, cooled and filtered through a 200 mesh sieve to obtain a mixture of a polyimide compound and propylene glycol monomethyl ether. Furthermore, the mixture of the obtained polyimide compound and propylene glycol monomethyl ether was vacuum dried at 110 ° C. for 2 hours to produce polyimide compound 1 (solid content: 98 mass%, weight average molecular weight: 1033).
  • the weight average molecular weight of the obtained polyimide compound was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type: A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] Was approximated by a cubic equation.
  • the GPC conditions are shown below.
  • thermosetting resin composition for semiconductor sealing material The following were prepared as an inorganic filler, a curing initiator, and a curing accelerator.
  • Inorganic filler 1 Silica (spherical silica) in which the average particle size is 4.5 ⁇ m, the specific surface area is 3.2 m 2 / g, and the proportion of particles having a particle size of 20 ⁇ m or less is 100% by mass.
  • Curing initiator 1 ⁇ , ⁇ ′-di (t-butylperoxy) diisopropylbenzene (manufactured by NOF Corporation, trade name: perbutyl P)
  • Curing accelerator 1 Isocyanate mask imidazole (Daiichi Kogyo Seiyaku Co., Ltd., trade name: G8009L)
  • Epoxy resin 1 biphenylene aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000)
  • Epoxy resin 2 biphenyl type epoxy resin (Mitsubishi Chemical Corporation, trade name: YX-4000)
  • Curing agent 1 Biphenylene aralkyl type phenol resin (trade name: HE-200C-10, manufactured by Air Water Co., Ltd.)
  • Curing agent 2 Novolac type phenol resin (manufactured by Hitachi Chemical Co., Ltd., trade name: HP-850N)
  • Curing accelerator 2 Triphenylphosphine (Fuji Film Wako Pure Chemical Industries, Ltd.)
  • the resin plate used for the measurement of dielectric loss tangent was produced by the following procedure.
  • the resin compositions that is, the resin compositions of Examples and Comparative Examples obtained by roll kneading using the above technique were pulverized. They were put in a mold and put into a press machine. The hot plate temperature of the press was maintained at 175 ° C., and pressing was performed at a pressure of 7 MPa for 30 minutes while reducing the pressure. Then, the hardened
  • the resin plate produced as described above is cut into a test piece having a width of 2 mm and a length of 70 mm, a network analyzer (manufactured by Agilent Technologies, product name: E8364B), a 1 GHz-compatible cavity resonator, and a 10 GHz-compatible cavity resonance.
  • the dielectric loss tangent was measured using a device (manufactured by Kanto Electronics Co., Ltd.). The measurement temperature was 25 ° C. The measurement results are shown in Table 2. A lower dielectric loss tangent indicates better dielectric properties.
  • a good disc flow length of 60 mm or more was designated as “A”
  • a disc flow length of from 40 mm to less than 60 mm was designated as “B”
  • a defective disc flow length of less than 40 mm was designated as “C”.
  • the resin composition of Example 1 had a lower dielectric loss tangent than that of Comparative Example 1, and was excellent in dielectric properties.
  • the resin composition of Example 1 showed values of a spiral flow length of 120 cm or more and a disk flow length of 60 mm or more, which are indicators of fluidity, and excellent package fillability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A thermosetting resin composition for a semiconductor sealing material contains a polyimide compound obtained by copolymerizing at least a compound having two or more N-substituted maleimide groups and a compound having two or more amino groups, an inorganic filler in a content amount of 60-95% by volume relative to the entire thermosetting resin composition for a semiconductor sealing material, and a curing initiator, the thermosetting resin composition for a semiconductor sealing material being such that the mass reduction when heated for one hour at 180°C is 5% by mass or less.

Description

半導体封止材料用熱硬化性樹脂組成物、半導体封止材料、及び半導体装置Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device
 本開示は、半導体封止材料用熱硬化性樹脂組成物、半導体封止材料、及び半導体装置に関する。 The present disclosure relates to a thermosetting resin composition for a semiconductor sealing material, a semiconductor sealing material, and a semiconductor device.
 従来から、トランジスタ、IC(Integrated Circuit)等の半導体装置の素子を封止する封止材料として、生産性及びコスト等の面から樹脂が広く使用されている。その中でも特に、封止材料として、エポキシ樹脂組成物が広く使用されている(例えば特許文献1)。 Conventionally, as a sealing material for sealing elements of a semiconductor device such as a transistor or an IC (Integrated Circuit), a resin has been widely used in terms of productivity and cost. Among them, in particular, an epoxy resin composition is widely used as a sealing material (for example, Patent Document 1).
 また、近年、半導体装置の低コスト化、小型化、薄型化、軽量化、高性能、及び高機能化等を図るために、素子の配線の微細化、多層化、多ピン化、パッケージの小型化、及び薄型化等による高密度実装化が進んでいる。これに伴い、ICの素子とほぼ同じサイズの半導体装置、すなわち、CSP(Chip Size Package)が広く用いられている。
 さらに、コンピュータ、情報通信機器等は、近年ますます高性能化及び高機能化し、大量のデータを高速で処理するため、扱う信号が高周波数化する傾向にある。特に、携帯電話及び衛星放送には、例えばGHz帯の高周波数領域の電波が使用されている。
In recent years, in order to reduce the cost, size, thickness, weight, performance, functionality, etc. of semiconductor devices, miniaturization of device wiring, multilayering, increased number of pins, and reduction of package size. High-density mounting is progressing by downsizing and thinning. Along with this, semiconductor devices having almost the same size as IC elements, that is, CSP (Chip Size Package) are widely used.
Furthermore, in recent years, computers, information communication devices, and the like have become increasingly sophisticated and highly functional, and a large amount of data is processed at a high speed, so that signals to be handled tend to have high frequencies. In particular, radio waves in the high frequency region of, for example, the GHz band are used for mobile phones and satellite broadcasting.
  特許文献1:特開2003-138106号公報 Patent Document 1: JP 2003-138106 A
 高周波数領域の信号を扱う場合は特に、伝送損失が低いことが望まれる。そして、伝送損失を抑制するため、半導体装置の素子を封止する半導体封止材料にも、低い誘電正接が望まれる。 Especially when handling signals in the high frequency range, low transmission loss is desired. And in order to suppress transmission loss, a low dielectric loss tangent is desired also for the semiconductor sealing material which seals the element of a semiconductor device.
 本開示の課題は、誘電正接の低い半導体封止材料が得られる半導体封止材料用熱硬化性樹脂組成物、この半導体封止材料用熱硬化性樹脂組成物を硬化してなる半導体封止材料、及びこの半導体封止材料用熱硬化性樹脂組成物の硬化物を備える半導体装置を提供することである。 An object of the present disclosure is to provide a thermosetting resin composition for a semiconductor encapsulation material from which a semiconductor encapsulation material having a low dielectric loss tangent is obtained, and a semiconductor encapsulation material obtained by curing the thermosetting resin composition for a semiconductor encapsulation material And a semiconductor device provided with the hardened | cured material of this thermosetting resin composition for semiconductor sealing materials.
 上記の課題を解決する手段は、以下の実施形態を含む。
<1>2以上のN-置換マレイミド基を有する化合物と2以上のアミノ基を有する化合物とを少なくとも共重合してなるポリイミド化合物と、半導体封止材料用熱硬化性樹脂組成物全体に対する含有率が60体積%~95体積%である無機充填材と、硬化開始剤と、を含み、180℃で1時間加熱したときの質量減少率が5質量%以下である半導体封止材料用熱硬化性樹脂組成物。
<2>前記ポリイミド化合物の重量平均分子量は、800~1500である<1>に記載の半導体封止材料用熱硬化性樹脂組成物。
<3>前記無機充填材は、シリカである<1>又は<2>に記載の半導体封止材料用熱硬化性樹脂組成物。
<4>ディスクフロー長が60mm以上である<1>~<3>のいずれか1つに記載の半導体封止材料用熱硬化性樹脂組成物。
<5><1>~<4>のいずれか1つに記載の半導体封止材料用熱硬化性樹脂組成物を硬化してなる半導体封止材料。
<6>半導体素子と、前記半導体素子を封止する、<1>~<4>のいずれか1つに記載の半導体封止材料用熱硬化性樹脂組成物の硬化物と、を備える半導体装置。
Means for solving the above problems include the following embodiments.
<1> A polyimide compound obtained by copolymerizing at least a compound having two or more N-substituted maleimide groups and a compound having two or more amino groups, and the content ratio relative to the whole thermosetting resin composition for semiconductor sealing materials Includes an inorganic filler having a volume ratio of 60% to 95% by volume and a curing initiator, and has a mass reduction rate of 5% by mass or less when heated at 180 ° C. for 1 hour. Resin composition.
<2> The thermosetting resin composition for a semiconductor sealing material according to <1>, wherein the polyimide compound has a weight average molecular weight of 800 to 1500.
<3> The thermosetting resin composition for a semiconductor sealing material according to <1> or <2>, wherein the inorganic filler is silica.
<4> The thermosetting resin composition for a semiconductor sealing material according to any one of <1> to <3>, wherein the disc flow length is 60 mm or more.
<5> A semiconductor sealing material obtained by curing the thermosetting resin composition for a semiconductor sealing material according to any one of <1> to <4>.
<6> A semiconductor device comprising: a semiconductor element; and a cured product of the thermosetting resin composition for a semiconductor sealing material according to any one of <1> to <4>, which seals the semiconductor element. .
 本開示によれば、誘電正接の低い半導体封止材料が得られる半導体封止材料用熱硬化性樹脂組成物、この半導体封止材料用熱硬化性樹脂組成物を硬化してなる半導体封止材料、及びこの半導体封止材料用熱硬化性樹脂組成物の硬化物を備える半導体装置が提供される。 According to the present disclosure, a thermosetting resin composition for a semiconductor sealing material from which a semiconductor sealing material having a low dielectric loss tangent is obtained, and a semiconductor sealing material formed by curing the thermosetting resin composition for a semiconductor sealing material And a semiconductor device provided with the hardened | cured material of this thermosetting resin composition for semiconductor sealing materials is provided.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiment. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present disclosure is not limited thereto.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of particles corresponding to each component may be included. When a plurality of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
〔半導体封止材料用熱硬化性樹脂組成物〕
 本開示の半導体封止材料用熱硬化性樹脂組成物(以下、単に「樹脂組成物」ともいう)は、2以上のN-置換マレイミド基を有する化合物と2以上のアミノ基を有する化合物とを少なくとも共重合してなるポリイミド化合物と、樹脂組成物全体に対する含有率が60体積%~95体積%である無機充填材と、硬化開始剤と、を含み、180℃で1時間加熱したときの質量減少率(以下、単に「質量減少率」ともいう)が5質量%以下である。
 上記樹脂組成物は、上記構成であることにより、誘電正接の低い半導体封止材料が得られる。
[Thermosetting resin composition for semiconductor sealing material]
The thermosetting resin composition for a semiconductor sealing material of the present disclosure (hereinafter also simply referred to as “resin composition”) comprises a compound having two or more N-substituted maleimide groups and a compound having two or more amino groups. Mass at the time of heating at 180 ° C. for 1 hour, including at least a polyimide compound obtained by copolymerization, an inorganic filler having a content of 60% by volume to 95% by volume with respect to the entire resin composition, and a curing initiator The reduction rate (hereinafter also simply referred to as “mass reduction rate”) is 5% by mass or less.
