WO2019239708A1 - 眼科装置、その制御方法、プログラム、及び記録媒体 - Google Patents

眼科装置、その制御方法、プログラム、及び記録媒体 Download PDF

Info

Publication number
WO2019239708A1
WO2019239708A1 PCT/JP2019/016104 JP2019016104W WO2019239708A1 WO 2019239708 A1 WO2019239708 A1 WO 2019239708A1 JP 2019016104 W JP2019016104 W JP 2019016104W WO 2019239708 A1 WO2019239708 A1 WO 2019239708A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
oct
scan
unit
quality evaluation
Prior art date
Application number
PCT/JP2019/016104
Other languages
English (en)
French (fr)
Inventor
佑介 小野
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US15/734,239 priority Critical patent/US11826102B2/en
Priority to EP19818784.1A priority patent/EP3811850A4/en
Publication of WO2019239708A1 publication Critical patent/WO2019239708A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20164Salient point detection; Corner detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the present invention relates to an ophthalmologic apparatus, a control method thereof, a program, and a recording medium.
  • OCT optical coherence tomography
  • An object of the present invention is to reduce a burden imposed on a subject or an examiner by automating a preparatory operation for applying OCT to a living eye, particularly an anterior ocular segment.
  • a first aspect of an exemplary embodiment includes an OCT optical system that applies an optical coherence tomography (OCT) scan to an anterior segment of an eye to be examined, and an image that forms an image based on data obtained by the OCT scan A forming area; a scan area setting section that sets a scan area in an area that passes through the outer edge of the iris of the anterior eye; and the OCT scan is applied to the scan area set by the scan area setting section.
  • OCT optical coherence tomography
  • a first scan control unit that controls an OCT optical system; an image quality evaluation unit that calculates an image quality evaluation value of an image formed by the image forming unit based on data obtained by an OCT scan for the scan area; and the scan area
  • An image formed by the image forming unit is analyzed based on data obtained by OCT scan for
  • a corner angle image detection unit that detects a corner angle image, a position determination unit that determines whether the corner angle image detected by the corner angle image detection unit is within a first range in an image frame, and When the image quality evaluation value calculated by the image quality evaluation unit is greater than or equal to a predetermined threshold and the position determination unit determines that the corner image is located within the first range, the OCT scan of a predetermined pattern is performed.
  • An ophthalmologic apparatus including a second scan control unit that controls the OCT optical system so as to be applied to the anterior segment.
  • a second aspect of the exemplary embodiment is an ophthalmologic apparatus according to the first aspect, wherein the anterior ocular segment imaging system for imaging the anterior ocular segment, a moving mechanism for moving the OCT optical system, and the anterior segment Analyzing the anterior segment image obtained by the eye imaging system and determining a movement target of the OCT optical system, and the movement based on the movement target determined by the movement target determination unit
  • a movement control unit that controls a mechanism, and the scan area setting unit sets a scan area after the movement control unit executes control of the movement mechanism.
  • a third aspect of the exemplary embodiment is the ophthalmologic apparatus according to the second aspect, wherein the movement target determining unit analyzes the anterior eye image to detect a pupil center and an iris outer edge, and the pupil A moving target is set based on the center and the outer edge of the iris.
  • a fourth aspect of the exemplary embodiment is the ophthalmologic apparatus according to the third aspect, wherein the movement target determining unit obtains a straight line passing through the pupil center and along a predetermined direction, and the straight line and the iris An intersection point with the outer edge is obtained as a movement target.
  • a fifth aspect of the exemplary embodiment is the ophthalmic apparatus according to the fourth aspect, wherein the scan area setting unit sets a scan area so as to pass through the intersection.
  • a sixth aspect of the exemplary embodiment is the ophthalmic apparatus according to the fifth aspect, in which the scan area setting unit sets a scan line along the straight line and whose scan center is located at the intersection.
  • a seventh aspect of the exemplary embodiment is the ophthalmologic apparatus according to any one of the second to sixth aspects, wherein the scan area setting unit passes through the movement target determined by the movement target determination unit. This is characterized in that the scan area is set as described above.
  • An eighth aspect of the exemplary embodiment is the ophthalmic apparatus according to any one of the second to seventh aspects, wherein the OCT optical system is configured for a scan area set after control of the moving mechanism.
  • the repetitive OCT scan is applied, and the image forming unit forms an image based on each of a plurality of data sets sequentially obtained by the repetitive OCT scan.
  • a ninth aspect of the exemplary embodiment is the ophthalmic apparatus according to the eighth aspect, wherein the repetitive OCT scan is a repetitive B scan.
  • a tenth aspect of the exemplary embodiment is the ophthalmic apparatus according to the eighth or ninth aspect, wherein the corner image detection is performed after the image quality evaluation value equal to or greater than the predetermined threshold is calculated by the image quality evaluation unit.
  • the unit performs detection of a corner image.
  • An eleventh aspect of the exemplary embodiment is the ophthalmic apparatus according to any one of the first to tenth aspects, and is formed by the image forming unit based on data obtained by OCT scan with respect to the scan area.
  • the image processing apparatus further includes an iris image detection unit that detects an iris image by analyzing an image, and the position determination unit is configured such that the corner image detected by the corner image detection unit is located within a first range in an image frame. And determining whether the iris image detected by the iris image detecting unit is located in a second range, and the second scan control unit has a predetermined image quality evaluation value calculated by the image quality evaluating unit.
  • the OCT of a predetermined pattern is greater than or equal to a threshold value. And controls the OCT optical system so as to apply a scan in the anterior segment.
  • a twelfth aspect of the exemplary embodiment is the ophthalmic apparatus according to any one of the first to eleventh aspects, wherein the corner image detection unit is based on data obtained by an OCT scan for the scan area. An image formed by the image forming unit is analyzed to detect a corneal rear surface image and an iris front image, and a position where the corneal rear image and the iris front image intersect is detected as a corner angle.
  • a thirteenth aspect of the exemplary embodiment is the ophthalmic apparatus according to any one of the first to twelfth aspects, wherein the image quality evaluation unit is configured to detect an anterior ocular region in an image formed by the image forming unit. The ratio between the signal and the noise in the background area is calculated as an image quality evaluation value.
  • a fourteenth aspect of an exemplary embodiment is the ophthalmologic apparatus according to the thirteenth aspect, in which the image quality evaluation unit is adjacent to the signal of the corneal region in the image formed by the image forming unit and the corneal region. A ratio with the noise of the first background area is calculated as an image quality evaluation value.
  • a fifteenth aspect of an exemplary embodiment is the ophthalmologic apparatus according to the thirteenth or fourteenth aspect, wherein the image quality evaluation unit includes an iris region signal and the iris region in an image formed by the image forming unit.
  • the image quality evaluation value is calculated as a ratio to the noise of the second background area adjacent to the image quality evaluation value.
  • a sixteenth aspect of an exemplary embodiment is the ophthalmic apparatus according to any one of the thirteenth to fifteenth aspects, wherein the OCT optical system includes a measurement arm that guides measurement light to the anterior ocular segment, and the measurement A reference arm that guides the reference light superimposed on the return light from the anterior eye part, and at least one of the measurement arm and the reference arm includes a polarizing device for changing a polarization state of the guided light And a polarization controller that controls the polarization device to increase the value of the ratio calculated by the image quality evaluation unit.
  • an OCT optical system that applies an optical coherence tomography (OCT) scan to an anterior segment of an eye to be examined, and an image that forms an image based on data obtained by the OCT scan
  • OCT optical coherence tomography
  • a method for controlling an ophthalmologic apparatus including a forming unit, wherein a scan area setting step sets a scan area in a region passing through an outer edge of the iris of the anterior eye part, and an OCT scan is applied to the set scan area
  • the eighteenth aspect of the exemplary embodiment is a program that causes a computer to execute the control method according to the seventeenth aspect.
  • a nineteenth aspect of the exemplary embodiment is a computer-readable non-transitory recording medium in which the program according to the eighteenth aspect is recorded.
  • a preparation operation for applying OCT to the anterior segment of a living eye can be automated, and the burden on the subject and the examiner can be reduced.
  • Embodiments of an ophthalmologic apparatus, a control method, a program, and a recording medium according to an exemplary embodiment will be described in detail with reference to the drawings.
  • the ophthalmologic apparatus according to the embodiment is used for optically acquiring data of an eye to be examined (that is, using light, in other words, using optical technology).
  • the ophthalmologic apparatus according to the embodiment can image the anterior segment using the OCT technique.
  • the ophthalmic apparatus may have other functions in addition to the OCT function (optical coherence tomography).
  • this additional function include an anterior segment imaging function, fundus imaging function, axial length measurement function, eye refractive power measurement function, ocular aberration measurement function, corneal shape measurement function, and visual field measurement function.
  • the additional function is not limited to these, and may be an arbitrary ophthalmic examination function, or may be an examination function that can be used in other medical departments.
  • an ophthalmologic apparatus in which a swept source OCT and a fundus camera are combined will be described, but the embodiment is not limited thereto.
  • the type of OCT applicable to the exemplary embodiment is not limited to the swept source OCT, and may be, for example, a spectral domain OCT.
  • the swept source OCT splits the light from the wavelength tunable light source into measurement light and reference light, generates interference light by superimposing the return light of the measurement light from the test object on the reference light, and balances this interference light.
  • This is a technique for constructing an image by performing Fourier transform or the like on detection data detected by a photodetector such as a photo-diode and collected according to a wavelength sweep and a measurement light scan.
  • Spectral domain OCT splits light from a low-coherence light source into measurement light and reference light, and superimposes return light of the measurement light from the test object on the reference light to generate interference light.
  • the spectrum of this interference light This is a technique for constructing an image by detecting the distribution with a spectroscope and subjecting the detected spectral distribution to Fourier transform or the like.
  • the swept source OCT is an OCT technique for acquiring a spectrum distribution by time division
  • the spectral domain OCT is an OCT technique for acquiring a spectrum distribution by space division.
  • the OCT technique applicable to the embodiment is not limited to these, and may be other morphological imaging OCT (for example, time domain OCT) or functional imaging OCT (for example, polarization OCT, blood flow measurement). OCT).
  • the preparation operation switching control according to the application site will be described.
  • the plurality of sites to which OCT is applied may typically be any two or more of the cornea, the corners, and the fundus, but may include other sites.
  • image data and “image” based thereon are not distinguished.
  • a region or tissue of the eye to be examined is not distinguished from an image representing it.
  • FIG. 1 illustrates an exemplary embodiment applicable to corneal OCT.
  • the ophthalmologic apparatus 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200.
  • the fundus camera unit 2 includes an optical system and mechanism for acquiring a front image of the eye E and an optical system and mechanism for performing OCT.
  • the OCT unit 100 includes an optical system and a mechanism for performing OCT.
  • the arithmetic control unit 200 includes one or more processors configured to execute various processes (arithmetic, control, etc.) and a storage device.
  • the ophthalmologic apparatus 1 includes a lens unit for switching a portion of an eye to be examined to which OCT is applied.
  • the ophthalmologic apparatus 1 of the present example includes an anterior segment OCT attachment 400 for applying OCT to the anterior segment.
  • the anterior segment OCT attachment 400 may be configured in the same manner as the optical unit disclosed in Japanese Patent Application Laid-Open No. 2015-160103, for example.
  • the anterior segment OCT attachment 400 can be disposed between the objective lens 22 and the eye E to be examined.
  • the ophthalmologic apparatus 1 can apply an OCT scan to the anterior segment.
  • the anterior segment OCT attachment 400 is retracted from the optical path, the ophthalmologic apparatus 1 can apply an OCT scan to the posterior segment.
  • the anterior segment OCT attachment 400 is moved manually or automatically.
  • an OCT scan can be applied to the posterior eye when the attachment is placed in the optical path, and an OCT scan can be applied to the anterior eye when the attachment is retracted from the optical path. It's okay.
  • part switched by an attachment is not limited to a back eye part and an anterior eye part, The arbitrary site
  • part to which an OCT scan is applied is not limited to such an attachment, For example, the structure provided with the lens which can move along an optical path, or the lens which can be inserted or removed with respect to an optical path It is also possible to adopt a configuration comprising
  • the “processor” is hardware for executing an instruction set described in a software program, and typically includes an arithmetic device, a register, a peripheral circuit, and the like.
  • the processor is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an MPU (Micro-Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specimen SP), or an ASIC (Application Specimen SP).
  • Circuit such as Simple Programmable Logic Device), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array)) and electric circuit configuration (or electric circuit) Components: circuitry) means.
  • the processor reads and executes a program stored in storage hardware (for example, a storage circuit or a storage device), thereby realizing the functions according to the exemplary embodiment.
  • the processor may include at least a portion of storage hardware.
  • the fundus camera unit 2 is provided with an optical system for photographing the fundus oculi Ef of the eye E to be examined.
  • the acquired digital image of the fundus oculi Ef (called a fundus oculi image, a fundus oculi photo or the like) is generally a front image such as an observation image or a captured image.
  • the observation image is obtained by moving image shooting using near infrared light.
  • the captured image is a still image using flash light in the visible region.
  • the fundus camera unit 2 includes an illumination optical system 10 and a photographing optical system 30.
  • the illumination optical system 10 irradiates the eye E with illumination light.
  • the photographing optical system 30 detects the return light of the illumination light irradiated on the eye E.
  • Measurement light from the OCT unit 100 is guided to the eye E through an optical path in the fundus camera unit 2.
  • the return light of the measurement light projected on the eye E (for example, the fundus oculi Ef) is guided to the OCT unit 100 through the same optical path in the fundus camera unit 2.
  • the light (observation illumination light) output from the observation light source 11 of the illumination optical system 10 is reflected by the concave mirror 12, passes through the condenser lens 13, passes through the visible cut filter 14, and becomes near infrared light. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passed through the relay lens system 17, the relay lens 18, the stop 19, and the relay lens system 20 to the aperture mirror 21. Led. The observation illumination light is reflected by the peripheral part of the perforated mirror 21 (region around the hole part), passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the eye E (fundus Ef). To do.
  • the return light of the observation illumination light from the eye E is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, and passes through the dichroic mirror 55.
  • the light is reflected by the mirror 32 via the photographing focusing lens 31. Further, the return light passes through the half mirror 33A, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the image sensor 35 by the imaging lens 34.
  • the image sensor 35 detects return light at a predetermined frame rate. Note that the focus of the photographing optical system 30 is adjusted to match the fundus oculi Ef or the anterior eye segment.
  • the light (imaging illumination light) output from the imaging light source 15 is irradiated onto the fundus oculi Ef through the same path as the observation illumination light.
  • the return light of the imaging illumination light from the eye E is guided to the dichroic mirror 33 through the same path as the return light of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the imaging lens 37.
  • An image is formed on the light receiving surface of the image sensor 38.
  • Liquid crystal display (LCD) 39 displays a fixation target (fixation target image).
  • a part of the light beam output from the LCD 39 is reflected by the half mirror 33 ⁇ / b> A, reflected by the mirror 32, passes through the hole of the perforated mirror 21 through the photographing focusing lens 31 and the dichroic mirror 55.
  • the light beam that has passed through the aperture of the aperture mirror 21 passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
  • the fixation target is typically used for guidance and fixation of the line of sight.
  • the direction in which the line of sight of the eye E is guided (and fixed), that is, the direction in which fixation of the eye E is promoted is called a fixation position.
  • the fixation position can be changed by changing the display position of the fixation target image on the screen of the LCD 39.
  • fixation positions include a fixation position for acquiring an image centered on the macula, a fixation position for acquiring an image centered on the optic nerve head, and a position between the macula and the optic nerve head ( There are a fixation position for acquiring an image centered on the fundus center and a fixation position for acquiring an image of a part (a fundus peripheral portion) far away from the macula.
  • GUI graphical user interface
  • a GUI or the like for designating at least one of such typical fixation positions can be provided.
  • a GUI or the like for manually moving the fixation position can be provided. It is also possible to apply a configuration in which the fixation position is automatically set.
  • the configuration for presenting a fixation target capable of changing the fixation position to the eye E is not limited to a display device such as an LCD.
  • a device fixing matrix in which a plurality of light emitting units (light emitting diodes or the like) are arranged in a matrix can be used instead of the display device.
  • the fixation position of the eye E by the fixation target can be changed by selectively turning on the plurality of light emitting units.
  • a fixation target capable of changing the fixation position can be generated by a device including one or more movable light emitting units.
  • the alignment optical system 50 generates an alignment index used for alignment of the optical system with respect to the eye E.
  • the alignment light output from the light emitting diode (LED) 51 passes through the diaphragm 52, the diaphragm 53, and the relay lens 54, is reflected by the dichroic mirror 55, passes through the hole of the perforated mirror 21, and passes through the dichroic mirror 46.
  • the light passes through and is projected onto the eye E through the objective lens 22.
  • the return light of the alignment light from the eye E is guided to the image sensor 35 through the same path as the return light of the observation illumination light.
  • Manual alignment or auto-alignment can be executed based on the received light image (alignment index image).
  • Alignment methods applicable to the embodiments are not limited to those using such an alignment index.
  • an anterior segment camera that can photograph the anterior segment from two or more different positions and a method of performing alignment using trigonometry (for example, JP 2013-248376, JP 2016-047094). This method is called stereo alignment or the like.
  • a technique using an optical lever configured to project light from an oblique direction onto the cornea and detect corneal reflection light in the opposite direction can be applied (see, for example, Japanese Patent Application Laid-Open No. 2016-047094). ).
  • the focus optical system 60 generates a split index used for focus adjustment on the eye E.
  • the focus optical system 60 is moved along the optical path (illumination optical path) of the illumination optical system 10 in conjunction with the movement of the imaging focusing lens 31 along the optical path (imaging optical path) of the imaging optical system 30.
  • the reflector 67 is inserted into and removed from the illumination optical path.
  • the reflecting surface of the reflecting bar 67 is inclinedly arranged in the illumination optical path.
  • the focus light output from the LED 61 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, is reflected by the mirror 65, and is reflected by the condenser lens 66 as a reflecting rod 67.
  • the light is once imaged and reflected on the reflection surface. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, and is projected onto the eye E through the objective lens 22.
  • the return light (fundus reflection light or the like) of the focus light from the eye E is guided to the image sensor 35 through the same path as the return light of the alignment light.
  • Manual focusing and autofocusing can be executed based on the received light image (split index image).
  • Diopter correction lenses 70 and 71 can be selectively inserted in the photographing optical path between the perforated mirror 21 and the dichroic mirror 55.
  • the diopter correction lens 70 is a plus lens (convex lens) for correcting the intensity hyperopia.
  • the diopter correction lens 71 is a minus lens (concave lens) for correcting intensity myopia.
  • the dichroic mirror 46 combines the imaging optical path and the OCT optical path (measurement arm).
  • the dichroic mirror 46 reflects light in the wavelength band used for OCT and transmits light in the wavelength band used for imaging.
  • a collimator lens unit 40, a retroreflector 41, a dispersion compensation member 42, an OCT focusing lens 43, an optical scanner 44, and a relay lens 45 are provided in this order from the OCT unit 100 side.
  • the retro-reflector 41 can be moved along the optical path of the measurement light LS incident thereon, thereby changing the length of the measurement arm.
  • the change of the measurement arm length is used, for example, for optical path length correction according to the axial length, adjustment of the interference state, or the like.
  • the dispersion compensation member 42 works together with the dispersion compensation member 113 (described later) disposed on the reference arm so as to match the dispersion characteristic of the measurement light LS and the dispersion characteristic of the reference light LR.
  • the OCT focusing lens 43 is moved along the measurement arm in order to adjust the focus of the measurement arm. Note that the movement of the imaging focusing lens 31, the movement of the focus optical system 60, and the movement of the OCT focusing lens 43 can be controlled in a coordinated manner.
  • the optical scanner 44 When the anterior segment OCT attachment 400 is retracted from the optical path, the optical scanner 44 is substantially disposed at a position optically conjugate with the pupil of the eye E to be examined.
  • the optical scanner 44 when the anterior ocular segment OCT attachment 400 is inserted in the optical path, the optical scanner 44 is substantially relative to the anterior segment of the eye E (eg, cornea, anterior chamber, pupil, or lens). It is arranged at an optically conjugate position.
  • the optical scanner 44 deflects the measurement light LS guided by the measurement arm.
  • the optical scanner 44 is, for example, a galvano scanner capable of two-dimensional scanning.
  • the optical scanner 44 includes a one-dimensional scanner (x-scanner) for deflecting measurement light in the ⁇ x direction and a one-dimensional scanner (y-scanner) for deflecting measurement light in the ⁇ y direction. Including.
  • x-scanner for deflecting measurement light in the ⁇ x direction
  • y-scanner for deflecting measurement light in the ⁇ y direction.
  • the exemplary OCT unit 100 shown in FIG. 2 is provided with an optical system for performing swept source OCT.
  • This optical system includes an interference optical system.
  • This interference optical system divides the light from the wavelength tunable light source into measurement light and reference light, and superimposes the return light of the measurement light projected on the eye E and the reference light passing through the reference light path to interfere light. And the interference light is detected.
  • Data (detection signal, interference signal) obtained by detecting the interference light is a signal representing the spectrum of the interference light, and is sent to the arithmetic and control unit 200.
  • the light source unit 101 includes, for example, a near-infrared wavelength tunable laser that changes the wavelength of emitted light at high speed.
  • the light L0 output from the light source unit 101 is guided to the polarization device 103 by the optical fiber 102 and its polarization state is adjusted. Further, the light L0 is guided to the fiber coupler 105 by the optical fiber 104 and is divided into the measurement light LS and the reference light LR.
  • the optical path of the measurement light LS is called a measurement arm or the like, and the optical path of the reference light LR is called a reference arm or the like.
  • the reference light LR generated by the fiber coupler 105 is guided to the collimator 111 by the optical fiber 110 and converted into a parallel light beam, and is guided to the retroreflector 114 via the optical path length correction member 112 and the dispersion compensation member 113.
  • the optical path length correction member 112 acts to match the optical path length of the reference light LR and the optical path length of the measurement light LS.
  • the dispersion compensation member 113 together with the dispersion compensation member 42 disposed on the measurement arm, acts to match the dispersion characteristics between the reference light LR and the measurement light LS.
  • the retro-reflector 114 is movable along the optical path of the reference light LR incident thereon, thereby changing the length of the reference arm. The change of the reference arm length is used, for example, for optical path length correction corresponding to the axial length, adjustment of the interference state, or the like.
  • the reference light LR that has passed through the retro-reflector 114 is converted from a parallel light beam into a focused light beam by the collimator 116 via the dispersion compensation member 113 and the optical path length correction member 112, and enters the optical fiber 117.
  • the reference light LR incident on the optical fiber 117 is guided to the polarization device 118 and its polarization state is adjusted, and is guided to the attenuator 120 through the optical fiber 119 to adjust its light quantity, and is guided to the fiber coupler 122 through the optical fiber 121. It is burned.
  • the polarization device 118 may be any type of polarization controller, such as a bulk type, a paddle type, or an inline type.
  • a bulk polarization controller is typically a device that changes the polarization state by a series of optical elements such as a half-wave plate, a quarter-wave plate, and a lens.
  • a paddle type polarization controller is typically a device that changes the polarization state using birefringence induced by rotating a plurality of paddles each forming a coil of an optical fiber.
  • An in-line polarization controller is typically a device that changes the polarization state using birefringence induced by applying an external force to the optical fiber or rotating the optical fiber.
  • the polarization device 103 may be any type of polarization controller.
  • the measurement light LS generated by the fiber coupler 105 is guided to the collimator lens unit 40 through the optical fiber 127 and converted into a parallel light beam, and the retroreflector 41, the dispersion compensation member 42, the OCT focusing lens 43, and the optical scanner 44. , And through the relay lens 45, reflected by the dichroic mirror 46, refracted by the objective lens 22, and projected onto the eye E.
  • the measurement light LS is scattered and reflected at various depth positions of the eye E.
  • the return light of the measurement light LS from the subject eye E travels through the measurement arm in the opposite direction to the measurement light LS at the time of projection, is guided to the fiber coupler 105, and reaches the fiber coupler 122 via the optical fiber 128. .
  • the fiber coupler 122 superimposes the measurement light LS incident through the optical fiber 128 and the reference light LR incident through the optical fiber 121 to generate interference light.
  • the fiber coupler 122 generates a pair of interference light LC by branching the generated interference light at a predetermined branching ratio (for example, 1: 1).
  • the pair of interference lights LC are guided to the detector 125 through optical fibers 123 and 124, respectively.
  • the detector 125 includes, for example, a balanced photodiode.
  • the balanced photodiode includes a pair of photodetectors that respectively detect the pair of interference lights LC, and outputs a difference between the pair of detection signals obtained by these.
  • the detector 125 sends this output (difference signal) to the data acquisition system (DAQ) 130.
  • DAQ data acquisition system
  • the clock KC is supplied from the light source unit 101 to the data collection system 130.
  • the clock KC is generated in synchronization with the output timing of each wavelength that is swept within a predetermined wavelength range by the wavelength variable light source in the light source unit 101.
  • the light source unit 101 divides the light L0 of each output wavelength to generate two branched lights, optically delays one of the branched lights, synthesizes the branched lights, and combines the obtained synthesized lights.
  • a clock KC is generated based on the detection signal.
  • the data acquisition system 130 performs sampling of the input signal (difference signal) from the detector 125 based on the clock KC.
  • the data collection system 130 sends the data obtained by this sampling to the arithmetic and control unit 200.
  • both an element for changing the measurement arm length for example, the retroreflector 41
  • an element for changing the reference arm length for example, the retroreflector 114 or the reference mirror
  • only one of these elements may be provided.
  • elements for changing the difference (optical path length difference) between the measurement arm length and the reference arm length are not limited to these, and any element (such as an optical member or a mechanism) can be employed. .
  • the arithmetic control unit 200 controls each part of the ophthalmologic apparatus 1.
  • the arithmetic control unit 200 executes various arithmetic processes.
  • the arithmetic control unit 200 performs signal processing such as Fourier transform on the spectrum distribution based on the sampling data group obtained by the data acquisition system 130 for each series of wavelength scans (for each A line), thereby obtaining each A A reflection intensity profile at the line is formed.
  • the arithmetic control unit 200 forms image data by imaging the reflection intensity profile of each A line.
  • the arithmetic processing for that is the same as the conventional swept source OCT.
  • the arithmetic control unit 200 includes, for example, a processor, a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk drive, a communication interface, and the like.
  • Various computer programs are stored in a storage device such as a hard disk drive and executed by the processor of the arithmetic control unit 200.
  • the arithmetic control unit 200 may include an operation device, an input device, a display device, and the like.
  • the user interface 240 includes a display unit 241 and an operation unit 242.
  • the display unit 241 includes the display device 3.
  • the operation unit 242 includes various operation devices and input devices.
  • the user interface 240 may include a device such as a touch panel in which a display function and an operation function are integrated. Embodiments that do not include at least a portion of the user interface 240 can also be constructed.
  • the display device may be a peripheral device connected to the ophthalmologic apparatus.
  • at least a part of the operation device and / or at least a part of the input device may be a peripheral device connected to the ophthalmologic apparatus.
  • FIGS. 3A and 3B An exemplary configuration of the processing system of the ophthalmologic apparatus 1 is shown in FIGS. 3A and 3B.
  • the control unit 210, the image forming unit 220, and the data processing unit 230 are included in the arithmetic control unit 200, for example.
  • the control unit 210 includes a processor and controls each unit of the ophthalmologic apparatus 1.
  • the control unit 210 includes a main control unit 211 and a storage unit 212.
  • the main control unit 211 controls each element of the ophthalmologic apparatus 1 (including the elements shown in FIGS. 1 to 3B).
  • the function of the main control unit 211 is typically realized by cooperation of hardware including a processor and software including a control program. You may make it implement
  • the imaging focusing lens 31 arranged in the imaging optical path and the focus optical system 60 arranged in the illumination optical path are integrated or linked by an imaging focusing drive unit (not shown) under the control of the main control unit 211.
  • the retro-reflector 41 provided in the measurement arm is moved by the retro-reflector (RR) drive unit 41A under the control of the main control unit 211.
  • the OCT focusing lens 43 arranged on the measurement arm is moved by the OCT focusing driving unit 43A under the control of the main control unit 211.
  • the optical scanner 44 provided in the measurement arm operates under the control of the main control unit 211.
  • the retro-reflector 114 arranged on the reference arm is moved by the retro-reflector (RR) driving unit 114A under the control of the main control unit 211.
  • the polarization device 118 disposed on the reference arm operates under the control of the main control unit 211.
  • the polarization device 103 arranged in the optical path of the light L0 operates under the control of the main control unit 211.
  • Each of the mechanisms exemplified here typically includes an actuator that operates under the control of the main control unit 211. The same applies to mechanisms and elements not illustrated here.
  • the moving mechanism 150 is configured to move the fundus camera unit 2 three-dimensionally, for example.
  • the moving mechanism 150 includes an x stage that can move in the ⁇ x direction (left and right direction), an x moving mechanism that moves the x stage, and a y stage that can move in the ⁇ y direction (up and down direction).
  • Each of these moving mechanisms includes an actuator such as a pulse motor that operates under the control of the main control unit 211.
  • At least a part of the measurement arm (including at least the objective lens 22) is directly or indirectly placed on these stages.
  • a fundus camera unit is mounted directly or indirectly on these stages.
  • the storage unit 212 stores various data. Examples of data stored in the storage unit 212 include OCT image data, anterior ocular segment image data, fundus image data, and examined eye information.
  • the subject eye information may include, for example, subject information such as a patient identifier and a name, a left / right eye identifier, electronic medical record data, and the like.
  • the storage unit 212 may store various software, various parameter values, and various templates for operating the ophthalmologic apparatus 1.
  • the storage unit 212 typically includes a relatively large capacity storage device such as a hard disk. Various data may be stored in a storage device or an information processing device arranged on the communication line. In this case, the storage unit 212 may not include a relatively large capacity storage device. The same applies when a relatively large-capacity storage device provided as a peripheral device of the ophthalmologic apparatus 1 is used.
  • the image forming unit 220 forms OCT image data based on the data collected by the data collection system 130.
  • the function of the image forming unit 220 is typically realized by cooperation of hardware including a processor and software including an image forming program. You may make it implement
  • the image forming unit 220 forms cross-sectional image data based on the data collected by the data collection system 130.
  • This processing includes signal processing such as noise removal (noise reduction), filter processing, and fast Fourier transform (FFT) as in the case of the conventional swept source OCT.
  • signal processing such as noise removal (noise reduction), filter processing, and fast Fourier transform (FFT) as in the case of the conventional swept source OCT.
  • the image data formed by the image forming unit 220 is a group of images formed by imaging reflection intensity profiles in a plurality of A lines (scan lines along the z direction) arranged in an area to which an OCT scan is applied.
  • a scan OCT scan for A line
  • Image data obtained by A-scan may be referred to as A-scan image data.
  • the z direction may be referred to as the A scan direction.
  • a plurality of A scans arranged in a one-dimensional direction (arbitrary direction in the xy plane) orthogonal to the A scan direction is called a B scan.
  • the one-dimensional direction orthogonal to the A scan direction may be referred to as the B scan direction.
  • image data obtained by B scan may be referred to as B scan image data.
  • the image data formed by the image forming unit 220 is, for example, one or more A-scan image data, one or more B-scan image data, or three-dimensional image data.
  • the three-dimensional image data is image data expressed by a three-dimensional coordinate system, and typical examples include stack data and volume data.
  • Stack data is constructed by embedding a plurality of B-scan image data in a single three-dimensional coordinate system.
  • Volume data is also called voxel data, and is constructed by applying voxel processing to stack data.
  • the image forming unit 220 can process image data using a known image processing technique.
  • the image forming unit 220 can construct new image data by applying rendering to the three-dimensional image data.
  • Rendering techniques include volume rendering, maximum value projection (MIP), minimum value projection (MinIP), surface rendering, multi-section reconstruction (MPR), and the like.
  • the image forming unit 220 can construct projection data by projecting three-dimensional image data in the z direction (A-line direction, depth direction).
  • the image forming unit 220 can construct a shadowgram by projecting a part of the three-dimensional image data in the z direction. Note that a part of the three-dimensional image data projected to construct a shadowgram is set using segmentation, for example.
  • the data processing unit 230 executes various data processing.
  • the data processing unit 230 can apply image processing and analysis processing to OCT image data, and can apply image processing and analysis processing to observation image data or captured image data.
  • the function of the data processing unit 230 is typically realized by cooperation of hardware including a processor and software including a data processing program. You may make it implement
  • the control unit 210 illustrated in FIG. 3B includes a movement control unit 2101, a scan control unit 2102, a polarization control unit 2103, and a display control unit 2104.
  • the movement control unit 2101 controls the movement mechanism 150.
  • the scan control unit 2102 controls elements such as the light source unit 101 and the optical scanner 44 for performing OCT scan.
  • the polarization control unit 2103 controls the polarization device 118. Further, the polarization control unit 2103 may be configured to control the polarization device 103 in addition to or instead of the control of the polarization device 118.
  • the display control unit 2104 controls the user interface 240 (display unit 241).
  • the functions of the movement control unit 2101, the scan control unit 2102, the polarization control unit 2103, and the display control unit 2104 are typically realized by the cooperation of hardware including a processor and software including a control program.
  • the At least a part of any of the functions of the movement control unit 2101, the scan control unit 2102, the polarization control unit 2103, and the display control unit 2104 may be realized by hardware including a control circuit.
  • Each of the movement control unit 2101, the scan control unit 2102, the polarization control unit 2103, and the display control unit 2104 is included in the main control unit 211. Any of the movement control unit 2101, the scan control unit 2102, the polarization control unit 2103, and the display control unit 2104 may include storage hardware (storage unit 212). Processing executed by each of the movement control unit 2101, the scan control unit 2102, the polarization control unit 2103, and the display control unit 2104 will be described later.
  • the data processing unit 230 illustrated in FIG. 3B includes a movement target determination unit 231, an artifact detection unit 232, a cornea image detection unit 233, a position determination unit 234, an image quality evaluation unit 235, and an artifact removal unit 236. Including.
  • the functions of the movement target determination unit 231, the artifact detection unit 232, the cornea image detection unit 233, the position determination unit 234, the image quality evaluation unit 235, and the artifact removal unit 236 typically include hardware including a processor, This is realized in cooperation with software including a data processing program. Hardware including a data processing circuit, at least part of any of the functions of the movement target determination unit 231, the artifact detection unit 232, the cornea image detection unit 233, the position determination unit 234, the image quality evaluation unit 235, and the artifact removal unit 236 It may be realized by. Any of the movement target determination unit 231, the artifact detection unit 232, the cornea image detection unit 233, the position determination unit 234, the image quality evaluation unit 235, and the artifact removal unit 236 may include storage hardware.
  • the ophthalmologic apparatus 1 can perform anterior segment imaging using the fundus camera unit 2.
  • the ophthalmologic apparatus 1 can take an infrared moving image of the anterior eye part using observation illumination light and the image sensor 35.
  • the movement target determination unit 231 analyzes the anterior eye image acquired by the fundus camera unit 2 and determines the movement target of the OCT optical system.
  • the movement control unit 2101 controls the movement mechanism 150 based on the movement target determined by the movement target determination unit 231.
  • the movement target in the present embodiment may be, for example, coordinates (x, y, z) representing the position of the fundus camera unit 2 moved by the movement mechanism 150, or a control parameter of the movement mechanism 150.
  • the control parameter may include the number of pulses supplied to the pulse motor.
  • the type of information that the movement target determination unit 231 determines as a movement target is not limited to these examples.
  • the type of information representing the movement target is set in advance according to, for example, a hardware configuration such as a movement mechanism, a software configuration for movement control, and the like.
  • the OCT optical system is an optical system for applying OCT to the eye E (and a driving mechanism, a moving mechanism, etc. for operating the elements).
  • the OCT optical system includes at least a series of elements forming a measurement arm in the fundus camera unit 2 (specifically, a collimator lens unit 40, a retroreflector 41, a dispersion compensation member 42, an OCT focusing lens). 43, an optical scanner 44, a relay lens 45, a dichroic mirror 46, and an objective lens 22).
  • the fundus camera unit 2 including such an OCT optical system is moved by the moving mechanism 150.
  • the ophthalmologic apparatus 1 uses the fundus camera unit 2 to perform infrared video shooting of the anterior segment of the eye E to be examined.
  • the movement target determination unit 231 sequentially analyzes a plurality of anterior eye images (frame groups of moving images) acquired sequentially by the fundus camera unit 2, thereby obtaining OCT optics. Get the time series data of the moving target of the system.
  • This time-series movement target data reflects the eye movement of the eye E, the change in the relative position between the eye E and the fundus camera unit 2, and the like.
  • a change in pupil diameter or the like may affect the time-series movement target data.
  • the movement target determination unit 231 it is not necessary for the movement target determination unit 231 to analyze all the anterior segment images acquired by the fundus camera unit 2. For example, the number of anterior segment images analyzed by the movement target determination unit 231 can be reduced through a thinning process or a selection process.
  • a plurality of movement targets acquired by the movement target determination unit 231 in parallel with the infrared video shooting of the anterior eye part are sequentially sent to the movement control unit 2101.
  • the movement control unit 2101 controls the movement mechanism 150 based on the movement targets sequentially input from the movement target determination unit 231. This control is executed as real-time processing.
  • the fundus camera unit 2 can be moved in accordance with the time series change of the movement target represented by the time series movement target data.
  • the position of the OCT optical system can be automatically adjusted according to the eye movement of the eye E to be examined (tracking).
