WO2019239584A1 - レーダ装置および目標距離算出方法 - Google Patents

レーダ装置および目標距離算出方法 Download PDF

Info

Publication number
WO2019239584A1
WO2019239584A1 PCT/JP2018/022934 JP2018022934W WO2019239584A1 WO 2019239584 A1 WO2019239584 A1 WO 2019239584A1 JP 2018022934 W JP2018022934 W JP 2018022934W WO 2019239584 A1 WO2019239584 A1 WO 2019239584A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
gate
frequency domain
reception
Prior art date
Application number
PCT/JP2018/022934
Other languages
English (en)
French (fr)
Inventor
聡 影目
康秀 野中
照幸 原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB2019410.6A priority Critical patent/GB2588331B/en
Priority to PCT/JP2018/022934 priority patent/WO2019239584A1/ja
Priority to JP2020525061A priority patent/JP6779415B2/ja
Publication of WO2019239584A1 publication Critical patent/WO2019239584A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used

Definitions

  • the present invention relates to a radar apparatus that calculates a target distance.
  • a transmission high-frequency signal (hereinafter referred to as a transmission RF signal) is radiated into the air, and a reflected high-frequency signal (hereinafter referred to as reflection) of the transmission RF signal reflected by the target. (Referred to as RF signal).
  • a conventional radar apparatus generates a sum signal and a difference signal by setting reception gates having different gate widths with respect to the reception signal, and a ratio between the sum signal and the difference signal and a distance to a target (hereinafter referred to as a target distance). The target distance is measured using a discrete pattern indicating the relationship with
  • the present invention solves the above-described problem, and an object of the present invention is to obtain a radar apparatus that can accurately measure a target distance even when a plurality of targets are present in a reception gate.
  • the radar apparatus includes a transmission unit, a reception unit, a gate processing unit, a frequency domain conversion unit, and a target distance calculation unit.
  • the transmission unit radiates a transmission signal to space.
  • the reception unit receives a reception signal that is a signal that is transmitted and reflected by a target in space.
  • the gate processing unit performs gate processing in which a plurality of reception gates are set on the reception signal, and generates a signal after gate processing.
  • the frequency domain transform unit performs frequency domain transform on the gate-processed signal to generate a frequency domain signal.
  • the target distance calculation unit calculates the target distance based on at least one of a real part and an imaginary part of the frequency domain signals of the plurality of reception gates generated by the frequency domain conversion unit.
  • a gate process in which a plurality of reception gates are set is performed on a reception signal, a frequency domain conversion process is performed on the signal after the gate process, and a real part of a frequency domain signal of the plurality of reception gates And a target distance is calculated based on at least one of the imaginary part.
  • FIG. 3 is a block diagram illustrating a configuration of a transmission unit according to Embodiment 1.
  • FIG. 3 is a block diagram showing a configuration of a receiving unit in Embodiment 1.
  • FIG. 4A is a block diagram showing a hardware configuration for realizing the function of the radar apparatus according to Embodiment 1.
  • FIG. 4B is a block diagram illustrating a hardware configuration for executing software that implements the functions of the radar apparatus according to Embodiment 1.
  • 3 is a flowchart showing an operation of the radar apparatus according to the first embodiment.
  • 3 is a flowchart illustrating an operation of a transmission unit in the first embodiment.
  • FIG. 3 is a flowchart illustrating an operation of a reception unit in the first embodiment.
  • FIG. 8A is a diagram illustrating a waveform of a transmission RF signal.
  • FIG. 8B is a diagram illustrating a waveform of a reception RF signal.
  • FIG. 8C is a diagram illustrating a waveform of a received video signal.
  • 3 is a flowchart showing operations of a gate processing unit and a frequency domain conversion unit in the first embodiment.
  • FIG. 10A is a diagram illustrating a waveform of a received video signal.
  • FIG. 10B is a diagram illustrating a waveform of a signal after gate processing of gate number 10.
  • FIG. 10C is a diagram illustrating a waveform of a signal after gate processing of gate number 11.
  • FIG. 10A is a diagram illustrating a waveform of a transmission RF signal.
  • FIG. 8B is a diagram illustrating a waveform of a reception RF signal.
  • FIG. 8C
  • FIG. 10D is a diagram illustrating a waveform of a signal after gate processing of gate number 12.
  • FIG. 11A is a diagram illustrating observed values of signals in a plurality of target frequency domains in the reception gate.
  • FIG. 11B is a diagram illustrating a frequency-domain signal for each target in the reception gate. It is a figure which shows the amplitude of the received signal reflected by the some target in a receiving gate.