When the resin composition has the above structure, a semiconductor sealing material having a low dielectric loss tangent can be obtained.
 ここで、上記「質量減少率」は、樹脂組成物を180℃で1時間加熱することで減少した質量の割合であり、加熱前における樹脂組成物の質量を基準としたときの値である。
 具体的には、例えば、樹脂組成物をアルミ製のカップに1.0g~1.1g量り取り、180℃の温度に設定した乾燥機内に1時間放置した後の計測量と、加熱前の計測量とに基づき、次式により算出する。
 式:質量減少率(%)={(加熱前の計測量-放置した後の計測量)/加熱前の計測量}×100
Here, the “mass reduction rate” is a ratio of the mass reduced by heating the resin composition at 180 ° C. for 1 hour, and is a value based on the mass of the resin composition before heating.
Specifically, for example, 1.0 g to 1.1 g of the resin composition is weighed into an aluminum cup and left in a dryer set at a temperature of 180 ° C. for 1 hour, and the measurement before heating. Based on the quantity, the following formula is used.
Formula: Mass reduction rate (%) = {(measured amount before heating−measured amount after leaving) / measured amount before heating} × 100
 なお、樹脂組成物における上記質量減少率が5質量%以下であることは、樹脂組成物に含まれる成分のうち、180℃で揮発する揮発分(例えば溶媒)が、樹脂組成物全体に対して5質量%以下であることを意味する。
 樹脂組成物における質量減少率が5質量%以下であることにより、樹脂組成物を硬化させて封止材料とする過程におけるボイドの発生が抑制される。前記ボイド抑制の観点から、樹脂組成物における質量減少率は、3質量%以下であることが好ましく、1質量%以下であることがさらに好ましい。
 以下、樹脂組成物の各成分について説明するが、本開示の樹脂組成物はこれらに限定されるものではない。
In addition, the said mass decreasing rate in a resin composition is 5 mass% or less means that the volatile matter (for example, solvent) which volatilizes at 180 degreeC among the components contained in a resin composition is with respect to the whole resin composition. It means 5 mass% or less.
Generation | occurrence | production of the void in the process in which a resin composition is hardened and it is set as a sealing material is suppressed because the mass decreasing rate in a resin composition is 5 mass% or less. From the viewpoint of suppressing the voids, the mass reduction rate in the resin composition is preferably 3% by mass or less, and more preferably 1% by mass or less.
Hereinafter, although each component of a resin composition is demonstrated, the resin composition of this indication is not limited to these.
<ポリイミド化合物>
 ポリイミド化合物は、2以上のN-置換マレイミド基を有する化合物(以下「ポリマレイミド化合物」ともいう)と2以上のアミノ基を有する化合物(以下「ポリアミノ化合物」ともいう)とを少なくとも共重合してなるものである。つまり、ポリイミド化合物は、ポリマレイミド化合物とポリアミノ化合物とを含有する組成物を重合させた重合体である。ポリマレイミド化合物とポリアミノ化合物とを含有する組成物を「モノマー組成物」と称する場合がある。
 以下、モノマー組成物に含有される各成分について説明する。
<Polyimide compound>
The polyimide compound is obtained by copolymerizing at least a compound having two or more N-substituted maleimide groups (hereinafter also referred to as “polymaleimide compound”) and a compound having two or more amino groups (hereinafter also referred to as “polyamino compound”). It will be. That is, the polyimide compound is a polymer obtained by polymerizing a composition containing a polymaleimide compound and a polyamino compound. A composition containing a polymaleimide compound and a polyamino compound may be referred to as a “monomer composition”.
Hereinafter, each component contained in the monomer composition will be described.
-ポリマレイミド化合物-
 ポリマレイミド化合物は、2以上のN-置換マレイミド基を有する化合物であれば限定されず、2つのN-置換マレイミド基を有する化合物であってもよく、3以上のN-置換マレイミド基を有する化合物であってもよい。入手容易性の観点から、ポリマレイミド化合物は、2つのN-置換マレイミド基を有する化合物であることが好ましい。
-Polymaleimide compounds-
The polymaleimide compound is not limited as long as it is a compound having two or more N-substituted maleimide groups, and may be a compound having two N-substituted maleimide groups, or a compound having three or more N-substituted maleimide groups It may be. From the viewpoint of availability, the polymaleimide compound is preferably a compound having two N-substituted maleimide groups.
 ポリマレイミド化合物の具体例としては、例えば、ビス(4-マレイミドフェニル)メタン、ビス(3-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、1,2-ビスマレイミドエタン、1,6-ビスマレイミドヘキサン、1,12-ビスマレイミドドデカン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、1,6-ビスマレイミド-(2,4,4-トリメチル)ヘキサンが挙げられる。 Specific examples of the polymaleimide compound include, for example, bis (4-maleimidophenyl) methane, bis (3-maleimidophenyl) methane, polyphenylmethanemaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) Sulfone, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, 2 , 2-bis [4- (4-maleimidophenoxy) phenyl] propane, 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, 1,12-bismaleimide dodecane, 1,6-bismaleimide- (2 , 2,4-Trimethyl) hexane, 1,6-bismaleimide (2,4,4-trimethyl) hexane and the like.
 これらの中でも、安価である点から好ましいポリマレイミド化合物としては、例えば、ビス(4-マレイミドフェニル)メタンが挙げられる。また、誘電特性に優れ低吸湿性である点から好ましいポリマレイミド化合物としては、例えば、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドが挙げられる。また、導体との高接着性、伸び及び破断強度等の機械特性に優れる点から好ましいポリマレイミド化合物としては、例えば、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが挙げられる。 Among these, a preferable polymaleimide compound from the viewpoint of low cost includes, for example, bis (4-maleimidophenyl) methane. A preferred polymaleimide compound having excellent dielectric properties and low hygroscopicity is, for example, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide. A preferred polymaleimide compound is, for example, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, from the viewpoint of excellent mechanical properties such as high adhesion to a conductor, elongation, and breaking strength. .
 これらのポリマレイミド化合物は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
 2種類以上のポリマレイミド化合物を併用する形態としては、例えば、脂肪族ポリマレイミド化合物と芳香族ポリマレイミド化合物とを併用する形態が挙げられる。
 脂肪族ポリマレイミド化合物は、芳香環を有さないポリマレイミド化合物であり、その中でも、アルキレン基を有するポリマレイミド化合物が好ましく、炭素数3以上12以下のアルキレン基を有するポリマレイミド化合物がより好ましく、炭素数3以上12以下の分岐状アルキレン基を有するポリマレイミド化合物がさらに好ましい。
 芳香族ポリマレイミド化合物は、芳香環を有するポリマレイミド化合物であり、その中でも、フェニレン基を有するポリマレイミド化合物が好ましく、2以上のフェニレン基を有するポリマレイミド化合物がより好ましく、3以上のフェニレン基を有するポリマレイミド化合物がさらに好ましい。
 ポリマレイミド化合物として脂肪族ポリマレイミド化合物と芳香族ポリマレイミド化合物とを併用する場合、ポリマレイミド化合物全体のN-置換マレイミド基数に対する脂肪族ポリマレイミド化合物のN-置換マレイミド基数の割合は、例えば10%~50%が挙げられ、20%~40%が好ましい。
These polymaleimide compounds may be used alone or in combination of two or more.
As a form which uses together 2 or more types of polymaleimide compounds, the form which uses together an aliphatic polymaleimide compound and an aromatic polymaleimide compound is mentioned, for example.
The aliphatic polymaleimide compound is a polymaleimide compound having no aromatic ring. Among them, a polymaleimide compound having an alkylene group is preferable, and a polymaleimide compound having an alkylene group having 3 to 12 carbon atoms is more preferable. A polymaleimide compound having a branched alkylene group having 3 to 12 carbon atoms is more preferable.
The aromatic polymaleimide compound is a polymaleimide compound having an aromatic ring. Among them, a polymaleimide compound having a phenylene group is preferable, a polymaleimide compound having two or more phenylene groups is more preferable, and three or more phenylene groups are present. More preferred are polymaleimide compounds.
When an aliphatic polymaleimide compound and an aromatic polymaleimide compound are used in combination as the polymaleimide compound, the ratio of the number of N-substituted maleimide groups in the aliphatic polymaleimide compound to the number of N-substituted maleimide groups in the entire polymaleimide compound is, for example, 10%. Up to 50%, preferably 20% to 40%.
-ポリアミノ化合物-
 ポリアミノ化合物は、2以上のアミノ基を有する化合物であれば限定されず、2つのアミノ基を有する化合物であってもよく、3以上のアミノ基を有する化合物であってもよい。入手容易性の観点から、ポリアミノ化合物は、2つのアミノ基を有する化合物であることが好ましい。
-Polyamino compounds-
The polyamino compound is not limited as long as it is a compound having two or more amino groups, and may be a compound having two amino groups or a compound having three or more amino groups. From the viewpoint of availability, the polyamino compound is preferably a compound having two amino groups.
 ポリアミノ化合物の具体例としては、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-ジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス[1-(4-(4-アミノフェノキシ)フェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-(4-アミノフェノキシ)フェニル)-1-メチルエチル]ベンゼン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、3,3’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレンが挙げられる。 Specific examples of the polyamino compound include, for example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyl-diphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ketone, 4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3, 3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanediamine, 2,2-bis (4-a Nophenyl) propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1, 4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 1,3-bis [1- (4- (4-aminophenoxy) phenyl) -1-methylethyl] Benzene, 1,4-bis [1- (4- (4-aminophenoxy) phenyl) -1-methylethyl] benzene, 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 3,3'-[1,3-phenylenebis (1-methylethylidene)] bisaniline Emissions, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) include fluorene.