  • the OCT optical system can start application of the OCT scan to the anterior segment of the eye E at an arbitrary timing after the movement control unit 2101 executes the control of the moving mechanism 150.
  • a specific example of the application timing of the OCT scan will be described later.
  • FIG. 4A shows an example of an anterior segment image acquired by the fundus camera unit 2.
  • a pupil image 510 image area indicated by oblique lines
  • an iris image 520 image area indicated by horizontal lines
  • the movement target determination unit 231 identifies at least one of the pupil image 510 and the iris image 520 by analyzing the anterior eye image 500. This analysis may include, for example, threshold processing for pixel values and / or pattern detection.
  • the movement target determination unit 231 detects the pupil image 510 by specifying a pixel whose luminance is lower than the predetermined first threshold value. Can do.
  • a predetermined second threshold set to a value higher than the first threshold can be applied.
  • the first threshold value and the second threshold value may be a default value, or a relative value set according to an arbitrary attribute or an arbitrary condition (for example, an anterior segment image to be processed). It may be a value. As an example of the latter, it is possible to set a threshold from the luminance distribution (for example, luminance histogram) in the anterior segment image.
  • the movement target determining unit 231 specifies a region having a substantially circular or substantially elliptical edge shape to thereby determine the pupil image 510. Can be detected. The same applies to the detection of the iris image 520.
  • the movement target determining unit 231 detects two substantially circular or substantially elliptical edges arranged substantially concentrically, and an image region having the inner edge as an outer edge. Can be set in the pupil image 510, and an approximately circular image region surrounded by the inner edge and the outer edge can be set in the iris image 520.
  • the techniques applicable to the analysis of the anterior segment image are not limited to these examples.
  • the analysis of the anterior ocular segment image may include arbitrary image processing such as edge detection and binarization, or may include artificial intelligence technology and cognitive computing technology.
  • the reference numeral 510a indicates the outer edge of the pupil image 510
  • the reference numeral 520a indicates the outer edge of the iris image 520.
  • at least one of the pupil outer edge 510a and the iris outer edge 520a may be an approximate circle or an approximate ellipse.
  • the movement target determination unit 231 specifies the pupil center of the anterior eye based on at least one of the pupil image 510 and the iris image 520 (for example, at least one of the pupil outer edge 510a and the iris outer edge 520a).
  • This process includes, for example, a process of obtaining the center or center of gravity of the pupil image 510, a process of obtaining the center or center of gravity of the pupil outer edge 510a, a process of obtaining the center or center of gravity of the iris image 520, and the center or center of gravity of the iris outer edge 520a.
  • At least one of the processes may be included. When two or more of these processes are included, statistical processing (for example, averaging) can be performed on two or more pupil center candidates respectively obtained by the two or more processes.
  • requiring a pupil center is not limited to these illustrations.
  • the movement target determination unit 231 can detect the center of the pupil of the anterior eye part of the eye E and set it as a movement target.
  • the scan control unit 2102 can set the application location of the OCT scan so as to pass through the detected pupil center.
  • This OCT scan pattern can be arbitrarily set, and for example, a line scan (B scan), a cross scan, a multi-cross scan, a radial scan, or a three-dimensional scan may be applied.
  • the direction of the line scan is arbitrary.
  • the cross scan is configured by two line scans orthogonal to each other.
  • the multi-cross scan is composed of two line scan groups orthogonal to each other. Here, two or more line scans included in each line scan group are parallel to each other.
  • the radial scan is configured by a plurality of line scans arranged at equal angular intervals.
  • the three-dimensional scan is also called a volume scan or the like, and is typically a raster scan in which a large number of line scans are arranged in parallel to each other.
  • the scan control unit 2102 can set the application location of the OCT scan so that the pupil center detected by the movement target determination unit 231 is arranged at the scan center. For example, when a line scan is applied, as shown in FIG. 4C, the application location of the line scan 530 can be set so that the center of the line scan 530 and the pupil center 510b coincide. Similarly, in the case of other scan patterns, the application location of the OCT scan can be set so that the scan center coincides with the pupil center 510b.
  • the OCT scan can be executed so as to substantially pass through the pupil center.
  • the relative deviation between the xy coordinate of the pupil center and the xy coordinate of the corneal apex is not large. Therefore, if the OCT scan is performed with the pupil center as a target as in this example, the apex of the cornea or the vicinity thereof can be scanned.
  • the feature point is detected from the infrared observation image of the anterior segment and the movement target is set, but other methods can also be used.
  • any other method such as an alignment index, stereo alignment, optical lever, or the like can be used to detect anterior eye feature points.
  • a movement target can be set at the detected pupil center.
  • a movement target can be set to the detected corneal apex.
  • the feature points are not limited to the pupil center and the corneal apex.
  • the artifact detection unit 232 analyzes the OCT image formed by the image forming unit 220 and detects artifacts along the A scan direction.
  • FIG. 5 shows an OCT image actually obtained by B-scan (line scan) passing through the corneal apex.
  • B-scan image 600 a high-luminance image region having a shape similar to a part of an annulus represents a corneal cross section.
  • the shape of the upper edge of the corneal cross-sectional image is a substantially arc shape that is convex upward, and the uppermost portion corresponds to the apex of the cornea.
  • the downward direction in the drawing is the z direction (that is, the A scan direction).
  • Reference numeral 610 indicates an A line passing through the corneal apex. In the vicinity area 620 of the A line, a band-like or linear artifact along the A-scan direction appears. This artifact occurs due to specular reflection at the apex of the cornea. This artifact is called a longitudinal artifact.
  • the artifact detection unit 232 can detect longitudinal artifacts based on predetermined characteristics such as luminance, position, and shape. When the luminance is considered, the artifact detection unit 232 can detect an image region having a luminance higher than a predetermined threshold as a vertical artifact (its candidate). When the position is taken into account, the artifact detection unit 232 can detect the uppermost part of the upper edge of the corneal cross-sectional image as a corneal apex, and detect a longitudinal artifact (its candidate) based on the position. When the shape is taken into account, the artifact detection unit 232 can detect a band-like or linear image region along the A-scan direction as a vertical artifact (its candidate).
  • the corneal image detection unit 233 may detect a corneal image (for example, a corneal cross-sectional image) or a part of the corneal image (for example, a corneal apex or an edge).
  • the movement control unit 2101 can control the movement mechanism 150 based on the detection result of the longitudinal artifacts by the artifact detection unit 232. That is, it is possible to control the movement of the OCT optical system with reference to the longitudinal artifact generated in the OCT image.
  • the movement control unit 2101 can execute the control of the movement mechanism 150 so that the strength of the longitudinal artifact generated in the OCT image is maximized.
  • the control in this example can be realized by repeatedly performing a series of processes including acquisition of an OCT image, detection of longitudinal artifacts, and movement of the OCT optical system.
  • the following series of processes can be executed while acquiring a time-series OCT image by repeatedly applying an OCT scan of a predetermined pattern to the anterior segment.
  • the artifact detection unit 232 detects longitudinal artifacts in sequentially acquired OCT images.
  • the movement control unit 2101 (or another element of the control unit 210, the artifact detection unit 232, or another element of the data processing unit 230; the same applies hereinafter) obtains the strength of the longitudinal artifact.
  • the movement control unit 2101 controls the moving mechanism 150 to move the OCT optical system.
  • the artifact detection unit 232 detects a longitudinal artifact in the OCT image acquired after the movement of the OCT optical system.
  • the movement control unit 2101 obtains the strength of the new vertical artifact and compares it with the previous vertical artifact.
  • the movement control unit 2101 controls the movement mechanism 150 to move the OCT optical system in the same direction as the previous intensity.
  • the movement control unit 2101 controls the movement mechanism 150 to move the OCT optical system in the direction opposite to the previous intensity.
  • the high strength of the longitudinal artifact reflects the accuracy of the alignment of the OCT optical system with respect to the corneal apex. Therefore, it is possible to improve the accuracy of alignment of the OCT optical system with respect to the corneal apex by searching for a position of the OCT optical system that can obtain a higher-strength longitudinal artifact.
  • the movement control unit 2101 can execute control of the movement mechanism 150 so that a vertical artifact is arranged at the center of the frame of the OCT image. That is, the movement control unit 2101 can control the movement mechanism 150 so that the artifact detected by the artifact detection unit 232 passes through the center of the frame of the OCT image.
  • the control of this example can be realized by repeatedly performing a series of processes including acquisition of an OCT image, detection of longitudinal artifacts, and movement of the OCT optical system.
  • the following series of processing is executed while acquiring a time-series OCT image by repeatedly applying an OCT scan of a predetermined pattern to the anterior segment.
  • the artifact detection unit 232 detects longitudinal artifacts in sequentially acquired OCT images.
  • the movement control unit 2101 (or another element of the control unit 210, the artifact detection unit 232, or another element of the data processing unit 230; the same applies hereinafter) obtains the position of the longitudinal artifact in the image frame.
  • the position of the longitudinal artifact in the image frame is, for example, the deviation of the longitudinal artifact with respect to a predetermined frame center.
  • the frame center may be a center in at least one of the x direction and the y direction.
  • the center of the image frame in the x direction can be set as the frame center.
  • the OCT image is a B scan image along the y direction
  • the center of the image frame in the y direction can be set as the frame center.
  • the OCT image is a three-dimensional image
  • the center of the xy plane in the image frame can be set as the frame center.
  • the OCT image is a B scan obtained by a line scan in which both the vector component in the x direction and the vector component in the y direction are non-zero
  • the position in the image frame that is the center in the x direction and the center in the y direction is framed.
  • the frame center can be set according to the pattern and orientation of the OCT scan.
  • the movement control unit 2101 After the movement control unit 2101 obtains the position of the longitudinal artifact in the image frame, the movement control unit 2101 controls the moving mechanism 150 to move the OCT optical system.
  • the artifact detection unit 232 detects a longitudinal artifact in the OCT image acquired after the movement of the OCT optical system.
  • the movement control unit 2101 obtains the position of a new vertical artifact in the image frame of this new OCT image.
  • the movement control unit 2101 obtains an inverse vector of the deviation vector, and controls the moving mechanism 150 to move the OCT optical system by a direction and a distance corresponding to the inverse vector.
  • This series of processing can be repeated so that the magnitude of the deviation vector is stabilized below a predetermined threshold.
  • This series of processing is an example of tracking. This makes it possible to acquire an OCT image in which the corneal vertex is arranged at the center of the frame.
  • the two examples described above can be performed in parallel. This makes it possible to acquire an OCT image in which the corneal apex is arranged at the center of the frame while improving the alignment accuracy of the OCT optical system with respect to the corneal apex.
  • the corneal image detection unit 233 detects the corneal image by analyzing the OCT image formed by the image forming unit 220. This processing can be executed based on predetermined characteristics such as luminance, position, and shape, as in the detection of the longitudinal artifact. In addition, image processing such as segmentation may be included.
  • the corneal image may be the entire image region corresponding to the cornea depicted in the OCT image or a part thereof.
  • the corneal image detection unit 233 may detect the entire corneal cross-sectional image, which is a high-luminance image region having a shape similar to a part of an annulus.
  • the upper edge (corneal surface, corneal front) of the corneal cross-sectional image may be detected, the vertex of the front of the cornea (corneal vertex) may be detected, or the lower edge (back of the cornea, posterior surface of the cornea).
  • the apex of the posterior surface of the cornea may be detected, or a sub-tissue of the cornea (corneal epithelium, Bowman's membrane, lamina basement, Duer's layer, Descemet's membrane, corneal endothelium) may be detected.
  • the corneal image detection unit 233 can detect the corneal vertex, the detection of the corneal vertex can be performed before the detection of the longitudinal artifact, and the result can be provided to the artifact detection unit 232.
  • the artifact detection unit 232 can detect longitudinal artifacts based on the detection result of the corneal apex by the corneal image detection unit 233.
  • the position determination unit 234 determines whether the common area between the longitudinal artifact detected by the artifact detection unit 232 and the cornea image detected by the cornea image detection unit 233 is located within a predetermined range in the image frame.
  • the range (allowable range) in the image frame serving as a reference for this determination process may be set in advance or may be set for each OCT image. As an example of the latter, it is possible to set an allowable range based on the size of the corneal image depicted in the OCT image.
  • the artifact detection unit 232 and the corneal image detection unit 233 apply analysis to the same OCT image, respectively. To do. These processes are executed in parallel, for example. Thereby, longitudinal artifacts and corneal images are detected for a single OCT image. In the OCT image, the allowable range is set.
  • the position determination unit 234 identifies a common area between the longitudinal artifact and the corneal image.
  • the longitudinal artifact is a belt-like image region along the A-scan direction (z direction), and the cornea image is typically an upwardly convex annular image region. Is drawn to pass through the corneal apex and its vicinity. Therefore, if the corneal apex and / or its vicinity is depicted in the OCT image, in other words, if the longitudinal artifact is depicted in the OCT image, the longitudinal artifact and the corneal image are at the corneal apex and / or in the vicinity thereof. Crossed.
  • This intersection region that is, a region where the longitudinal artifact and the cornea image overlap each other is a common region.
  • the position determination unit 234 can compare a pixel group representing a longitudinal artifact with a pixel group representing a corneal image, and specify one or more pixels included in both of the two pixel groups as a common region.
  • the position determination unit 234 determines whether or not the specified common area is included in the allowable range. This process determines, for example, whether at least a part of one or more pixels forming the common area is included in the allowable range. Alternatively, it may be determined whether all of one or more pixels forming the common area are included in the allowable range.
  • the artifact detection unit 232 analyzes the B scan image 700 to detect the longitudinal artifact 710, and the corneal image detection unit 233 detects the B scan image 700. To detect a corneal image 720 (or a part thereof). In the B scan image 700, an allowable range 700a is set.
  • the position determination unit 234 detects a corneal apex from the cornea image 720 and specifies a common region 730 between the detected corneal apex and the longitudinal artifact 710. Further, the position determination unit 234 determines whether the specified common area 730 is included in the allowable range 700a. In the example shown in FIG. 6, the common area 730 is located inside the allowable range 700a. On the other hand, when the relative position between the eye E and the OCT optical system when the B-scan image 700 is obtained is inappropriate, the common region 730 may be located outside the allowable range 700a.
  • Such position determination is executed after the movement control of the OCT optical system based on the longitudinal artifact in the OCT image (described above). Even if this movement control is performed, the eye movement of the eye E to be examined, etc. Because the relative position between the eye E and the OCT optical system constantly varies depending on whether or not the common area of the longitudinal artifact and the corneal image is included in the allowable range, in order to obtain a suitable OCT image is important.
  • the fact that the common area of the longitudinal artifact and the corneal image is included in the allowable range applies an OCT scan for acquiring data (for example, an image and a measurement value) used for diagnosis to the anterior segment. Is a necessary condition.
  • the image quality evaluation unit 235 calculates the image quality evaluation value of the OCT image formed by the image forming unit 220.
  • the image quality evaluation value is a numerical value indicating the degree of image quality of the OCT image, and is used for evaluating whether or not the image quality is good.
  • the image quality evaluation value may be any kind of value that can be calculated by any method.
  • a typical image quality evaluation value is a signal-to-noise ratio (S / N ratio) regarding two types of image regions in an OCT image.
  • a specific example of the image quality evaluation value is an S / N ratio related to a signal in an image area representing a part of the eye (anterior eye part) and noise in an image area representing a background that is not an eye part.
  • An image area representing the anterior segment is called an anterior segment
  • an image area representing the background is called a background segment.
  • the calculation method of the image quality evaluation value expressed as the S / N ratio related to the anterior eye region and the background region is arbitrary. Specific examples thereof will be described below.
  • the image quality evaluation unit 235 specifies the pixel with the maximum luminance and the pixel with the minimum luminance for each of the plurality of A-scan images constituting the OCT image.
  • the image quality evaluation unit 235 creates a luminance value histogram (for example, 8 bits) based on the luminance values of a predetermined range of pixels (for example, 40 pixels before and after) including the specified maximum luminance pixel. .
  • the image quality evaluation unit 235 creates a histogram of luminance values based on the luminance values of a predetermined group of pixels including the specified minimum luminance pixel.
  • the image quality evaluation unit 235 searches for the maximum position (luminance value) where the frequency value exceeds 0 in the histogram corresponding to the pixel group including the pixel having the minimum luminance. Further, in the histogram corresponding to the pixel group including the pixel having the maximum luminance, the total number of pixels (N) included in the range equal to or less than the luminance value searched above and the 255th luminance value from the top above the searched luminance value. And the total number of pixels (S) included in.
  • the image quality evaluation unit 235 evaluates the percentage of the portion of the image that can be regarded as a signal (that is, the portion that can be regarded as not noise) by the following arithmetic expression: 100 ⁇ S ⁇ (S + N).
  • the image quality evaluation unit 235 obtains a plurality of numerical values corresponding to a plurality of A scan images by applying such a series of operations to each A scan image. Then, the image quality evaluation unit 235 obtains an average value of these numerical values and sets this as the image quality evaluation value.
  • the image quality evaluation unit 235 (or another element of the data processing unit 230 or the control unit 210) can determine whether the calculated image quality evaluation value is equal to or greater than a predetermined threshold value.
  • This threshold value may be a default value or a value set according to an arbitrary attribute or an arbitrary condition. If the image quality evaluation value is greater than or equal to the threshold value, it is determined that the image quality of this OCT image is good. On the other hand, when the image quality evaluation value is less than the threshold value, it is determined that the image quality of the OCT image is not good.
  • the image quality evaluation value being equal to or greater than the threshold is a necessary condition for applying an OCT scan for acquiring data (for example, images and measurement values) used for diagnosis to the anterior segment.
  • the image quality evaluation value calculated by the image quality evaluation unit 235 and the evaluation result (determination result) based on the image quality evaluation value can be used for processing and control.
  • an image quality evaluation value or an evaluation result can be used for processing and control for improving the image quality of an OCT image.
  • the polarization control unit 2103 can control the polarization device 118 (and / or the polarization device 103) so as to increase the image quality evaluation value calculated by the image quality evaluation unit 235.
  • the control of this example can be realized by repeatedly performing a series of processes including acquisition of an OCT image, calculation of an image quality evaluation value, evaluation of image quality, and control of the polarization device 118, for example.
  • the artifact removing unit 236 removes the vertical artifact detected by the artifact detecting unit 232 from the OCT image formed by the image forming unit 220.
  • the display control unit 2104 can cause the display unit 241 to display the OCT image from which the longitudinal artifact has been removed by the artifact removal unit 236.
  • the value of the pixel group corresponding to the longitudinal artifact is replaced with another value.
  • the artifact removing unit 236 can obtain a new value of the target pixel based on the values of one or more pixels located around the target pixel. This process includes, for example, a known filter process.
  • the display control unit 2104 can cause the display unit 241 to display an OCT image in which values of pixel groups corresponding to vertical artifacts are converted.
  • FIGS. 7A and 7B An example of the operation of the ophthalmologic apparatus 1 is shown in FIGS. 7A and 7B.
  • the fundus camera unit 2 of the ophthalmologic apparatus 1 starts infrared video shooting of the anterior segment of the eye E to be examined.
  • a frame (anterior eye image) acquired by infrared moving image shooting is transferred to the data processing unit 230 via the control unit 210. This transfer is executed as real-time processing.
  • the movement target determination unit 231 analyzes the anterior ocular segment image transferred from the fundus camera unit 2 and determines the movement target of the OCT optical system. Typically, the movement target determination unit 231 can detect the center of the pupil from the anterior eye image and set it as a movement target. This process is, for example, a real-time process executed for each anterior segment image transferred from the fundus camera unit 2.
  • the movement control unit 2101 moves the OCT optical system by controlling the movement mechanism 150 based on the movement target determined in step S2. Typically, the movement control unit 2101 moves the OCT optical system so that the optical axis of the OCT optical system passes through the pupil center. This movement control is executed as real-time processing.
  • the scan control unit 2102 sets conditions to be applied to the repetitive OCT scan started in the next step S5.
  • the scan control unit 2102 sets an OCT scan pattern, and sets an application location of the OCT scan so that the center (scan center) of the scan pattern is arranged at the center of the pupil (for example, (See FIG. 4C).
  • the scan control unit 2102 starts an iterative OCT scan under the conditions set in step S4.
  • the repetitive OCT scan is typically a scan mode in which an OCT scan of a certain pattern is repeatedly applied to the anterior segment, and thereby a time-series OCT image is acquired.
  • the time-series OCT image is used for preparation operations such as alignment and image quality adjustment.
  • the repetitive OCT scan is typically a scan mode in which B-scan is repeated with the optical axis position of the OCT optical system as the scan center. According to such repetitive B-scan, it is possible to apply a B-scan passing through the center of the pupil or the vicinity thereof (and hence the apex of the cornea or the vicinity thereof) at a high repetition frequency.
  • an arbitrary scan pattern such as a cross scan, a multi-cross scan, a radial scan, or a three-dimensional scan can be applied in order to facilitate the search for the corneal apex where the longitudinal artifact occurs.
  • the selection of the scan pattern applied to the repetitive OCT scan is performed in consideration of various conditions such as the repetition frequency, the load / time required for data processing, and the ease of searching for the corneal apex. Further, a plurality of conditions may be satisfied by switching the pattern of the repeated OCT scan and the size of the scan area in the middle.
  • Repetitive OCT scans result in data sets collected with each OCT scan.
  • the image forming unit 220 forms an OCT image based on each of a plurality of data sets obtained sequentially by repetitive OCT scans. When repetitive B-scan is applied, a plurality of data sets corresponding to repetition of B-scan are obtained sequentially.
  • the image forming unit 220 forms a B-scan image based on each of a plurality of data sets.
  • the artifact detection unit 232 analyzes each of a plurality of OCT images (or parts thereof) sequentially acquired by the repetitive OCT scan started in step S5 to detect a longitudinal artifact. This process is executed as a real-time process.
  • the artifact removing unit 236 removes longitudinal artifacts from each of (or a part of) a plurality of OCT images sequentially obtained by the repetitive OCT scan started in step S5. This artifact removal is performed as a real-time process.
  • the display control unit 2104 causes the display unit 241 to display the OCT image from which the vertical artifact has been removed.
  • the display control unit 2104 displays the time series OCT images sequentially constructed by the artifact removal unit 236 as a moving image. This display control is executed as real-time processing. Thereby, a live OCT image from which longitudinal artifacts are removed can be provided.
  • the movement control unit 2101 moves the OCT optical system by controlling the movement mechanism 150 based on each of the plurality of longitudinal artifacts (or part of them) sequentially detected in step S6.
  • the movement control unit 2101 has the OCT optical system so that the intensity of longitudinal artifacts generated in the OCT image is maximized and / or the longitudinal artifact is arranged at the frame center of the OCT image. Adjust the position.
  • the movement control unit 2101 determines whether the position of the OCT optical system after being moved in step S8 satisfies a predetermined condition.
  • the criterion for determination is typically the strength of the longitudinal artifact and / or the deviation of the longitudinal artifact with respect to the frame center of the OCT image.
  • step S10 If the position of the OCT optical system satisfies a predetermined condition (S9: Yes), the process proceeds to step S10.
  • step S9 If the position of the OCT optical system does not satisfy the predetermined condition (S9: No), the process returns to step S8, and steps S8 and S9 are repeated until the predetermined condition is satisfied. In addition, when steps S8 and S9 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • the corneal image detection unit 233 detects each corneal image (for example, corneal vertex) by analyzing each of a plurality of OCT images (or a part thereof) sequentially acquired by the repetitive OCT scan started in step S5. To do. This process is executed as a real-time process.
  • the position determination unit 234 identifies a common area between the longitudinal artifact detected in step S6 and the corneal image detected in step S10, and determines whether the common area is located within an allowable range in the frame of the OCT image. .
  • step S12 If it is determined that the common area is within the allowable range (S11: Yes), the process proceeds to step S12.
  • step S11 If it is determined that the common area is not within the allowable range (S11: No), the process returns to step S8, and steps S8 to S11 are repeated until it is determined “Yes” in both steps S9 and S11. Note that when part or all of steps S8 to S11 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • the image quality evaluation unit 235 analyzes each of a plurality of OCT images (or a part thereof) sequentially obtained by the repetitive OCT scan started in step S5, and calculates an image quality evaluation value. This process is executed as a real-time process.
  • the image quality evaluation unit 235 determines whether the image quality evaluation value calculated in step S12 is greater than or equal to a predetermined threshold value.
  • step S15 If it is determined that the image quality evaluation value is equal to or greater than the predetermined threshold (S13: Yes), the process proceeds to step S15.
  • step S13 If it is determined that the image quality evaluation value is less than the predetermined threshold (S13: No), the process proceeds to step S14.
  • Steps S12 to S14 are repeated until “Yes” is determined in step S13. Note that when steps S12 to S14 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • step S15 Perform diagnostic OCT scan
  • step S15 is started.
  • the alignment state of the OCT optical system with respect to the anterior segment (corneal vertex, pupil center, etc.) and the image quality of the obtained OCT image are good.
  • the scan control unit 2102 applies the OCT scan to the anterior segment at the timing when such favorable conditions are ensured, and the image forming unit 220 forms an OCT image from the collected data. Further, the data processing unit 230 can process or analyze the OCT image.
  • the OCT image acquired in step S15 is typically used for diagnosis, and the scan conditions are generally different from the conditions for the repetitive OCT scan started in step S5.
  • the OCT image obtained in step S15 has higher definition.
  • arbitrary conditions such as the scan pattern and the size of the scan area may be different.
  • the ophthalmic apparatus 1 includes an OCT optical system, an image forming unit 220, an artifact detection unit 232, a movement mechanism 150, a movement control unit 2101, a corneal image detection unit 233, a position determination unit 234, and an image quality evaluation unit 235. And a scan control unit 2102.
  • the OCT optical system is an optical system for applying OCT to the anterior segment of the eye E.
  • the OCT optical system includes at least a series of elements that form a measurement arm in the fundus camera unit 2. .
  • the image forming unit 220 forms an OCT image based on data obtained by the OCT scan.
  • the artifact detection unit 232 analyzes the OCT image formed by the image forming unit 220 and detects a longitudinal artifact.
  • the longitudinal artifact is an artifact along the A-scan direction.
  • the moving mechanism 150 moves the OCT optical system (part or all).
  • the movement control unit 2101 (first movement control unit) moves the OCT optical system by controlling the movement mechanism 150 based on the longitudinal artifact detected by the artifact detection unit 232.
  • the corneal image detection unit 233 analyzes the OCT image formed by the image forming unit 220 and detects a corneal image.
  • the position determination unit 234 determines whether the common region between the longitudinal artifact detected by the artifact detection unit 232 and the cornea image detected by the corneal image detection unit 233 is located within a predetermined range in the frame of the OCT image.
  • the image quality evaluation unit 235 calculates the image quality evaluation value of the OCT image formed by the image forming unit 220. For example, the image quality evaluation unit 235 can calculate, as the image quality evaluation value, the ratio between the anterior eye region signal and the background region noise in the OCT image formed by the image forming unit 220.
  • the scan control unit 2102 determines a predetermined pattern when the position determination unit 234 determines that the common area is located within a predetermined range in the frame and the image quality evaluation value calculated by the image quality evaluation unit 235 is equal to or greater than a predetermined threshold.
  • the OCT optical system is controlled so that the OCT scan is applied to the anterior segment.
  • the ophthalmologic apparatus 1 configured as described above, whether the necessary conditions are satisfied for the preparation operations such as the alignment of the OCT optical system to the target part, the adjustment of the drawing position of the target part in the image frame, and the adjustment of the image quality. It is possible to perform an OCT scan (imaging, measurement, etc.) at a suitable timing when conditions are satisfied, automatically performed while confirming whether or not.
  • the preparatory operation for applying the OCT scan to the anterior segment of the living eye is automated, even a person unfamiliar with the handling of the apparatus can easily perform the OCT examination. Further, it becomes possible to perform the OCT examination by the subject alone. As a result, the burden on the subject and the examiner in the OCT examination is reduced.
  • the ophthalmologic apparatus 1 in which the preparation operation is automated is also effective as an ophthalmologic apparatus installed in such a place.
  • the ophthalmologic apparatus 1 may be configured to execute the following series of processes after the movement control unit 2101 (first movement control unit) executes the control of the moving mechanism 150 based on the longitudinal artifact.
  • the OCT optical system applies an OCT scan to the anterior segment.
  • the image forming unit 220 forms an OCT image based on the data obtained by the OCT scan.
  • the artifact detection unit 232 analyzes the OCT image and detects a longitudinal artifact.
  • the cornea image detection unit 233 analyzes this OCT image and detects a cornea image.
  • the position determination unit 234 determines whether the common area between the longitudinal artifact and the cornea image is located within a predetermined range in the frame of the OCT image.
  • an OCT scan is performed again to form an OCT image, and the object is based on the longitudinal artifact and the corneal image obtained from the OCT image. It is possible to determine the drawing position of the part. That is, the rendering position can be determined in a good alignment state achieved by alignment based on vertical artifacts. Thereby, the smooth linkage between the alignment and the rendering position determination becomes possible.
  • the ophthalmologic apparatus 1 may be configured such that the image quality evaluation unit 235 calculates the image quality evaluation value after the position determination unit 234 determines that the common region is located within a predetermined range.
  • the ophthalmologic apparatus 1 configured as described above, it is possible to perform the rendering position determination in a good alignment state achieved by the alignment based on the longitudinal artifact, and to evaluate the image quality after the satisfactory rendering position is achieved. As a result, it is possible to smoothly link alignment, rendering position determination, and image quality evaluation.
  • the ophthalmologic apparatus 1 includes a fundus camera unit 2 (anterior ocular segment imaging system) and a movement target determining unit 231.
  • the fundus camera unit 2 performs anterior segment imaging.
  • the movement target determination unit 231 analyzes the anterior segment image obtained by the fundus camera unit 2 and determines the movement target of the OCT optical system.
  • the movement control unit 2101 controls the movement mechanism 150 based on the movement target determined by the movement target determination unit 231. After the movement control unit 2101 executes control of the movement mechanism 150, the OCT optical system starts applying an OCT scan to the anterior segment.
  • the ophthalmologic apparatus 1 configured as described above, it is possible to perform (rough) alignment with an anterior ocular segment image before application of the OCT scan. As a result, it is possible to facilitate alignment based on longitudinal artifacts performed after the start of the OCT scan. In addition, it is possible to smoothly link the alignment based on the anterior segment image and the alignment based on the longitudinal artifact.
  • the movement target determining unit 231 can set a movement target at the pupil center of the anterior segment.
  • the OCT optical system can start applying an OCT scan with a pattern centered on the pupil center.
  • the OCT scan can be started with reference to the center of the pupil which is one of the landmarks of the anterior segment. This makes it possible to facilitate and speed up the alignment based on the longitudinal artifacts that are performed after the start of the OCT scan. More specifically, by starting the OCT scan with the pupil center as a reference, it becomes easier to detect longitudinal artifacts occurring at and near the corneal apex, and as a result, the alignment based on the longitudinal artifacts can be facilitated and accelerated. Can be achieved.
  • the OCT scan performed by the OCT optical system after the alignment based on the anterior segment image may be a repetitive OCT scan with the center of the pupil as the scan center.
  • the image forming unit 220 forms an OCT image based on each of a plurality of data sets obtained sequentially by this repetitive OCT scan.
  • the repetitive OCT scan may be a repetitive B scan.
  • the OCT optical system may continue the repetitive OCT scan until at least an image quality evaluation value equal to or greater than a predetermined threshold is obtained by the image quality evaluation unit.
  • a plurality of OCT images (time-series OCT images) synchronized with the repetition of the OCT scan can be obtained.
  • the time-series OCT image can be applied to various uses such as alignment, rendering position determination, image quality evaluation, and moving image display.
  • the movement control unit 2101 (first movement control unit) can control the moving mechanism 150 so as to increase the strength of the longitudinal artifact detected by the artifact detection unit 232.
  • the ophthalmologic apparatus 1 configured in this way, it is possible to improve the accuracy of alignment of the OCT optical system with respect to the corneal apex by searching for the position of the OCT optical system that can obtain a higher-strength longitudinal artifact. It is.
  • the movement control unit 2101 (first movement control unit) can control the movement mechanism 150 so that the artifact detected by the artifact detection unit 232 passes through the center of the image frame. .
  • the ophthalmologic apparatus 1 configured in this way, it is possible to perform alignment of the OCT optical system so that the corneal apex is drawn at a suitable position in the image frame.
  • the OCT optical system includes a measurement arm that guides the measurement light LS to the anterior eye part and a reference arm that guides the reference light LR superimposed on the return light of the measurement light LS from the anterior eye part.
  • a polarization device may be provided on at least one of the measurement arm and the reference arm. The polarization device changes the polarization state of the guided light.
  • the polarization device 118 is provided on the reference arm.
  • the ophthalmologic apparatus 1 may include a polarization control unit 2103.
  • the polarization control unit 2103 controls the polarization device so as to increase the image quality evaluation value calculated by the image quality evaluation unit 235 (for example, the ratio of the signal in the anterior eye region and the noise in the background region).
  • the ophthalmologic apparatus 1 configured as described above, it is possible to improve the OCT image when the image quality is low.
  • the ophthalmologic apparatus 1 may include a display control unit 2104 that displays an OCT image formed by the image forming unit 220 on the display unit 241 (display unit).
  • the display unit may be included in the ophthalmologic apparatus 1 or a peripheral device connected to the ophthalmologic apparatus 1.
  • the OCT image formed by the image forming unit 220 can be visually provided to the user.
  • the ophthalmologic apparatus 1 may include an artifact removing unit 236.
  • the artifact removal unit 236 removes the vertical artifact detected by the artifact detection unit 232 from the OCT image formed by the image forming unit 220. Note that the artifact removing unit 236 may be capable of removing artifacts other than the longitudinal artifact.
  • the display control unit 2104 can cause the display unit 241 to display the OCT image from which at least the longitudinal artifact has been removed by the artifact removal unit 236.
  • the artifact removal unit 236 and the display control unit 2104 are included in the “display control unit”.
  • the ophthalmologic apparatus 1 configured as described above, it is possible to remove vertical artifacts that are useful for alignment but interfere with observation from the display image.
  • the above embodiment also provides a method for controlling an ophthalmic apparatus.
  • An ophthalmologic apparatus to which this control method can be applied includes an OCT optical system that applies an OCT scan to the anterior segment of an eye to be examined, an image forming unit that forms an image based on data obtained by the OCT scan, and an OCT optical system. Moving mechanism.
  • the control method of the present embodiment includes an artifact detection step, a movement control step, a corneal image detection step, a position determination step, an image quality evaluation step, and a scan control step.
  • the artifact detection step analyzes an image formed by the image forming unit and detects an artifact along the A scan direction.
  • the movement control step controls the movement mechanism based on the detected artifact.
  • an image formed by the image forming unit is analyzed to detect a corneal image.
  • the position determination step determines whether or not the common area between the detected artifact and the detected corneal image is within a predetermined range in the image frame.
  • an image quality evaluation value of the image formed by the image forming unit is calculated.
  • the scan control step determines that the common region is located within a predetermined range and, when the calculated image quality evaluation value is equal to or greater than a predetermined threshold, applies an OCT scan of a predetermined pattern to the anterior segment. Control the system.
  • This program may include, for example, any of the programs described regarding the ophthalmologic apparatus 1 according to the embodiment.
  • This non-temporary recording medium may be in any form, and examples thereof include a magnetic disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • the corner angle is a portion sandwiched between the cornea and the iris, through which aqueous humor is discharged.
  • the hardware configuration of the ophthalmic apparatus according to the present embodiment may be the same as that of the ophthalmic apparatus 1 applicable to corneal OCT, and a part of the software configuration of the ophthalmic apparatus according to the present embodiment is the same as that of the ophthalmic apparatus 1. It may be the same.
  • FIGS. 1, 2, and 3 ⁇ / b> A relating to the ophthalmologic apparatus 1 are applied mutatis mutandis.
  • symbol used in description of the ophthalmologic apparatus 1 may be used about the element similar to the ophthalmologic apparatus 1.
  • FIG. 8 shows an exemplary configuration of an ophthalmologic apparatus applicable to corner OCT.
  • the ophthalmic apparatus 1A includes a control unit 210A and a data processing unit 230A in addition to the fundus camera unit 2, the OCT unit 100, the moving mechanism 150, the image forming unit 220, and the user interface 240 similar to those of the ophthalmic apparatus 1 described above.
  • the control unit 210A is provided instead of the control unit 210 of the ophthalmologic apparatus 1 described above.
  • the data processing unit 230A is provided instead of the data processing unit 230 of the ophthalmic apparatus 1 described above.
  • the fundus camera unit 2 the OCT unit 100, the moving mechanism 150, the image forming unit 220, and the user interface 240 have the same configuration and functions as those of the ophthalmologic apparatus 1.
  • the control unit 210A and the data processing unit 230A will be described.
  • the control unit 210A includes a processor and controls each unit of the ophthalmologic apparatus 1A.
  • the control unit 210A includes, for example, a main control unit and a storage unit, similar to the control unit 210 of the ophthalmologic apparatus 1 described above.
  • the main control unit of the control unit 210A controls each element of the ophthalmologic apparatus 1A (including the elements shown in FIGS. 1 to 3A and FIG. 8).
  • the function of the main control unit is typically realized by cooperation of hardware including a processor and software including a control program. You may make it implement
  • the storage unit of the control unit 210A stores various data.
  • the storage unit may store various software for operating the ophthalmologic apparatus 1A, various parameter values, and various templates.
  • the storage unit typically includes a relatively large capacity storage device such as a hard disk.
  • Various data may be stored in a storage device or information processing device arranged on the communication line. In this case, the storage unit may not include a relatively large capacity storage device. The same applies to the case of using a relatively large-capacity storage device provided as a peripheral device of the ophthalmic apparatus 1A.