  • FIG. 13A is a diagram showing a reception signal ratio of reflected signals reflected by a target in the reception gate.
  • FIG. 13B is a diagram illustrating a waveform of a received video signal.
  • FIG. 13C is a diagram illustrating a waveform of a signal after gate processing of gate number 10.
  • FIG. 13D is a diagram illustrating a waveform of a signal after gate processing of gate number 11.
  • FIG. 13E is a diagram illustrating a waveform of a signal after gate processing of gate number 12.
  • FIG. 14A is a diagram showing a phase relationship of sampling numbers in the frequency domain where the signal in the frequency domain of target 1 has a maximum amplitude value.
  • FIG. 14B is a diagram showing a phase relationship of sampling numbers in the frequency domain in which the signal in the frequency domain of target 2 has a maximum amplitude value.
  • FIG. 15A is a diagram showing, for each target, the reception signal ratio of the reflected signal reflected by the target in the reception gate and the real part of the reflected signal reflected by the target.
  • 15B is a diagram showing, for each target, the reception signal ratio of the reflected signal reflected by the target in the reception gate and the imaginary part of the reflected signal reflected by the target.
  • 3 is a flowchart illustrating an operation example of a target distance calculation unit in the first embodiment.
  • 10 is a flowchart illustrating another example of the operation of the target distance calculation unit according to the first embodiment. It is a figure which shows the relationship between the combination of the sampling number of the target 1, the sampling number of the target 2, and the evaluation value of a target distance candidate. It is a block diagram which shows the structure of the signal processing part of the radar apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a flowchart illustrating an operation example of a target distance calculation unit in the second embodiment.
  • FIG. 1 is a block diagram showing a configuration of a radar apparatus 1 according to Embodiment 1 of the present invention.
  • the radar apparatus 1 radiates a transmission RF signal to space, receives a reception RF signal that is a reflected RF signal reflected by the target, and calculates a distance to the target (target distance) based on the reception RF signal. It is a device to calculate.
  • the radar apparatus 1 includes an antenna 2, a transmission unit 3, a transmission / reception switching unit 4, a reception unit 5, a signal processing unit 6, and a display 7.
  • the signal processing unit 6 includes a gate processing unit 60, a frequency domain conversion unit 61, and a target distance calculation unit 62.
  • the transmission unit 3 radiates a transmission RF signal to space via the antenna 2.
  • the transmission / reception switching unit 4 switches the output of the transmission RF signal from the transmission unit 3 to the antenna 2 and the output of the reception RF signal from the antenna 2 to the reception unit 5 at the timing set by the transmission unit 3.
  • the receiving unit 5 receives the received RF signal via the antenna 2.
  • the signal processing unit 6 is a component that calculates the target distance based on the received RF signal, and causes the display 7 to display the calculated target distance.
  • the gate processing unit 60 receives the received RF signal from the receiving unit 5, performs gate processing in which a plurality of reception gates are set on the received RF signal, and generates a signal after gate processing.
  • the frequency domain transform unit 61 performs a frequency domain transform process on the signal after the gate processing by the gate processing unit 60 to generate a frequency domain signal.
  • the target distance calculation unit 62 calculates the target distance based on at least one of the real part and the imaginary part of the frequency domain signals of the plurality of reception gates generated by the frequency domain conversion unit 61.
  • FIG. 2 is a block diagram showing a configuration of the transmission unit 3.
  • the transmission unit 3 includes a transmitter 30, a pulse modulator 31, and a local oscillator 32.
  • the transmitter 30 outputs the transmission signal pulsed by the pulse modulator 31 to the antenna 2 through the transmission / reception switching unit 4.
  • the pulse modulator 31 performs pulse modulation on the local oscillation signal input from the local oscillator 32 to generate a transmission RF signal.
  • the local oscillator 32 generates a local oscillation signal and outputs it to the receiving unit 5 and the pulse modulator 31.
  • FIG. 3 is a block diagram showing a configuration of the receiving unit 5.
  • the receiving unit 5 includes a receiver 50 and an A / D converter 51.
  • the receiver 50 inputs the received RF signal received by the antenna 2 through the transmission / reception switching unit 4 and outputs it to the A / D converter 51.
  • the A / D converter 51 converts the received RF signal input from the receiver 50 into a digital signal and outputs the digital signal to the gate processing unit 60 included in the signal processing unit 6.
  • the radar apparatus 1 includes a processing circuit for executing processes from step ST1 to step ST5 described later with reference to FIG.