 これらの中でも、有機溶媒への溶解性、合成時の反応性、及び耐熱性に優れる点から好ましいポリアミン化合物としては、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-ジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、及び4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが挙げられる。また、誘電特性及び低吸水性に優れる点から好ましいポリアミン化合物としては、例えば3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンジアミンが挙げられる。また、導体との高接着性並びに伸び及び破断強度等の機械特性に優れる点から好ましいポリアミン化合物としては、例えば、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが挙げられる。また、有機溶媒への溶解性、合成時の反応性、耐熱性、及び導体との高接着性に優れることに加えて、優れた高周波特性及び低吸湿性を発現できる点から好ましいポリアミン化合物としては、例えば、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリンが挙げられる。
 これらのポリアミン化合物は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
Among these, preferred polyamine compounds from the viewpoint of excellent solubility in organic solvents, reactivity during synthesis, and heat resistance include, for example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3. '-Dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-[1,3- And phenylenebis (1-methylethylidene)] bisaniline and 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline. A preferred polyamine compound from the viewpoint of excellent dielectric properties and low water absorption is, for example, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanediamine. A preferred polyamine compound is, for example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, from the viewpoint of high adhesion to a conductor and excellent mechanical properties such as elongation and breaking strength. In addition to being excellent in solubility in organic solvents, reactivity during synthesis, heat resistance, and high adhesion to conductors, as a preferred polyamine compound from the standpoint of exhibiting excellent high-frequency characteristics and low hygroscopicity Examples thereof include 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline and 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline.
These polyamine compounds may be used alone or in combination of two or more.
-他の成分-
--2以上のエチレン性不飽和二重結合を含む基を有する化合物--
 モノマー組成物は、ポリマレイミド化合物及びポリアミノ化合物のほかに、他の成分として、2以上のエチレン性不飽和二重結合を含む基を有する化合物(以下「エチレン性化合物」ともいう)を含有してもよい。モノマー組成物にエチレン性化合物を含有させることで、ポリイミド化合物の重合度等を調整しやすくなる。
 エチレン性不飽和二重結合を含む基としては、例えば、ビニル基、アリル基、ビニルオキシ基、アリルオキシ基、アクリロイル基、メタクリロイル基が挙げられる。エチレン性化合物は、エチレン性不飽和二重結合を含む基を、1分子中に1種のみ有してもよく、2種以上有してもよい。
 エチレン性化合物は、エチレン性不飽和二重結合を含む基のほかに、さらに他の基を有してもよい。他の基としては、例えば、アミノ基、エーテル基、スルフィド基等が挙げられる。
 エチレン性化合物の具体例としては、例えば、ジアリルアミン、ジアリルエーテル、ジアリルスフィド、トリアリルイソシアヌレート等が挙げられる。
 モノマー組成物がエチレン性化合物を含有する場合、モノマー組成物中におけるポリマレイミド化合物のN-置換マレイミド基数(Ta1)に対する、モノマー組成物中におけるエチレン性化合物のエチレン性不飽和二重結合数(Ta3)の当量比(Ta3/Ta1)としては、例えば、0.05~0.2の範囲が挙げられる。
-Other ingredients-
--2 Compounds having groups containing at least ethylenically unsaturated double bonds--
In addition to the polymaleimide compound and the polyamino compound, the monomer composition contains a compound having a group containing two or more ethylenically unsaturated double bonds (hereinafter also referred to as “ethylenic compound”) as another component. Also good. By including an ethylenic compound in the monomer composition, it is easy to adjust the degree of polymerization of the polyimide compound.
Examples of the group containing an ethylenically unsaturated double bond include a vinyl group, an allyl group, a vinyloxy group, an allyloxy group, an acryloyl group, and a methacryloyl group. The ethylenic compound may have only one kind or two or more kinds of groups containing an ethylenically unsaturated double bond in one molecule.
The ethylenic compound may have another group in addition to the group containing an ethylenically unsaturated double bond. Examples of other groups include an amino group, an ether group, and a sulfide group.
Specific examples of the ethylenic compound include diallylamine, diallyl ether, diallyl sulfide, triallyl isocyanurate and the like.
When the monomer composition contains an ethylenic compound, the number of ethylenically unsaturated double bonds (Ta3) of the ethylenic compound in the monomer composition relative to the number of N-substituted maleimide groups (Ta1) of the polymaleimide compound in the monomer composition ) Equivalent ratio (Ta3 / Ta1) is, for example, in the range of 0.05 to 0.2.
--溶媒--
 モノマー組成物は、他の成分として溶媒を含有してもよい。溶媒としては、例えば有機溶媒が挙げられる。また、有機溶媒は特に限定されず、具体的には、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、メシチレン等の芳香族炭化水素類、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の含窒素類などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。これら有機溶媒は、溶解性の観点から、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが好ましい。
--solvent--
The monomer composition may contain a solvent as another component. Examples of the solvent include organic solvents. Further, the organic solvent is not particularly limited, and specifically, alcohols such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like. , Aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl And nitrogen-containing compounds such as -2-pyrrolidone. These may be used alone or in combination of two or more. These organic solvents are preferably methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide, and N, N-dimethylacetamide from the viewpoint of solubility.
--反応触媒--
 モノマー組成物は、他の成分として、ポリマレイミド化合物とポリアミノ化合物との反応を促進させる反応触媒を含有してもよい。
 反応触媒としては、特に制限されるものではなく、例えば、p-トルエンスルホン酸等の酸性触媒、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは1種を単独で用いても、2種類以上を混合して用いてもよい。また、ポリマレイミド化合物及びポリアミノ化合物の合計量100質量部に対する反応触媒の含有量は特に限定されず、例えば、0.01質量部~5.0質量部の範囲が挙げられる。
--Reaction catalyst--
The monomer composition may contain, as another component, a reaction catalyst that promotes the reaction between the polymaleimide compound and the polyamino compound.
The reaction catalyst is not particularly limited, and examples thereof include acidic catalysts such as p-toluenesulfonic acid, amines such as triethylamine, pyridine and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and triphenylphosphine. And phosphorus-based catalysts. These may be used alone or in combination of two or more. Further, the content of the reaction catalyst with respect to 100 parts by mass of the total amount of the polymaleimide compound and the polyamino compound is not particularly limited, and examples thereof include a range of 0.01 parts by mass to 5.0 parts by mass.
-配合量-
 モノマー組成物中におけるポリマレイミド化合物とポリアミノ化合物との当量比、すなわち、モノマー組成物中におけるポリアミノ化合物のアミノ基数(Ta2)に対する、モノマー組成物中におけるポリマレイミド化合物のN-置換マレイミド基数(Ta1)の当量比(Ta1/Ta2)を、1.0~10.0の範囲とすることが好ましく、2.0~10.0の範囲で配合することがより好ましい。当量比が上記範囲内となるようにポリマレイミド化合物とポリアミノ化合物とを配合することにより、高周波特性、耐熱性、難燃性、及びガラス転移温度がより良好な樹脂組成物が得られる。
-Blending amount-
Equivalent ratio of polymaleimide compound and polyamino compound in the monomer composition, that is, the number of N-substituted maleimide groups (Ta1) of the polymaleimide compound in the monomer composition relative to the number of amino groups (Ta2) of the polyamino compound in the monomer composition The equivalent ratio (Ta1 / Ta2) is preferably in the range of 1.0 to 10.0, and more preferably in the range of 2.0 to 10.0. By blending the polymaleimide compound and the polyamino compound so that the equivalent ratio falls within the above range, a resin composition with better high-frequency characteristics, heat resistance, flame retardancy, and glass transition temperature can be obtained.
-重合方法-
 モノマー組成物の重合方法は、例えば、モノマー組成物を合成釜に仕込み、モノマー組成物中のポリマレイミド化合物とポリアミノ化合物とをマイケル付加反応させることによりポリイミド化合物が得られる。
 上記重合の条件は特に限定されるものではなく、例えば、反応温度50℃~160℃、反応時間1時間~10時間の範囲で行うことが反応速度等の作業性及びゲル化抑制等の観点から好ましい。また、重合の過程で、溶媒の追加又はモノマー組成物の濃縮により、モノマー組成物の固形分濃度及び溶液粘度を調整してもよい。
-Polymerization method-
As a method for polymerizing the monomer composition, for example, a polyimide compound is obtained by charging the monomer composition into a synthesis kettle and subjecting the polymaleimide compound and the polyamino compound in the monomer composition to a Michael addition reaction.
The polymerization conditions are not particularly limited. For example, the reaction temperature is 50 ° C. to 160 ° C. and the reaction time is 1 hour to 10 hours from the viewpoint of workability such as reaction rate and suppression of gelation. preferable. In the course of polymerization, the solid content concentration and the solution viscosity of the monomer composition may be adjusted by adding a solvent or concentrating the monomer composition.
 モノマー組成物の固形分濃度は、特に制限はなく、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましい。ここで、「固形分」とは、溶媒を除いた成分をいう。モノマー組成物の固形分濃度が10質量%以上の場合、重合反応速度が遅くなりすぎず、ポリイミド化合物の製造コストの面で有利である。また、モノマー組成物の固形分濃度が90質量%以下の場合、固形分の良好な溶解性が得られ、重合の過程における攪拌効率が良く、ゲル化することも少ない。
 なお、ポリイミド化合物の製造後に、目的に合わせて溶媒の一部又は全部を除去して濃縮してもよく、溶媒を追加して希釈してもよい。追加で使用される溶媒としては、モノマー組成物に含まれる溶媒として例示した有機溶媒が適用できる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。またこれらの中でも、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが溶解性の観点から好ましい。
The solid content concentration of the monomer composition is not particularly limited, and is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass. Here, the “solid content” means a component excluding the solvent. When the solid content concentration of the monomer composition is 10% by mass or more, the polymerization reaction rate does not become too slow, which is advantageous in terms of the production cost of the polyimide compound. Moreover, when the solid content concentration of the monomer composition is 90% by mass or less, good solubility of the solid content is obtained, the stirring efficiency in the process of polymerization is good, and gelation is less likely.
In addition, after manufacture of a polyimide compound, it may concentrate by removing a part or all of a solvent according to the objective, and may add and dilute a solvent. As the solvent used additionally, the organic solvent exemplified as the solvent contained in the monomer composition can be applied. These may be used alone or in combination of two or more. Among these, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable from the viewpoint of solubility.
 モノマー組成物の重合体として得られるポリイミド化合物の重量平均分子量は、特に限定されるものではなく、例えば、800~1500の範囲であってもよく、800~1300の範囲であってもよく、800~1100の範囲であってもよい。
 ポリイミド化合物の重量平均分子量は、下記実施例に記載のゲルパーミエーションクロマトグラフィー(GPC)により、求めることができる。
The weight average molecular weight of the polyimide compound obtained as the polymer of the monomer composition is not particularly limited, and may be, for example, in the range of 800-1500, in the range of 800-1300, 800 It may be in the range of ~ 1100.
The weight average molecular weight of a polyimide compound can be calculated | required by the gel permeation chromatography (GPC) as described in the following Example.