  • the data processing unit 230A executes various types of data processing in the same manner as the data processing unit 230 of the above embodiment.
  • the function of the data processing unit 230A is typically realized by cooperation of hardware including a processor and software including a data processing program. You may make it implement
  • the control unit 210A illustrated in FIG. 8 includes a movement control unit 2101A, a scan control unit 2102A, a polarization control unit 2103A, and a display control unit 2104A.
  • the movement control unit 2101A controls the movement mechanism 150.
  • the scan control unit 2102A controls elements for performing OCT scan, such as the light source unit 101 and the optical scanner 44.
  • the polarization controller 2103A controls the polarization device 118. Further, the polarization control unit 2103A may be configured to control the polarization device 103 in addition to or instead of the control of the polarization device 118.
  • the display control unit 2104A controls the user interface 240 (display unit 241).
  • the functions of the movement control unit 2101A, the scan control unit 2102A, the polarization control unit 2103A, and the display control unit 2104A are typically realized by the cooperation of hardware including a processor and software including a control program.
  • the At least some of the functions of the movement control unit 2101A, the scan control unit 2102A, the polarization control unit 2103A, and the display control unit 2104A may be realized by hardware including a control circuit.
  • Each of the movement control unit 2101A, the scan control unit 2102A, the polarization control unit 2103A, and the display control unit 2104A is included in the main control unit of the control unit 210A.
  • Any of the movement control unit 2101A, the scan control unit 2102A, the polarization control unit 2103A, and the display control unit 2104A may include storage hardware (a storage unit of the control unit 210A). Processing executed by each of the movement control unit 2101A, the scan control unit 2102A, the polarization control unit 2103A, and the display control unit 2104A will be described later.
  • the data processing unit 230A illustrated in FIG. 8 includes a movement target determination unit 231A, a scan area setting unit 232A, an image quality evaluation unit 233A, a corner image detection unit 234A, an iris image detection unit 235A, and a position determination unit. 236A.
  • the functions of the movement target determination unit 231A, the scan area setting unit 232A, the image quality evaluation unit 233A, the corner image detection unit 234A, the iris image detection unit 235A, and the position determination unit 236A typically include hardware including a processor. Hardware and software including a data processing program. At least some of the functions of the movement target determination unit 231A, the scan area setting unit 232A, the image quality evaluation unit 233A, the corner image detection unit 234A, the iris image detection unit 235A, and the position determination unit 236A are included in the data processing circuit. You may make it implement
  • ⁇ Movement target determination unit 231A> Similar to the ophthalmologic apparatus 1 described above, the ophthalmologic apparatus 1 ⁇ / b> A can perform anterior segment imaging using the fundus camera unit 2.
  • the movement target determination unit 231A analyzes the anterior segment image acquired by the fundus camera unit 2 and determines the movement target of the OCT optical system.
  • the movement control unit 2101A controls the movement mechanism 150 based on the movement target determined by the movement target determination unit 231A.
  • the movement target may be, for example, coordinates (x, y, z) representing the position of the fundus camera unit 2 moved by the movement mechanism 150 or a control parameter of the movement mechanism 150.
  • the type of the movement target is not limited to these examples, and is set in advance according to, for example, a hardware configuration such as a movement mechanism or a software configuration for movement control.
  • the ophthalmic apparatus 1A includes an OCT optical system for applying OCT to the eye E, and the fundus camera unit 2 including the OCT optical system is moved by the moving mechanism 150.
  • the ophthalmologic apparatus 1 ⁇ / b> A uses the fundus camera unit 2 to perform infrared video shooting of the anterior segment of the eye E to be examined.
  • the movement target determination unit 231A sequentially analyzes a plurality of anterior segment images (moving image frame groups) sequentially acquired by the fundus camera unit 2 to thereby perform OCT optics. It is possible to acquire time series data of the moving target of the system.
  • the plurality of movement targets acquired by the movement target determination unit 231A in parallel with the infrared video shooting of the anterior eye part are sequentially sent to the movement control unit 2101A.
  • the movement control unit 2101A controls the movement mechanism 150 based on the movement targets sequentially input from the movement target determination unit 231A.
  • This control is executed as real-time processing.
  • the fundus camera unit 2 can be moved in accordance with the time series change of the movement target represented by the time series movement target data.
  • the position of the OCT optical system can be automatically adjusted according to the eye movement of the eye E to be examined (tracking).
  • the scan area setting unit 232A can set the scan area at an arbitrary timing after the movement control unit 2101A executes the control of the movement mechanism 150.
  • the setting of the scan area and the execution timing will be described later.
  • FIG. 9A shows an example of an anterior segment image acquired by the fundus camera unit 2.
  • a pupil image 810 image region indicated by diagonal lines
  • an iris image 820 image region indicated by horizontal lines
  • the movement target determination unit 231A identifies the pupil image 810 and the iris image 820 by analyzing the anterior segment image 800. This analysis is executed in the same manner as the analysis by the movement target determination unit 231 described above.
  • reference numeral 810a indicates the outer edge of the pupil image 810
  • reference numeral 820a indicates the outer edge of the iris image 820.
  • at least one of the pupil outer edge 810a and the iris outer edge 820a may be an approximate circle or an approximate ellipse.
  • the movement target determining unit 231A specifies the pupil center 810b of the anterior eye based on at least one of the pupil image 810 and the iris image 820 (for example, at least one of the pupil outer edge 810a and the iris outer edge 820a). This process is executed in the same manner as the process by the movement target determination unit 231 described above.
  • the movement target determination unit 231A obtains a straight line that passes through the pupil center 810b and extends along a predetermined direction. For example, as illustrated in FIG. 9C, the movement target determination unit 231A obtains a straight line 830 that passes through the pupil center 810b and extends in the x direction.
  • the direction of the straight line is not limited to the x direction and may be arbitrary. This process is an operation in the xy coordinate system in which the anterior segment image 800 is defined.
  • the movement target determining unit 231A obtains an intersection 840 between the straight line 830 and the iris outer edge 820a.
  • This process is an operation in the xy coordinate system in which the anterior segment image 800 is defined.
  • the intersection point 840 obtained in such a manner is set as the movement target. Note that the process of determining the movement target is not limited to this example.
  • the movement control unit 2101A controls the movement mechanism 150 so that the movement target (intersection 840) determined by the movement target determination unit 231A is arranged at the center of the image frame. As a result, the optical axis of the OCT optical system substantially coincides with the movement target (intersection point 840).
  • the straight line 850 is arranged at the frame center in the x direction, and the straight line 830 is arranged at the frame center in the y direction. Further, an intersection point 840 is arranged at the center position of the frame, which is the intersection point of the straight lines 830 and 850.
  • the OCT optical system can be moved so that the optical axis coincides with the default position in the image frame. It is also possible to set a movement target with reference to a one-dimensional region or a two-dimensional region in the anterior segment image. For example, it is possible to refer to a one-dimensional region such as a cornea outer edge image or an iris outer edge image, or a two-dimensional region such as a cornea image or an iris image. Further, eyelash images, eyelid images, lesioned part images, and the like may be referred to.
  • the scan area setting unit 232A sets a scan area in an area that passes through the outer edge of the iris of the anterior eye part of the eye E to be examined.
  • the scan area is a region of the anterior segment where the OCT scan is applied.
  • the scan area setting unit 232A sets the scan area at an arbitrary timing after the movement control unit 2101A executes the control of the movement mechanism 150.
  • the OCT scan pattern can be arbitrarily set. For example, line scan (B scan), cross scan, multi-cross scan, radial scan, or three-dimensional scan is applied. It's okay.
  • the scan control unit 2102A can set the scan area so as to pass the movement target determined by the movement target determination unit 231A. For example, when the intersection point 840 illustrated in FIG. 9C is obtained as the movement target, the scan area setting unit 232A can set the scan area so as to pass through the intersection point 840.
  • the scan area setting unit 232A can set a scan line (B scan) along the straight line 830 and the scan center positioned at the intersection point 840 (reference numeral 860 in FIG. 9D). See).
  • the OCT scan can be executed so as to include at least a B scan substantially orthogonal to the outer edge of the iris.
  • a corner angle is located in the vicinity of the position on the back side (+ z direction) of the outer edge of the iris. Therefore, by performing such an OCT scan as in this example, OCT that expresses the corner angle is performed. Images can be acquired.
  • the feature point is detected from the infrared observation image of the anterior segment and the movement target is set, but other methods can be used (additionally).
  • any other method such as an alignment index, stereo alignment, optical lever, or the like can be used to detect anterior eye feature points.
  • the movement target and the scan area can be set using the pupil center detected thereby.
  • the image quality evaluation unit 233A calculates the image quality evaluation value of the OCT image formed by the image forming unit 220.
  • the type of image quality evaluation value and its calculation method may be arbitrary, for example, the type and calculation method applicable to the ophthalmologic apparatus 1 described above.
  • the image quality evaluation unit 233A calculates the ratio of the signal of the anterior ocular region and the noise of the background region in the OCT image formed by the image forming unit 220 as the image quality evaluation value.
  • an image region representing the anterior segment is referred to as an anterior segment
  • an image region representing the background is referred to as a background segment.
  • the calculation method of the image quality evaluation value expressed as a signal-to-noise ratio (SN ratio) regarding the anterior eye region and the background region is arbitrary, and may be the same as the case of the ophthalmologic apparatus 1 described above.
  • FIG. 10 shows an OCT image actually obtained by the B scan along the scan line 860 shown in FIG. 9D.
  • this B-scan image 900 a belt-like high-intensity image extending from the upper right to the lower left of the image frame corresponds to a cross section of the cornea (corneal region 910), and the upper surface extending in the lateral direction near the lower end of the image frame is uneven.
  • the high brightness image corresponds to the cross section of the iris (iris region 920).
  • the cornea region 910 and the iris region 920 are examples of the anterior eye region.
  • a background region 930 exists on the left side (upper left) of the cornea region 910, and a background region 940 also exists on the right side (lower right) of the cornea region 910 and above the iris region 920.
  • the background area 930 is an image area corresponding to air
  • the background area 940 is an image area corresponding to the anterior chamber (aqueous humor).
  • the boundary between the cornea region 910 and the background region 930 corresponds to the front surface of the cornea
  • the boundary between the cornea region 910 and the background region 940 corresponds to the back surface of the cornea
  • the boundary between the iris region 920 and the background region 940 corresponds to the front surface of the iris.
  • the image quality evaluation unit 233A can calculate the ratio between the signal of the cornea region 910 in the B-scan image 900 and the noise of the background region 930 and / or 940 adjacent to the cornea region 910 as the image quality evaluation value.
  • the signal of the cornea region 910 may be a signal in at least a part of the cornea region 910.
  • the noise in the background area 930 may be noise in at least part of the background area 930
  • the noise in the background area 940 may be noise in at least part of the background area 940.
  • the image quality evaluation unit 233A can calculate the ratio of the signal of the iris region 920 in the B-scan image 900 and the noise of the background region 940 adjacent to the iris region 920 as the image quality evaluation value.
  • the signal of the iris region 920 may be a signal in at least a part of the iris region 920.
  • the noise in the background region 940 may be noise in at least a portion of the background region 940.
  • the B-scan image 1000 includes a cornea region 1010, an iris region 1020, a background region 1030, and a background region 1040.
  • the cornea region 1010 is the cornea region 910
  • the iris region 1020 is the iris region 920
  • the background region 1030 is the background region 930
  • the background region 1040 is the background region 940.
  • the image quality evaluation unit 233A first sets a target area for image quality evaluation.
  • the image quality evaluation unit 233A sets a first target area 1050 including a part of the cornea region 1010 and a part of the background region 1030, and a part of the iris region 1020 and a part of the background region 1040. Can be set.
  • the shape of the target area is rectangular, but the shape may be arbitrary.
  • the size of the target area may be arbitrary.
  • the target area can be set so as to include the entire cornea region 1010 and the entire background region 1030. Further, at least one of the shape and size of the target area may be set in advance (default shape, default size).
  • each target area is set so as to include a part of a single anterior eye region (corneal region 1010 or iris region 1020) and a part of a single background region (background region 1030 or 1040).
  • the target area can be set to include at least part of the cornea region 1010, at least part of the iris region 1020, and at least part of the background region 1040.
  • the image quality evaluation unit 233A identifies the anterior eye region and the background region in the target area.
  • the image quality evaluation unit 233A can specify a part of the cornea region 1010 in the target area 1050 by specifying a common region of the target area 1050 and the cornea region 1010.
  • the image quality evaluation unit 233A can specify a part of the iris region 1020 in the target area 1060 by specifying a common region of the target area 1060 and the iris region 1020.
  • the specification of the anterior eye region and / or the background region is performed using known segmentation. Note that segmentation may be applied to the entire OCT image, or segmentation may be applied only to the target area. Further, the discrimination between the cornea region 1010 and the iris region 1020 is performed based on an arbitrary parameter such as a drawing position, a shape, and luminance.
  • the image quality evaluation unit 233A calculates a ratio between the signal in the specified anterior eye region and the noise in the specified background region.
  • the image quality evaluation unit 233A can calculate the ratio of the signal in a part of the cornea region 1010 in the target area 1050 and the noise in a part of the background region 1030.
  • the image quality evaluation unit 233A can calculate the ratio of the signal in a part of the iris area 1020 in the target area 1060 and the noise in a part of the background area 1040.
  • the signal-to-noise ratio calculated in this way is used as the image quality evaluation value.
  • image quality evaluation values are obtained for each of two or more target areas as in this example, the two or more image quality evaluation values obtained can be statistically processed. Examples of statistical values obtained from two or more image quality evaluation values include average value, maximum value, minimum value, median value, mode value, variance, standard deviation, and the like. Such statistical values can be used as image quality evaluation values.
  • the image quality evaluation unit 233A can specify the tissue rendered with the lowest image quality among the tissue rendered in the OCT image by obtaining the minimum value of the two or more image quality evaluation values. Also, control (described later) of the polarizing device 118 can be performed so as to maximize the minimum value obtained.
  • the image quality evaluation unit 233A determines whether the calculated image quality evaluation value is equal to or greater than a predetermined threshold value. be able to.
  • the image quality evaluation value calculated by the image quality evaluation unit 233A and the evaluation result (determination result) based on the image quality evaluation value can be used for processing and control.
  • an image quality evaluation value or an evaluation result can be used for processing and control for improving the image quality of an OCT image.
  • the polarization control unit 2103A can control the polarization device 118 (and / or the polarization device 103) so as to increase the image quality evaluation value calculated by the image quality evaluation unit 233A.
  • the control of this example can be realized by repeatedly performing a series of processes including acquisition of an OCT image, calculation of an image quality evaluation value, evaluation of image quality, and control of the polarization device 118, for example.
  • the corner image detection unit 234A detects the corner image by analyzing the OCT image formed by the image forming unit 220 based on the data obtained by the OCT scan for the scan area set by the scan area setting unit 232A. To do. Similar to the detection of the corneal image by the ophthalmologic apparatus 1 described above, this process can be executed based on predetermined characteristics such as luminance, position, and shape, and may include image processing such as segmentation. .
  • the corner image may be a position (single pixel) corresponding to the corner depicted in the OCT image, or may include a corneal region and / or an iris region near the corner.
  • the timing for detecting the corner image is arbitrary.
  • the corner angle image detection unit 234A may execute detection of a corner image after an image quality evaluation value equal to or greater than a predetermined threshold is calculated by the image quality evaluation unit 233A. Thereby, a corner angle can be detected with high accuracy and high accuracy from an OCT image with good image quality.
  • the corner image detection unit 234A analyzes the OCT image to detect a corneal rear surface image and an iris front image.
  • the corneal posterior surface region is an image region corresponding to the corneal posterior surface
  • the iris front image is an image region corresponding to the iris front surface. This process includes, for example, segmentation.
  • the corner image detection unit 234A detects the position where the corneal posterior surface image and the iris front image intersect.
  • the detected intersection position corresponds to a corner angle.
  • the position where the corneal posterior surface image and the iris front image intersect may be any of a point, a line, and a surface.
  • the corner image detection unit 234A first applies segmentation to the B scan image 1100 to detect the cornea region 1110 and the iris region 1120. Further, the corner image detection unit 234A identifies the image region 1110a corresponding to the corneal posterior surface in the cornea region 1110 as the corneal posterior image, and identifies the image region 1120a corresponding to the iris front in the iris region 1120 as the iris front region. To do.
  • the corner angle image detection unit 234A searches for a position where the corneal posterior surface image 1110a and the iris front image 1120a intersect, and sets the searched position as a corner angle.
  • the intersection 1130 between the corneal posterior surface image 1110a and the iris front image 1120a, or the vicinity region 1140 of the intersection point 1130 is specified as a corner image.
  • the iris image detection unit 235A analyzes the OCT image formed by the image forming unit 220 based on the data obtained by the OCT scan for the scan area set by the scan area setting unit 232A, and detects an iris image. Similar to the detection of the corneal image by the ophthalmologic apparatus 1 described above, this process can be executed based on predetermined characteristics such as luminance, position, and shape, and may include image processing such as segmentation. .
  • the position determination unit 236A determines whether the corner image detected by the corner image detection unit 234A is located within a predetermined range (first range) in the image frame.
  • the range (first allowable range) in the image frame that serves as a reference for this determination process may be set in advance, or may be set for each OCT image. As an example of the latter, it is possible to set a 1st tolerance
  • the position determination unit 236A can set the first allowable range based on the drawing position and drawing size of the cornea and / or the drawing position and drawing size of the iris.
  • the position determination unit 236A determines whether the corner image is located within the first allowable range in the frame of the OCT image, and the OCT image It can be determined whether the iris image is located within the second allowable range in the frame.
  • the corner image detecting unit 234A detects the corner from each of the plurality of OCT images.
  • a corner image can be detected.
  • the position determination unit 236A can determine, for each OCT image in which a corner image is detected, whether the corner image is located within a first allowable range in the OCT image frame.
  • the corner image detection unit 234A detects a corner image from each of the plurality of OCT images
  • the iris image detection unit 235A detects an iris image from each of the plurality of OCT images
  • the position determination unit 236A determines that the corner image is the OCT image for each of the corner image and the OCT image from which the iris image is detected. It can be determined whether the iris image is located within the first allowable range in the frame and whether the iris image is located within the second allowable range in the OCT image frame.
  • the forms (position, shape, size, etc.) of the plurality of first tolerance ranges set for the plurality of OCT images may be the same or different. The same applies to the second allowable range.
  • the processing for determining whether the corner image is within the first allowable range may be, for example, determining whether at least a part of one or more pixels forming the corner image is included in the first allowable range. Alternatively, it may be determined whether all of one or more pixels forming the corner image are included in the first allowable range.
  • the process of determining whether the iris image is within the second allowable range is, for example, determining whether at least a part of one or more pixels forming the iris image is included in the second allowable range. Alternatively, it may be determined whether all of one or more pixels forming the iris image are included in the second allowable range.
  • the B scan image 1200 includes a corneal region (corneal image) 1210 and an iris region (iris image) 1220.
  • Reference numeral 1230 indicates a corner angle image detected from the B-scan image 1200 by the corner angle image detection unit 234A.
  • a first allowable range 1200a and a second allowable range 1200b are set.
  • the first allowable range 1200a is set as a rectangular area
  • the second allowable range is set as a section in the z direction.
  • the form of the allowable range is not limited to these.
  • the position determination unit 236A determines whether the corner image 1230 is positioned within the first allowable range 1200a, and determines whether the iris image 1220 is positioned within the second allowable range 1200b. When two or more position determinations are performed as described above, typically, the position determination unit 236A outputs the determination result of the position OK when good results are obtained in all the position determinations.
  • FIGS. 14A and 14B An example of the operation of the ophthalmic apparatus 1A according to the present embodiment is shown in FIGS. 14A and 14B.
  • the fundus camera unit 2 of the ophthalmologic apparatus 1A starts infrared moving image shooting of the anterior eye portion of the eye E to be examined.
  • a frame (anterior eye image) acquired by infrared moving image shooting is transferred to the data processing unit 230 via the control unit 210. This transfer is executed as real-time processing.
  • the movement target determination unit 231A analyzes the anterior segment image transferred from the fundus camera unit 2 and determines the movement target of the OCT optical system. This movement target is set to a suitable position for applying the OCT scan to the corner angle of the eye E and the periphery thereof. For example, the movement target determination unit 231A analyzes the anterior eye image, detects the pupil center and the outer edge of the iris, obtains a straight line that passes through the pupil center and extends in the x direction, and obtains the intersection of the straight line and the outer edge of the iris. The position of this intersection can be set as a movement target. This process is, for example, a real-time process executed for each anterior segment image transferred from the fundus camera unit 2.
  • the movement control unit 2101A moves the OCT optical system by controlling the movement mechanism 150 based on the movement target determined in step S22. Typically, the movement control unit 2101A moves the OCT optical system so that the optical axis of the OCT optical system passes through the intersection point. This movement control is executed as real-time processing.
  • the ophthalmologic apparatus 1A of the present embodiment sets conditions to be applied to the repetitive OCT scan started in the next step S25.
  • the scan area setting unit 232A sets a scan area in an area that passes through the outer edge of the iris of the anterior eye part of the eye E to be examined.
  • the scan area setting unit 232A can set a scan area so as to pass through the intersection point, and further, a scan line (B scan) along the straight line and whose scan center is located at the intersection point. Can be set. More generally, The scan area setting unit 232A can set the scan area so as to pass the movement target determined in step S22.
  • the scan area setting includes an OCT scan pattern setting and an OCT scan application location setting.
  • the scan control unit 2102A starts an iterative OCT scan under the conditions set in step S24.
  • the repetitive OCT scan is typically a scan mode in which an OCT scan of a certain pattern is repeatedly applied to the anterior segment, and thereby a time-series OCT image is acquired.
  • a typical repetitive OCT scan is a scan mode in which a B-scan with the optical axis position of the OCT optical system as the scan center is repeated. According to such repetitive B-scan, it is possible to apply a B-scan that passes through the intersection or the vicinity thereof (and hence the corner or the vicinity thereof) at a high repetition frequency.
  • Repetitive OCT scans result in data sets collected with each OCT scan.
  • the image forming unit 220 forms an OCT image based on each of a plurality of data sets obtained sequentially by repetitive OCT scans. When repetitive B-scan is applied, a plurality of data sets corresponding to repetition of B-scan are obtained sequentially.
  • the image forming unit 220 forms a B-scan image based on each of a plurality of data sets.
  • the image quality evaluation unit 233A analyzes each of a plurality of OCT images (or a part thereof) sequentially acquired by the repetitive OCT scan started in step S25, and calculates an image quality evaluation value. This process is executed as a real-time process.
  • the image quality evaluation unit 233A determines whether the image quality evaluation value calculated in step S26 is greater than or equal to a predetermined threshold.
  • step S27 If it is determined that the image quality evaluation value is equal to or greater than the predetermined threshold (S27: Yes), the process proceeds to step S29.
  • step S27 If it is determined that the image quality evaluation value is less than the predetermined threshold (S27: No), the process proceeds to step S28.
  • Steps S26 to S28 are repeated until “Yes” is determined in Step S27. Note that when steps S26 to S28 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • the corner image detection unit 234A detects each corner image by analyzing each of a plurality of OCT images (or a part thereof) sequentially acquired by the repetitive OCT scan started in step S25. Further, the iris image detection unit 235A analyzes each of these OCT images (or a part thereof) to detect an iris image. These processes are executed as real-time processes.
  • the position determination unit 236A determines whether the corner image is included in the first allowable range in the image frame for the corner image and the iris image detected from the same OCT image in step S29, and the iris image is the second. Judge whether it falls within the allowable range.
  • step S30 when it is determined that the corner image is within the first allowable range and it is determined that the iris image is within the second allowable range (S31: Yes), the process is step S32.
  • step S31 When it is determined that the corner image is not located within the first allowable range, or when it is determined that the iris image is not located within the second allowable range (S31: No), the process returns to step S29, and at step S31. Steps S29 to S31 are repeated until “Yes” is determined. Note that when steps S29 to S31 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • step S26 when it is determined that the corner image is not located within the first allowable range, or when it is determined that the iris image is not located within the second allowable range (S31: No), the process proceeds to step S26. You may make it return. In this case, steps S26 to S31 are repeated until “Yes” is determined in both steps S27 and S31. Note that when part or all of steps S26 to S31 are repeated a predetermined number of times or for a predetermined time, error determination may be performed.
  • the conditions for the process to move to step S32 are not limited to this example.
  • it may be a condition for the transition that it is determined that the corner image is positioned within the first allowable range, or that the iris image is determined to be positioned within the second allowable range.
  • it may be a transition condition that it is determined that the corner image is located within the first allowable range. In this case, it is not necessary to consider the iris image.
  • step S32 Execute OCT scan for diagnosis If “Yes” in step S31, step S32 is started. At this stage, the alignment state of the OCT optical system with respect to the anterior segment (corner angle) and the image quality of the obtained OCT image are good.
  • the scan control unit 2102A applies an OCT scan to the anterior segment at the timing when such a favorable condition is ensured, and the image forming unit 220 forms an OCT image from the collected data. Further, the data processing unit 230A can process or analyze the OCT image.
  • the OCT image acquired in step S32 is typically used for diagnosis, and the scan conditions are generally different from the conditions for the repetitive OCT scan started in step S25.
  • the OCT image obtained in step S32 has higher definition.
  • arbitrary conditions such as the scan pattern and the size of the scan area may be different.
  • the ophthalmic apparatus 1A includes an OCT optical system, an image forming unit 220, a scan area setting unit 232A, a scan control unit 2102A, an image quality evaluation unit 233A, a corner image detection unit 234A, and a position determination unit. 236A.
  • the OCT optical system is an optical system for applying OCT to the anterior segment of the eye E.
  • the OCT optical system includes at least a series of elements that form a measurement arm in the fundus camera unit 2.
  • the image forming unit 220 forms an OCT image based on data obtained by the OCT scan.
  • the scan area setting unit 232A sets a scan area in a region passing through the outer edge of the anterior eye iris.
  • the scan control unit 2102A (first scan control unit) controls the OCT optical system so that the OCT scan is applied to the scan area set by the scan area setting unit 232A.
  • the image forming unit 220 forms an OCT image based on the data obtained by this OCT scan.
  • the image quality evaluation unit 233A calculates the image quality evaluation value of the OCT image based on the data obtained by the OCT scan for the scan area.
  • the corner angle image detection unit 234A detects the corner angle image by analyzing the OCT image formed by the image forming unit 220 based on the data obtained by the OCT scan for the scan area. Note that the OCT image processed by the image quality evaluation unit 233A and the OCT image processed by the corner image detection unit 234A may be the same or different.
  • the position determination unit 236A determines whether or not the corner image detected by the corner image detection unit 234A is located within the first range in the image frame.
  • the scan control unit 2102A controls the OCT optical system so that an OCT scan of a predetermined pattern is applied to the anterior eye part.
  • the conditions for applying the OCT scan of the predetermined pattern to the anterior segment are the condition that the image quality evaluation value is equal to or greater than the predetermined threshold and the condition that the corner image is located within the first range. And at least one other condition may be further included.
  • the position determination of the iris image is an example.
  • the ophthalmologic apparatus 1A configured as described above, whether or not necessary conditions are satisfied for preparation operations such as alignment of the OCT optical system with respect to the corner, adjustment of the drawing position of the target portion in the image frame, and adjustment of the image quality. It is possible to perform OCT scan (imaging, measurement, etc.) at a suitable timing when conditions are satisfied.
  • the ophthalmic apparatus according to this embodiment in which the preparatory operation is automated is advantageous.
  • the ophthalmologic apparatus 1A of the present embodiment includes a fundus camera unit 2 (anterior ocular segment imaging system), a movement mechanism 150, a movement target determination unit 231A, and a movement control unit 2101A.
  • the fundus camera unit 2 performs anterior segment imaging.
  • the moving mechanism 150 moves the OCT optical system (part or all).
  • the movement target determination unit 231A analyzes the anterior segment image obtained by the fundus camera unit 2 and determines the movement target of the OCT optical system.
  • the movement control unit 2101A controls the movement mechanism 150 based on the movement target determined by the movement target determination unit 231A. After the movement control unit 2101A executes control of the movement mechanism 150, the scan area setting unit 232A executes setting of the scan area.
  • the ophthalmologic apparatus 1A configured as described above, it is possible to perform (rough) alignment by an anterior ocular segment image before setting the OCT scan area, and thus before applying the OCT scan. Thereby, the process based on the OCT image performed after the start of the OCT scan can be facilitated.
  • the movement target determination unit 231A is configured to analyze the anterior segment image acquired by the fundus camera unit 2 to detect the pupil center and the iris outer edge, and to set the movement target based on the detected pupil center and the iris outer edge. May have been.
  • the movement target determination unit 231A may be configured to obtain a straight line that passes through the center of the pupil and extends along a predetermined direction, and obtains an intersection between the straight line and the outer edge of the iris as a movement target.
  • the scan area setting unit 232A may be configured to set the scan area so as to pass through the obtained intersection.
  • the scan area setting unit 232A may be configured to set a scan line (B scan) along the straight line and with the scan center positioned at the intersection point.
  • the scan area setting unit 232A may be configured to set the scan area so as to pass the movement target determined by the movement target determination unit 231A.
  • the OCT optical system may be configured to apply the repetitive OCT scan to the scan area set by the scan area setting unit 232A after the control of the moving mechanism 150.
  • the image forming unit 220 can form an OCT image based on each of a plurality of data sets obtained sequentially by the repetitive OCT scan.
  • the repetitive OCT scan may be a repetitive B scan.
  • the OCT optical system may continue the repetitive OCT scan until at least an image quality evaluation value equal to or greater than a predetermined threshold is obtained by the image quality evaluation unit.
  • a plurality of OCT images (time-series OCT images) synchronized with the repetition of the OCT scan can be obtained.
  • the time-series OCT image can be applied to various uses such as alignment, rendering position determination, image quality evaluation, and moving image display.
  • the ophthalmic apparatus 1A of the present embodiment includes an iris image detection unit 235A.
  • the iris image detection unit 235A analyzes the OCT image based on the data obtained by the OCT scan for the scan area set by the scan area setting unit 232A, and detects an iris image.
  • the position determination unit 236A determines whether the corner angle image detected by the corner angle image detection unit 234A is located within the first range in the image frame, and the iris image detected by the iris image detection unit 235A is the first one. It may be configured to determine whether it is located in two ranges.
  • the image quality evaluation value calculated by the image quality evaluation unit 233A is equal to or greater than a predetermined threshold, the corner image is located within the first range, and the iris image is the second image.
  • the OCT optical system may be configured to apply an OCT scan of a predetermined pattern to the anterior segment.
  • the condition relating to the position of the iris image can be taken into consideration, so the OCT scan is performed at a more suitable timing. It becomes possible.
  • the corner angle image detection unit 234A analyzes the OCT image based on the data obtained by the OCT scan for the scan area set by the scan area setting unit 232A, detects the corneal rear surface image and the iris front image, and detects the corneal rear surface image. And a position where the iris front image intersects may be detected as a corner angle.
  • the image quality evaluation unit 233A may be configured to calculate the ratio between the signal of the anterior ocular region and the noise of the background region in the OCT image formed by the image forming unit 220 as the image quality evaluation value. Typically, the image quality evaluation unit 233A calculates, as an image quality evaluation value, the ratio between the signal of the corneal region in the OCT image formed by the image forming unit 220 and the noise of the first background region adjacent to the corneal region. It may be configured to.
  • the image quality evaluation unit 233A calculates the ratio between the iris region signal in the OCT image formed by the image forming unit 220 and the noise of the second background region adjacent to the iris region as an image quality evaluation value. It may be configured.
  • the OCT optical system includes a measurement arm that guides the measurement light LS to the anterior eye part and a reference arm that guides the reference light LR superimposed on the return light of the measurement light LS from the anterior eye part.
  • a polarization device may be provided on at least one of the measurement arm and the reference arm. The polarization device changes the polarization state of the guided light.
  • a polarizing device 118 is provided on the reference arm.
  • the ophthalmologic apparatus 1A of the present embodiment includes a polarization control unit 2103A.
  • the polarization control unit 2103A controls the polarization device so as to increase the image quality evaluation value calculated by the image quality evaluation unit 233A (for example, the ratio of the signal of the anterior eye region and the noise of the background region).
  • the ophthalmologic apparatus 1A configured as described above, it is possible to improve the OCT image when the image quality is low.
  • the present embodiment also provides a method for controlling an ophthalmologic apparatus.
  • An ophthalmologic apparatus to which this control method can be applied includes an OCT optical system that applies an OCT scan to an anterior segment of an eye to be examined, and an image forming unit that forms an image based on data obtained by the OCT scan.
  • the control method of the present embodiment includes a scan area setting step, a first scan control step, an image quality evaluation step, a corner image detection step, a position determination step, and a second scan control step.
  • a scan area is set in a region passing through the outer edge of the iris of the anterior eye portion of the eye to be examined.
  • the OCT optical system is controlled so that the OCT scan is applied to the set scan area.
  • the image quality evaluation step the image quality evaluation value of the OCT image formed by the image forming unit is calculated based on the data obtained by the OCT scan for the set scan area.
  • the corner image detection step the corner image is detected by analyzing the OCT image formed by the image forming unit based on the data obtained by the OCT scan for the set scan area. The position determination step determines whether the detected corner image is positioned within the first range in the image frame.
  • the second scanning step is executed when it is determined that the image quality evaluation value is greater than or equal to a predetermined threshold and the corner image is located within the first range, so that an OCT scan of a predetermined pattern is applied to the anterior segment.
  • the OCT optical system is controlled.
  • This program may include, for example, any program for operating the ophthalmic apparatus 1A of the present embodiment.
  • This non-temporary recording medium may be in any form, and examples thereof include a magnetic disk, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • the ophthalmologic apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-039870 is an OCT optical system and image forming means (image forming unit) similar to those of the ophthalmic apparatus 1 described above, in addition to an alignment means, a focusing means, and an image position determination Means, determination means, and control means.
  • the alignment means is an element for aligning the OCT optical system with the fundus of the eye to be examined, and includes, for example, the alignment optical system 50 of the ophthalmologic apparatus 1 described above.
  • the focusing means is an element for focusing the OCT optical system on the fundus of the eye to be examined, and includes, for example, the OCT focusing lens 43 and the OCT focusing drive unit 43A of the ophthalmologic apparatus 1 described above.
  • the image position determination means is an element for determining the position of the fundus image in the image frame based on the data acquired by the OCT optical system.
  • the data processing unit 230 of the ophthalmologic apparatus 1 described above Make a decision.
  • the determination means determines whether the position of the OCT optical system is appropriate and whether the focus state is appropriate. Further, the determination unit determines whether or not the position of the fundus image within the image frame is appropriate. In addition, after all of the determination of the suitability of the position of the OCT optical system, the judgment of the suitability of the in-focus state, and the judgment of the suitability of the position of the fundus image are completed, the determination means performs all the determinations of suitability again. Do. This series of determinations is executed by, for example, the control unit 210 and the data processing unit 230 of the ophthalmologic apparatus 1 described above.
  • the control unit controls the OCT optical system and the image forming unit.
  • a fundus OCT scan is performed. This control is executed by, for example, the control unit 210 of the ophthalmologic apparatus 1 described above.
  • the ophthalmologic apparatus stores in advance a program corresponding to each of a plurality of preparation operation modes.
  • the ophthalmologic apparatus can access a storage device that stores a plurality of programs corresponding to a plurality of preparation operation modes.
  • the ophthalmologic apparatus selects a preparation operation mode.
  • the preparation operation mode is selected manually or automatically.
  • the ophthalmologic apparatus displays a GUI for selecting the preparation operation mode (or a mode equivalent thereto) on the display device.
  • the user selects a desired preparation operation mode by operating the operation device.
  • an ophthalmologic apparatus acquires a disease name and a test order from electronic medical record data. Further, the ophthalmologic apparatus (selecting means) selects a preparation operation mode corresponding to the acquired data.
  • correspondence information such as a table
  • various types of information are associated with each of the plurality of preparation operation modes, and referring to the correspondence information.
  • the ophthalmologic apparatus executes a series of preparation operations according to a program corresponding to the selected preparation operation mode.
  • the ophthalmologic apparatus of this embodiment is advantageous when the ophthalmologic apparatus to which the OCT technology is applied is installed in a spectacle store, a drug store, or a home for use in screening for eye diseases.
  • Movement mechanism 210 Control part 2101 Movement control part 2102 Scan control part 2103 Polarization control part 2104 Display control part 220 Image formation part 230 Data processing part 231 Movement target determination part 232 Artifact detection part 233 Cornea image detection part 234 Position determination Unit 235 image quality evaluation unit 236 artifact removal unit 241 display unit 1A ophthalmic apparatus 210A control unit 2101A movement control unit 2102A scan control unit 2103A polarization control unit 2104A display control unit 230A data processing unit 231A movement target determination unit 232A scan area setting unit 233A image quality Evaluation unit 234A Corner image detection unit 235A Iris image detection unit 236A Position determination unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