  • This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • CPU Central Processing Unit
  • FIG. 4A is a block diagram showing a hardware configuration for realizing the functions of the radar apparatus 1.
  • FIG. 4B is a block diagram illustrating a hardware configuration that executes software that implements the functions of the radar apparatus 1.
  • the antenna 100 is the antenna 2 shown in FIG. 1
  • the display device 101 is the display device 7 shown in FIG.
  • the input / output interface 102 is an interface that relays the output of the transmission RF signal from the transmission unit 3 shown in FIG. 1 to the antenna 100 and the output of the reception RF signal from the antenna 100 to the reception unit 5 shown in FIG. is there. That is, the input / output interface 102 has the function of the transmission / reception switching unit 4 shown in FIG. Further, the input / output interface 102 also functions as an interface that relays an output signal to the display device 101.
  • the external storage device 103 is a storage device that stores various setting data and signal data used for signal processing performed by the signal processing unit 6 shown in FIG.
  • the external storage device 103 may be a volatile memory such as a synchronous dynamic random access memory (SDRAM), a hard disk drive device (HDD), or a solid state drive device (SSD).
  • SDRAM synchronous dynamic random access memory
  • HDD hard disk drive device
  • SSD solid state drive device
  • a program including an operating system (OS) may be stored in the external storage device 103.
  • the memory 107 shown in FIG. 4B may be constructed in the external storage device 103.
  • the external storage device 103 may be a storage device that is provided independently of the radar device 1 and is communicably connected to the radar device 1, for example, a storage device provided on a cloud.
  • the signal path 105 is a bus through which signal data is transmitted.
  • the input / output interface 102, the external storage device 103, and the processing circuit 104 are connected to each other by the signal path 105.
  • the input / output interface 102, the external storage device 103, the processor 106, and the memory 107 are connected to each other by a signal path 105.
  • the processing circuit 104 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the functions of the transmitter 3, the receiver 5, the gate processor 60, the frequency domain converter 61, and the target distance calculator 62 in the radar apparatus 1 may be realized by separate processing circuits. It may be realized by one processing circuit.
  • the processing circuit is the processor 106 shown in FIG. 4B
  • the functions of the transmission unit 3, the reception unit 5, the gate processing unit 60, the frequency domain conversion unit 61, and the target distance calculation unit 62 in the radar apparatus 1 are software and firmware. Alternatively, it is realized by a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 107.
  • the processor 106 reads out and executes the program stored in the memory 107, thereby functioning the transmitter 3, the receiver 5, the gate processor 60, the frequency domain converter 61, and the target distance calculator 62 in the radar device 1.
  • the radar apparatus 1 includes a memory 107 for storing a program that, when executed by the processor 106, results in the processing from step ST1 to step ST5 shown in FIG. These programs cause the computer to execute the procedure or method of the transmission unit 3, the reception unit 5, the gate processing unit 60, the frequency domain conversion unit 61, and the target distance calculation unit 62.
  • the memory 107 may be a computer-readable storage medium storing a program for causing a computer to function as the transmission unit 3, the reception unit 5, the gate processing unit 60, the frequency domain conversion unit 61, and the target distance calculation unit 62. .
  • the memory 107 includes, for example, a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or a volatile memory.
  • a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or a volatile memory.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically-EPROM
  • Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like are applicable.
  • a part of the functions of the transmission unit 3, the reception unit 5, the gate processing unit 60, the frequency domain conversion unit 61, and the target distance calculation unit 62 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the transmission unit 3 and the reception unit 5 realize the functions by the processing circuit 104 that is dedicated hardware, and the processor 106 stores the gate processing unit 60, the frequency domain conversion unit 61, and the target distance calculation unit 62 in the memory 107.
  • the function is realized by reading and executing the stored program.
  • the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
  • FIG. 5 is a flowchart showing the operation of the radar apparatus 1 according to the first embodiment, and shows the target distance calculation method according to the first embodiment.
  • the transmission unit 3 radiates a transmission RF signal to space via the antenna 2 (step ST1).
  • the receiving unit 5 receives a reception RF signal that is a reflected RF signal that is returned after the transmission RF signal is reflected by a target in space (step ST2).
  • the gate processing unit 60 performs gate processing in which a plurality of reception gates are set on the reception RF signal, and generates a signal after gate processing (step ST3).
  • the frequency domain transform unit 61 performs frequency domain transform on the signal after the gate processing by the gate processing unit 60 to generate a frequency domain signal (step ST4).