 上記のようにして得られるポリイミド化合物は、前記ポリマレイミド化合物と前記ポリアミノ化合物とがマイケル付加反応してなる化合物であり、少なくとも前記ポリマレイミド化合物由来の構造単位(以下、「構造単位(a1)」ともいう)と、前記ポリアミノ化合物由来の構造単位(以下、「構造単位(a2)」ともいう)と、を含むものである。
 構造単位(a1)としては、例えば、下記一般式(1-1)で表される構造単位、下記一般式(1-2)で表される構造単位が挙げられ、構造単位(a2)としては、例えば、下記一般式(2-1)で表される構造単位、下記一般式(2-2)で表される構造単位が挙げられる。
The polyimide compound obtained as described above is a compound obtained by Michael addition reaction between the polymaleimide compound and the polyamino compound, and at least a structural unit derived from the polymaleimide compound (hereinafter referred to as “structural unit (a1)”). And a structural unit derived from the polyamino compound (hereinafter also referred to as “structural unit (a2)”).
Examples of the structural unit (a1) include a structural unit represented by the following general formula (1-1) and a structural unit represented by the following general formula (1-2). As the structural unit (a2), Examples thereof include a structural unit represented by the following general formula (2-1) and a structural unit represented by the following general formula (2-2).
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 一般式(1-1)および(1-2)中、Aは、前記ポリマレイミド化合物の残基を示し、一般式(2-1)及び(2-2)中、Bは、前記ポリアミノ化合物の残基を示す。すなわち、Aの好ましい構造は、前記ポリマレイミド化合物として例示した好ましい化合物に由来する構造であり、Bの好ましい構造は、前記ポリアミノ化合物として例示した好ましい化合物に由来する構造である。
 また、一般式(1-2)及び(2-2)中、*は結合部を示す。
 なお残基とは、重合前の化合物(すなわち、ポリマレイミド化合物又はポリアミノ化合物)から結合に供された官能基を除いた部分をいう。
In the general formulas (1-1) and (1-2), A represents a residue of the polymaleimide compound. In the general formulas (2-1) and (2-2), B represents the polyamino compound. Indicates residue. That is, a preferable structure of A is a structure derived from a preferable compound exemplified as the polymaleimide compound, and a preferable structure of B is a structure derived from a preferable compound exemplified as the polyamino compound.
In general formulas (1-2) and (2-2), * represents a bond.
In addition, a residue means the part remove | excluding the functional group used for the coupling | bonding from the compound (namely, polymaleimide compound or polyamino compound) before superposition | polymerization.
 ポリイミド化合物中における構造単位(a1)と構造単位(a2)との含有比率は、前記モノマー組成物におけるポリマレイミド化合物とポリアミノ化合物との含有比率と同様である。すなわち、ポリイミド化合物中における、ポリアミノ化合物に由来するアミノ基及びポリアミノ化合物のアミノ基がマイケル付加してなる基の合計数(Ta2’)と、ポリマレイミド化合物に由来するマレイミド基及びポリマレイミド化合物のマレイミド基がマイケル付加してなる基の合計数(Ta1’)と、の当量比(Ta1’/Ta2’)が、1.0~10.0の範囲であってもよく、2.0~10.0の範囲であってもよい。当量比(Ta1’/Ta2’)を上記範囲内とすることにより、高周波特性、耐熱性、難燃性、及びガラス転移温度が良好な樹脂組成物が得られる傾向にある。 The content ratio of the structural unit (a1) and the structural unit (a2) in the polyimide compound is the same as the content ratio of the polymaleimide compound and the polyamino compound in the monomer composition. That is, in the polyimide compound, the total number (Ta2 ′) of groups obtained by Michael addition of the amino group derived from the polyamino compound and the amino group of the polyamino compound, the maleimide group derived from the polymaleimide compound, and the maleimide of the polymaleimide compound The equivalent ratio (Ta1 ′ / Ta2 ′) of the total number (Ta1 ′) of groups formed by Michael addition of the group may be in the range of 1.0 to 10.0, or 2.0 to 10. It may be in the range of 0. By setting the equivalent ratio (Ta1 '/ Ta2') within the above range, a resin composition having good high-frequency characteristics, heat resistance, flame retardancy, and glass transition temperature tends to be obtained.
 ポリイミド化合物中における、構造単位(a1)及び構造単位(a2)の合計含有量は、60質量%~100質量%であってもよく、80質量%~100質量%であってもよく、90質量%~100質量%であってもよい。構造単位(a1)及び構造単位(a2)の合計含有量を上記範囲内とすることにより、高周波特性、耐熱性、難燃性、及びガラス転移温度が良好な樹脂組成物が得られる傾向にある。 The total content of the structural unit (a1) and the structural unit (a2) in the polyimide compound may be 60% by mass to 100% by mass, 80% by mass to 100% by mass, or 90% by mass. % To 100% by mass. By setting the total content of the structural unit (a1) and the structural unit (a2) within the above range, a resin composition having good high-frequency characteristics, heat resistance, flame retardancy, and glass transition temperature tends to be obtained. .
 ポリイミド化合物は、有機溶媒への溶解性、高周波特性、導体との高密着性、及び混練時の取扱い性の観点から、下記一般式(3)で表されるポリアミノビスマレイミド化合物を含むことが好ましい。 The polyimide compound preferably contains a polyaminobismaleimide compound represented by the following general formula (3) from the viewpoints of solubility in an organic solvent, high-frequency characteristics, high adhesion with a conductor, and handleability during kneading. .
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 一般式(3)中、Aは下記一般式(4)、(5)、(6)、又は(7)で表される残基であり、Aは下記一般式(8)で表される残基である。 In the general formula (3), A 3 is the following general formula (4), (5), a residue represented by (6), or (7), A 4 is represented by the following general formula (8) Residue.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(4)中、Rは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示す。 In general formula (4), each R 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 一般式(5)中、R及びRは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1~5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、単結合、又は下記一般式(5-1)で表される残基である。 In general formula (5), R 2 and R 3 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, and A 5 represents an alkylene group having 1 to 5 carbon atoms or An alkylidene group, an ether group, a sulfide group, a sulfonyl group, a carbooxy group, a ketone group, a single bond, or a residue represented by the following general formula (5-1).
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 一般式(5-1)中、R及びRは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。 In general formula (5-1), R 4 and R 5 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, and A 6 represents an alkylene having 1 to 5 carbon atoms. Group, isopropylidene group, ether group, sulfide group, sulfonyl group, carbooxy group, ketone group, or single bond.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 一般式(6)中、iは1~10の整数である。 In the general formula (6), i is an integer of 1 to 10.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 一般式(7)中、R及びRは各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基を示し、jは1~8の整数である。 In general formula (7), R 6 and R 7 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8.
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 一般式(8)中、R及びRは各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基、又はハロゲン原子を示し、Aは炭素数1~5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、フルオレニレン基、単結合、下記一般式(8-1)、又は下記一般式(8-2)で表される残基である。 In the general formula (8), R 8 and R 9 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom; 7 represents an alkylene group or alkylidene group having 1 to 5 carbon atoms, ether group, sulfide group, sulfonyl group, carbooxy group, ketone group, fluorenylene group, single bond, the following general formula (8-1), or the following general formula (8 -2).
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 一般式(8-1)中、R10及びR11は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1~5のアルキレン基、イソプロピリデン基、m-又はp-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。 In general formula (8-1), R 10 and R 11 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, and A 8 represents an alkylene having 1 to 5 carbon atoms. Group, isopropylidene group, m- or p-phenylene diisopropylidene group, ether group, sulfide group, sulfonyl group, carbooxy group, ketone group, or single bond.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 一般式(8-2)中、R12は各々独立に、水素原子、炭素数1~5の脂肪族炭化水素基、又はハロゲン原子を示し、A及びA10は炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。 In general formula (8-2), each R 12 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, and A 9 and A 10 are alkylene having 1 to 5 carbon atoms. Group, isopropylidene group, ether group, sulfide group, sulfonyl group, carbooxy group, ketone group, or single bond.
<無機充填材>
 無機充填材は、一般に封止用成形材料に用いられるものであってもよく、特に限定されるものではない。無機充填材として、具体的には、シリカ(例えば、球状シリカ、結晶シリカ)、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機物質の粉未、これらの無機物質を球形化したビーズなどが挙げられる。難燃効果を有する無機充填剤を用いてもよい。難燃効果のある無機充填剤としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。中でも、線膨張係数の低減の観点からはシリカが好ましく、その中でも球状シリカがより好ましい。また、高熱伝導性の観点からはアルミナが好ましい。これらの無機充填剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
<Inorganic filler>
The inorganic filler may be generally used for a molding material for sealing, and is not particularly limited. Specific examples of the inorganic filler include silica (eg, spherical silica, crystalline silica), glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, and zircon. And non-powder of inorganic substances such as fosterite, steatite, spinel, mullite, titania, talc, clay and mica, and beads formed by spheroidizing these inorganic substances. An inorganic filler having a flame retardant effect may be used. Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, zinc borate and the like. Among these, silica is preferable from the viewpoint of reducing the linear expansion coefficient, and spherical silica is more preferable among them. Alumina is preferred from the viewpoint of high thermal conductivity. These inorganic fillers may be used alone or in combination of two or more.
 無機充填材の含有率は、樹脂組成物の総量中60体積%~95体積%であり、60体積%~90体積%であることが好ましく、65体積%~85体積%であることが更に好ましい。無機充填材の含有率が60体積%以上であると、樹脂組成物の硬化物における熱膨張係数、熱伝導率、及び弾性率等の特性がより向上する傾向がある。無機充填材の含有率が95体積%以下であると、樹脂組成物の粘度上昇が抑制され、流動性がより向上して成形性がより良好になる傾向がある。 The content of the inorganic filler is 60 volume% to 95 volume% in the total amount of the resin composition, preferably 60 volume% to 90 volume%, and more preferably 65 volume% to 85 volume%. . When the content of the inorganic filler is 60% by volume or more, characteristics such as thermal expansion coefficient, thermal conductivity, and elastic modulus in the cured product of the resin composition tend to be further improved. When the content of the inorganic filler is 95% by volume or less, an increase in the viscosity of the resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better.