例示的な眼科装置のスキャンエリア設定部は、虹彩外縁を通過する領域にスキャンエリアを設定する。第1スキャン制御部は、このスキャンエリアにOCTスキャンを適用するようにOCT光学系を制御する。画質評価部は、スキャンエリアに対するOCTスキャンに基づく画像の画質評価値を算出する。隅角画像検出部は、スキャンエリアに対するOCTスキャンに基づく画像を解析して隅角画像を検出する。位置判定部は、隅角画像が画像フレーム中の第1範囲内に位置するか判定する。第2スキャン制御部は、画質評価値が所定閾値以上であり、且つ、隅角画像が第1範囲内に位置する場合に、所定パターンのOCTスキャンを前眼部に適用するようにOCT光学系を制御する。

Description

眼科装置、その制御方法、プログラム、及び記録媒体
 この発明は眼科装置、その制御方法、プログラム、及び記録媒体に関する。
 眼科診療では、各種のイメージング装置や計測装置が用いられる。近年では、光コヒーレンストモグラフィ(Optical Coherence Tomography、OCT)技術を応用した眼科装置が広く用いられている。典型的には、OCTは、眼底イメージング、前眼部イメージング、組織厚計測、眼軸長計測などに応用されている。
 生体眼にOCTを適用するためには、対象部位への光学系の位置合わせ(アライメント)、画像フレームにおける対象部位の描出位置の調整、画質(信号対ノイズ比)の調整など、様々な準備動作を的確に実施する必要がある。更に、これら条件が満足されているか否かを確認し、好適なタイミングでイメージングや計測を実施する必要がある。
 眼科装置の扱いに熟練した者であれば、眼球運動に応じて操作を行ったり、被検者に指示を送ったりすることで、一連の準備動作を的確且つ迅速に行うことは可能であろうが、熟練者がいない状況で眼科装置を使用する場合には、被検者や検者に過大な負担を強いることになりかねない。
特開2018-023675号公報
 この発明の目的は、生体眼、特に前眼部にOCTを適用するための準備動作を自動化することで被検者や検者に掛かる負担を軽減することにある。
 例示的な実施形態の第1の態様は、被検眼の前眼部に光コヒーレンストモグラフィ(OCT)スキャンを適用するOCT光学系と、前記OCTスキャンにより得られたデータに基づき画像を形成する画像形成部と、前記前眼部の虹彩外縁を通過する領域にスキャンエリアを設定するスキャンエリア設定部と、前記スキャンエリア設定部により設定された前記スキャンエリアに対してOCTスキャンを適用するように前記OCT光学系を制御する第1スキャン制御部と、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像の画質評価値を算出する画質評価部と、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して隅角画像を検出する隅角画像検出部と、前記隅角画像検出部により検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定する位置判定部と、前記画質評価部により算出された画質評価値が所定閾値以上であり、且つ、前記隅角画像が前記第1範囲内に位置すると前記位置判定部により判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御する第2スキャン制御部とを含む眼科装置である。
 例示的な実施形態の第2の態様は、第1の態様の眼科装置であって、前記前眼部を撮影する前眼部撮影系と、前記OCT光学系を移動する移動機構と、前記前眼部撮影系により得られた前眼部画像を解析して、前記OCT光学系の移動目標を決定する移動目標決定部と、前記移動目標決定部により決定された前記移動目標に基づいて前記移動機構を制御する移動制御部とを更に含み、前記移動制御部が前記移動機構の制御を実行した後、前記スキャンエリア設定部は、スキャンエリアの設定を実行することを特徴とする。
 例示的な実施形態の第3の態様は、第2の態様の眼科装置であって、前記移動目標決定部は、前記前眼部画像を解析して瞳孔中心及び虹彩外縁を検出し、前記瞳孔中心及び前記虹彩外縁に基づき移動目標を設定することを特徴とする。
 例示的な実施形態の第4の態様は、第3の態様の眼科装置であって、前記移動目標決定部は、前記瞳孔中心を通過し且つ所定方向に沿う直線を求め、前記直線と前記虹彩外縁との交点を移動目標として求めることを特徴とする。
 例示的な実施形態の第5の態様は、第4の態様の眼科装置であって、前記スキャンエリア設定部は、前記交点を通過するようにスキャンエリアを設定することを特徴とする。
 例示的な実施形態の第6の態様は、第5の態様の眼科装置であって、前記スキャンエリア設定部は、前記直線に沿い且つスキャン中心が前記交点に位置するスキャンラインを設定することを特徴とする。
 例示的な実施形態の第7の態様は、第2~第6の態様のいずれかの眼科装置であって、前記スキャンエリア設定部は、前記移動目標決定部により決定された前記移動目標を通過するようにスキャンエリアを設定することを特徴とする。
 例示的な実施形態の第8の態様は、第2~第7の態様のいずれかの眼科装置であって、前記OCT光学系は、前記移動機構の制御の後に設定されたスキャンエリアに対して反復的OCTスキャンを適用し、前記画像形成部は、前記反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいて画像を形成することを特徴とする。
 例示的な実施形態の第9の態様は、第8の態様の眼科装置であって、前記反復的OCTスキャンは、反復的Bスキャンであることを特徴とする。
 例示的な実施形態の第10の態様は、第8又は第9の態様の眼科装置であって、前記所定閾値以上の画質評価値が前記画質評価部により算出された後、前記隅角画像検出部は隅角画像の検出を実行することを特徴とする。
 例示的な実施形態の第11の態様は、第1~第10の態様のいずれかの眼科装置であって、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して虹彩画像を検出する虹彩画像検出部を更に含み、前記位置判定部は、前記隅角画像検出部により検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定し、且つ、前記虹彩画像検出部により検出された前記虹彩画像が第2範囲に位置するか判定し、前記第2スキャン制御部は、前記画質評価部により算出された画質評価値が所定閾値以上であり、更に、前記隅角画像が前記第1範囲内に位置し且つ前記虹彩画像が前記第2範囲内に位置すると前記位置判定部により判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御することを特徴とする。
 例示的な実施形態の第12の態様は、第1~第11の態様のいずれかの眼科装置であって、前記隅角画像検出部は、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して角膜後面画像及び虹彩前面画像を検出し、前記角膜後面画像と前記虹彩前面画像とが交差する位置を隅角として検出することを特徴とする。
 例示的な実施形態の第13の態様は、第1~第12の態様のいずれかの眼科装置であって、前記画質評価部は、前記画像形成部により形成された画像における前眼部領域の信号と背景領域のノイズとの比を画質評価値として算出することを特徴とする。
 例示的な実施形態の第14の態様は、第13の態様の眼科装置であって、前記画質評価部は、前記画像形成部により形成された画像における角膜領域の信号と前記角膜領域に隣接する第1背景領域のノイズとの比を画質評価値として算出することを特徴とする。
 例示的な実施形態の第15の態様は、第13又は第14の態様の眼科装置であって、前記画質評価部は、前記画像形成部により形成された画像における虹彩領域の信号と前記虹彩領域に隣接する第2背景領域のノイズとの比を画質評価値として算出することを特徴とする。
 例示的な実施形態の第16の態様は、第13~第15の態様のいずれかの眼科装置であって、前記OCT光学系は、前記前眼部に測定光を導く測定アームと、前記測定光の前記前眼部からの戻り光に重ね合わされる参照光を導く参照アームとを含み、前記測定アーム及び前記参照アームの少なくとも一方は、導かれる光の偏光状態を変化させるための偏光デバイスを含み、前記画質評価部により算出される前記比の値を大きくするように前記偏光デバイスを制御する偏光制御部を更に含むことを特徴とする。
 例示的な実施形態の第17の態様は、被検眼の前眼部に光コヒーレンストモグラフィ(OCT)スキャンを適用するOCT光学系と、前記OCTスキャンにより得られたデータに基づき画像を形成する画像形成部とを含む眼科装置の制御方法であって、前記前眼部の虹彩外縁を通過する領域にスキャンエリアを設定するスキャンエリア設定ステップと、設定された前記スキャンエリアに対してOCTスキャンを適用するように前記OCT光学系を制御する第1スキャン制御ステップと、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像の画質評価値を算出する画質評価ステップと、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して隅角画像を検出する隅角画像検出ステップと、検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定する位置判定ステップと、前記画質評価値が所定閾値以上であり、且つ、前記隅角画像が前記第1範囲内に位置すると判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御する第2スキャン制御ステップとを含む。
 例示的な実施形態の第18の態様は、第17の態様の制御方法をコンピュータに実行させるプログラムである。
 例示的な実施形態の第19の態様は、第18の態様のプログラムが記録されたコンピュータ可読な非一時的記録媒体である。
 例示的な実施形態によれば、生体眼の前眼部にOCTを適用するための準備動作を自動化することができ、被検者や検者に掛かる負担を軽減することが可能となる。
例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するためのOCT画像である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を表すフローチャートである。 例示的な実施形態に係る眼科装置が実行可能な動作を表すフローチャートである。 例示的な実施形態に係る眼科装置の構成の一例を表す概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するためのOCT画像である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を説明するための概略図である。 例示的な実施形態に係る眼科装置が実行可能な動作を表すフローチャートである。 例示的な実施形態に係る眼科装置が実行可能な動作を表すフローチャートである。
 例示的な実施形態に係る眼科装置、その制御方法、プログラム、及び記録媒体の態様について、図面を参照しながら詳細に説明する。実施形態に係る眼科装置は、被検眼のデータを光学的に(つまり、光を利用して、換言すると、光学技術を利用して)取得するために用いられる。特に、実施形態に係る眼科装置は、OCT技術を利用して前眼部を画像化することが可能である。
 実施形態に係る眼科装置は、OCT機能(光干渉断層計)に加え、他の機能を備えていてよい。この付加的機能の例として、前眼部撮影機能、眼底撮影機能、眼軸長測定機能、眼屈折力測定機能、眼収差測定機能、角膜形状測定機能、視野測定機能がある。なお、付加的な機能はこれらに限定されず、任意の眼科検査機能であってよく、また、他の診療科で使用可能な検査機能であってもよい。
 以下の例示では、スウェプトソースOCTと眼底カメラとを組み合わせた眼科装置(眼科撮影装置)について説明するが、実施形態はこれに限定されない。例示的な実施形態に適用可能なOCTの種別はスウェプトソースOCTに限定されず、例えばスペクトラルドメインOCTであってもよい。
 スウェプトソースOCTは、波長可変光源からの光を測定光と参照光とに分割し、被検物からの測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光をバランスドフォトダイオード等の光検出器で検出し、波長の掃引及び測定光のスキャンに応じて収集された検出データにフーリエ変換等を施して画像を構築する手法である。
 スペクトラルドメインOCTは、低コヒーレンス光源からの光を測定光と参照光とに分割し、被検物からの測定光の戻り光を参照光と重ね合わせて干渉光を生成し、この干渉光のスペクトル分布を分光器で検出し、検出されたスペクトル分布にフーリエ変換等を施して画像を構築する手法である。
 このように、スウェプトソースOCTは時分割でスペクトル分布を取得するOCT手法であり、スペクトラルドメインOCTは空間分割でスペクトル分布を取得するOCT手法である。なお、実施形態に適用可能なOCT手法はこれらに限定されず、他の形態的イメージングOCT(例えば、タイムドメインOCT)であってもよいし、機能的イメージングOCT(例えば、偏光OCT、血流計測OCT)であってもよい。
 以下の例示では、このような眼科装置に加え、眼科装置の制御方法、コンピュータを含む眼科装置又は眼科装置に接続されたコンピュータに当該制御方法を実行させるプログラム、及び、当該プログラムが記録された記録媒体について説明する。
 また、以下の例示では、角膜OCTに適用可能な一連の準備動作の例示的な実施形態と、隅角OCTに適用可能な一連の準備動作の例示的な実施形態とを説明し、更に、OCTの適用部位に応じた準備動作の切り替え制御について説明する。OCTが適用される複数の部位は、典型的には、角膜、隅角及び眼底のうちのいずれか2つ以上であってよいが、他の部位が含まれていてもよい。
 本明細書においては、特に言及しない限り、「画像データ」と、それに基づく「画像」とを区別しない。同様に、特に言及しない限り、被検眼の部位又は組織と、それを表現する画像とを区別しない。
〈角膜OCTに適用可能な実施形態〉
 図1は、角膜OCTに適用可能な例示的実施形態を示す。眼科装置1は、眼底カメラユニット2、OCTユニット100、及び演算制御ユニット200を含む。眼底カメラユニット2は、被検眼Eの正面画像を取得するための光学系及び機構と、OCTを実行するための光学系及び機構とを含む。OCTユニット100は、OCTを実行するための光学系及び機構を含む。演算制御ユニット200は、各種の処理(演算、制御等)を実行するように構成された1以上のプロセッサと、記憶装置とを含む。
 眼科装置1は、OCTが適用される被検眼の部位を切り替えるためのレンズユニットを備えている。具体的には、本例の眼科装置1は、前眼部にOCTを適用するための前眼部OCT用アタッチメント400を備えている。前眼部OCT用アタッチメント400は、例えば、特開2015-160103号公報に開示された光学ユニットと同様に構成されていてよい。
 図1に示すように、前眼部OCT用アタッチメント400は、対物レンズ22と被検眼Eとの間に配置可能である。前眼部OCT用アタッチメント400が光路に配置されているとき、眼科装置1は前眼部にOCTスキャンを適用することが可能である。他方、前眼部OCT用アタッチメント400が光路から退避されているとき、眼科装置1は後眼部にOCTスキャンを適用することが可能である。前眼部OCT用アタッチメント400の移動は、手動又は自動で行われる。
 他の実施形態において、アタッチメントが光路に配置されているときには後眼部にOCTスキャンを適用可能であり、且つ、アタッチメントが光路から退避されているときに前眼部にOCTスキャンを適用可能であってよい。また、アタッチメントにより切り替えられる部位は後眼部及び前眼部に限定されず、眼の任意の部位であってよい。なお、OCTスキャンが適用される部位を切り替えるための構成はこのようなアタッチメントに限定されず、例えば、光路に沿って移動可能なレンズを備えた構成、又は、光路に対して挿脱可能なレンズを備えた構成を採用することも可能である。
 本明細書において「プロセッサ」は、ソフトウェアプログラムに記述された命令セットを実行するためのハードウェアであり、典型的には、演算装置、レジスタ、周辺回路などから構成される。プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、MPU(Micro-Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路(circuit)や電気回路構成(又は、電気回路構成要素:circuitry)を意味する。プロセッサは、例えば、記憶ハードウェア(例えば、記憶回路、記憶装置)に格納されているプログラムを読み出し実行することで、例示的な実施形態に係る機能を実現する。プロセッサは、記憶ハードウェアの少なくとも一部を含んでいてもよい。
〈眼底カメラユニット2〉
 眼底カメラユニット2には、被検眼Eの眼底Efを撮影するための光学系が設けられている。取得される眼底Efのデジタル画像(眼底画像、眼底写真等と呼ばれる)は、一般に、観察画像、撮影画像等の正面画像である。観察画像は、近赤外光を用いた動画撮影により得られる。撮影画像は、可視領域のフラッシュ光を用いた静止画像である。
 眼底カメラユニット2は、照明光学系10と撮影光学系30とを含む。照明光学系10は、被検眼Eに照明光を照射する。撮影光学系30は、被検眼Eに照射された照明光の戻り光を検出する。OCTユニット100からの測定光は、眼底カメラユニット2内の光路を通じて被検眼Eに導かれる。被検眼E(例えば、眼底Ef)に投射された測定光の戻り光は、眼底カメラユニット2内の同じ光路を通じてOCTユニット100に導かれる。
 照明光学系10の観察光源11から出力された光(観察照明光)は、凹面鏡12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ系17、リレーレンズ18、絞り19、及びリレーレンズ系20を経由して孔開きミラー21に導かれる。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて被検眼E(眼底Ef)を照明する。観察照明光の被検眼Eからの戻り光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、撮影合焦レンズ31を経由し、ミラー32により反射される。更に、この戻り光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、結像レンズ34によりイメージセンサ35の受光面に結像される。イメージセンサ35は、所定のフレームレートで戻り光を検出する。なお、撮影光学系30のフォーカスは、眼底Ef又は前眼部に合致するように調整される。
 撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。被検眼Eからの撮影照明光の戻り光は、観察照明光の戻り光と同じ経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、結像レンズ37によりイメージセンサ38の受光面に結像される。
 液晶ディスプレイ(LCD)39は固視標(固視標画像)を表示する。LCD39から出力された光束は、その一部がハーフミラー33Aに反射され、ミラー32に反射され、撮影合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光束は、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。固視標は、典型的には、視線の誘導及び固定に利用される。被検眼Eの視線が誘導(及び固定)される方向、つまり被検眼Eの固視が促される方向は、固視位置と呼ばれる。
 LCD39の画面上における固視標画像の表示位置を変更することで固視位置を変更することができる。固視位置の例として、黄斑を中心とする画像を取得するための固視位置や、視神経乳頭を中心とする画像を取得するための固視位置や、黄斑と視神経乳頭との間の位置(眼底中心)を中心とする画像を取得するための固視位置や、黄斑から大きく離れた部位(眼底周辺部)の画像を取得するための固視位置などがある。
 このような典型的な固視位置の少なくとも1つを指定するためのグラフィカルユーザーインターフェース(GUI)等を設けることができる。また、固視位置(固視標の表示位置)をマニュアルで移動するためのGUI等を設けることができる。また、固視位置を自動で設定する構成を適用することも可能である。
 固視位置の変更が可能な固視標を被検眼Eに提示するための構成は、LCD等の表示デバイスには限定されない。例えば、複数の発光部(発光ダイオード等)がマトリクス状に配列されたデバイス(固視マトリクス)を、表示デバイスの代わりに採用することができる。この場合、複数の発光部を選択的に点灯させることにより、固視標による被検眼Eの固視位置を変更することができる。他の例として、移動可能な1以上の発光部を備えたデバイスによって、固視位置の変更が可能な固視標を生成することができる。
 アライメント光学系50は、被検眼Eに対する光学系のアライメントに用いられるアライメント指標を生成する。発光ダイオード(LED)51から出力されたアライメント光は、絞り52、絞り53、及びリレーレンズ54を経由し、ダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22を介して被検眼Eに投射される。アライメント光の被検眼Eからの戻り光は、観察照明光の戻り光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(アライメント指標像)に基づいてマニュアルアライメントやオートアライメントを実行することができる。
 実施形態に適用可能なアライメント手法は、このようなアライメント指標を用いたものに限定されない。例えば、互いに異なる2以上の位置から前眼部を撮影可能な前眼部カメラ及び三角法を利用してアライメントを行う手法を適用することができる(例えば、特開2013-248376号公報、特開2016-047094号公報を参照)。この手法は、ステレオアライメントなどと呼ばれる。或いは、斜方から角膜に光を投射して反対方向にて角膜反射光を検出するよう構成された光テコを利用した手法を適用することもできる(例えば、特開2016-047094号公報を参照)。また、後述のように、前眼部の赤外観察画像から特徴点(例えば瞳孔中心)を検出してアライメントを行うことも可能である。
 フォーカス光学系60は、被検眼Eに対するフォーカス調整に用いられるスプリット指標を生成する。撮影光学系30の光路(撮影光路)に沿った撮影合焦レンズ31の移動に連動して、フォーカス光学系60は照明光学系10の光路(照明光路)に沿って移動される。反射棒67は、照明光路に対して挿脱される。フォーカス調整を行う際には、反射棒67の反射面が照明光路に傾斜配置される。LED61から出力されたフォーカス光は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22を介して被検眼Eに投射される。フォーカス光の被検眼Eからの戻り光(眼底反射光等)は、アライメント光の戻り光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(スプリット指標像)に基づいてマニュアルフォーカシングやオートフォーカシングを実行できる。
 孔開きミラー21とダイクロイックミラー55との間の撮影光路に、視度補正レンズ70及び71を選択的に挿入することができる。視度補正レンズ70は、強度遠視を補正するためのプラスレンズ(凸レンズ)である。視度補正レンズ71は、強度近視を補正するためのマイナスレンズ(凹レンズ)である。
 ダイクロイックミラー46は、撮影光路とOCT用光路(測定アーム)とを合成する。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、撮影に用いられる波長帯の光を透過させる。測定アームには、OCTユニット100側から順に、コリメータレンズユニット40、リトロリフレクタ41、分散補償部材42、OCT合焦レンズ43、光スキャナ44、及びリレーレンズ45が設けられている。
 リトロリフレクタ41は、これに入射する測定光LSの光路に沿って移動可能とされ、それにより測定アームの長さが変更される。測定アーム長の変更は、例えば、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。
 分散補償部材42は、参照アームに配置された分散補償部材113(後述)とともに、測定光LSの分散特性と参照光LRの分散特性とを合わせるよう作用する。
 OCT合焦レンズ43は、測定アームのフォーカス調整を行うために測定アームに沿って移動される。なお、撮影合焦レンズ31の移動、フォーカス光学系60の移動、及びOCT合焦レンズ43の移動を連係的に制御することができる。
 前眼部OCT用アタッチメント400が光路から退避されているとき、光スキャナ44は、実質的に、被検眼Eの瞳孔に対して光学的に共役な位置に配置される。他方、前眼部OCT用アタッチメント400が光路に挿入されているとき、光スキャナ44は、実質的に、被検眼Eの前眼部(例えば、角膜、前房、瞳孔、又は水晶体)に対して光学的に共役な位置に配置される。光スキャナ44は、測定アームにより導かれる測定光LSを偏向する。光スキャナ44は、例えば、2次元走査が可能なガルバノスキャナである。典型的には、光スキャナ44は、測定光を±x方向に偏向するための1次元スキャナ(x-スキャナ)と、測定光を±y方向に偏向するための1次元スキャナ(y-スキャナ)とを含む。このような構成が適用される場合、例えば、x-スキャナ及びy-スキャナのいずれか一方が上記の光学的共役位置に配置されるか、或いは、x-スキャナとy-スキャナとの間に上記の光学的共役位置が配置される。
〈OCTユニット100〉
 図2に示す例示的なOCTユニット100には、スウェプトソースOCTを実行するための光学系が設けられている。この光学系は干渉光学系を含む。この干渉光学系は、波長可変光源からの光を測定光と参照光とに分割し、被検眼Eに投射された測定光の戻り光と参照光路を経由した参照光とを重ね合わせて干渉光を生成し、この干渉光を検出する。干渉光の検出により得られたデータ(検出信号、干渉信号)は、干渉光のスペクトルを表す信号であり、演算制御ユニット200に送られる。
 光源ユニット101は、例えば、出射光の波長を高速で変化させる近赤外波長可変レーザーを含む。光源ユニット101から出力された光L0は、光ファイバ102により偏光デバイス103に導かれてその偏光状態が調整される。更に、光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。測定光LSの光路は測定アームなどと呼ばれ、参照光LRの光路は参照アームなどと呼ばれる。
 ファイバカプラ105により生成された参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、リトロリフレクタ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、測定アームに配置された分散補償部材42とともに、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。リトロリフレクタ114は、これに入射する参照光LRの光路に沿って移動可能であり、それにより参照アームの長さが変更される。参照アーム長の変更は、例えば、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。
 リトロリフレクタ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバ117に入射する。光ファイバ117に入射した参照光LRは、偏光デバイス118に導かれてその偏光状態が調整され、光ファイバ119を通じてアッテネータ120に導かれてその光量が調整され、光ファイバ121を通じてファイバカプラ122に導かれる。
 なお、偏光デバイス118は、例えば、バルク型、パドル型、又はインライン型など、任意の種類の偏光コントローラであってよい。バルク型偏光コントローラは、典型的には、2分の1波長板、4分の1波長板、レンズなど、一連の光学素子群によって偏光状態を変化させるデバイスである。パドル型偏光コントローラは、典型的には、それぞれが光ファイバをコイル状に成形する複数のパドルをそれぞれ回転させることによって誘起される複屈折を利用して偏光状態を変化させるデバイスである。インライン型偏光コントローラは、典型的には、光ファイバに外力を印加したり光ファイバを回転させたりすることで誘起される複屈折を利用して偏光状態を変化させるデバイスである。偏光デバイス103についても同様に、任意の種類の偏光コントローラであってよい。
 一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127を通じてコリメータレンズユニット40に導かれて平行光束に変換され、リトロリフレクタ41、分散補償部材42、OCT合焦レンズ43、光スキャナ44、及びリレーレンズ45を経由し、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに投射される。測定光LSは、被検眼Eの様々な深さ位置において散乱・反射される。測定光LSの被検眼Eからの戻り光は、投射時の測定光LSとは逆向きに測定アームを進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。
 ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを重ね合わせて干渉光を生成する。ファイバカプラ122は、生成された干渉光を所定の分岐比(例えば1:1)で分岐することで一対の干渉光LCを生成する。一対の干渉光LCは、それぞれ光ファイバ123及び124を通じて検出器125に導かれる。
 検出器125は、例えばバランスドフォトダイオードを含む。バランスドフォトダイオードは、一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらにより得られた一対の検出信号の差分を出力する。検出器125は、この出力(差分信号)をデータ収集システム(DAQ)130に送る。
 データ収集システム130には、光源ユニット101からクロックKCが供給される。クロックKCは、光源ユニット101において、波長可変光源により所定の波長範囲内で掃引される各波長の出力タイミングに同期して生成される。光源ユニット101は、例えば、各出力波長の光L0を分岐して2つの分岐光を生成し、これら分岐光の一方を光学的に遅延させ、これら分岐光を合成し、得られた合成光を検出し、その検出信号に基づいてクロックKCを生成する。データ収集システム130は、検出器125からの入力信号(差分信号)のサンプリングをクロックKCに基づき実行する。データ収集システム130は、このサンプリングで得られたデータを演算制御ユニット200に送る。
 本例では、測定アーム長を変更するための要素(例えば、リトロリフレクタ41)と、参照アーム長を変更するための要素(例えば、リトロリフレクタ114、又は参照ミラー)との双方が設けられているが、これら要素のうちの一方のみが設けられていてもよい。また、測定アーム長と参照アーム長との間の差(光路長差)を変更するための要素はこれらに限定されず、任意の要素(光学部材、機構など)を採用することが可能である。
〈演算制御ユニット200〉
 演算制御ユニット200は、眼科装置1の各部を制御する。また、演算制御ユニット200は、各種の演算処理を実行する。例えば、演算制御ユニット200は、一連の波長走査ごとに(Aラインごとに)、データ収集システム130により得られたサンプリングデータ群に基づくスペクトル分布にフーリエ変換等の信号処理を施すことによって、各Aラインにおける反射強度プロファイルを形成する。更に、演算制御ユニット200は、各Aラインの反射強度プロファイルを画像化することによって画像データを形成する。そのための演算処理は、従来のスウェプトソースOCTと同様である。
 演算制御ユニット200は、例えば、プロセッサ、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、通信インターフェイスなどを含む。ハードディスクドライブ等の記憶装置には各種のコンピュータプログラムが格納されており、演算制御ユニット200のプロセッサによって実行される。演算制御ユニット200は、操作デバイス、入力デバイス、表示デバイスなどを含んでいてもよい。
〈ユーザーインターフェイス240〉
 ユーザーインターフェイス240は、表示部241と操作部242とを含む。表示部241は、表示装置3を含む。操作部242は、各種の操作デバイスや入力デバイスを含む。ユーザーインターフェイス240は、例えばタッチパネルのような表示機能と操作機能とが一体となったデバイスを含んでいてもよい。ユーザーインターフェイス240の少なくとも一部を含まない実施形態を構築することも可能である。例えば、表示デバイスは、眼科装置に接続された周辺機器であってもよい。また、操作デバイスの少なくとも一部及び/又は入力デバイスの少なくとも一部は、眼科装置に接続された周辺機器であってもよい。
〈処理系〉
 眼科装置1の処理系の例示的な構成を図3A及び図3Bに示す。制御部210、画像形成部220、及びデータ処理部230は、例えば演算制御ユニット200に含まれる。
〈制御部210〉
 制御部210は、プロセッサを含み、眼科装置1の各部を制御する。制御部210は、主制御部211と記憶部212とを含む。
〈主制御部211〉
 主制御部211は、眼科装置1の各要素(図1~図3Bに示された要素を含む)を制御する。主制御部211の機能は、典型的には、プロセッサを含むハードウェアと、制御プログラムを含むソフトウェアとの協働によって実現される。制御回路を含むハードウェアによって主制御部211の機能の少なくとも一部を実現するようにしてもよい。
 撮影光路に配置された撮影合焦レンズ31と、照明光路に配置されたフォーカス光学系60とは、主制御部211の制御の下に、図示しない撮影合焦駆動部によって一体的に又は連係的に移動される。測定アームに設けられたリトロリフレクタ41は、主制御部211の制御の下に、リトロリフレクタ(RR)駆動部41Aによって移動される。測定アームに配置されたOCT合焦レンズ43は、主制御部211の制御の下に、OCT合焦駆動部43Aによって移動される。測定アームに設けられた光スキャナ44は、主制御部211の制御の下に動作する。参照アームに配置されたリトロリフレクタ114は、主制御部211の制御の下に、リトロリフレクタ(RR)駆動部114Aによって移動される。参照アームに配置された偏光デバイス118は、主制御部211の制御の下に動作する。光L0の光路に配置された偏光デバイス103も同様に、主制御部211の制御の下に動作する。ここに例示した機構のそれぞれは、典型的には、主制御部211の制御の下に動作するアクチュエータを含む。ここに例示しない機構や要素についても同様である。
 移動機構150は、例えば、眼底カメラユニット2を3次元的に移動するように構成される。典型的な例において、移動機構150は、±x方向(左右方向)に移動可能なxステージと、xステージを移動するx移動機構と、±y方向(上下方向)に移動可能なyステージと、yステージを移動するy移動機構と、±z方向(奥行き方向)に移動可能なzステージと、zステージを移動するz移動機構とを含む。これら移動機構のそれぞれは、主制御部211の制御の下に動作するパルスモータ等のアクチュエータを含む。これらステージには、少なくとも測定アームの一部(少なくとも対物レンズ22を含む)が直接的又は間接的に載置されている。典型的には、眼底カメラユニットが、これらステージに直接的又は間接的に載置されている。
〈記憶部212〉
 記憶部212は各種のデータを記憶する。記憶部212に記憶されるデータの例として、OCT画像データ、前眼部画像データ、眼底画像データ、被検眼情報などがある。被検眼情報は、例えば、患者識別子や氏名などの被検者情報や、左眼/右眼の識別子や、電子カルテデータなどを含んでよい。また、記憶部212は、眼科装置1を動作させるための各種ソフトウェアや各種パラメータ値や各種テンプレートを記憶してもよい。
 記憶部212は、典型的には、ハードディスクのような比較的大容量の記憶装置を含む。なお、通信回線上に配置された記憶装置や情報処理装置に各種データを記憶するようにしてもよく、この場合には記憶部212は比較的大容量の記憶装置を含まなくてもよい。眼科装置1の周辺機器として設けられた比較的大容量の記憶装置を利用する場合も同様である。
〈画像形成部220〉
 画像形成部220は、データ収集システム130により収集されたデータに基づいてOCT画像データを形成する。画像形成部220の機能は、典型的には、プロセッサを含むハードウェアと、画像形成プログラムを含むソフトウェアとの協働によって実現される。画像形成回路を含むハードウェアによって画像形成部220の機能の少なくとも一部を実現するようにしてもよい。
 画像形成部220は、データ収集システム130により収集されたデータに基づいて断面像データを形成する。この処理には、従来のスウェプトソースOCTと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、高速フーリエ変換(FFT)などの信号処理が含まれる。
 画像形成部220により形成される画像データは、OCTスキャンが適用されたエリアに配列された複数のAライン(z方向に沿うスキャンライン)における反射強度プロファイルを画像化することによって形成された一群の画像データを含むデータセットである。
 Aラインに対するOCTスキャンは、Aスキャンと呼ばれる。Aスキャンにより得られた画像データをAスキャン画像データと呼ぶことがある。また、z方向をAスキャン方向と呼ぶことがある。
 Aスキャン方向に直交する1次元方向(xy平面内の任意方向)に配列された複数のAスキャンは、Bスキャンと呼ばれる。Aスキャン方向に直交する当該1次元方向をBスキャン方向と呼ぶことがある。また、Bスキャンにより得られた画像データをBスキャン画像データと呼ぶことがある。
 画像形成部220により形成される画像データは、例えば、1以上のAスキャン画像データ、1以上のBスキャン画像データ、又は、3次元画像データである。3次元画像データは、3次元座標系により表現された画像データであり、その典型例としてスタックデータとボリュームデータがある。スタックデータは、複数のBスキャン画像データを単一の3次元座標系に埋め込むことで構築される。ボリュームデータはボクセルデータとも呼ばれ、スタックデータにボクセル化処理を施すことで構築される。
 画像形成部220は、公知の画像処理技術を利用して画像データを加工することができる。例えば、画像形成部220は、3次元画像データにレンダリングを適用して新たな画像データを構築することができる。レンダリングの手法としては、ボリュームレンダリング、最大値投影(MIP)、最小値投影(MinIP)、サーフェスレンダリング、多断面再構成(MPR)などがある。また、画像形成部220は、3次元画像データをz方向(Aライン方向、深さ方向)に投影してプロジェクションデータを構築することができる。また、画像形成部220は、3次元画像データの一部をz方向に投影してシャドウグラムを構築することができる。なお、シャドウグラムを構築するために投影される3次元画像データの一部は、例えば、セグメンテーションを利用して設定される。
〈データ処理部230〉
 データ処理部230は、各種のデータ処理を実行する。例えば、データ処理部230は、OCT画像データに画像処理や解析処理を適用することや、観察画像データ又は撮影画像データに画像処理や解析処理を適用することが可能である。データ処理部230の機能は、典型的には、プロセッサを含むハードウェアと、データ処理プログラムを含むソフトウェアとの協働により実現される。データ処理回路を含むハードウェアによってデータ処理部230の機能の少なくとも一部を実現するようにしてもよい。
〈処理系の例示的な詳細構成〉
 制御部210及びデータ処理部230の例示的な構成を図3Bに示す。
〈制御部210の例〉
 図3Bに例示された制御部210は、移動制御部2101と、スキャン制御部2102と、偏光制御部2103と、表示制御部2104とを含む。
 移動制御部2101は、移動機構150の制御を行う。スキャン制御部2102は、光源ユニット101、光スキャナ44など、OCTスキャンを行うための要素の制御を行う。偏光制御部2103は、偏光デバイス118の制御を行う。また、偏光制御部2103は、偏光デバイス118の制御に加え、又は、それの代わりに、偏光デバイス103の制御を行うように構成されてもよい。表示制御部2104は、ユーザーインターフェイス240(表示部241)を制御する。
 移動制御部2101、スキャン制御部2102、偏光制御部2103、及び表示制御部2104のそれぞれの機能は、典型的には、プロセッサを含むハードウェアと、制御プログラムを含むソフトウェアとの協働により実現される。移動制御部2101、スキャン制御部2102、偏光制御部2103、及び表示制御部2104のいずれかの機能の少なくとも一部を、制御回路を含むハードウェアによって実現するようにしてもよい。
 移動制御部2101、スキャン制御部2102、偏光制御部2103、及び表示制御部2104のそれぞれは、主制御部211に含まれる。移動制御部2101、スキャン制御部2102、偏光制御部2103、及び表示制御部2104のいずれかは、記憶ハードウェア(記憶部212)を含んでいてもよい。移動制御部2101、スキャン制御部2102、偏光制御部2103、及び表示制御部2104のそれぞれが実行する処理については後述する。
〈データ処理部230の例〉
 図3Bに例示されたデータ処理部230は、移動目標決定部231と、アーチファクト検出部232と、角膜画像検出部233と、位置判定部234と、画質評価部235と、アーチファクト除去部236とを含む。
 移動目標決定部231、アーチファクト検出部232、角膜画像検出部233、位置判定部234、画質評価部235、及びアーチファクト除去部236のそれぞれの機能は、典型的には、プロセッサを含むハードウェアと、データ処理プログラムを含むソフトウェアとの協働により実現される。移動目標決定部231、アーチファクト検出部232、角膜画像検出部233、位置判定部234、画質評価部235、及びアーチファクト除去部236のいずれかの機能の少なくとも一部を、データ処理回路を含むハードウェアによって実現するようにしてもよい。移動目標決定部231、アーチファクト検出部232、角膜画像検出部233、位置判定部234、画質評価部235、及びアーチファクト除去部236のいずれかは、記憶ハードウェアを含んでいてもよい。
 以下、データ処理部230に含まれるそれぞれの要素について説明する。
〈移動目標決定部231〉
 本実施形態の眼科装置1は、眼底カメラユニット2を用いて前眼部撮影を行うことが可能である。例えば、眼科装置1は、観察照明光及びイメージセンサ35を利用した、前眼部の赤外動画撮影が可能である。
 移動目標決定部231は、眼底カメラユニット2により取得された前眼部画像を解析して、OCT光学系の移動目標を決定する。移動制御部2101は、移動目標決定部231により決定された移動目標に基づいて移動機構150を制御する。
 本実施形態における移動目標は、例えば、移動機構150により移動される眼底カメラユニット2の位置を表現する座標(x,y,z)、又は、移動機構150の制御パラメータであってよい。後者の例として、移動機構150のアクチュエータがパルスモータである場合、制御パラメータは、このパルスモータに供給されるパルス数を含んでいてよい。
 移動目標決定部231が移動目標として決定する情報の種類は、これら例示に限定されない。移動目標を表す情報の種類は、例えば、移動機構等のハードウェアの構成や、移動制御のためのソフトウェアの構成などに応じて予め設定される。
 OCT光学系は、被検眼EにOCTを適用するための光学系(及び、その要素を動作させる駆動機構、移動機構等)である。本実施形態において、OCT光学系は、少なくとも、眼底カメラユニット2内において測定アームを形成する一連の要素(具体的には、コリメータレンズユニット40、リトロリフレクタ41、分散補償部材42、OCT合焦レンズ43、光スキャナ44、リレーレンズ45、ダイクロイックミラー46、及び対物レンズ22)を含む。本実施形態では、このようなOCT光学系を含む眼底カメラユニット2が、移動機構150によって移動される。
 移動目標の決定の典型的な例を説明する。眼科装置1は、眼底カメラユニット2を用いて被検眼Eの前眼部の赤外動画撮影を実行する。この赤外動画撮影と並行して、移動目標決定部231は、眼底カメラユニット2により逐次に取得される複数の前眼部画像(動画像のフレーム群)を順次に解析することで、OCT光学系の移動目標の時系列データを取得する。
 この時系列移動目標データは、被検眼Eの眼球運動や、被検眼Eと眼底カメラユニット2との間の相対位置の変化などを反映している。また、瞳孔径の変化などが時系列移動目標データに影響を与えることもある。
 なお、眼底カメラユニット2により取得された全ての前眼部画像を移動目標決定部231が解析する必要はない。例えば間引き処理や選択処理を介することによって、移動目標決定部231により解析される前眼部像の枚数を減らすことが可能である。
 前眼部の赤外動画撮影と並行して移動目標決定部231が取得した複数の移動目標は、逐次に、移動制御部2101に送られる。移動制御部2101は、移動目標決定部231から逐次に入力される移動目標に基づいて移動機構150の制御を行う。この制御はリアルタイム処理として実行される。
 このような例示的処理によれば、時系列移動目標データが表す移動目標の時系列変化に合わせて眼底カメラユニット2を移動させることができる。その結果、被検眼Eの眼球運動などに応じて、OCT光学系の位置を自動で調整することが可能になる(トラッキング)。
 移動制御部2101が移動機構150の制御を実行した後の任意のタイミングで、OCT光学系は、被検眼Eの前眼部に対するOCTスキャンの適用を開始することができる。OCTスキャンの適用タイミングの具体例については後述する。
 移動目標決定部231が移動目標を決定する処理の例を説明する。図4Aは、眼底カメラユニット2により取得された前眼部画像の例を示す。前眼部画像500には、被検眼Eの瞳孔に相当する瞳孔画像510(斜線で示す画像領域)と、虹彩に相当する虹彩画像520(横線で示す画像領域)とが描出されている。
 移動目標決定部231は、前眼部画像500を解析することで、瞳孔画像510及び虹彩画像520の少なくとも一方を特定する。この解析は、例えば、画素値に関する閾値処理、及び/又は、パターン検出を含んでいてよい。
 閾値処理の具体例を説明する。本例の前眼部画像の画素値は輝度階調で表現されるので、移動目標決定部231は、所定の第1閾値よりも輝度が低い画素を特定することによって瞳孔画像510を検出することができる。虹彩画像520の検出においては、第1閾値よりも高い値に設定された所定の第2閾値を適用することができる。なお、第1閾値及び第2閾値の少なくとも一方は、デフォルト値であってよく、或いは、任意の属性や任意の条件(例えば、処理対象の前眼部画像)に応じて設定される相対的な値であってもよい。後者の例として、前眼部画像における輝度の分布(例えば、輝度ヒストグラム)から閾値を設定することが可能である。
 パターン検出の具体例を説明する。瞳孔の輪郭(外縁、エッジ)形状が略円形又は略楕円形であることを利用し、移動目標決定部231は、略円形又は略楕円形のエッジ形状を有する領域を特定することによって瞳孔画像510を検出することができる。虹彩画像520の検出においても同様である。瞳孔画像510及び虹彩画像520の双方を検出する場合、移動目標決定部231は、略同心に配置された2つの略円形又は略楕円形のエッジを検出し、内側のエッジを外縁とする画像領域を瞳孔画像510に設定するとともに、内側のエッジと外側のエッジとに囲まれた略円環状の画像領域を虹彩画像520に設定することができる。
 なお、前眼部画像の解析に適用可能な技術はこれら例示に限定されない。例えば、前眼部画像の解析は、エッジ検出や二値化のような任意の画像処理を含んでいてもよいし、人工知能技術やコグニティブコンピューティング技術を含んでいてもよい。
 図4Bの符号510aは瞳孔画像510の外縁を示し、符号520aは虹彩画像520の外縁を示す。ここで、瞳孔外縁510a及び虹彩外縁520aの少なくとも一方は、近似円又は近似楕円であってよい。
 移動目標決定部231は、瞳孔画像510及び虹彩画像520の少なくとも一方(例えば、瞳孔外縁510a及び虹彩外縁520aの少なくとも一方)に基づいて、前眼部の瞳孔中心を特定する。この処理は、例えば、瞳孔画像510の中心又は重心を求める処理、瞳孔外縁510aの中心又は重心を求める処理、虹彩画像520の中心又は重心を求める処理、及び、虹彩外縁520aの中心又は重心を求める処理のうちの少なくとも1つの処理を含んでよい。これら処理のうちの2つ以上が含まれる場合、2以上の処理によりそれぞれ得られた2以上の瞳孔中心候補に統計処理(例えば、平均化)を実行することができる。なお、瞳孔中心を求めるための処理はこれら例示に限定されない。
 このような要領で、移動目標決定部231は、被検眼Eの前眼部の瞳孔中心を検出し、これを移動目標として設定することができる。スキャン制御部2102は、検出された瞳孔中心を通過するように、OCTスキャンの適用箇所を設定することができる。
 このOCTスキャンのパターンは任意に設定可能であり、例えば、ラインスキャン(Bスキャン)、クロススキャン、マルチクロススキャン、ラジアルスキャン、又は3次元スキャンが適用されてよい。ラインスキャンの向きは任意である。クロススキャンは、互いに直交する2つのラインスキャンにより構成される。マルチクロススキャンは、互いに直交する2つのラインスキャン群により構成される。ここで、各ラインスキャン群に含まれる2以上のラインスキャンは互いに平行である。ラジアルスキャンは、等角度間隔で配置された複数のラインスキャンにより構成される。3次元スキャンは、ボリュームスキャンなどとも呼ばれ、典型的には、多数のラインスキャンが互いに平行に配列されたラスタースキャンである。
 スキャン制御部2102は、移動目標決定部231により検出された瞳孔中心がスキャン中心に配置されるようにOCTスキャンの適用箇所を設定することができる。例えば、ラインスキャンが適用される場合、図4Cに示すように、ラインスキャン530の中心と瞳孔中心510bとが一致するように、ラインスキャン530の適用箇所を設定することができる。他のスキャンパターンの場合においても同様に、スキャン中心と瞳孔中心510bとが一致するように、OCTスキャンの適用箇所を設定することができる。
 このような処理により、実質的に瞳孔中心を通過するようにOCTスキャンを実行することができる。標準的な眼では、瞳孔中心のxy座標と角膜頂点のxy座標との間の相対的偏位は大きくない。よって、本例のように瞳孔中心を目標にOCTスキャンを行えば、角膜頂点又はその近傍をスキャンすることができる。
 本例では、前眼部の赤外観察画像から特徴点を検出して移動目標を設定しているが、他の手法を用いることも可能である。例えば、前眼部の特徴点の検出に、アライメント指標、ステレオアライメント、光テコなど、他の任意の手法を利用することが可能である。瞳孔中心を検出可能な手法が適用される場合、検出された瞳孔中心に移動目標を設定することができる。また、角膜頂点を検出可能な手法が適用される場合、検出された角膜頂点に移動目標を設定することができる。なお、特徴点は、瞳孔中心及び角膜頂点に限定されない。
〈アーチファクト検出部232〉
 アーチファクト検出部232は、画像形成部220により形成されたOCT画像を解析して、Aスキャン方向に沿うアーチファクトを検出する。
 図5は、角膜頂点を通過するBスキャン(ラインスキャン)により実際に得られたOCT画像を示す。このBスキャン画像600において、円環の一部に類似した形状の高輝度の画像領域が角膜断面を表す。この角膜断面画像の上側のエッジの形状は、上に凸の略円弧状であり、その最上部が角膜頂点に相当する。なお、紙面における下方向がz方向(つまり、Aスキャン方向)である。符号610は、角膜頂点を通過するAラインを示す。このAラインの近傍範囲620には、Aスキャン方向に沿う帯状又は線状のアーチファクトが現れる。このアーチファクトは、角膜頂点での正反射などに起因して発生する。このアーチファクトを縦断アーチファクトと呼ぶことにする。
 アーチファクト検出部232は、輝度、位置、形状などの所定の特徴に基づいて、縦断アーチファクトを検出することができる。輝度が考慮される場合、アーチファクト検出部232は、所定の閾値よりも高い輝度を有する画像領域を縦断アーチファクト(その候補)として検出することができる。位置が考慮される場合、アーチファクト検出部232は、角膜断面画像の上側のエッジの最上部を角膜頂点として検出し、その位置に基づき縦断アーチファクト(その候補)を検出することができる。形状が考慮される場合、アーチファクト検出部232は、Aスキャン方向に沿う帯状又は線状の画像領域を縦断アーチファクト(その候補)として検出することができる。
 縦断アーチファクトの検出において、角膜頂点が最も高い輝度で描出されること(図5を参照)を利用してもよい。また、公知のセグメンテーションを利用して縦断アーチファクトを検出することも可能である。縦断アーチファクトの検出手法は、これら例示に限定されない。なお、角膜画像(例えば、角膜断面画像)の検出や、角膜画像の一部(例えば、角膜頂点、エッジ)の検出を、角膜画像検出部233が行うようにしてもよい。
 移動制御部2101は、アーチファクト検出部232による縦断アーチファクトの検出の結果に基づいて移動機構150の制御を行うことができる。つまり、OCT画像に発生する縦断アーチファクトを参照してOCT光学系の移動制御を行うことが可能である。
 第1の例として、移動制御部2101は、OCT画像に発生する縦断アーチファクトの強度が最大化されるように移動機構150の制御を実行することができる。本例の制御は、例えば、OCT画像の取得と、縦断アーチファクトの検出と、OCT光学系の移動とを含む一連の処理を、繰り返し行うことによって実現可能である。
 その具体例として、所定パターンのOCTスキャンを繰り返し前眼部に適用して時系列OCT画像を取得しつつ、次のような一連の処理を実行することができる。アーチファクト検出部232は、逐次に取得されるOCT画像中の縦断アーチファクトを検出する。移動制御部2101(又は、制御部210の他の要素、アーチファクト検出部232、若しくはデータ処理部230の他の要素;以下同様)は、縦断アーチファクトの強度を求める。移動制御部2101は、移動機構150を制御してOCT光学系を移動させる。
 更に、アーチファクト検出部232は、OCT光学系の移動の後に取得されたOCT画像中の縦断アーチファクトを検出する。移動制御部2101は、この新たな縦断アーチファクトの強度を求め、前回の縦断アーチファクトと比較する。
 新たな強度が前回の強度よりも大きい場合、移動制御部2101は、前回と同方向にOCT光学系を移動するように移動機構150を制御する。他方、新たな強度が前回の強度よりも小さい場合、移動制御部2101は、前回とは逆方向にOCT光学系を移動するように移動機構150を制御する。なお、新たな強度と前回の強度との差が無い場合(より一般に、差が所定閾値よりも小さい場合)、本例に係る一連の処理を終了してもよい。
 このような一連の処理を繰り返し行うことで、より強度の高い縦断アーチファクトが得られるようなOCT光学系の位置を探索することができる。なお、縦断アーチファクトの強度の高さは、角膜頂点に対するOCT光学系のアライメントの正確さを反映している。したがって、より強度の高い縦断アーチファクトが得られるようなOCT光学系の位置を探索することで、角膜頂点に対するOCT光学系のアライメントの確度を高めることが可能である。
 第2の例として、移動制御部2101は、OCT画像のフレーム中心に縦断アーチファクトが配置されるように移動機構150の制御を実行することができる。つまり、移動制御部2101は、アーチファクト検出部232により検出されるアーチファクトがOCT画像のフレームの中心を通過するように移動機構150の制御を実行することが可能である。本例の制御も、第1の例と同様に、OCT画像の取得と、縦断アーチファクトの検出と、OCT光学系の移動とを含む一連の処理を、繰り返し行うことによって実現可能である。
 その具体例として、所定パターンのOCTスキャンを繰り返し前眼部に適用して時系列OCT画像を取得しつつ、次のような一連の処理を実行する。アーチファクト検出部232は、逐次に取得されるOCT画像中の縦断アーチファクトを検出する。移動制御部2101(又は、制御部210の他の要素、アーチファクト検出部232、若しくはデータ処理部230の他の要素;以下同様)は、画像フレームにおける縦断アーチファクトの位置を求める。
 画像フレームにおける縦断アーチファクトの位置は、例えば、所定のフレーム中心に対する縦断アーチファクトの偏位である。ここで、縦断アーチファクトがAスキャン方向(z方向)に沿う形状であることを鑑み、フレーム中心は、少なくともx方向及びy方向の少なくとも一方の方向における中心であってよい。例えば、OCT画像がx方向に沿うBスキャン画像である場合、画像フレームのx方向における中心をフレーム中心に設定することができる。OCT画像がy方向に沿うBスキャン画像である場合、画像フレームのy方向における中心をフレーム中心に設定することができる。OCT画像が3次元画像である場合、画像フレームにおけるxy面の中心をフレーム中心に設定することができる。OCT画像が、x方向のベクトル成分及びy方向のベクトル成分の双方が非ゼロのラインスキャンにより得られたBスキャンである場合、画像フレームにおいてx方向の中心且つy方向の中心である位置をフレーム中心に設定することができる。ここに例示したように、OCTスキャンのパターンや向きに応じてフレーム中心を設定することができる。
 移動制御部2101が、画像フレームにおける縦断アーチファクトの位置を求めた後、移動制御部2101は、移動機構150を制御してOCT光学系を移動させる。
 更に、アーチファクト検出部232は、OCT光学系の移動の後に取得されたOCT画像中の縦断アーチファクトを検出する。移動制御部2101は、この新たなOCT画像の画像フレームにおける新たな縦断アーチファクトの位置を求める。
 画像フレームにおける縦断アーチファクトの位置が、フレーム中心に対する縦断アーチファクトの偏位ベクトルで表現されるとする。移動制御部2101は、この偏位ベクトルの逆ベクトルを求め、この逆ベクトルに相当する方向及び距離だけOCT光学系を移動するように移動機構150を制御する。
 偏位ベクトルの大きさが所定閾値以下に安定するように、このような一連の処理を繰り返すことができる。この一連の処理はトラッキングの例である。これにより、フレーム中心に角膜頂点が配置されたOCT画像を取得することが可能になる。
 以上に説明した2つの例(第1の例及び第2の例)を並行して行うことができる。これにより、角膜頂点に対するOCT光学系のアライメント確度を向上させつつ、フレーム中心に角膜頂点が配置されたOCT画像を取得することができる。
〈角膜画像検出部233〉
 角膜画像検出部233は、画像形成部220により形成されたOCT画像を解析して角膜画像を検出する。この処理は、縦断アーチファクトの検出と同様に、輝度、位置、形状などの所定の特徴に基づいて実行することができる。また、セグメンテーション等の画像処理を含んでいてもよい。
 角膜画像は、OCT画像に描出されている角膜に相当する画像領域の全体であってもよいし、その一部であってもよい。例えば、図5に示すBスキャン画像600が処理される場合、角膜画像検出部233は、円環の一部に類似した形状の高輝度の画像領域である角膜断面画像の全体を検出してもよいし、角膜断面画像の上側エッジ(角膜表面、角膜前面)を検出してもよいし、角膜前面の頂点(角膜頂点)を検出してもよいし、下側エッジ(角膜裏面、角膜後面)を検出してもよいし、角膜後面の頂点を検出してもよいし、角膜のサブ組織(角膜上皮、ボーマン膜、固有層、デュア層、デスメ膜、角膜内皮)を検出してもよい。
 角膜画像検出部233が角膜頂点を検出可能である場合、縦断アーチファクトの検出よりも前に角膜頂点の検出を実行し、その結果をアーチファクト検出部232に提供することができる。アーチファクト検出部232は、角膜画像検出部233による角膜頂点の検出結果に基づいて縦断アーチファクトの検出を行うことができる。
〈位置判定部234〉
 位置判定部234は、アーチファクト検出部232により検出された縦断アーチファクトと角膜画像検出部233により検出された角膜画像との共通領域が、画像フレーム中の所定範囲内に位置するか判定する。
 この判定処理の基準となる画像フレーム中の範囲(許容範囲)は予め設定されてもよいし、OCT画像ごとに設定されてもよい。後者の例として、OCT画像に描出されている角膜画像の大きさに基づき許容範囲を設定することが可能である。
 前述のように、所定パターンのOCTスキャンを繰り返し前眼部に適用して時系列OCT画像を取得する場合、アーチファクト検出部232及び角膜画像検出部233は、同じOCT画像に対してそれぞれ解析を適用する。これらの処理は、例えば、並行して実行される。それにより、単一のOCT画像について、縦断アーチファクトと角膜画像とが検出される。このOCT画像には、上記の許容範囲が設定されている。
 位置判定部234は、この縦断アーチファクトとこの角膜画像との共通領域を特定する。前述したように、縦断アーチファクトは、Aスキャン方向(z方向)に沿う帯状の画像領域であり、角膜画像は、典型的には、上に凸の円環状の画像領域であり、更に、縦断アーチファクトは、角膜頂点及びその近傍を通過するように描出される。したがって、角膜頂点及び/又はその近傍がOCT画像に描出されている場合、換言すると、縦断アーチファクトがOCT画像に描出されている場合、縦断アーチファクトと角膜画像とは、角膜頂点及び/又はその近傍において交差している。この交差領域、つまり、縦断アーチファクトと角膜画像とが重なっている領域が、共通領域となる。位置判定部234は、縦断アーチファクトを表す画素群と、角膜画像を表す画素群とを比較し、これら2つの画素群の双方に含まれる1以上の画素を共通領域として特定することができる。
 更に、位置判定部234は、特定された共通領域が許容範囲に含まれるか否か判定する。この処理は、例えば、共通領域をなす1以上の画素の少なくとも一部が許容範囲に含まれるか判定するものである。或いは、共通領域をなす1以上の画素の全てが許容範囲に含まれるか判定するものであってもよい。
 図6に例示するBスキャン画像700が位置判定に供される場合、アーチファクト検出部232がBスキャン画像700を解析して縦断アーチファクト710を検出し、且つ、角膜画像検出部233がBスキャン画像700を解析して角膜画像720(又は、その一部)を検出する。Bスキャン画像700には、許容範囲700aが設定されている。
 位置判定部234は、角膜画像720から角膜頂点を検出し、検出された角膜頂点と縦断アーチファクト710との共通領域730を特定する。更に、位置判定部234は、特定された共通領域730が許容範囲700aに含まれるか判定する。図6に示す例では、共通領域730が許容範囲700aの内部に位置している。他方、Bスキャン画像700が得られたときの被検眼EとOCT光学系との間の相対位置が不適当である場合には、共通領域730は許容範囲700aの外部に位置することがある。
 なお、このような位置判定は、OCT画像中の縦断アーチファクトに基づくOCT光学系の移動制御(前述)よりも後に実行されるが、この移動制御を行ったとしても、被検眼Eの眼球運動などによって被検眼EとOCT光学系との間の相対位置が常時変動するため、縦断アーチファクトと角膜画像との共通領域が許容範囲に含まれるか判定を行うことは、好適なOCT画像を得るために重要である。
 本実施形態において、縦断アーチファクトと角膜画像との共通領域が許容範囲に含まれることは、診断に用いられるデータ(例えば、画像、計測値)を取得するためのOCTスキャンを前眼部に適用するための必要条件である。
〈画質評価部235〉
 画質評価部235は、画像形成部220により形成されたOCT画像の画質評価値を算出する。画質評価値は、OCT画像の画質の程度を示す数値であり、画質が良好か否かの評価に用いられる。
 画質評価値は、任意の手法で算出可能な任意の種類の値であってよい。典型的な画質評価値は、OCT画像中の2種類の画像領域に関する信号対ノイズ比(SN比)である。画質評価値の具体例は、眼(前眼部)の部位を表す画像領域の信号と、眼の部位ではない背景を表す画像領域のノイズとに関するSN比である。前眼部の部位を表す画像領域を前眼部領域と呼び、背景を表す画像領域を背景領域と呼ぶ。
 前眼部領域及び背景領域に関するSN比として表現される画質評価値の算出方法は任意である。その具体例を以下に説明する。
 まず、画質評価部235は、OCT画像を構成する複数のAスキャン画像のそれぞれについて、最大輝度の画素と最小輝度の画素とを特定する。次に、画質評価部235は、特定された最大輝度の画素を含む所定範囲の画素群(たとえば前後40画素分)の輝度値に基づいて、輝度値のヒストグラム(たとえば8bitのもの)を作成する。同様に、画質評価部235は、特定された最小輝度の画素を含む所定範囲の画素群の輝度値に基づいて、輝度値のヒストグラムを作成する。
 続いて、画質評価部235は、最小輝度の画素を含む画素群に対応するヒストグラムにおいて、頻度値が0を超える最大の位置(輝度値)を探索する。更に、最大輝度の画素を含む画素群に対応するヒストグラムにおいて、上記で探索された輝度値以下の範囲に含まれる合計画素数(N)と、探索された輝度値より上から255番目の輝度値に含まれている合計画素数(S)とを求める。そして、画質評価部235は、当該画像において信号とみなせる部分(つまりノイズではないとみなせる部分)が全体の何%になるのかを、次の演算式で評価する:100×S÷(S+N)。画質評価部235は、このような一連の演算を各Aスキャン画像に対して適用することで、複数のAスキャン画像に対応する複数の数値を得る。そして、画質評価部235は、これら数値の平均値を求め、これを画質評価値とする。
 画質評価部235(又は、データ処理部230の他の要素、若しくは、制御部210)は、算出された画質評価値が所定閾値以上であるか判定することができる。この閾値は、デフォルト値であってもよいし、任意の属性や任意の条件に応じて設定される値でもよい。画質評価値が閾値以上である場合、このOCT画像の画質は良好であると判定される。一方、画質評価値が閾値未満である場合、このOCT画像の画質は良好ではないと判定される。
 本実施形態において、画質評価値が閾値以上であることは、診断に用いられるデータ(例えば、画像、計測値)を取得するためのOCTスキャンを前眼部に適用するための必要条件である。
 画質評価部235により算出された画質評価値や、これに基づく評価結果(判定結果)を、処理や制御に利用することができる。典型的には、OCT画像の画質を向上させるための処理や制御に画質評価値又は評価結果を利用することが可能である。
 その具体例として、偏光制御部2103は、画質評価部235により算出される画質評価値を大きくするように偏光デバイス118(及び/又は偏光デバイス103)を制御することができる。本例の制御は、例えば、OCT画像の取得と、画質評価値の算出と、画質の評価と、偏光デバイス118の制御とを含む一連の処理を、繰り返し行うことによって実現可能である。
〈アーチファクト除去部236〉
 アーチファクト除去部236は、画像形成部220により形成されたOCT画像から、アーチファクト検出部232により検出された縦断アーチファクトを除去する。表示制御部2104は、アーチファクト除去部236により縦断アーチファクトが除去されたOCT画像を表示部241に表示させることができる。
 アーチファクト除去処理では、縦断アーチファクトに相当する画素群の値が他の値に置換される。例えば、アーチファクト除去部236は、対象画素の周囲に位置する1以上の画素の値に基づいて、対象画素の新たな値を求めることができる。この処理は、例えば、公知のフィルタ処理を含む。
 表示制御部2104は、縦断アーチファクトに相当する画素群の値が変換されたOCT画像を、表示部241に表示させることができる。
〈動作〉
 本実施形態に係る眼科装置1の動作について説明する。眼科装置1の動作の例を図7A及び図7Bに示す。
(S1:前眼部の赤外動画撮影を開始)
 まず、眼科装置1の眼底カメラユニット2が、被検眼Eの前眼部の赤外動画撮影を開始する。赤外動画撮影により取得されたフレーム(前眼部画像)は、制御部210を介してデータ処理部230に転送される。この転送はリアルタイム処理として実行される。
(S2:移動目標を決定)
 移動目標決定部231は、眼底カメラユニット2から転送された前眼部画像を解析して、OCT光学系の移動目標を決定する。典型的には、移動目標決定部231は、前眼部画像から瞳孔中心を検出し、これを移動目標として設定することができる。この処理は、例えば、眼底カメラユニット2から転送された前眼部画像ごとに実行されるリアルタイム処理である。
(S3:OCT光学系を移動)
 移動制御部2101は、ステップS2で決定された移動目標に基づき移動機構150を制御することでOCT光学系を移動する。典型的には、移動制御部2101は、OCT光学系の光軸が瞳孔中心を通過するようにOCT光学系を移動する。この移動制御はリアルタイム処理として実行される。
(S4:OCTスキャン条件を設定)
 スキャン制御部2102は、次のステップS5で開始される反復的OCTスキャンに適用される条件を設定する。典型的には、スキャン制御部2102は、OCTスキャンのパターンを設定し、且つ、このスキャンパターンの中心(スキャン中心)が瞳孔中心に配置されるようにOCTスキャンの適用箇所を設定する(例えば、図4Cを参照)。
(S5:反復的OCTスキャンを開始)