 無機充填材の体積平均粒子径は、0.1μm~80μmが好ましく、0.3μm~50μmがより好ましい。無機充填材の体積平均粒子径が0.1μm以上であると、樹脂組成物の粘度上昇が抑えられやすく、無機充填材の体積平均粒子径が80μm以下であると、樹脂組成物と無機充填材との混合性が向上し、硬化によって得られる樹脂組成物の硬化物が均質化する傾向があり、前記硬化物における特性のばらつきが抑えられるとともに、狭い領域への充填性が向上する傾向がある。
 上記体積平均粒子径は、乾式の粒度分布測定装置により測定してもよく、水又は有機溶媒中に無機充填材を分散したスラリーを用いて湿式の粒度分布測定装置により測定してもよい。
The volume average particle diameter of the inorganic filler is preferably 0.1 μm to 80 μm, and more preferably 0.3 μm to 50 μm. When the volume average particle diameter of the inorganic filler is 0.1 μm or more, an increase in viscosity of the resin composition is easily suppressed, and when the volume average particle diameter of the inorganic filler is 80 μm or less, the resin composition and the inorganic filler And the cured product of the resin composition obtained by curing tends to be homogenized, variation in characteristics of the cured product is suppressed, and the filling property to a narrow region tends to be improved. .
The volume average particle size may be measured by a dry particle size distribution measuring device, or may be measured by a wet particle size distribution measuring device using a slurry in which an inorganic filler is dispersed in water or an organic solvent.
 なお、樹脂組成物の流動性の観点からは、無機充填材の粒子形状は角形より球形が好ましく、かつ、無機充填材の粒度分布は広範囲に分布していることが好ましい。具体的には、例えば、無機充填材の含有率が樹脂組成物全体に対し75体積%以上である場合、そのうち70体積%以上を球状粒子とし、その球状粒子の粒子径は0.1μm~80μmという広範囲に分布していることが好ましい。このような無機充填剤は最密充填構造をとりやすいため配合量を増加させても材料の粘度上昇が少なく、流動性に優れた樹脂組成物を得ることができる。 In addition, from the viewpoint of the fluidity of the resin composition, the particle shape of the inorganic filler is preferably spherical rather than square, and the particle size distribution of the inorganic filler is preferably distributed over a wide range. Specifically, for example, when the content of the inorganic filler is 75% by volume or more with respect to the entire resin composition, 70% by volume or more of them is formed as spherical particles, and the particle diameter of the spherical particles is 0.1 μm to 80 μm. It is preferable to be distributed over a wide range. Since such inorganic fillers are likely to have a close-packed structure, even if the blending amount is increased, there is little increase in the viscosity of the material, and a resin composition excellent in fluidity can be obtained.
<硬化開始剤>
 硬化開始剤としては、熱により遊離ラジカルを発生させるラジカル重合開始剤等が挙げられ、具体的には、無機過酸化物、有機過酸化物、アゾ化合物等が挙げられる。
 無機過酸化物としては、過硫酸カリウム(ペルオキソ硫酸二カリウム)、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
 有機過酸化物としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド、α、α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド等のジアシルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ2-エチルヘキサノネート等のパーオキシエステルなどが挙げられる。
 アゾ化合物としては、アゾビスイソブチロニトリル、アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサノン-1-カルボニトリル、アゾジベンゾイル等が挙げられる。
<Curing initiator>
Examples of the curing initiator include radical polymerization initiators that generate free radicals by heat, and specific examples include inorganic peroxides, organic peroxides, and azo compounds.
Examples of inorganic peroxides include potassium persulfate (dipotassium peroxosulfate), sodium persulfate, and ammonium persulfate.
Examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (4,4-di (t-butylperoxide). Peroxyketals such as oxy) cyclohexyl) propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide Hydroperoxide such as α, α'-di (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcum Luperoxide, di- Dialkyl peroxides such as hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t-butyl peroxide, dibenzoyl peroxide, di (4- Diacyl peroxides such as methylbenzoyl) peroxide, peroxydicarbonates such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane And peroxyesters such as t-hexylperoxybenzoate, t-butylperoxybenzoate, and t-butylperoxy-2-ethylhexanoate.
Examples of the azo compound include azobisisobutyronitrile, azobis-4-methoxy-2,4-dimethylvaleronitrile, azobiscyclohexanone-1-carbonitrile, azodibenzoyl, and the like.
 硬化開始剤の含有量は、ポリイミド化合物100質量部に対して0.1質量部~8.0質量部が好ましく、硬化性の観点から0.5質量部~6.0質量部がより好ましい。硬化開始剤の含有量が8.0質量部以下であると、揮発分が発生しにくく硬化中のボイドの発生がより抑制される傾向にある。また、硬化開始剤の含有量を1質量部以上とすることで、硬化性がより良好となる傾向にある。 The content of the curing initiator is preferably 0.1 parts by mass to 8.0 parts by mass with respect to 100 parts by mass of the polyimide compound, and more preferably 0.5 parts by mass to 6.0 parts by mass from the viewpoint of curability. When the content of the curing initiator is 8.0 parts by mass or less, volatile components are hardly generated and the generation of voids during curing tends to be further suppressed. Moreover, it exists in the tendency for sclerosis | hardenability to become more favorable because content of a hardening initiator shall be 1 mass part or more.
<硬化促進剤>
 樹脂組成物は、必要に応じてさらに硬化促進剤を含んでもよい。
 硬化促進剤は特に限定されず、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7、1,5-ジアザビシクロ(4,3,0)-ノネン、5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール類及びこれらの誘導体(例えば、イミダゾール-イソシアネート付加物)、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、トリフェニルホスフィンとベンゾキノンの付加物、トリパラトリルホスフィンとベンゾキノンの付加物、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7,2-フェニル-4-メチル-イミダゾール、トリフェニルホスホニウム-トリフェニルボランなどが挙げられる。硬化促進剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Curing accelerator>
The resin composition may further contain a curing accelerator as necessary.
The curing accelerator is not particularly limited, and 1,8-diazabicyclo (5,4,0) -undecene-7, 1,5-diazabicyclo (4,3,0) -nonene, 5,6-dibutylamino-1, Tertiary amines such as 8-diazabicyclo (5,4,0) -undecene-7, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, 2-methylimidazole, Imidazoles such as 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole and their derivatives (eg, imidazole-isocyanate adducts), tributylphosphine, methyldiphenylphosphine, triphenylphosphine , Diphenylphosphine, phenylphos Organic phosphines such as fins and phosphorus compounds with intramolecular polarization formed by adding compounds having π bonds such as maleic anhydride, benzoquinone, diazophenylmethane to these phosphines, tetraphenylphosphonium tetraphenylborate, triphenyl Phosphine tetraphenylborate, 2-ethyl-4-methylimidazoletetraphenylborate, adduct of triphenylphosphine and benzoquinone, adduct of triparatolylphosphine and benzoquinone, 1,8-diazabicyclo (5,4,0) -undecene Examples include 7,2-phenyl-4-methyl-imidazole and triphenylphosphonium-triphenylborane. A hardening accelerator may be used independently and may be used in combination of 2 or more type.
 樹脂組成物が硬化促進剤を含む場合、その含有量は特に制限されず、ポリイミド化合物100質量部に対して0.1質量部~8.0質量部であることが好ましく、0.5質量部~6.0質量部であることがより好ましい。 When the resin composition contains a curing accelerator, the content is not particularly limited, and is preferably 0.1 part by mass to 8.0 parts by mass with respect to 100 parts by mass of the polyimide compound, and 0.5 parts by mass More preferably, it is ˜6.0 parts by mass.
<各種添加剤>
 樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、応力緩和剤、難燃剤、着色剤等の各種添加剤を更に含有してもよい。なお、樹脂組成物は、以下に例示する添加剤以外にも、必要に応じて当技術分野で周知の各種添加剤を含有してもよい。
<Various additives>
In addition to the above-mentioned components, the resin composition may further contain various additives such as coupling agents, ion exchangers, mold release agents, stress relaxation agents, flame retardants, and colorants exemplified below. In addition to the additives exemplified below, the resin composition may contain various additives well known in the art as needed.
-カップリング剤-
 樹脂組成物は、樹脂成分と無機充填材との接着性を高めるために、必要に応じてカップリング剤を含有してもよい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、酸無水物等の各種シラン系化合物;チタン系化合物;アルミニウムキレート化合物;アルミニウム/ジルコニウム系化合物;などの公知のカップリング剤が挙げられる。
-Coupling agent-
The resin composition may contain a coupling agent as necessary in order to enhance the adhesion between the resin component and the inorganic filler. As the coupling agent, various known silane compounds such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, vinyl silane, acid anhydride; titanium compound; aluminum chelate compound; aluminum / zirconium compound; A coupling agent is mentioned.
 樹脂組成物がカップリング剤を含有する場合、樹脂組成物中のカップリング剤の含有率は、無機充填材に対して0.05質量%~5質量%であることが好ましく、0.1質量%~2.5質量%がより好ましい。前記含有率が0.05質量%以上であると、樹脂成分と無機充填剤との接着性がより向上する傾向があり、5質量%以下であると、パッケージの成形性がより向上する傾向がある。 When the resin composition contains a coupling agent, the content of the coupling agent in the resin composition is preferably 0.05% by mass to 5% by mass with respect to the inorganic filler, and 0.1% by mass. % To 2.5% by mass is more preferable. When the content is 0.05% by mass or more, the adhesion between the resin component and the inorganic filler tends to be further improved, and when it is 5% by mass or less, the moldability of the package tends to be further improved. is there.
-イオン交換体-
 樹脂組成物は、必要に応じてイオン交換体を含有してもよい。特に、樹脂組成物は、封止される素子を備える半導体装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含有することが好ましい。イオン交換体としては特に制限はなく、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム、及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。これらのイオン交換体は、1種を単独で、又は2種以上を組み合わせて用いることができる。中でも、下記一般式(A)で示されるハイドロタルサイトが好ましい。
Mg1-XAl(OH)(COX/2・mHO …… (A)
 (0<X≦0.5、mは正の数)
-Ion exchanger-
The resin composition may contain an ion exchanger as necessary. In particular, the resin composition preferably contains an ion exchanger from the viewpoint of improving moisture resistance and high temperature storage characteristics of a semiconductor device including an element to be sealed. There is no restriction | limiting in particular as an ion exchanger, A conventionally well-known thing can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium, and bismuth. These ion exchangers can be used singly or in combination of two or more. Especially, the hydrotalcite shown by the following general formula (A) is preferable.
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (A)
(0 <X ≦ 0.5, m is a positive number)
 樹脂組成物がイオン交換体を含有する場合、その含有率は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。イオン交換体の含有率は、ポリイミド化合物に対して0.1質量%~30質量%であることが好ましく、1質量%~5質量%であることがより好ましい。 When the resin composition contains an ion exchanger, the content is not particularly limited as long as it is an amount sufficient to trap ions such as halogen ions. The content of the ion exchanger is preferably 0.1% by mass to 30% by mass and more preferably 1% by mass to 5% by mass with respect to the polyimide compound.
-離型剤-
 樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含有してもよい。離型剤としては特に制限はなく、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。これらの離型剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、カルナバワックスが好ましい。ポリオレフィン系ワックスとしては、市販品ではヘキスト社製のH4、PE、PEDシリーズ等の数平均分子量が500~10000程度の低分子量ポリエチレンなどが挙げられる。数平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
-Release agent-
The resin composition may contain a release agent from the viewpoint of obtaining good release properties from the mold during molding. There is no restriction | limiting in particular as a mold release agent, A conventionally well-known thing can be used. Specific examples include higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. These release agents may be used alone or in combination of two or more. Of these, carnauba wax is preferred. Examples of polyolefin waxes include low molecular weight polyethylene having a number average molecular weight of about 500 to 10,000 such as H4, PE, and PED series manufactured by Hoechst. The number average molecular weight can be measured, for example, by gel permeation chromatography (GPC).
 樹脂組成物が離型剤を含有する場合、離型剤の含有率は、ポリイミド化合物の全量に対して0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。離型剤の含有率が0.01質量%以上であると、離型性が充分に得られる傾向があり、10質量%以下であると、より良好な接着性が得られる傾向がある。 When the resin composition contains a release agent, the content of the release agent is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 5% by mass with respect to the total amount of the polyimide compound. preferable. If the content of the release agent is 0.01% by mass or more, sufficient release property tends to be obtained, and if it is 10% by mass or less, better adhesiveness tends to be obtained.
-応力緩和剤-
 樹脂組成物は、必要に応じて、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。応力緩和剤を含有させることによって、パッケージの反り変形量及びパッケージクラックを低減させることが可能である。使用可能な応力緩和剤としては、当該技術分野で一般に用いられる公知の可とう剤(応力緩和剤)を適宜選択して使用することができる。
-Stress relaxation agent-
The resin composition may contain a stress relaxation agent such as silicone oil and silicone rubber particles as necessary. By containing a stress relaxation agent, it is possible to reduce the amount of warpage deformation and package cracks of the package. As a usable stress relaxation agent, a known flexible agent (stress relaxation agent) generally used in the technical field can be appropriately selected and used.
 一般に、使用されている可とう剤としては、シリコーン、ポリスチレン、ポリオレフィン、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ポリブタジエン等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル-ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子;メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子;などが挙げられる。応力緩和剤は、1種を単独で用いても2種以上組み合わせて用いてもよい。なかでも、シリコーン系可とう剤が好ましく、シリコーン系可とう剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。 Generally, the flexible agents used are thermoplastic elastomers such as silicone, polystyrene, polyolefin, polyurethane, polyester, polyether, polyamide, polybutadiene, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic rubber. Rubber particles such as urethane rubber and silicone powder; Core-shell structure such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer And the like. A stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, silicone-based flexible agents are preferable, and examples of the silicone-based flexible agents include those having an epoxy group, those having an amino group, and those obtained by modifying these with a polyether.
-難燃剤-
 樹脂組成物は、難燃性を付与するために、必要に応じて難燃剤を含有してもよい。難燃剤の種類は特に制限されない。具体的に、難燃剤としては、ハロゲン原子、アンチモン原子、窒素原子、又はリン原子を含む公知の有機化合物又は無機化合物、金属水酸化物、アセナフチレン等が挙げられる。難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 難燃剤の含有率は、難燃効果が達成されれば特に制限はない。樹脂組成物が難燃剤を含有する場合、難燃剤の含有率は、ポリイミド化合物に対して、1質量%~30質量%が好ましく、2質量%~15質量%がより好ましい。
-Flame retardants-
The resin composition may contain a flame retardant as necessary in order to impart flame retardancy. The type of flame retardant is not particularly limited. Specifically, examples of the flame retardant include known organic or inorganic compounds containing a halogen atom, an antimony atom, a nitrogen atom, or a phosphorus atom, a metal hydroxide, and acenaphthylene. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more type.
The content of the flame retardant is not particularly limited as long as the flame retardant effect is achieved. When the resin composition contains a flame retardant, the content of the flame retardant is preferably 1% by mass to 30% by mass and more preferably 2% by mass to 15% by mass with respect to the polyimide compound.
-着色剤-
 樹脂組成物は、カーボンブラック、有機染料、有機着色剤、酸化チタン、鉛丹、ベンガラ等の着色剤を含有してもよい。着色剤の含有量は目的等に応じて適宜選択できる。
 樹脂組成物は、その他、必要に応じて、本開示による効果を低下させない範囲において種々の添加剤を含有してもよい。
-Colorant-
The resin composition may contain a colorant such as carbon black, organic dye, organic colorant, titanium oxide, red lead, bengara and the like. The content of the colorant can be appropriately selected according to the purpose and the like.
In addition to the above, the resin composition may contain various additives as long as it does not deteriorate the effect of the present disclosure.
<樹脂組成物の調製方法>
 樹脂組成物の調製方法は特に制限されず、各種成分を充分に分散混合できるのであれば、いかなる手法を用いてもよい。一般的な手法としては、成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分を充分に撹拌して混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕することで得ることができる。樹脂組成物は、パッケージの成形条件に合うような寸法及び質量でタブレット化すると取り扱いが容易である。
<Method for preparing resin composition>
The method for preparing the resin composition is not particularly limited, and any method may be used as long as various components can be sufficiently dispersed and mixed. As a general technique, a method in which components are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder, or the like, cooled, and pulverized can be exemplified. More specifically, for example, the above-described components are sufficiently stirred and mixed, kneaded with a kneader, roll, extruder, or the like that has been heated to 70 ° C. to 140 ° C., cooled, and pulverized. be able to. The resin composition is easy to handle if it is tableted with dimensions and mass that match the molding conditions of the package.
<樹脂組成物の特性>
 EMMI-1-66法に準じて測定される樹脂組成物のスパイラルフロー長は、樹脂組成物の流動性の観点から、100cm以上であることが好ましく、110cm以上であることがより好ましい。
 なお、上記スパイラルフロー長は、EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、樹脂組成物をトランスファ成形機により、金型温度180℃、成形圧力22.5MPa、硬化時間300秒間の条件で成形して求めた流動距離をいう。
<Characteristics of resin composition>
The spiral flow length of the resin composition measured according to the EMMI-1-66 method is preferably 100 cm or more, and more preferably 110 cm or more, from the viewpoint of the fluidity of the resin composition.
The spiral flow length is determined by using a spiral flow measurement mold in accordance with EMMI-1-66, using a transfer molding machine to mold the resin composition at a mold temperature of 180 ° C., a molding pressure of 22.5 MPa, and a curing time of 300. It refers to the flow distance obtained by molding under the condition of seconds.
 また、下記方法により測定される樹脂組成物のディスクフロー長は、樹脂組成物の流動性の観点から、60mm以上であることが好ましく、65mm以上であることがより好ましい。
 なお、上記ディスクフロー長は、200mm(W)×200mm(D)×25mm(H)の上型と200mm(W)×200mm(D)×15mm(H)の下型とを有する円板フロー測定用平板金型を用いて測定した値である。具体的には、樹脂組成物5gを180℃に加熱した下型の中心部にのせ、5秒後に180℃に加熱した上型を閉じて、荷重78N、硬化時間90秒の条件で圧縮成形し、ノギスで成形品の長径(mm)及び短径(mm)を測定し、それらの値から求めた平均値(mm)をディスクフロー長とする。
Further, the disk flow length of the resin composition measured by the following method is preferably 60 mm or more, and more preferably 65 mm or more, from the viewpoint of the fluidity of the resin composition.
The disk flow length is a disk flow measurement having an upper mold of 200 mm (W) × 200 mm (D) × 25 mm (H) and a lower mold of 200 mm (W) × 200 mm (D) × 15 mm (H). It is the value measured using the flat metal mold | die. Specifically, 5 g of the resin composition was placed on the center of the lower mold heated to 180 ° C., and after 5 seconds, the upper mold heated to 180 ° C. was closed and compression molded under the conditions of a load of 78 N and a curing time of 90 seconds. The major axis (mm) and the minor axis (mm) of the molded product are measured with calipers, and the average value (mm) obtained from these values is defined as the disc flow length.
〔樹脂組成物の硬化物〕
 本開示の樹脂組成物の硬化物は、誘電正接が低いため、半導体装置の素子の封止に好適に用いられる。
[Hardened resin composition]
Since the cured product of the resin composition of the present disclosure has a low dielectric loss tangent, it is suitably used for sealing elements of a semiconductor device.
〔半導体装置〕
 本開示の半導体装置は、半導体素子と、前記半導体素子を封止する本開示の樹脂組成物の硬化物と、を備える。必要に応じてその他の構成要素を含んでもよい。特に、本開示の樹脂組成物の硬化物は、誘電正接が低いため、高周波数領域(例えば、1GHz~10GHz)の信号を扱う半導体装置を用いた機器(例えば、コンピュータ、情報通信機器等)に好適に使用することができる。
 本開示の樹脂組成物を用いて、半導体素子を封止する方法としては、例えば、コンプレッション法、低圧トランスファ成形法、インジェクション成形法、圧縮成形法が挙げられる。
[Semiconductor device]
A semiconductor device of the present disclosure includes a semiconductor element and a cured product of the resin composition of the present disclosure that seals the semiconductor element. Other components may be included as necessary. In particular, since the cured product of the resin composition of the present disclosure has a low dielectric loss tangent, it is suitable for devices (eg, computers, information communication devices, etc.) using semiconductor devices that handle signals in a high frequency range (eg, 1 GHz to 10 GHz). It can be preferably used.
Examples of the method for sealing a semiconductor element using the resin composition of the present disclosure include a compression method, a low-pressure transfer molding method, an injection molding method, and a compression molding method.
 以下、本開示について実施例によってより具体的に説明するが、本開示の範囲は以下に示す実施例によって制限されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples. However, the scope of the present disclosure is not limited by the following examples.
〔ポリイミド化合物の製造〕
 ポリイミド化合物の原料として、以下のものを用意した。
・ポリマレイミド化合物1:1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン(大和化成工業株式会社製、商品名:BMI-TMH)
・ポリマレイミド化合物2:2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成株式会社製、商品名:BMI-80)
・ポリアミノ化合物1:4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン(三井化学ファイン株式会社製、商品名:ビスアニリンM)
・エチレン性化合物1:ジアリルアミン(東京化成株式会社製)
[Production of polyimide compounds]
The following were prepared as raw materials for the polyimide compound.