 スキャン制御部2102は、ステップS4で設定された条件の下での反復的OCTスキャンを開始する。
 反復的OCTスキャンは、典型的には、一定のパターンのOCTスキャンを繰り返し前眼部に適用するスキャンモードであり、それにより時系列OCT画像が取得される。時系列OCT画像は、アライメントや画質調整などの準備動作に利用される。
 反復的OCTスキャンは、典型的には、OCT光学系の光軸位置をスキャン中心とするBスキャンを繰り返し行うスキャンモードである。このような反復的Bスキャンによれば、瞳孔中心又はその近傍(よって、角膜頂点又はその近傍)を通過するBスキャンを高い繰り返し周波数で適用することが可能である。
 なお、縦断アーチファクトが発生する角膜頂点の探索を容易化するために、クロススキャン、マルチクロススキャン、ラジアルスキャン、又は3次元スキャンなど、任意のスキャンパターンを適用することもできる。
 反復OCTスキャンに適用されるスキャンパターンの選択は、繰り返し周波数、データ処理に掛かる負荷・時間、角膜頂点の探索の容易性など、各種の条件を考慮して行われる。また、反復OCTスキャンのパターンやスキャンエリアのサイズを途中で切り替えることにより複数の条件の満足を図るようにしてもよい。
 反復的OCTスキャンにより、それぞれのOCTスキャンで収集されたデータセットが得られる。画像形成部220は、反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいてOCT画像を形成する。反復的Bスキャンが適用される場合、Bスキャンの繰り返しに対応する複数のデータセットが逐次に得られる。画像形成部220は、複数のデータセットそれぞれに基づいてBスキャン画像を形成する。
(S6:縦断アーチファクトの検出を開始)
 アーチファクト検出部232は、ステップS5で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像(又はそれらの一部)のそれぞれを解析して縦断アーチファクトを検出する。この処理はリアルタイム処理として実行される。
(S7:縦断アーチファクトが除去されたライブOCT画像の表示を開始)
 アーチファクト除去部236は、ステップS5で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像のそれぞれ(又はそれらの一部)から縦断アーチファクトを除去する。このアーチファクト除去はリアルタイム処理として実行される。
 表示制御部2104は、縦断アーチファクトが除去されたOCT画像を表示部241に表示させる。典型的には、表示制御部2104は、アーチファクト除去部236により逐次に構築された時系列OCT画像を動画として表示させる。この表示制御はリアルタイム処理として実行される。それにより、縦断アーチファクトが除去されたライブOCT画像を提供することができる。
(S8:縦断アーチファクトに基づきOCT光学系を移動)
 移動制御部2101は、ステップS6で逐次に検出された複数の縦断アーチファクト(又はそれらの一部)のそれぞれに基づいて移動機構150を制御することでOCT光学系を移動する。
 典型的には、移動制御部2101は、OCT画像に発生する縦断アーチファクトの強度が最大化されるように、及び/又は、OCT画像のフレーム中心に縦断アーチファクトが配置されるように、OCT光学系の位置を調整する。
(S9:OCT光学系の位置OK?)
 移動制御部2101は、ステップS8で移動された後のOCT光学系の位置が所定の条件を満足するか判定する。判定の基準は、典型的には、縦断アーチファクトの強度、及び/又は、OCT画像のフレーム中心に対する縦断アーチファクトの偏位である。
 OCT光学系の位置が所定の条件を満足する場合(S9:Yes)、処理はステップS10に移行する。
 OCT光学系の位置が所定の条件を満足しない場合(S9:No)、処理はステップS8に戻り、所定の条件が満足されるまでステップS8及びS9が繰り返される。なお、ステップS8及びS9が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
(S10:角膜画像を検出)
 角膜画像検出部233は、ステップS5で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像(又はそれらの一部)のそれぞれを解析して角膜画像(例えば、角膜頂点)を検出する。この処理はリアルタイム処理として実行される。
(S11:共通領域が許容範囲内?)
 位置判定部234は、ステップS6で検出された縦断アーチファクトとステップS10で検出された角膜画像との共通領域を特定し、この共通領域がOCT画像のフレーム中の許容範囲内に位置するか判定する。
 共通領域が許容範囲内に位置すると判定された場合(S11:Yes)、処理はステップS12に移行する。
 共通領域が許容範囲内に位置しないと判定された場合(S11:No)、処理はステップS8に戻り、ステップS9及びS11の双方で「Yes」と判定されるまでステップS8~S11が繰り返される。なお、ステップS8~S11の一部又は全部が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
(S12:画質評価値を算出)
 画質評価部235は、ステップS5で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像(又はそれらの一部)のそれぞれを解析して画質評価値を算出する。この処理はリアルタイム処理として実行される。
(S13:画質評価値が閾値以上?)
 画質評価部235は、ステップS12で算出された画質評価値が所定閾値以上であるか判定する。
 画質評価値が所定閾値以上であると判定された場合(S13:Yes)、処理はステップS15に移行する。
 画質評価値が所定閾値未満であると判定された場合(S13:No)、処理はステップS14に移行する。
(S14:偏光デバイスを制御)
 画質評価値が所定閾値未満であると判定された場合(S13:No)、偏光制御部2103は、次にステップS12で算出される画質評価値を大きくするように偏光デバイス118(及び/又は偏光デバイス103)を制御する。
 ステップS13で「Yes」と判定されるまで、ステップS12~S14が繰り返される。なお、ステップS12~S14が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
(S15:診断用OCTスキャンを実行)
 前述したように、画質評価値が所定閾値以上であると判定された場合(S13:Yes)、ステップS15が開始される。この段階では、前眼部(角膜頂点、瞳孔中心等)に対するOCT光学系のアライメント状態も、得られるOCT画像の画質も良好である。
 このように良好な条件が確保されたタイミングで、スキャン制御部2102は前眼部にOCTスキャンを適用し、それにより収集されたデータから画像形成部220がOCT画像を形成する。また、データ処理部230がこのOCT画像を処理したり解析したりすることも可能である。
 ステップS15で取得されるOCT画像は、典型的には診断に用いられ、そのスキャン条件は、一般に、ステップS5で開始された反復OCTスキャンの条件と異なる。典型的には、ステップS15で得られるOCT画像は、より高精細である。また、スキャンパターンやスキャンエリアのサイズなど、任意の条件が異なってもよい。
 以上で、図7A及び図7Bに例示した動作は終了となる(エンド)。
〈効果〉
 例示的な実施形態に係る眼科装置1が奏する効果について説明する。
 眼科装置1は、OCT光学系と、画像形成部220と、アーチファクト検出部232と、移動機構150と、移動制御部2101と、角膜画像検出部233と、位置判定部234と、画質評価部235と、スキャン制御部2102とを含む。
 OCT光学系は、被検眼Eの前眼部にOCTを適用するための光学系であり、上記した例示的な実施形態では、眼底カメラユニット2内において測定アームを形成する一連の要素を少なくとも含む。画像形成部220は、OCTスキャンにより得られたデータに基づきOCT画像を形成する。
 アーチファクト検出部232は、画像形成部220により形成されたOCT画像を解析して縦断アーチファクトを検出する。縦断アーチファクトは、Aスキャン方向に沿うアーチファクトである。
 移動機構150は、OCT光学系(その一部又は全部)を移動する。移動制御部2101(第1移動制御部)は、アーチファクト検出部232により検出された縦断アーチファクトに基づいて移動機構150を制御することでOCT光学系を移動させる。
 角膜画像検出部233は、画像形成部220により形成されたOCT画像を解析して角膜画像を検出する。
 位置判定部234は、アーチファクト検出部232により検出された縦断アーチファクトと角膜画像検出部233により検出された角膜画像との共通領域が、OCT画像のフレーム中の所定範囲内に位置するか判定する。
 画質評価部235は、画像形成部220により形成されたOCT画像の画質評価値を算出する。例えば、画質評価部235は、画像形成部220により形成されたOCT画像における前眼部領域の信号と背景領域のノイズとの比を画質評価値として算出することができる。
 スキャン制御部2102は、フレーム中の所定範囲内に共通領域が位置すると位置判定部234により判定され、且つ、画質評価部235により算出された画質評価値が所定閾値以上である場合に、所定パターンのOCTスキャンを前眼部に適用するようにOCT光学系を制御する。
 このように構成された眼科装置1によれば、対象部位へのOCT光学系のアライメント、画像フレームにおける対象部位の描出位置の調整、画質の調整といった準備動作を、必要な条件が満足されているか否かを確認しつつ自動で行い、条件が整った好適なタイミングでOCTスキャン(イメージング、計測など)を行うことができる。
 このように、生体眼の前眼部にOCTスキャンを適用するための準備動作が自動化されたことで、装置の扱いに不慣れな者であっても容易にOCT検査を行うことができる。また、被検者単独でOCT検査を行うことも可能になる。結果として、OCT検査において被検者や検者に掛かる負担が軽減される。
 近年、OCT技術を応用した眼科装置を眼疾患のスクリーニングに用いるために眼鏡店やドラッグストアや自宅に設置しようとの動きがある。準備動作が自動化された眼科装置1は、そのような場所に設置される眼科装置としても有効である。
 眼科装置1は、移動制御部2101(第1移動制御部)が縦断アーチファクトに基づく移動機構150の制御を実行した後に次の一連の処理を実行するように構成されていてよい。まず、OCT光学系が、前眼部にOCTスキャンを適用する。次に、画像形成部220が、このOCTスキャンで得られたデータに基づきOCT画像を形成する。続いて、アーチファクト検出部232が、このOCT画像を解析して縦断アーチファクトを検出する。次に、角膜画像検出部233が、このOCT画像を解析して角膜画像を検出する。続いて、位置判定部234が、この縦断アーチファクトとこの角膜画像との共通領域が、このOCT画像のフレーム中の所定範囲内に位置するか判定する。
 このように構成された眼科装置1によれば、縦断アーチファクトに基づくアライメントを行った後に、再度OCTスキャンを行ってOCT画像を形成し、このOCT画像から得た縦断アーチファクトと角膜画像とに基づき対象部位の描出位置の判定を行うことができる。すなわち、縦断アーチファクトに基づくアライメントで達成された良好なアライメント状態で描出位置判定を行うことができる。これにより、アライメントと描出位置判定との円滑な連係が可能となる。
 眼科装置1は、所定範囲内に共通領域が位置すると位置判定部234により判定された後、画質評価部235が画質評価値の算出を実行するように構成されていてよい。
 このように構成された眼科装置1によれば、縦断アーチファクトに基づくアライメントで達成された良好なアライメント状態で描出位置判定を行い、良好な描出位置が達成された後に画質評価を行うことができる。これにより、アライメントと描出位置判定と画質評価との円滑な連係が可能となる。
 眼科装置1は、眼底カメラユニット2(前眼部撮影系)と、移動目標決定部231とを含む。眼底カメラユニット2は、前眼部撮影を行う。移動目標決定部231は、眼底カメラユニット2により得られた前眼部画像を解析して、OCT光学系の移動目標を決定する。移動制御部2101(第2移動制御部)は、移動目標決定部231により決定された移動目標に基づいて移動機構150を制御する。移動制御部2101が移動機構150の制御を実行した後、OCT光学系は、前眼部に対するOCTスキャンの適用を開始する。
 このように構成された眼科装置1によれば、OCTスキャンの適用前に、前眼部画像による(ラフな)アライメントを行うことができる。これにより、OCTスキャンの開始後に行われる縦断アーチファクトに基づくアライメントの容易化を図ることができる。また、前眼部画像によるアライメントと、縦断アーチファクトに基づくアライメントとの円滑な連係が可能となる。
 前眼部画像に基づくアライメントのために、移動目標決定部231は、前眼部の瞳孔中心に移動目標を設定することができる。OCT光学系は、瞳孔中心をスキャン中心とするパターンのOCTスキャンの適用を開始することができる。
 このように構成された眼科装置1によれば、前眼部のランドマークの1つである瞳孔中心を基準としてOCTスキャンを開始することができる。これにより、OCTスキャンの開始後に行われる縦断アーチファクトに基づくアライメントの容易化や迅速化を図ることが可能となる。より具体的に説明すると、瞳孔中心を基準としてOCTスキャンを開始することにより、角膜頂点及びその近傍に発生する縦断アーチファクトの検出がしやすくなり、その結果、縦断アーチファクトに基づくアライメントの容易化や迅速化を図ることが可能となる。
 前眼部画像に基づくアライメントの後にOCT光学系が行うOCTスキャンは、瞳孔中心をスキャン中心とする反復的OCTスキャンであってよい。画像形成部220は、この反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいてOCT画像を形成する。なお、反復的OCTスキャンは、反復的Bスキャンであってよい。また、OCT光学系は、少なくとも、所定閾値以上の画質評価値が画質評価部により得られるまで、反復的OCTスキャンを継続してもよい。
 このように構成された眼科装置1によれば、OCTスキャンの繰り返しに同期した複数のOCT画像(時系列OCT画像)が得られる。時系列OCT画像は、アライメント、描出位置判定、画質評価、動画表示など、様々な用途に適用可能である。
 縦断アーチファクトに基づくアライメントにおいて、移動制御部2101(第1移動制御部)は、アーチファクト検出部232により検出される縦断アーチファクトの強度を高めるように移動機構150の制御を実行することができる。
 このように構成された眼科装置1によれば、より強度の高い縦断アーチファクトが得られるようなOCT光学系の位置を探索することで、角膜頂点に対するOCT光学系のアライメントの確度を高めることが可能である。
 縦断アーチファクトに基づくアライメントにおいて、移動制御部2101(第1移動制御部)は、アーチファクト検出部232により検出されるアーチファクトが画像フレームの中心を通過するように移動機構150の制御を実行することができる。
 このように構成された眼科装置1によれば、画像フレーム中の好適な位置に角膜頂点が描出されるように、OCT光学系のアライメントを行うことが可能である。
 OCT光学系は、前眼部に測定光LSを導く測定アームと、測定光LSの前眼部からの戻り光に重ね合わされる参照光LRを導く参照アームとを含む。測定アーム及び参照アームの少なくとも一方に偏光デバイスが設けられていてよい。偏光デバイスは、導かれる光の偏光状態を変化させる。眼科装置1では、参照アームに偏光デバイス118が設けられている。更に、眼科装置1は、偏光制御部2103を含んでいてよい。偏光制御部2103は、画質評価部235により算出される画質評価値(例えば、前眼部領域の信号と背景領域のノイズとの比)を大きくするように偏光デバイスを制御する。
 このように構成された眼科装置1によれば、OCT画像の画質が低い場合にその向上を図ることが可能である。
 眼科装置1は、画像形成部220により形成されたOCT画像を表示部241(表示手段)に表示させる表示制御部2104を含んでいてよい。表示手段は、眼科装置1に含まれてもよいし、眼科装置1に接続された周辺機器であってもよい。
 このように構成された眼科装置1によれば、画像形成部220により形成されたOCT画像を、ユーザーに視覚的に提供することが可能である。
 眼科装置1は、アーチファクト除去部236を含んでいてよい。アーチファクト除去部236は、画像形成部220により形成されたOCT画像から、アーチファクト検出部232により検出された縦断アーチファクトを除去する。なお、アーチファクト除去部236は、縦断アーチファクト以外のアーチファクトをも除去可能であってよい。表示制御部2104は、アーチファクト除去部236により少なくとも縦断アーチファクトが除去されたOCT画像を表示部241に表示させることができる。なお、アーチファクト除去部236及び表示制御部2104は「表示制御部」に含まれる。
 このように構成された眼科装置1によれば、アライメントには有用であるが観察には邪魔となる縦断アーチファクトを、表示画像から除去することができる。
〈眼科装置の制御方法、プログラム、記録媒体〉
 上記の実施形態は、眼科装置の制御方法も提供する。この制御方法を適用可能な眼科装置は、被検眼の前眼部にOCTスキャンを適用するOCT光学系と、OCTスキャンにより得られたデータに基づき画像を形成する画像形成部と、OCT光学系を移動する移動機構とを含む。
 本実施形態の制御方法は、アーチファクト検出ステップと、移動制御ステップと、角膜画像検出ステップと、位置判定ステップと、画質評価ステップと、スキャン制御ステップとを含む。
 アーチファクト検出ステップは、画像形成部により形成された画像を解析して、Aスキャン方向に沿うアーチファクトを検出する。移動制御ステップは、検出されたアーチファクトに基づいて移動機構を制御する。角膜画像検出ステップは、画像形成部により形成された画像を解析して角膜画像を検出する。位置判定ステップは、検出されたアーチファクトと検出された角膜画像との共通領域が、画像フレーム中の所定範囲内に位置するか判定する。画質評価ステップは、画像形成部により形成された画像の画質評価値を算出する。スキャン制御ステップは、所定範囲内に共通領域が位置すると判定され、且つ、算出された画質評価値が所定閾値以上である場合に、所定パターンのOCTスキャンを前眼部に適用するようにOCT光学系を制御する。
 本実施形態の制御方法に、上記実施形態に係る眼科装置1が実行可能な処理のいずれかを組み合わせることが可能である。
 このような制御方法によれば、上記実施形態に係る眼科装置1と同様の効果が奏される。
 このような制御方法を眼科装置に実行させるプログラムを構成することが可能である。このプログラムは、例えば、上記実施形態に係る眼科装置1に関して説明されたプログラムのいずれかを含んでいてよい。
 また、このようなプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。
〈隅角OCTに適用可能な実施形態〉
 次に、被検眼の隅角を描出するためのOCTを実行可能な例示的実施形態を説明する。隅角は、角膜と虹彩とに挟まれた部位であり、これを介して房水が排出される。
 本実施形態に係る眼科装置のハードウェア構成は、角膜OCTに適用可能な眼科装置1のそれと同様であってよく、また、本実施形態に係る眼科装置のソフトウェア構成の一部は眼科装置1のそれと同様であってよい。以下、眼科装置1に関する図1、図2、及び図3Aを準用する。また、眼科装置1と同様の要素について、眼科装置1の説明にて使用した符号を用いることがある。言うまでもないが、隅角OCTに適用可能な実施形態において、ここに準用される構成とは異なる構成が適用されてもよい。
 隅角OCTに適用可能な眼科装置の例示的な構成を図8に示す。眼科装置1Aは、上記の眼科装置1と同様の眼底カメラユニット2、OCTユニット100、移動機構150、画像形成部220、及びユーザーインターフェイス240に加え、制御部210A及びデータ処理部230Aを含む。制御部210Aは、上記の眼科装置1の制御部210の代わりに設けられる。データ処理部230Aは、上記の眼科装置1のデータ処理部230の代わりに設けされる。
 眼底カメラユニット2、OCTユニット100、移動機構150、画像形成部220、及びユーザーインターフェイス240は、上記の眼科装置1のそれらと同様の構成及び機能を有する。以下、制御部210A及びデータ処理部230Aについて説明する。
〈制御部210A〉
 制御部210Aは、プロセッサを含み、眼科装置1Aの各部を制御する。制御部210Aは、例えば、上記の眼科装置1の制御部210と同様に主制御部と記憶部とを含む。
 制御部210Aの主制御部は、眼科装置1Aの各要素(図1~図3A、図8に示された要素を含む)を制御する。主制御部の機能は、典型的には、プロセッサを含むハードウェアと、制御プログラムを含むソフトウェアとの協働によって実現される。制御回路を含むハードウェアによって主制御部の機能の少なくとも一部を実現するようにしてもよい。
 制御部210Aの記憶部は各種のデータを記憶する。記憶部は、眼科装置1Aを動作させるための各種ソフトウェアや各種パラメータ値や各種テンプレートを記憶してもよい。記憶部は、典型的には、ハードディスクのような比較的大容量の記憶装置を含む。なお、通信回線上に配置された記憶装置や情報処理装置に各種データを記憶するようにしてもよく、この場合には記憶部は比較的大容量の記憶装置を含まなくてもよい。眼科装置1Aの周辺機器として設けられた比較的大容量の記憶装置を利用する場合も同様である。
〈データ処理部230A〉
 データ処理部230Aは、上記実施形態のデータ処理部230と同様に、各種のデータ処理を実行する。データ処理部230Aの機能は、典型的には、プロセッサを含むハードウェアと、データ処理プログラムを含むソフトウェアとの協働により実現される。データ処理回路を含むハードウェアによってデータ処理部230Aの機能の少なくとも一部を実現するようにしてもよい。
〈処理系の例示的な詳細構成〉
 制御部210A及びデータ処理部230Aの例示的な構成が図8に示されている。
〈制御部210Aの例〉
 図8に例示された制御部210Aは、移動制御部2101Aと、スキャン制御部2102Aと、偏光制御部2103Aと、表示制御部2104Aとを含む。
 移動制御部2101Aは、移動機構150の制御を行う。スキャン制御部2102Aは、光源ユニット101、光スキャナ44など、OCTスキャンを行うための要素の制御を行う。偏光制御部2103Aは、偏光デバイス118の制御を行う。また、偏光制御部2103Aは、偏光デバイス118の制御に加え、又は、それの代わりに、偏光デバイス103の制御を行うように構成されてもよい。表示制御部2104Aは、ユーザーインターフェイス240(表示部241)を制御する。
 移動制御部2101A、スキャン制御部2102A、偏光制御部2103A、及び表示制御部2104Aのそれぞれの機能は、典型的には、プロセッサを含むハードウェアと、制御プログラムを含むソフトウェアとの協働により実現される。移動制御部2101A、スキャン制御部2102A、偏光制御部2103A、及び表示制御部2104Aのいずれかの機能の少なくとも一部を、制御回路を含むハードウェアによって実現するようにしてもよい。
 移動制御部2101A、スキャン制御部2102A、偏光制御部2103A、及び表示制御部2104Aのそれぞれは、制御部210Aの主制御部に含まれる。移動制御部2101A、スキャン制御部2102A、偏光制御部2103A、及び表示制御部2104Aのいずれかは、記憶ハードウェア(制御部210Aの記憶部)を含んでいてもよい。移動制御部2101A、スキャン制御部2102A、偏光制御部2103A、及び表示制御部2104Aのそれぞれが実行する処理については後述する。
〈データ処理部230Aの例〉
 図8に例示されたデータ処理部230Aは、移動目標決定部231Aと、スキャンエリア設定部232Aと、画質評価部233Aと、隅角画像検出部234Aと、虹彩画像検出部235Aと、位置判定部236Aとを含む。
 移動目標決定部231A、スキャンエリア設定部232A、画質評価部233A、隅角画像検出部234A、虹彩画像検出部235A、及び位置判定部236Aのそれぞれの機能は、典型的には、プロセッサを含むハードウェアと、データ処理プログラムを含むソフトウェアとの協働により実現される。移動目標決定部231A、スキャンエリア設定部232A、画質評価部233A、隅角画像検出部234A、虹彩画像検出部235A、及び位置判定部236Aのいずれかの機能の少なくとも一部を、データ処理回路を含むハードウェアによって実現するようにしてもよい。移動目標決定部231A、スキャンエリア設定部232A、画質評価部233A、隅角画像検出部234A、虹彩画像検出部235A、及び位置判定部236Aのいずれかは、記憶ハードウェアを含んでいてもよい。
 以下、データ処理部230Aに含まれるそれぞれの要素について説明する。
〈移動目標決定部231A〉
 上記の眼科装置1と同様に、眼科装置1Aは、眼底カメラユニット2を用いて前眼部撮影を行うことが可能である。移動目標決定部231Aは、眼底カメラユニット2により取得された前眼部画像を解析して、OCT光学系の移動目標を決定する。移動制御部2101Aは、移動目標決定部231Aにより決定された移動目標に基づいて移動機構150を制御する。
 移動目標は、例えば、移動機構150により移動される眼底カメラユニット2の位置を表現する座標(x,y,z)、又は、移動機構150の制御パラメータであってよい。移動目標の種類はこれら例示に限定されず、例えば、移動機構等のハードウェアの構成や、移動制御のためのソフトウェアの構成などに応じて予め設定される。
 上記の眼科装置1と同様に、眼科装置1Aは、被検眼EにOCTを適用するためのOCT光学系を含み、OCT光学系を含む眼底カメラユニット2が移動機構150によって移動される。
 眼科装置1Aは、眼底カメラユニット2を用いて被検眼Eの前眼部の赤外動画撮影を実行する。この赤外動画撮影と並行して、移動目標決定部231Aは、眼底カメラユニット2により逐次に取得される複数の前眼部画像(動画像のフレーム群)を順次に解析することで、OCT光学系の移動目標の時系列データを取得することができる。前眼部の赤外動画撮影と並行して移動目標決定部231Aが取得した複数の移動目標は、逐次に、移動制御部2101Aに送られる。移動制御部2101Aは、移動目標決定部231Aから逐次に入力される移動目標に基づいて移動機構150の制御を行う。この制御はリアルタイム処理として実行される。これにより、時系列移動目標データが表す移動目標の時系列変化に合わせて眼底カメラユニット2を移動させることができる。その結果、被検眼Eの眼球運動などに応じて、OCT光学系の位置を自動で調整することが可能になる(トラッキング)。
 移動制御部2101Aが移動機構150の制御を実行した後の任意のタイミングで、スキャンエリア設定部232Aはスキャンエリアの設定を行うことができる。スキャンエリアの設定やその実行タイミングについては後述する。
 移動目標決定部231Aが移動目標を決定する処理の例を説明する。図9Aは、眼底カメラユニット2により取得された前眼部画像の例を示す。前眼部画像800には、被検眼Eの瞳孔に相当する瞳孔画像810(斜線で示す画像領域)と、虹彩に相当する虹彩画像820(横線で示す画像領域)とが描出されている。
 移動目標決定部231Aは、前眼部画像800を解析することで、瞳孔画像810及び虹彩画像820を特定する。この解析は、上記の移動目標決定部231による解析と同じ要領で実行される。
 図9Bの符号810aは瞳孔画像810の外縁を示し、符号820aは虹彩画像820の外縁を示す。ここで、瞳孔外縁810a及び虹彩外縁820aの少なくとも一方は、近似円又は近似楕円であってよい。
 移動目標決定部231Aは、瞳孔画像810及び虹彩画像820の少なくとも一方(例えば、瞳孔外縁810a及び虹彩外縁820aの少なくとも一方)に基づいて、前眼部の瞳孔中心810bを特定する。この処理は、上記の移動目標決定部231による処理と同じ要領で実行される。
 次に、移動目標決定部231Aは、瞳孔中心810bを通過し且つ所定方向に沿う直線を求める。例えば、図9Cに示すように、移動目標決定部231Aは、瞳孔中心810bを通過し、且つ、x方向に沿う直線830を求める。なお、直線の向きはx方向に限定されず、任意であってよい。この処理は、前眼部画像800が定義されているxy座標系における演算である。
 次に、移動目標決定部231Aは、直線830と虹彩外縁820aとの交点840を求める。移動目標として求める。この処理は、前眼部画像800が定義されているxy座標系における演算である。このような要領で求められた交点840が移動目標として設定される。なお、移動目標を決定する処理は本例に限定されない。
 移動制御部2101Aは、移動目標決定部231Aにより決定された移動目標(交点840)が画像フレームの中心に配置されるように、移動機構150を制御する。これにより、OCT光学系の光軸が移動目標(交点840)に実質的に一致される。
 図9Cに示す例では、直線850がx方向におけるフレーム中心に配置され、直線830がy方向におけるフレーム中心に配置されている。更に、これら直線830及び850の交点であるフレームの中心位置に、交点840が配置されている。
 より一般に、画像フレーム内の任意の位置に対応する位置にOCT光学系を配置させることが可能である。例えば、画像フレーム内のデフォルト位置に光軸が一致するようにOCT光学系を移動することができる。また、前眼部画像中の1次元領域又は2次元領域を参照して移動目標を設定することも可能である。例えば、角膜外縁画像、虹彩外縁画像などの1次元領域や、角膜画像、虹彩画像などの2次元領域を参照することができる。また、睫毛画像、瞼画像、病変部画像などを参照してもよい。
〈スキャンエリア設定部232A〉
 スキャンエリア設定部232Aは、被検眼Eの前眼部の虹彩外縁を通過する領域にスキャンエリアを設定する。スキャンエリアは、OCTスキャンが適用される前眼部の領域である。前述したように、本実施形態では、移動制御部2101Aが移動機構150の制御を実行した後の任意のタイミングで、スキャンエリア設定部232Aはスキャンエリアの設定を行う。
 上記の眼科装置1の場合と同様に、このOCTスキャンのパターンは任意に設定可能であり、例えば、ラインスキャン(Bスキャン)、クロススキャン、マルチクロススキャン、ラジアルスキャン、又は3次元スキャンが適用されてよい。
 スキャン制御部2102Aは、移動目標決定部231Aにより決定された移動目標を通過するようにスキャンエリアを設定することができる。例えば、図9Cに例示する交点840が移動目標として求められた場合、スキャンエリア設定部232Aは、この交点840を通過するようにスキャンエリアを設定することができる。
 例えば、ラインスキャンが適用される場合、スキャンエリア設定部232Aは、直線830に沿い且つスキャン中心が交点840に位置するスキャンライン(Bスキャン)を設定することが可能である(図9Dの符号860を参照)。
 このような処理により、虹彩外縁に略直交するBスキャンを少なくとも含むようにOCTスキャンを実行することができる。標準的な眼では、虹彩外縁の奥側(+z方向)の位置の近傍に隅角が位置しているよって、このような本例のようなOCTスキャンを行うことで、隅角を表現するOCT画像を取得することができる。
 本例では、前眼部の赤外観察画像から特徴点を検出して移動目標を設定しているが、他の手法を(付加的に)用いることも可能である。例えば、前眼部の特徴点の検出に、アライメント指標、ステレオアライメント、光テコなど、他の任意の手法を利用することが可能である。瞳孔中心を検出可能な手法が適用される場合、これにより検出された瞳孔中心を利用して移動目標及びスキャンエリアを設定することができる。
〈画質評価部233A〉
 画質評価部233Aは、画像形成部220により形成されたOCT画像の画質評価値を算出する。画質評価値の種類やその算出手法は、いずれも任意であってよく、例えば、上記の眼科装置1に適用可能な種類及び算出手法であってよい。
 一例として、画質評価部233Aは、画像形成部220により形成されたOCT画像における前眼部領域の信号と背景領域のノイズとの比を画質評価値として算出する。ここで、上記の眼科装置1の場合と同様に、前眼部の部位を表す画像領域を前眼部領域と呼び、背景を表す画像領域を背景領域と呼ぶ。また、前眼部領域及び背景領域に関する信号対ノイズ比(SN比)として表現される画質評価値の算出方法は任意であり、上記の眼科装置1の場合と同様であってよい。
 図10は、図9Dに示すスキャンライン860に沿うBスキャンにより実際に得られたOCT画像を示す。このBスキャン画像900において、画像フレームの右上方から左下方に延びる帯状の高輝度画像が角膜の断面に相当し(角膜領域910)、画像フレームの下端付近において横方向に延びる上面が凹凸状の高輝度画像が虹彩の断面に相当する(虹彩領域920)。角膜領域910及び虹彩領域920は、前眼部領域の例である。
 角膜領域910の左方(左上方)には背景領域930が存在し、角膜領域910の右方(右下方)且つ虹彩領域920の上方にも背景領域940が存在する。背景領域930は空気に相当する画像領域であり、背景領域940は前房(房水)に相当する画像領域である。
 角膜領域910と背景領域930との境界が角膜前面に相当し、角膜領域910と背景領域940との境界が角膜後面に相当し、虹彩領域920と背景領域940との境界が虹彩前面に相当する。
 画質評価部233Aは、Bスキャン画像900における角膜領域910の信号と、角膜領域910に隣接する背景領域930及び/又は940のノイズとの比を、画質評価値として算出することができる。ここで、角膜領域910の信号は、角膜領域910の少なくとも一部における信号であってよい。同様に、背景領域930のノイズは、背景領域930の少なくとも一部におけるノイズであってよく、また、背景領域940のノイズは、背景領域940の少なくとも一部におけるノイズであってよい。
 また、画質評価部233Aは、Bスキャン画像900における虹彩領域920の信号と、虹彩領域920に隣接する背景領域940のノイズとの比を、画質評価値として算出することができる。ここで、虹彩領域920の信号は、虹彩領域920の少なくとも一部における信号であってよい。同様に、背景領域940のノイズは、背景領域940の少なくとも一部におけるノイズであってよい。
 このような画質評価の例を、図11を参照しつつ説明する。Bスキャン画像1000には、角膜領域1010と、虹彩領域1020と、背景領域1030と、背景領域1040とが含まれている。図10に示すBスキャン画像900との比較において、角膜領域1010は角膜領域910に、虹彩領域1020は虹彩領域920に、背景領域1030は背景領域930に、背景領域1040は背景領域940に、それぞれ対応する。