Polymaleimide compound 1: 1,6-bismaleimide- (2,2,4-trimethyl) hexane (trade name: BMI-TMH, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
Polymaleimide compound 2: 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane (manufactured by Kay Kasei Co., Ltd., trade name: BMI-80)
Polyamino compound 1: 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] bisaniline (Mitsui Chemicals Fine Co., Ltd., trade name: Bisaniline M)
Ethylene compound 1: diallylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1リットルのガラス製フラスコ容器にポリマレイミド化合物として1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサンを60.9質量部、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンを254.7質量部、ポリアミノ化合物として4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリンを22.0質量部、エチレン性化合物としてジアリルアミンを12.4質量部、及び溶媒としてプロピレングリコールモノメチルエーテルを150質量部投入し、液温を120℃に保ったまま、撹拌しながら1時間反応させた。その後、ゲルパーミエーションクロマトグラフィーにより、反応物の重量平均分子量が900~1000であることを確認し、冷却及び200メッシュの篩でろ過してポリイミド化合物とプロピレングリコールモノメチルエーテルとの混合物を得た。さらに、得られたポリイミド化合物とプロピレングリコールモノメチルエーテルとの混合物に対し、110℃で真空乾燥を2時間行い、ポリイミド化合物1(固形分98質量%、重量平均分子量:1033)を製造した。 1. A 1,6-bismaleimide- (2,2,4-trimethyl) hexane as a polymaleimide compound in a 1 L glass flask equipped with a thermometer, a reflux condenser and a stirrer and capable of heating and cooling. 9 parts by mass, 254.7 parts by mass of 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, and 4,4 ′-[1,3-phenylenebis (1-methylethylidene)] as a polyamino compound 22.0 parts by mass of bisaniline, 12.4 parts by mass of diallylamine as an ethylenic compound, and 150 parts by mass of propylene glycol monomethyl ether as a solvent were added, and the reaction was continued for 1 hour with stirring while maintaining the liquid temperature at 120 ° C. I let you. Thereafter, the reaction product was confirmed to have a weight average molecular weight of 900 to 1000 by gel permeation chromatography, cooled and filtered through a 200 mesh sieve to obtain a mixture of a polyimide compound and propylene glycol monomethyl ether. Furthermore, the mixture of the obtained polyimide compound and propylene glycol monomethyl ether was vacuum dried at 110 ° C. for 2 hours to produce polyimide compound 1 (solid content: 98 mass%, weight average molecular weight: 1033).
〔重量平均分子量の測定方法〕
 得られたポリイミド化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type:A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製]を用いて3次式で近似した。GPCの条件は、以下に示す。
<装置>
・ポンプ:L-6200型(株式会社日立ハイテクノロジーズ製)
・検出器:L-3300型RI(株式会社日立ハイテクノロジーズ製)
・カラムオーブン:L-655A-52(株式会社日立ハイテクノロジーズ製)
<カラム>
・ガードカラム:TSK Guardcolumn HHR-L(東ソー製株式会社製)
・カラム:TSK gel-G4000HHR+gel-G2000HHR(東ソー製株式会社製)
・カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
<測定条件>
・溶離液:テトラヒドロフラン
・試料濃度:30mg/5mL
・注入量:20μL
・流量:1.00mL/分
・測定温度:40℃
[Measurement method of weight average molecular weight]
The weight average molecular weight of the obtained polyimide compound was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). The calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type: A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] Was approximated by a cubic equation. The GPC conditions are shown below.
<Device>
・ Pump: L-6200 (manufactured by Hitachi High-Technologies Corporation)
Detector: L-3300 RI (manufactured by Hitachi High-Technologies Corporation)
Column oven: L-655A-52 (manufactured by Hitachi High-Technologies Corporation)
<Column>
Guard column: TSK Guardcolumn HHR-L (manufactured by Tosoh Corporation)
Column: TSK gel-G4000HHR + gel-G2000HHR (manufactured by Tosoh Corporation)
Column size: 6.0 × 40 mm (guard column), 7.8 × 300 mm (column)
<Measurement conditions>
・ Eluent: Tetrahydrofuran ・ Sample concentration: 30 mg / 5 mL
・ Injection volume: 20μL
・ Flow rate: 1.00 mL / min ・ Measurement temperature: 40 ° C.
〔半導体封止材料用熱硬化性樹脂組成物の作製〕
 無機充填材、硬化開始剤、及び硬化促進剤として以下のものを用意した。
・無機充填材1:平均粒子径4.5μm、比表面積3.2m/g、粒子径が20μm以下である粒子の割合が全体の100質量%であるシリカ(球状シリカ)
・硬化開始剤1:α、α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼン(日油株式会社製、商品名:パーブチルP)
・硬化促進剤1:イソシアネートマスクイミダゾール(第一工業製薬株式会社製、商品名:G8009L)
[Preparation of thermosetting resin composition for semiconductor sealing material]
The following were prepared as an inorganic filler, a curing initiator, and a curing accelerator.
Inorganic filler 1: Silica (spherical silica) in which the average particle size is 4.5 μm, the specific surface area is 3.2 m 2 / g, and the proportion of particles having a particle size of 20 μm or less is 100% by mass.
Curing initiator 1: α, α′-di (t-butylperoxy) diisopropylbenzene (manufactured by NOF Corporation, trade name: perbutyl P)
Curing accelerator 1: Isocyanate mask imidazole (Daiichi Kogyo Seiyaku Co., Ltd., trade name: G8009L)
 また、比較例の樹脂組成物の作製に用いるエポキシ樹脂、硬化剤、及び硬化促進剤として、以下のものを用意した。
・エポキシ樹脂1:ビフェニレンアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC-3000)
・エポキシ樹脂2:ビフェニル型エポキシ樹脂(三菱ケミカル株式会社製、商品名:YX-4000) 
・硬化剤1:ビフェニレンアラルキル型フェノール樹脂(エアウォータ株式会社製、商品名:HE-200C-10)
・硬化剤2:ノボラック型フェノール樹脂(日立化成株式会社製、商品名:HP-850N)
・硬化促進剤2:トリフェニルホスフィン(富士フイルム和光純薬株式会社製)
Moreover, the following were prepared as an epoxy resin used for preparation of the resin composition of a comparative example, a hardening | curing agent, and a hardening accelerator.
Epoxy resin 1: biphenylene aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-3000)
Epoxy resin 2: biphenyl type epoxy resin (Mitsubishi Chemical Corporation, trade name: YX-4000)
Curing agent 1: Biphenylene aralkyl type phenol resin (trade name: HE-200C-10, manufactured by Air Water Co., Ltd.)
Curing agent 2: Novolac type phenol resin (manufactured by Hitachi Chemical Co., Ltd., trade name: HP-850N)
Curing accelerator 2: Triphenylphosphine (Fuji Film Wako Pure Chemical Industries, Ltd.)
 前記成分をそれぞれ表1に示す質量部で配合し、前ロール温度80℃、後ロール温度100℃、混練時間15分の条件でロール混練を行うことによって、それぞれ、実施例1及び比較例1の樹脂組成物を得た。
 なお、実施例1で得られた樹脂組成物の質量減少率を前述の方法で算出した結果0.1%未満であった。
 樹脂組成物全体に対する無機充填材の含有率を併せて表1に示す。
The above components were blended in parts by mass shown in Table 1, and roll kneading was performed under the conditions of a pre-roll temperature of 80 ° C., a post-roll temperature of 100 ° C., and a kneading time of 15 minutes, respectively. A resin composition was obtained.
In addition, as a result of calculating the mass decreasing rate of the resin composition obtained in Example 1 by the above-mentioned method, it was less than 0.1%.
Table 1 also shows the content of the inorganic filler with respect to the entire resin composition.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
〔樹脂板の作製〕
 誘電正接の測定に用いた樹脂板は、以下の手順により作製した。
 前記手法でロール混練して得られた樹脂組成物(すなわち、実施例及び比較例の樹脂組成物)を粉砕した。それらを型の中にいれ、プレス機に投入した。プレス機の熱板温度175℃に保持し、減圧しながら圧力7MPaで30分間プレスした。その後、型から樹脂組成物の硬化物を取り出し、それを誘電正接測定用の樹脂板とした。
[Production of resin plate]
The resin plate used for the measurement of dielectric loss tangent was produced by the following procedure.
The resin compositions (that is, the resin compositions of Examples and Comparative Examples) obtained by roll kneading using the above technique were pulverized. They were put in a mold and put into a press machine. The hot plate temperature of the press was maintained at 175 ° C., and pressing was performed at a pressure of 7 MPa for 30 minutes while reducing the pressure. Then, the hardened | cured material of the resin composition was taken out from the type | mold, and it was set as the resin board for a dielectric loss tangent measurement.
〔誘電正接の測定方法〕
 上記のようにして作製された樹脂板を、幅2mm、長さ70mmの試験片に切り出し、ネットワークアナライザー(アジレント・テクノロジー株式会社製、商品名:E8364B)と1GHz対応空洞共振器と10GHz対応空洞共振器(株式会社関東電子応用開発製)とを用いて、誘電正接を測定した。測定温度は25℃とした。測定結果を表2に示す。誘電正接が低いほど、誘電特性に優れることを示す。
[Measurement method of dielectric loss tangent]
The resin plate produced as described above is cut into a test piece having a width of 2 mm and a length of 70 mm, a network analyzer (manufactured by Agilent Technologies, product name: E8364B), a 1 GHz-compatible cavity resonator, and a 10 GHz-compatible cavity resonance. The dielectric loss tangent was measured using a device (manufactured by Kanto Electronics Co., Ltd.). The measurement temperature was 25 ° C. The measurement results are shown in Table 2. A lower dielectric loss tangent indicates better dielectric properties.
〔スパイラルフロー長の測定〕
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、実施例及び比較例の樹脂組成物をトランスファ成形機により、金型温度180℃、成形圧力22.5MPa、硬化時間300秒間の条件で成形して流動距離(cm)を測定し、スパイラルフロー長とした。結果を表2に示す。
 スパイラルフロー長が120cm以上の良好なものを「A」、100cm以上120cm未満のものを「B」、100cm未満の不良のものを「C」とした。
[Measurement of spiral flow length]
Using a mold for spiral flow measurement according to EMMI-1-66, the resin compositions of Examples and Comparative Examples were transferred at a mold temperature of 180 ° C., a molding pressure of 22.5 MPa, and a curing time of 300 seconds. It shape | molded on conditions, the flow distance (cm) was measured, and it was set as the spiral flow length. The results are shown in Table 2.
A good sample having a spiral flow length of 120 cm or more was designated as “A”, a sample having a spiral flow length of from 100 cm to less than 120 cm was designated as “B”, and a sample having a defect of less than 100 cm was designated as “C”.
〔ディスクフロー長の測定〕
 200mm(W)×200mm(D)×25mm(H)の上型と200mm(W)×200mm(D)×15mm(H)の下型とを有する円板フロー測定用平板金型を用いて測定する。具体的には、得られた実施例及び比較例の樹脂組成物5gを、180℃に加熱した下型の中心部にのせ、5秒後に180℃に加熱した上型を閉じて、荷重78N、硬化時間90秒の条件で圧縮成形し、ノギスで成形品の長径(mm)及び短径(mm)を測定し、それらの値から求めた平均値(mm)をディスクフロー長とした。結果を表2に示す。
 ディスクフロー長が60mm以上の良好なものを「A」、40mm以上60mm未満のものを「B」、40mm未満の不良のものを「C」とした。
[Measurement of disc flow length]
Measured using a flat plate mold for measuring disk flow having an upper mold of 200 mm (W) × 200 mm (D) × 25 mm (H) and a lower mold of 200 mm (W) × 200 mm (D) × 15 mm (H). To do. Specifically, 5 g of the obtained resin compositions of Examples and Comparative Examples were placed on the center of the lower mold heated to 180 ° C., the upper mold heated to 180 ° C. was closed after 5 seconds, and a load of 78 N, Compression molding was carried out under the condition of a curing time of 90 seconds, the major axis (mm) and minor axis (mm) of the molded product were measured with calipers, and the average value (mm) obtained from these values was defined as the disc flow length. The results are shown in Table 2.
A good disc flow length of 60 mm or more was designated as “A”, a disc flow length of from 40 mm to less than 60 mm was designated as “B”, and a defective disc flow length of less than 40 mm was designated as “C”.
〔シート化の可否評価〕
 前記手法のロール混練後に得られた樹脂組成物(すなわち、実施例及び比較例の樹脂組成物)がシート状になり、取扱い時にシートの状態を保持できるかどうかを目視、および触感で評価した。結果を表2に示す。
 樹脂組成物がシート状になり、取扱い性も良好なものを「A」とし、シート状にならない又はシート状として取扱いのできない等の不良のものは「B」とした。
[Evaluation of sheet availability]
The resin compositions (that is, the resin compositions of Examples and Comparative Examples) obtained after roll kneading in the above-described manner became a sheet shape, and whether or not the state of the sheet could be maintained during handling was evaluated by visual observation and tactile sensation. The results are shown in Table 2.
A resin composition having a sheet shape and good handleability was designated as “A”, and a defective product such as a sheet shape that could not be handled as a sheet shape was designated as “B”.
〔シート粉砕の可否評価〕
 前記手法のロール混練後に得られた樹脂組成物(すなわち、実施例及び比較例の樹脂組成物)のシートを室温(すなわち、25℃)になるまで静置し、金づちでたたいてシートが割れるかどうかを評価した。結果を表2に示す。
 シートが割れて良好なものを「A」とし、割れず不良のものを「B」とした。
[Evaluation of sheet crushability]
The sheet of the resin composition (that is, the resin composition of Examples and Comparative Examples) obtained after roll kneading in the above method is allowed to stand until it reaches room temperature (that is, 25 ° C.), and the sheet is cracked by hammering. Evaluated whether or not. The results are shown in Table 2.
A sheet that cracked and was good was designated as “A”, and a sheet that did not break and was judged as “B”.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示す結果からわかるように、実施例1の樹脂組成物は、比較例1に比べて誘電正接が低く、誘電特性に優れる結果となった。また、実施例1の樹脂組成物は、流動性の指標であるスパイラルフロー長が120cm以上、ディスクフロー長が60mm以上の値を示し、パッケージ充填性も優れる結果となった。 As can be seen from the results shown in Table 2, the resin composition of Example 1 had a lower dielectric loss tangent than that of Comparative Example 1, and was excellent in dielectric properties. In addition, the resin composition of Example 1 showed values of a spiral flow length of 120 cm or more and a disk flow length of 60 mm or more, which are indicators of fluidity, and excellent package fillability.
 2018年6月12日に出願された日本国特許出願2018-111912号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に取り込まれる。
The disclosure of Japanese Patent Application No. 2018-1111912 filed on June 12, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, It is incorporated herein.

Claims (6)

  1.  2以上のN-置換マレイミド基を有する化合物と2以上のアミノ基を有する化合物とを少なくとも共重合してなるポリイミド化合物と、
     半導体封止材料用熱硬化性樹脂組成物全体に対する含有率が60体積%~95体積%である無機充填材と、
     硬化開始剤と、
     を含み、
     180℃で1時間加熱したときの質量減少率が5質量%以下である半導体封止材料用熱硬化性樹脂組成物。
    A polyimide compound obtained by copolymerizing at least a compound having two or more N-substituted maleimide groups and a compound having two or more amino groups;
    An inorganic filler having a content of 60% by volume to 95% by volume with respect to the entire thermosetting resin composition for a semiconductor sealing material;
    A curing initiator;
    Including
    The thermosetting resin composition for semiconductor sealing materials whose mass decreasing rate when heated at 180 degreeC for 1 hour is 5 mass% or less.
  2.  前記ポリイミド化合物の重量平均分子量は、800~1500である請求項1に記載の半導体封止材料用熱硬化性樹脂組成物。 2. The thermosetting resin composition for a semiconductor sealing material according to claim 1, wherein the polyimide compound has a weight average molecular weight of 800 to 1500.
  3.  前記無機充填材は、シリカである請求項1又は請求項2に記載の半導体封止材料用熱硬化性樹脂組成物。 The thermosetting resin composition for a semiconductor sealing material according to claim 1 or 2, wherein the inorganic filler is silica.
  4.  ディスクフロー長が60mm以上である請求項1~請求項3のいずれか1項に記載の半導体封止材料用熱硬化性樹脂組成物。 The thermosetting resin composition for a semiconductor sealing material according to any one of claims 1 to 3, wherein the disc flow length is 60 mm or more.
  5.  請求項1~請求項4のいずれか1項に記載の半導体封止材料用熱硬化性樹脂組成物を硬化してなる半導体封止材料。 A semiconductor sealing material obtained by curing the thermosetting resin composition for a semiconductor sealing material according to any one of claims 1 to 4.
  6.  半導体素子と、
     前記半導体素子を封止する、請求項1~請求項4のいずれか1項に記載の半導体封止材料用熱硬化性樹脂組成物の硬化物と、
     を備える半導体装置。
    A semiconductor element;
    A cured product of the thermosetting resin composition for a semiconductor sealing material according to any one of claims 1 to 4, which seals the semiconductor element;
    A semiconductor device comprising:
PCT/JP2019/022973 2018-06-12 2019-06-10 Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device WO2019240092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525561A JP7351297B2 (en) 2018-06-12 2019-06-10 Thermosetting resin composition for semiconductor encapsulation materials, semiconductor encapsulation materials, and semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111912 2018-06-12
JP2018-111912 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240092A1 true WO2019240092A1 (en) 2019-12-19

Family

ID=68841946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022973 WO2019240092A1 (en) 2018-06-12 2019-06-10 Thermosetting resin composition for semiconductor sealing material, semiconductor sealing material, and semiconductor device

Country Status (3)

Country Link
JP (1) JP7351297B2 (en)
TW (1) TW202016215A (en)
WO (1) WO2019240092A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276379A1 (en) * 2021-06-29 2023-01-05 株式会社プリンテック Resin composition, varnish, laminated plate, printed wiring board, and molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258540A (en) * 1988-05-16 1990-02-27 Mitsui Petrochem Ind Ltd Production of imide-based prepolymer and vanish using said prepolymer
JPH03131628A (en) * 1989-10-17 1991-06-05 Mitsui Petrochem Ind Ltd Imide-based prepolymer and cured material thereof
JPH06256515A (en) * 1993-01-11 1994-09-13 Matsushita Electric Works Ltd Thermosetting adhesive sheet and copper-clad laminated board produced by using the sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252325A (en) * 1994-03-15 1995-10-03 Nitto Denko Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258540A (en) * 1988-05-16 1990-02-27 Mitsui Petrochem Ind Ltd Production of imide-based prepolymer and vanish using said prepolymer
JPH03131628A (en) * 1989-10-17 1991-06-05 Mitsui Petrochem Ind Ltd Imide-based prepolymer and cured material thereof
JPH06256515A (en) * 1993-01-11 1994-09-13 Matsushita Electric Works Ltd Thermosetting adhesive sheet and copper-clad laminated board produced by using the sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276379A1 (en) * 2021-06-29 2023-01-05 株式会社プリンテック Resin composition, varnish, laminated plate, printed wiring board, and molded product

Also Published As

Publication number Publication date
TW202016215A (en) 2020-05-01
JPWO2019240092A1 (en) 2021-07-08
JP7351297B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP4793565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
TWI804615B (en) Thermosetting maleimide resin composition for semiconductor sealing and semiconductor device
JP2024096290A (en) Molding resin composition and electronic component device
JP7153635B2 (en) Curable resin composition, cured product thereof, and structure containing cured product
JP2022099397A (en) Cyclic imide resin composition, prepreg, copper-clad laminate, and printed wiring board
JP2020045446A (en) Thermosetting resin composition
JP7521715B2 (en) Molding resin composition and electronic component device
TW201336951A (en) Thermal conductive adhesive composition, and adhesive sheet and thermal conductive dicing and die attach film using the same
JP7351297B2 (en) Thermosetting resin composition for semiconductor encapsulation materials, semiconductor encapsulation materials, and semiconductor devices
JP7363821B2 (en) thermosetting resin composition
JP2017031239A (en) Aryl ether-modified biphenylaralkyl novolak resin, aryl-modified biphenylaralkyl novolak resin, method for producing the same, and composition using the same
JP7320224B2 (en) Polymer, epoxy resin composition, cured epoxy resin and electronic device
WO2021240878A1 (en) Thermosetting resin composition
JP2023179928A (en) Resin composition for encapsulating semiconductor element-mounted face of circuit board mounted with semiconductor element, or semiconductor element-formed face of wafer formed with semiconductor element, and use of the same
JP2023104618A (en) Thermosetting resin composition
TW202413489A (en) Maleimide resin, resin composition, cured product, sheet, laminate, and printed wiring board
WO2020188641A1 (en) Epoxy resin composition, electronic component device, and method for manufacturing electronic component device
JP2020172608A (en) Polymer, resin composition, resin cured product, and electronic component device
WO2024019088A1 (en) Maleimide resin, resin composition, cured product, sheet, laminate, and printed wiring board
JP2021050304A (en) Resin composition, resin sheet, B stage sheet, C stage sheet, cured product, metal foil with resin, metal substrate, and power semiconductor device
JP2023009966A (en) Thermosetting resin composition, resin sheet, metal base board, and electronic device
WO2020070531A1 (en) Curable resin composition, cured object therefrom, method for producing structure using said curable resin composition, and structure including said cured object
JP2024098967A (en) Semiconductor element encapsulating resin composition and semiconductor device having the cured product thereof
CN118140601A (en) Resin composition, cured product, sheet, laminate, and printed wiring board
JP2023062903A (en) Cyclic imide resin composition, liquid adhesive, film, prepreg, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818658

Country of ref document: EP

Kind code of ref document: A1