 画質評価部233Aは、まず、画質評価の対象エリアを設定する。本例では、画質評価部233Aは、角膜領域1010の一部と背景領域1030の一部とを含む第1対象エリア1050を設定し、且つ、虹彩領域1020の一部と背景領域1040の一部とを含む第2対象エリア1060を設定することができる。
 本例では、対象エリアの形状は矩形であるが、形状は任意であってよい。また、対象エリアのサイズも任意であってよい。例えば、角膜領域1010の全体と背景領域1030の全体とを含むように対象エリアを設定することができる。また、対象エリアの形状及びサイズの少なくとも一方が予め設定されていてもよい(デフォルト形状、デフォルトサイズ)。
 本例では、単一の前眼部領域(角膜領域1010又は虹彩領域1020)の一部と単一の背景領域(背景領域1030又は1040)の一部とを含むように各対象エリアが設定されているが、2以上の前眼部領域(その一部)及び2以上の背景領域(その一部)の少なくとも一方を含むように対象エリアを設定することも可能である。例えば、角膜領域1010の少なくとも一部と、虹彩領域1020の少なくとも一部と、背景領域1040の少なくとも一部とを含むように、対象エリアを設定することができる。
 次に、画質評価部233Aは、対象エリア内における前眼部領域と背景領域とを特定する。本例では、画質評価部233Aは、対象エリア1050と角膜領域1010との共通領域を特定することによって、対象エリア1050内における角膜領域1010の一部を特定することができる。同様に、画質評価部233Aは、対象エリア1060と虹彩領域1020との共通領域を特定することによって、対象エリア1060内における虹彩領域1020の一部を特定することができる。
 前眼部領域の特定及び/又は背景領域の特定は、公知のセグメンテーションを利用して実行される。なお、OCT画像の全体にセグメンテーションを適用してもよいし、対象エリアにのみセグメンテーションを適用してもよい。また、角膜領域1010と虹彩領域1020との判別は、例えば、描出位置、形状、輝度など、任意のパラメータに基づき行われる。
 続いて、画質評価部233Aは、特定された前眼部領域における信号と、特定された背景領域におけるノイズとの比を算出する。本例では、画質評価部233Aは、対象エリア1050内における角膜領域1010の一部における信号と背景領域1030の一部におけるノイズとの比を算出することができる。同様に、画質評価部233Aは、対象エリア1060内における虹彩領域1020の一部における信号と背景領域1040の一部におけるノイズとの比を算出することができる。
 このようにして算出された信号対ノイズ比が画質評価値として用いられる。なお、本例のように2つ以上の対象エリアのそれぞれについて画質評価値が求められる場合、得られた2以上の画質評価値を統計的に処理することができる。2以上の画質評価値から得られる統計値の例として、平均値、最大値、最小値、中央値、最頻値、分散、標準偏差などがある。このような統計値を画質評価値として用いることが可能である。
 例えば、画質評価部233Aは、2以上の画質評価値のうちの最小値を求めることで、OCT画像に描出されている組織のうち最も低画質で描出されている組織を特定することができる。また、得られる最小値を最大化するように、偏光デバイス118の制御(後述)を実行することができる。
 上記の眼科装置1の場合と同様に、画質評価部233A(又は、データ処理部230Aの他の要素、若しくは、制御部210A)は、算出された画質評価値が所定閾値以上であるか判定することができる。
 上記の眼科装置1の場合と同様に、画質評価部233Aにより算出された画質評価値や、これに基づく評価結果(判定結果)を、処理や制御に利用することができる。典型的には、OCT画像の画質を向上させるための処理や制御に画質評価値又は評価結果を利用することが可能である。
 その具体例として、偏光制御部2103Aは、画質評価部233Aにより算出される画質評価値を大きくするように偏光デバイス118(及び/又は偏光デバイス103)を制御することができる。本例の制御は、例えば、OCT画像の取得と、画質評価値の算出と、画質の評価と、偏光デバイス118の制御とを含む一連の処理を、繰り返し行うことによって実現可能である。
〈隅角画像検出部234A〉
 隅角画像検出部234Aは、スキャンエリア設定部232Aにより設定されたスキャンエリアに対するOCTスキャンによって得られたデータに基づき画像形成部220により形成されたOCT画像を解析することで、隅角画像を検出する。この処理は、上記の眼科装置1による角膜画像の検出と同様に、輝度、位置、形状などの所定の特徴に基づいて実行することができ、また、セグメンテーション等の画像処理を含んでいてもよい。
 隅角画像は、OCT画像に描出されている隅角に相当する位置(単一の画素)でもよいし、隅角の近傍の角膜領域及び/又は虹彩領域を含んでもよい。
 隅角画像の検出を実行するタイミングは任意である。例えば、所定閾値以上の画質評価値が画質評価部233Aにより算出された後に、隅角画像検出部234Aが隅角画像の検出を実行するようにしてもよい。これにより、良好な画質のOCT画像から、高確度、高精度で隅角を検出することができる。
 隅角画像を検出する処理の例を説明する。隅角画像検出部234Aは、まず、OCT画像を解析して、角膜後面画像及び虹彩前面画像を検出する。角膜後面領域は角膜後面に相当する画像領域であり、虹彩前面画像は虹彩前面に相当する画像領域である。この処理は、例えば、セグメンテーションを含む。
 次に、隅角画像検出部234Aは、角膜後面画像と虹彩前面画像とが交差する位置を検出する。検出された交差位置が隅角に相当する。角膜後面画像と虹彩前面画像とが交差する位置は、点、線、及び面のいずれかであってよい。
 隅角画像を検出する処理の例を、図12を参照しつつ説明する。本例では、隅角画像検出部234Aは、まず、Bスキャン画像1100にセグメンテーションを適用して、角膜領域1110と虹彩領域1120とを検出する。更に、隅角画像検出部234Aは、角膜領域1110において角膜後面に相当する画像領域1110aを角膜後面画像として特定し、且つ、虹彩領域1120において虹彩前面に相当する画像領域1120aを虹彩前面領域として特定する。
 次に、隅角画像検出部234Aは、角膜後面画像1110aと虹彩前面画像1120aとが交差する位置を探索し、探索された位置を隅角とする。本例では、角膜後面画像1110aと虹彩前面画像1120aとの交点1130、又は、交点1130の近傍領域1140が、隅角画像として特定される。
〈虹彩画像検出部235A〉
 虹彩画像検出部235Aは、スキャンエリア設定部232Aにより設定されたスキャンエリアに対するOCTスキャンによって得られたデータに基づき画像形成部220により形成されたOCT画像を解析して、虹彩画像を検出する。この処理は、上記の眼科装置1による角膜画像の検出と同様に、輝度、位置、形状などの所定の特徴に基づいて実行することができ、また、セグメンテーション等の画像処理を含んでいてもよい。
〈位置判定部236A〉
 位置判定部236Aは、隅角画像検出部234Aにより検出された隅角画像が画像フレーム中の所定範囲(第1範囲)内に位置するか判定する。
 この判定処理の基準となる画像フレーム中の範囲(第1許容範囲)は予め設定されてもよいし、OCT画像ごとに設定されてもよい。後者の例として、OCT画像に描出されている部位(組織)の状態に基づき第1許容範囲を設定することが可能である。例えば、位置判定部236Aは、角膜の描出位置や描出サイズ、及び/又は、虹彩の描出位置や描出サイズに基づいて、第1許容範囲を設定することが可能である。
 本実施形態では、隅角画像の検出に加え、虹彩画像の検出も実行可能である。虹彩画像の検出が可能である場合、単一のOCT画像から、隅角画像及び虹彩画像の双方を検出することが可能である。隅角画像及び虹彩画像の双方が検出された場合、位置判定部236Aは、当該OCT画像のフレーム中の第1許容範囲内に隅角画像が位置するか判定を行い、且つ、当該OCT画像のフレーム中の第2許容範囲内に虹彩画像が位置するか判定を行うことができる。
 上記の眼科装置1について説明したように、所定パターンのOCTスキャンを繰り返し前眼部に適用して時系列OCT画像を取得する場合、隅角画像検出部234Aは、複数のOCT画像のそれぞれから隅角画像を検出することができる。位置判定部236Aは、隅角画像が検出されたOCT画像それぞれについて、当該隅角画像が当該OCT画像フレーム中の第1許容範囲内に位置するか判定することができる。
 また、所定パターンのOCTスキャンを繰り返し前眼部に適用して時系列OCT画像を取得する場合であって、隅角画像検出部234Aが複数のOCT画像のそれぞれから隅角画像を検出し、且つ、虹彩画像検出部235Aが複数のOCT画像のそれぞれから虹彩画像を検出した場合、位置判定部236Aは、隅角画像及び虹彩画像が検出されたOCT画像それぞれについて、当該隅角画像が当該OCT画像フレーム中の第1許容範囲内に位置するか判定し、且つ、当該虹彩画像が当該OCT画像フレーム中の第2許容範囲内に位置するか判定することができる。
 なお、複数のOCT画像に対して設定される複数の第1許容範囲の形態(位置、形状、サイズなど)は、同じであってもよいし、異なっていてもよい。第2許容範囲についても同様である。
 隅角画像が第1許容範囲内に位置しているか判定する処理は、例えば、隅角画像をなす1以上の画素の少なくとも一部が第1許容範囲に含まれるか判定するものであってもよいし、或いは、隅角画像をなす1以上の画素の全てが第1許容範囲に含まれるか判定するものであってもよい。
 同様に、虹彩画像が第2許容範囲内に位置しているか判定する処理は、例えば、虹彩画像をなす1以上の画素の少なくとも一部が第2許容範囲に含まれるか判定するものであってもよいし、或いは、虹彩画像をなす1以上の画素の全てが第2許容範囲に含まれるか判定するものであってもよい。
 図13に例示するBスキャン画像1200が位置判定に供される場合について説明する。Bスキャン画像1200には角膜領域(角膜画像)1210と虹彩領域(虹彩画像)1220とが含まれている。符号1230は、隅角画像検出部234AがBスキャン画像1200から検出した隅角画像を示す。
 Bスキャン画像1200には、第1許容範囲1200aと第2許容範囲1200bとが設定されている。本例では、第1許容範囲1200aは矩形状の領域として設定され、第2許容範囲はz方向における区間として設定されている。許容範囲の形態はこれらに限定されない。
 位置判定部236Aは、隅角画像1230が第1許容範囲1200a内に位置しているか判定し、且つ、虹彩画像1220が第2許容範囲1200b内に位置しているか判定する。このように2以上の位置判定が行われる場合、典型的には、位置判定部236Aは、全ての位置判定で良好な結果が得られた場合に、位置OKの判定結果を出力する。
 複数の位置判定を行う場合において、1以上の任意個数の位置判定で良好な結果が得られた場合に位置OKの判定結果を出力するように構成することや、いずれか1以上の位置判定による判定結果を優先するように構成することが可能である。
〈動作〉
 本実施形態に係る眼科装置1Aの動作について説明する。本実施形態に係る眼科装置1Aの動作の例を図14A及び図14Bに示す。
(S21:前眼部の赤外動画撮影を開始)
 まず、眼科装置1Aの眼底カメラユニット2が、被検眼Eの前眼部の赤外動画撮影を開始する。赤外動画撮影により取得されたフレーム(前眼部画像)は、制御部210を介してデータ処理部230に転送される。この転送はリアルタイム処理として実行される。
(S22:移動目標を決定)
 移動目標決定部231Aは、眼底カメラユニット2から転送された前眼部画像を解析して、OCT光学系の移動目標を決定する。この移動目標は、被検眼Eの隅角及びその周辺にOCTスキャンを適用するために好適な位置とされる。例えば、移動目標決定部231Aは、前眼部画像を解析して瞳孔中心及び虹彩外縁を検出し、瞳孔中心を通過し且つx方向に沿う直線を求め、この直線と虹彩外縁との交点を求め、この交点の位置を移動目標として設定することができる。この処理は、例えば、眼底カメラユニット2から転送された前眼部画像ごとに実行されるリアルタイム処理である。
(S23:OCT光学系を移動)
 移動制御部2101Aは、ステップS22で決定された移動目標に基づき移動機構150を制御することでOCT光学系を移動する。典型的には、移動制御部2101Aは、OCT光学系の光軸が上記の交点を通過するようにOCT光学系を移動する。この移動制御はリアルタイム処理として実行される。
(S24:OCTスキャンエリア等の条件を設定)
 本実施形態の眼科装置1Aは、次のステップS25で開始される反復的OCTスキャンに適用される条件を設定する。
 本ステップで設定されるOCTスキャン条件の1つにスキャンエリアがある。スキャンエリア設定部232Aは、被検眼Eの前眼部の虹彩外縁を通過する領域にスキャンエリアを設定する。例えば、スキャンエリア設定部232Aは、上記の交点を通過するようにスキャンエリアを設定することができ、更には、上記の直線に沿い且つスキャン中心が上記の交点に位置するスキャンライン(Bスキャン)を設定することができる。より一般に、
スキャンエリア設定部232Aは、ステップS22で決定された移動目標を通過するようにスキャンエリアを設定することができる。
 なお、スキャンエリアの設定には、OCTスキャンのパターンの設定と、OCTスキャンの適用箇所の設定とが含まれる。
(S25:反復的OCTスキャンを開始)
 スキャン制御部2102Aは、ステップS24で設定された条件の下での反復的OCTスキャンを開始する。
 反復的OCTスキャンは、典型的には、一定のパターンのOCTスキャンを繰り返し前眼部に適用するスキャンモードであり、それにより時系列OCT画像が取得される。典型的な反復的OCTスキャンは、OCT光学系の光軸位置をスキャン中心とするBスキャンを繰り返し行うスキャンモードである。このような反復的Bスキャンによれば、上記の交点又はその近傍(よって、隅角又はその近傍)を通過するBスキャンを高い繰り返し周波数で適用することが可能である。
 反復的OCTスキャンにより、それぞれのOCTスキャンで収集されたデータセットが得られる。画像形成部220は、反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいてOCT画像を形成する。反復的Bスキャンが適用される場合、Bスキャンの繰り返しに対応する複数のデータセットが逐次に得られる。画像形成部220は、複数のデータセットそれぞれに基づいてBスキャン画像を形成する。
(S26:画質評価値を算出)
 画質評価部233Aは、ステップS25で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像(又はそれらの一部)のそれぞれを解析して画質評価値を算出する。この処理はリアルタイム処理として実行される。
(S27:画質評価値が閾値以上?)
 画質評価部233Aは、ステップS26で算出された画質評価値が所定閾値以上であるか判定する。
 画質評価値が所定閾値以上であると判定された場合(S27:Yes)、処理はステップS29に移行する。
 画質評価値が所定閾値未満であると判定された場合(S27:No)、処理はステップS28に移行する。
(S28:偏光デバイスを制御)
 画質評価値が所定閾値未満であると判定された場合(S27:No)、偏光制御部2103Aは、次にステップS26で算出される画質評価値を大きくするように偏光デバイス118(及び/又は偏光デバイス103)を制御する。
 ステップS27で「Yes」と判定されるまで、ステップS26~S28が繰り返される。なお、ステップS26~S28が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
(S29:隅角画像・虹彩画像を検出)
 隅角画像検出部234Aは、ステップS25で開始された反復的OCTスキャンにより逐次に取得された複数のOCT画像(又はそれらの一部)のそれぞれを解析して隅角画像を検出する。更に、虹彩画像検出部235Aは、これらOCT画像(又はそれらの一部)のそれぞれを解析して虹彩画像を検出する。これら処理はリアルタイム処理として実行される。
(S30:隅角画像・虹彩画像の位置を判定)
 位置判定部236Aは、ステップS29で同じOCT画像から検出された隅角画像及び虹彩画像について、隅角画像が画像フレーム中の第1許容範囲に含まれるか判定し、且つ、虹彩画像が第2許容範囲に含まれるか判定する。
(S31:双方が許容範囲内?)
 ステップS30の位置判定の結果、隅角画像が第1許容範囲内に位置すると判定され、且つ、虹彩画像が第2許容範囲内に位置すると判定された場合(S31:Yes)、処理はステップS32に移行する。
 隅角画像が第1許容範囲内に位置しないと判定され、又は、虹彩画像が第2許容範囲内に位置しないと判定された場合(S31:No)、処理はステップS29に戻り、ステップS31で「Yes」と判定されるまでステップS29~S31が繰り返される。なお、ステップS29~S31が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
 他の例として、隅角画像が第1許容範囲内に位置しないと判定され、又は、虹彩画像が第2許容範囲内に位置しないと判定された場合(S31:No)、処理をステップS26に戻すようにしてもよい。この場合、ステップS27及びS31の双方で「Yes」と判定されるまでステップS26~S31が繰り返される。なお、ステップS26~S31の一部又は全部が所定回数又は所定時間繰り返された場合、エラー判定を行うようにしてよい。
 なお、処理がステップS32に移行するための条件は本例に限定されない。例えば、隅角画像が第1許容範囲内に位置すると判定され、又は、虹彩画像が第2許容範囲内に位置すると判定されることが、移行の条件であってよい。或いは、隅角画像が第1許容範囲内に位置すると判定されることが、移行の条件であってよい。この場合、虹彩画像を考慮する必要はない。
(S32:診断用OCTスキャンを実行)
 ステップS31で「Yes」とされた場合、ステップS32が開始される。この段階では、前眼部(隅角)に対するOCT光学系のアライメント状態も、得られるOCT画像の画質も良好である。
 このように良好な条件が確保されたタイミングで、スキャン制御部2102Aは前眼部にOCTスキャンを適用し、それにより収集されたデータから画像形成部220がOCT画像を形成する。また、データ処理部230AがこのOCT画像を処理したり解析したりすることも可能である。
 ステップS32で取得されるOCT画像は、典型的には診断に用いられ、そのスキャン条件は、一般に、ステップS25で開始された反復OCTスキャンの条件と異なる。典型的には、ステップS32で得られるOCT画像は、より高精細である。また、スキャンパターンやスキャンエリアのサイズなど、任意の条件が異なってもよい。
 以上で、図14A及び図14Bに例示した動作は終了となる(エンド)。
〈効果〉
 本実施形態に係る例示的な眼科装置1Aが奏する効果について説明する。
 本実施形態の眼科装置1Aは、OCT光学系と、画像形成部220と、スキャンエリア設定部232Aと、スキャン制御部2102Aと、画質評価部233Aと、隅角画像検出部234Aと、位置判定部236Aとを含む。
 OCT光学系は、被検眼Eの前眼部にOCTを適用するための光学系であり、本実施形態では、眼底カメラユニット2内において測定アームを形成する一連の要素を少なくとも含む。画像形成部220は、OCTスキャンにより得られたデータに基づきOCT画像を形成する。
 スキャンエリア設定部232Aは、前眼部の虹彩外縁を通過する領域にスキャンエリアを設定する。スキャン制御部2102A(第1スキャン制御部)は、スキャンエリア設定部232Aにより設定されたスキャンエリアに対してOCTスキャンを適用するようにOCT光学系を制御する。画像形成部220は、このOCTスキャンにより得られたデータに基づいてOCT画像を形成する。
 画質評価部233Aは、当該スキャンエリアに対するOCTスキャンにより得られたデータに基づくOCT画像の画質評価値を算出する。
 隅角画像検出部234Aは、当該スキャンエリアに対するOCTスキャンにより得られたデータに基づき画像形成部220により形成されたOCT画像を解析して隅角画像を検出する。なお、画質評価部233Aにより処理されたOCT画像と、隅角画像検出部234Aにより処理されたOCT画像とは、同じであってもよいし、異なってもよい。
 位置判定部236Aは、隅角画像検出部234Aにより検出された隅角画像が画像フレーム中の第1範囲内に位置するか判定する。
 画質評価部233Aにより算出された画質評価値が所定閾値以上であり、且つ、隅角画像が第1範囲内に位置すると位置判定部236Aにより判定された場合、スキャン制御部2102A(第2スキャン制御部)は、所定パターンのOCTスキャンを前眼部に適用するようにOCT光学系を制御する。
 なお、本実施形態において、所定パターンのOCTスキャンを前眼部に適用するための条件は、画質評価値が所定閾値以上であるという条件と、隅角画像が第1範囲内に位置するという条件とを少なくとも含み、他の1以上の条件を更に含んでいてもよい。虹彩画像の位置判定は、その一例である。
 このように構成された眼科装置1Aによれば、隅角に対するOCT光学系のアライメント、画像フレームにおける対象部位の描出位置の調整、画質の調整といった準備動作を、必要な条件が満足されているか否かを確認しつつ自動で行い、条件が整った好適なタイミングでOCTスキャン(イメージング、計測など)を行うことができる。
 このように、生体眼の隅角にOCTスキャンを適用するための準備動作が自動化されたことで、装置の扱いに不慣れな者であっても容易にOCT隅角検査を行うことができる。また、被検者単独でOCT隅角検査を行うことも可能になる。結果として、OCT隅角検査において被検者や検者に掛かる負担が軽減される。
 また、OCT技術を応用した眼科装置を眼疾患のスクリーニングに用いるために眼鏡店やドラッグストアや自宅に設置する場合において、準備動作が自動化された本実施形態の眼科装置は有利である。
 本実施形態の眼科装置1Aは、眼底カメラユニット2(前眼部撮影系)と、移動機構150と、移動目標決定部231Aと、移動制御部2101Aとを含む。眼底カメラユニット2は、前眼部撮影を行う。移動機構150は、OCT光学系(その一部又は全部)を移動する。移動目標決定部231Aは、眼底カメラユニット2により得られた前眼部画像を解析して、OCT光学系の移動目標を決定する。移動制御部2101Aは、移動目標決定部231Aにより決定された移動目標に基づいて移動機構150を制御する。移動制御部2101Aが移動機構150の制御を実行した後、スキャンエリア設定部232Aは、スキャンエリアの設定を実行する。
 このように構成された眼科装置1Aによれば、OCTスキャンエリアの設定前に、したがって、OCTスキャンの適用前に、前眼部画像による(ラフな)アライメントを行うことができる。これにより、OCTスキャンの開始後に行われるOCT画像に基づく処理の容易化を図ることができる。
 移動目標決定部231Aは、眼底カメラユニット2により取得された前眼部画像を解析して瞳孔中心及び虹彩外縁を検出し、検出された瞳孔中心及び虹彩外縁に基づき移動目標を設定するように構成されていてよい。
 更に、移動目標決定部231Aは、瞳孔中心を通過し且つ所定方向に沿う直線を求め、この直線と虹彩外縁との交点を移動目標として求めるように構成されていてよい。
 この場合、スキャンエリア設定部232Aは、求められた交点を通過するようにスキャンエリアを設定するように構成されていてよい。
 加えて、スキャンエリア設定部232Aは、上記の直線に沿い且つスキャン中心が上記の交点に位置するスキャンライン(Bスキャン)を設定するように構成されていてよい。
 より一般に、スキャンエリア設定部232Aは、移動目標決定部231Aにより決定された移動目標を通過するようにスキャンエリアを設定するように構成されていてよい。
 ここに例示したいくつかの構成によれば、移動目標の決定やスキャンエリアの設定のための好適且つ具体的な手法を提供することが可能である。例えば、OCT隅角検査のためのアライメントやOCTスキャン条件の設定を、好適に且つ自動的に行うことができる。
 OCT光学系は、移動機構150の制御の後にスキャンエリア設定部232Aにより設定されたスキャンエリアに対して反復的OCTスキャンを適用するように構成されてよい。この場合、画像形成部220は、この反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいてOCT画像を形成することができる。
 なお、反復的OCTスキャンは、反復的Bスキャンであってよい。また、OCT光学系は、少なくとも、所定閾値以上の画質評価値が画質評価部により得られるまで、反復的OCTスキャンを継続してもよい。
 このように構成された眼科装置1Aによれば、OCTスキャンの繰り返しに同期した複数のOCT画像(時系列OCT画像)が得られる。時系列OCT画像は、アライメント、描出位置判定、画質評価、動画表示など、様々な用途に適用可能である。
 本実施形態の眼科装置1Aは、虹彩画像検出部235Aを含む。虹彩画像検出部235Aは、スキャンエリア設定部232Aにより設定されたスキャンエリアに対するOCTスキャンによって得られたデータに基づくOCT画像を解析して、虹彩画像を検出する。
 位置判定部236Aは、隅角画像検出部234Aにより検出された隅角画像が画像フレーム中の第1範囲内に位置するか判定し、且つ、虹彩画像検出部235Aにより検出された虹彩画像が第2範囲に位置するか判定するように構成されていてよい。
 スキャン制御部2102A(第2スキャン制御部)は、画質評価部233Aにより算出された画質評価値が所定閾値以上であり、更に、隅角画像が第1範囲内に位置し且つ虹彩画像が第2範囲内に位置すると位置判定部236Aにより判定された場合に、所定パターンのOCTスキャンを前眼部に適用するようOCT光学系を制御するように構成されていてよい。
 このように構成された眼科装置1Aによれば、画質に関する条件と隅角画像の位置に関する条件に加え、虹彩画像の位置に関する条件も考慮することができるので、より好適なタイミングでOCTスキャンを行うことが可能となる。
 隅角画像検出部234Aは、スキャンエリア設定部232Aにより設定されたスキャンエリアに対するOCTスキャンによって得られたデータに基づくOCT画像を解析して、角膜後面画像及び虹彩前面画像を検出し、角膜後面画像と虹彩前面画像とが交差する位置を隅角として検出するように構成されていてよい。
 このような構成によれば、隅角画像の検出のための好適且つ具体的な手法を提供することが可能である。
 画質評価部233Aは、画像形成部220により形成されたOCT画像における前眼部領域の信号と背景領域のノイズとの比を画質評価値として算出するように構成されていてよい。典型的には、画質評価部233Aは、画像形成部220により形成されたOCT画像における角膜領域の信号と、この角膜領域に隣接する第1背景領域のノイズとの比を、画質評価値として算出するように構成されていてよい。
 更に、画質評価部233Aは、画像形成部220により形成されたOCT画像における虹彩領域の信号と、この虹彩領域に隣接する第2背景領域のノイズとの比を、画質評価値として算出するように構成されていてよい。
 このような構成によれば、隅角OCT検査におけるOCT画像の画質評価のための好適且つ具体的な手法を提供することが可能である。
 OCT光学系は、前眼部に測定光LSを導く測定アームと、測定光LSの前眼部からの戻り光に重ね合わされる参照光LRを導く参照アームとを含む。測定アーム及び参照アームの少なくとも一方に偏光デバイスが設けられていてよい。偏光デバイスは、導かれる光の偏光状態を変化させる。本実施形態の眼科装置1Aでは、参照アームに偏光デバイス118が設けられている。更に、本実施形態の眼科装置1Aは、偏光制御部2103Aを含む。偏光制御部2103Aは、画質評価部233Aにより算出される画質評価値(例えば、前眼部領域の信号と背景領域のノイズとの比)を大きくするように偏光デバイスを制御する。
 このように構成された眼科装置1Aによれば、OCT画像の画質が低い場合にその向上を図ることが可能である。
〈眼科装置の制御方法、プログラム、記録媒体〉
 本実施形態は、眼科装置の制御方法も提供する。この制御方法を適用可能な眼科装置は、被検眼の前眼部にOCTスキャンを適用するOCT光学系と、OCTスキャンにより得られたデータに基づき画像を形成する画像形成部とを含む。
 本実施形態の制御方法は、スキャンエリア設定ステップと、第1スキャン制御ステップと、画質評価ステップと、隅角画像検出ステップと、位置判定ステップと、第2スキャン制御ステップとを含む。
 スキャンエリア設定ステップは、被検眼の前眼部の虹彩外縁を通過する領域にスキャンエリアを設定する。第1スキャン制御ステップは、設定されたスキャンエリアに対してOCTスキャンを適用するようにOCT光学系を制御する。画質評価ステップは、設定されたスキャンエリアに対するOCTスキャンにより得られたデータに基づき画像形成部により形成されたOCT画像の画質評価値を算出する。隅角画像検出ステップは、設定されたスキャンエリアに対するOCTスキャンにより得られたデータに基づき画像形成部により形成されたOCT画像を解析して隅角画像を検出する。位置判定ステップは、検出された隅角画像が画像フレーム中の第1範囲内に位置するか判定する。第2スキャンステップは、画質評価値が所定閾値以上であり、且つ、隅角画像が第1範囲内に位置すると判定された場合に実行され、所定パターンのOCTスキャンを前眼部に適用するようにOCT光学系を制御する。
 このような制御方法に、本実施形態の眼科装置1Aが実行可能な処理のいずれかを組み合わせることが可能である。
 このような制御方法によれば、本実施形態の眼科装置1Aと同様の効果が奏される。
 このような制御方法を眼科装置に実行させるプログラムを構成することが可能である。このプログラムは、例えば、本実施形態の眼科装置1Aを動作させるためのプログラムのいずれかを含んでいてよい。
 また、このようなプログラムを記録したコンピュータ可読な非一時的記録媒体を作成することが可能である。この非一時的記録媒体は任意の形態であってよく、その例として、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどがある。
〈複数の準備動作モードを選択的に適用可能な実施形態〉
 以上、角膜OCTに適用可能な実施形態と、隅角OCTに適用可能な実施形態とを、それぞれ説明した。これらは、生体眼の前眼部にOCTを適用するための準備動作を自動化するための技術を提供する。
 一方、生体眼の眼底にOCTを適用するための準備動作を自動化するための技術も存在する。例えば、特開2014-039870号公報に開示された技術が知られている。
 特開2014-039870号公報に開示された眼科装置は、上記の眼科装置1と同様のOCT光学系及び画像形成手段(画像形成部)に加え、アライメント手段と、合焦手段と、像位置判定手段と、判定手段と、制御手段とを含む。
 アライメント手段は、被検眼の眼底に対するOCT光学系の位置合わせを行うための要素であり、例えば、上記の眼科装置1のアライメント光学系50を含む。合焦手段は、被検眼の眼底に対するOCT光学系の合焦を行うための要素であり、例えば、上記の眼科装置1のOCT合焦レンズ43及びOCT合焦駆動部43Aを含む。
 像位置判定手段は、OCT光学系により取得されたデータに基づいて、画像フレーム内における眼底の像の位置を判定するための要素であり、例えば、上記の眼科装置1のデータ処理部230がこの判定を実行する。
 判定手段は、OCT光学系の位置の適否及び合焦状態の適否を判定する。更に、判定手段は、画像フレーム内における眼底の像の位置の適否を判定する。加えて、OCT光学系の位置の適否の判定、合焦状態の適否の判定、及び眼底の像の位置の適否の判定の全てが終了した後に、判定手段は、これら全ての適否の判定を再度行う。この一連の判定は、例えば、上記の眼科装置1の制御部210及びデータ処理部230により実行される。
 この再度の適否判定において、OCT光学系の位置、合焦状態、及び眼底の像の位置の全てが適正であると判定された場合、制御手段は、OCT光学系及び画像形成手段を制御して眼底OCTスキャンを実行させる。この制御は、例えば、上記の眼科装置1の制御部210により実行される。
 このような複数の準備動作モードを選択的に適用可能な実施形態を以下に説明する。眼科装置は、例えば、複数の準備動作モードのそれぞれに対応するプログラムを予め記憶している。或いは、眼科装置は、複数の準備動作モードに対応する複数のプログラムが記憶されている記憶装置にアクセス可能である。
 眼科装置(選択手段)は、まず、準備動作モードの選択を行う。準備動作モードの選択は、手動又は自動で行われる。
 手動選択の場合、例えば、眼科装置(表示制御手段)は、準備動作モード(又は、これと同等のモード)を選択するためのGUIを表示デバイスに表示させる。ユーザーは、操作デバイスを操作することで所望の準備動作モードを選択する。
 自動選択の場合、例えば、眼科装置(データ取得手段)は、電子カルテデータから疾患名や検査オーダーを取得する。更に、眼科装置(選択手段)は、取得されたデータに対応する準備動作モードを選択する。ここで、複数の準備動作モードのそれぞれに各種情報が対応付けられた対応情報(テーブルなど)を準備し、この対応情報を参照することで自動選択を実現することができる。
 眼科装置(制御手段、データ処理手段)は、選択された準備動作モードに対応するプログラムにしたがって一連の準備動作を実行する。
 このような眼科装置によれば、被検眼に対する検査の種類に応じて適当な準備動作を選択的に実行することが可能である。これにより、操作性の向上や、検査の短時間化を図ることができる。
 また、眼科装置の扱いに不慣れな者であっても容易にOCT検査を行うことができる。また、被検者単独でOCT検査を行うことも可能になる。結果として、OCT検査において被検者や検者に掛かる負担が軽減される。
 また、OCT技術を応用した眼科装置を眼疾患のスクリーニングに用いるために眼鏡店やドラッグストアや自宅に設置する場合において、本実施形態の眼科装置は有利である。
 以上に説明した態様は、この発明の実施の例示に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を施すことが可能である。
1 眼科装置
150 移動機構
210 制御部
2101 移動制御部
2102 スキャン制御部
2103 偏光制御部
2104 表示制御部
220 画像形成部
230 データ処理部
231 移動目標決定部
232 アーチファクト検出部
233 角膜画像検出部
234 位置判定部
235 画質評価部
236 アーチファクト除去部
241 表示部
1A 眼科装置
210A 制御部
2101A 移動制御部
2102A スキャン制御部
2103A 偏光制御部
2104A 表示制御部
230A データ処理部
231A 移動目標決定部
232A スキャンエリア設定部
233A 画質評価部
234A 隅角画像検出部
235A 虹彩画像検出部
236A 位置判定部

 

Claims (19)

  1.  被検眼の前眼部に光コヒーレンストモグラフィ(OCT)スキャンを適用するOCT光学系と、
     前記OCTスキャンにより得られたデータに基づき画像を形成する画像形成部と、
     前記前眼部の虹彩外縁を通過する領域にスキャンエリアを設定するスキャンエリア設定部と、
     前記スキャンエリア設定部により設定された前記スキャンエリアに対してOCTスキャンを適用するように前記OCT光学系を制御する第1スキャン制御部と、
     前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像の画質評価値を算出する画質評価部と、
     前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して隅角画像を検出する隅角画像検出部と、
     前記隅角画像検出部により検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定する位置判定部と、
     前記画質評価部により算出された画質評価値が所定閾値以上であり、且つ、前記隅角画像が前記第1範囲内に位置すると前記位置判定部により判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御する第2スキャン制御部と
     を含む眼科装置。
  2.  前記前眼部を撮影する前眼部撮影系と、
     前記OCT光学系を移動する移動機構と、
     前記前眼部撮影系により得られた前眼部画像を解析して、前記OCT光学系の移動目標を決定する移動目標決定部と、
     前記移動目標決定部により決定された前記移動目標に基づいて前記移動機構を制御する移動制御部と
     を更に含み、
     前記移動制御部が前記移動機構の制御を実行した後、前記スキャンエリア設定部は、スキャンエリアの設定を実行する
     ことを特徴とする請求項1に記載の眼科装置。
  3.  前記移動目標決定部は、前記前眼部画像を解析して瞳孔中心及び虹彩外縁を検出し、前記瞳孔中心及び前記虹彩外縁に基づき移動目標を設定する
     ことを特徴とする請求項2に記載の眼科装置。
  4.  前記移動目標決定部は、前記瞳孔中心を通過し且つ所定方向に沿う直線を求め、前記直線と前記虹彩外縁との交点を移動目標として求める
     ことを特徴とする請求項3に記載の眼科装置。
  5.  前記スキャンエリア設定部は、前記交点を通過するようにスキャンエリアを設定する
     ことを特徴とする請求項4に記載の眼科装置。
  6.  前記スキャンエリア設定部は、前記直線に沿い且つスキャン中心が前記交点に位置するスキャンラインを設定する
     ことを特徴とする請求項5に記載の眼科装置。
  7.  前記スキャンエリア設定部は、前記移動目標決定部により決定された前記移動目標を通過するようにスキャンエリアを設定する
     ことを特徴とする請求項2~6のいずれかに記載の眼科装置。
  8.  前記OCT光学系は、前記移動機構の制御の後に設定されたスキャンエリアに対して反復的OCTスキャンを適用し、
     前記画像形成部は、前記反復的OCTスキャンにより逐次に得られる複数のデータセットのそれぞれに基づいて画像を形成する
     ことを特徴とする請求項2~7のいずれかに記載の眼科装置。
  9.  前記反復的OCTスキャンは、反復的Bスキャンである
     ことを特徴とする請求項8に記載の眼科装置。
  10.  前記所定閾値以上の画質評価値が前記画質評価部により算出された後、前記隅角画像検出部は隅角画像の検出を実行する
     ことを特徴とする請求項8又は9に記載の眼科装置。
  11.  前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して虹彩画像を検出する虹彩画像検出部を更に含み、
     前記位置判定部は、前記隅角画像検出部により検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定し、且つ、前記虹彩画像検出部により検出された前記虹彩画像が第2範囲に位置するか判定し、
     前記第2スキャン制御部は、前記画質評価部により算出された画質評価値が所定閾値以上であり、更に、前記隅角画像が前記第1範囲内に位置し且つ前記虹彩画像が前記第2範囲内に位置すると前記位置判定部により判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御する
     ことを特徴とする請求項1~10のいずれかに記載の眼科装置。
  12.  前記隅角画像検出部は、前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して角膜後面画像及び虹彩前面画像を検出し、前記角膜後面画像と前記虹彩前面画像とが交差する位置を隅角として検出する
     ことを特徴とする請求項1~11のいずれかに記載の眼科装置。
  13.  前記画質評価部は、前記画像形成部により形成された画像における前眼部領域の信号と背景領域のノイズとの比を画質評価値として算出する
     ことを特徴とする請求項1~12のいずれかに記載の眼科装置。
  14.  前記画質評価部は、前記画像形成部により形成された画像における角膜領域の信号と前記角膜領域に隣接する第1背景領域のノイズとの比を画質評価値として算出する
     ことを特徴とする請求項13に記載の眼科装置。
  15.  前記画質評価部は、前記画像形成部により形成された画像における虹彩領域の信号と前記虹彩領域に隣接する第2背景領域のノイズとの比を画質評価値として算出する
     ことを特徴とする請求項13又は14に記載の眼科装置。
  16.  前記OCT光学系は、前記前眼部に測定光を導く測定アームと、前記測定光の前記前眼部からの戻り光に重ね合わされる参照光を導く参照アームとを含み、
     前記測定アーム及び前記参照アームの少なくとも一方は、導かれる光の偏光状態を変化させるための偏光デバイスを含み、
     前記画質評価部により算出される前記比の値を大きくするように前記偏光デバイスを制御する偏光制御部を更に含む
     ことを特徴とする請求項13~15のいずれかに記載の眼科装置。
  17.  被検眼の前眼部に光コヒーレンストモグラフィ(OCT)スキャンを適用するOCT光学系と、前記OCTスキャンにより得られたデータに基づき画像を形成する画像形成部とを含む眼科装置の制御方法であって、
     前記前眼部の虹彩外縁を通過する領域にスキャンエリアを設定するスキャンエリア設定ステップと、
     設定された前記スキャンエリアに対してOCTスキャンを適用するように前記OCT光学系を制御する第1スキャン制御ステップと、
     前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像の画質評価値を算出する画質評価ステップと、
     前記スキャンエリアに対するOCTスキャンにより得られたデータに基づき前記画像形成部により形成された画像を解析して隅角画像を検出する隅角画像検出ステップと、
     検出された前記隅角画像が画像フレーム中の第1範囲内に位置するか判定する位置判定ステップと、
     前記画質評価値が所定閾値以上であり、且つ、前記隅角画像が前記第1範囲内に位置すると判定された場合に、所定パターンのOCTスキャンを前記前眼部に適用するように前記OCT光学系を制御する第2スキャン制御ステップと
     を含む、眼科装置の制御方法。
  18.  請求項17に記載の眼科装置の制御方法をコンピュータに実行させるプログラム。
  19.  請求項18に記載のプログラムが記録されたコンピュータ可読な非一時的記録媒体。

     
PCT/JP2019/016104 2018-06-13 2019-04-15 眼科装置、その制御方法、プログラム、及び記録媒体 WO2019239708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,239 US11826102B2 (en) 2018-06-13 2019-04-15 Ophthalmic device, control method therefor, and recording medium
EP19818784.1A EP3811850A4 (en) 2018-06-13 2019-04-15 OPHTHALMIC DEVICE, CONTROL METHOD FOR THIS DEVICE, PROGRAM AND RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-113019 2018-06-13
JP2018113019A JP7050588B2 (ja) 2018-06-13 2018-06-13 眼科装置、その制御方法、プログラム、及び記録媒体

Publications (1)

Publication Number Publication Date
WO2019239708A1 true WO2019239708A1 (ja) 2019-12-19

Family

ID=68843154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016104 WO2019239708A1 (ja) 2018-06-13 2019-04-15 眼科装置、その制御方法、プログラム、及び記録媒体

Country Status (4)

Country Link
US (1) US11826102B2 (ja)
EP (1) EP3811850A4 (ja)
JP (1) JP7050588B2 (ja)
WO (1) WO2019239708A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166684A1 (ja) * 2019-02-15 2020-08-20 興和株式会社 眼科装置の点検方法、眼科装置の点検用治具、及び眼科装置
JP2021118770A (ja) * 2020-01-30 2021-08-12 株式会社トプコン 眼科装置、その制御方法、プログラム、及び記録媒体
JP2021137322A (ja) * 2020-03-05 2021-09-16 株式会社トプコン 眼科装置、その制御方法、プログラム、及び記録媒体
KR102476472B1 (ko) * 2021-06-25 2022-12-12 경상국립대학교산학협력단 전방 안구 이미지의 세포 수 정량화 장치 및 방법
CN114066889B (zh) * 2022-01-12 2022-04-29 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248376A (ja) 2012-05-01 2013-12-12 Topcon Corp 眼科装置
JP2014039870A (ja) 2013-10-28 2014-03-06 Topcon Corp 光画像計測装置及び撮影装置
JP2015066083A (ja) * 2013-09-27 2015-04-13 株式会社トーメーコーポレーション 前眼部3次元画像処理装置、プログラムおよび前眼部3次元画像処理方法
US20150150447A1 (en) * 2012-06-15 2015-06-04 Oregon Health & Science University Non-invasive 3d imaging and measuring of anterior chamber angle of the eye
JP2015160103A (ja) 2014-02-28 2015-09-07 株式会社トプコン 眼科撮影装置およびこれに装着可能な光学ユニット
JP2016047094A (ja) 2014-08-27 2016-04-07 株式会社トプコン 眼科装置
JP2016059726A (ja) * 2014-09-20 2016-04-25 株式会社ニデック 眼科装置
JP2018023675A (ja) 2016-08-12 2018-02-15 キヤノン株式会社 光断層撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452077B2 (en) * 2006-08-29 2008-11-18 Carl Zeiss Meditec, Inc. Image adjustment derived from optical imaging measurement data
US9265411B2 (en) 2013-09-27 2016-02-23 Tomey Corporation Anterior segment three-dimensional image processing apparatus, and anterior segment three-dimensional image processing method
JP6746884B2 (ja) 2015-09-02 2020-08-26 株式会社ニデック 眼科撮影装置及び眼科撮影プログラム
US11452442B2 (en) 2016-06-15 2022-09-27 Oregon Health & Science University Systems and methods for automated widefield optical coherence tomography angiography

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248376A (ja) 2012-05-01 2013-12-12 Topcon Corp 眼科装置
US20150150447A1 (en) * 2012-06-15 2015-06-04 Oregon Health & Science University Non-invasive 3d imaging and measuring of anterior chamber angle of the eye
JP2015066083A (ja) * 2013-09-27 2015-04-13 株式会社トーメーコーポレーション 前眼部3次元画像処理装置、プログラムおよび前眼部3次元画像処理方法
JP2014039870A (ja) 2013-10-28 2014-03-06 Topcon Corp 光画像計測装置及び撮影装置
JP2015160103A (ja) 2014-02-28 2015-09-07 株式会社トプコン 眼科撮影装置およびこれに装着可能な光学ユニット
JP2016047094A (ja) 2014-08-27 2016-04-07 株式会社トプコン 眼科装置
JP2016059726A (ja) * 2014-09-20 2016-04-25 株式会社ニデック 眼科装置
JP2018023675A (ja) 2016-08-12 2018-02-15 キヤノン株式会社 光断層撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3811850A4

Also Published As

Publication number Publication date
EP3811850A1 (en) 2021-04-28
JP7050588B2 (ja) 2022-04-08
US20210161376A1 (en) 2021-06-03
EP3811850A4 (en) 2022-03-09
US11826102B2 (en) 2023-11-28
JP2019213740A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6522827B2 (ja) 眼科装置
JP7050588B2 (ja) 眼科装置、その制御方法、プログラム、及び記録媒体
JP6580448B2 (ja) 眼科撮影装置及び眼科情報処理装置
JP2020044027A (ja) 眼科装置、その制御方法、プログラム、及び記録媒体
JP7384987B2 (ja) 眼科装置
JP2023076659A (ja) 眼科装置
JP6220022B2 (ja) 眼科装置
GB2574496A (en) Ophthalmologic apparatus and method of controlling the same
JP2022075772A (ja) 眼科装置
JP7181135B2 (ja) 眼科装置
JP7080075B2 (ja) 眼科装置、及びその制御方法
JP2019171221A (ja) 眼科撮影装置及び眼科情報処理装置
JP2022173339A (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP7281906B2 (ja) 眼科装置、その制御方法、プログラム、及び記録媒体
WO2020054280A1 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP7288110B2 (ja) 眼科装置
JP6942627B2 (ja) 眼科撮影装置、その制御方法、プログラム、及び記録媒体
JP2019130046A (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019818784

Country of ref document: EP

Effective date: 20210113