  • the target distance calculation unit 62 calculates a target distance based on at least one of the real part and the imaginary part of the frequency domain signals of the plurality of reception gates generated by the frequency domain conversion unit 61 (step ST5).
  • FIG. 6 is a flowchart showing the operation of the transmission unit 3, and shows the details of the processing in step ST1 of FIG.
  • the transmitter 3 includes a transmitter 30, a pulse modulator 31, and a local oscillator 32.
  • the local oscillator 32 generates a local oscillation signal L 0 (t) having a constant frequency expressed by the following formula (1) (step ST1a).
  • the local oscillator 32 outputs the local oscillation signal L 0 (t) to the pulse modulator 31 and the receiving unit 5.
  • t is the time
  • a L is the amplitude of the local oscillation signal L 0 (t)
  • f 0 is the transmission frequency.
  • ⁇ 0 is the initial phase of the local oscillation signal L 0 (t)
  • T obs is the observation time
  • j is an imaginary unit.
  • the pulse modulator 31 performs pulse modulation according to the following equation (2) on the local oscillation signal L 0 (t) using a preset pulse repetition period T pri and pulse width T 0 , and transmits a transmission RF signal.
  • Tx (t) is generated (step ST2a).
  • the transmission RF signal Tx (t) is output from the pulse modulator 31 to the transmitter 30 of the transmission unit 3.
  • h is a hit number and H is the number of hits.
  • the hit number H is expressed by the following formula (3).
  • floor (X) means an integer obtained by rounding down the decimal point of the variable X.
  • FIG. 8A is a diagram illustrating a waveform of the transmission RF signal Tx (t).
  • FIG. 7 is a flowchart showing the operation of the receiving unit 5, and shows details of the processing in step ST2 of FIG.
  • the receiving unit 5 includes a receiver 50 and an A / D converter 51.
  • the reflected RF signal which is the reflected RF signal radiated from the air and reflected by the target, is incident on the antenna 2.
  • the antenna 2 receives the incident reflected RF signal and outputs it to the receiver 50 as a received RF signal Rx (t) expressed by the following equation (4) (step ST1b).
  • n tgt is a target number
  • N tgt is a target number
  • the received RF signal Rx ntgt (t) of the target number n tgt is expressed by the following equation (5).
  • a R, Ntgt is the amplitude of the received RF signal Rx ntgt (t) of the target number n tgt
  • R 0, ntgt is the initial target relative distance of the received RF signal Rx ntgt (t) of the target number n tgt
  • v ntgt is the target relative speed of the received RF signal Rx ntgt (t) of the target number n tgt
  • C is the speed of light.
  • the receiver 50 down-converts the received RF signal Rx (t) input from the antenna 2 using the local oscillation signal L 0 (t) expressed by the above formula (1) (step ST2b).
  • the receiver 50 passes the down-converted received RF signal Rx (t) through a bandpass filter, performs amplification and phase detection, and receives the received video signal V 0 represented by the following equation (6).
  • (T) is generated and output to the A / D converter 51.
  • V 0, ntgt (t) is a received video signal having a target number n tgt represented by the following equation (7)
  • AV ntgt is a received video signal having a target number n tgt.
  • FIG. 8B is a diagram illustrating a waveform of the reception RF signal Rx (t).
  • the reception RF signal Rx (t) is a signal obtained by combining the reception RF signals reflected from the plural targets.
  • FIG. 8B shows a case where the target has a target of target number 1 and a target of target number 2, and the received RF signal indicated by symbol b is reflected from the target of target number 1 indicated by symbol b1.
  • This is a signal obtained by combining the received RF signal and the received RF signal reflected from the target of the target number 2 indicated by symbol b2.
  • the received video signal V 0 (t) is also a signal obtained by synthesizing the received video signal derived from the received RF signal reflected from each of the plural targets.
  • the received video signal indicated by reference symbol c is a signal obtained by combining the received video signal corresponding to target number 1 indicated by reference symbol c1 and the received video signal corresponding to target number 2 indicated by reference symbol c2.
  • mod (X, Y) represents the remainder after the variable X is divided by the variable Y.
  • the A / D converter 51 performs A / D conversion on the received video signal V 0 (t) input from the receiver 50 to generate a received video signal V (m ′) represented by the following equation (8) ( Step ST3b).
  • the received video signal V (m ′) is output from the A / D converter 51 to the signal processing unit 6.
  • V 0, n tgt (m ′) is a received video signal obtained by A / D converting the received video signal V 0, n tgt (t) corresponding to the target number n tgt represented by the following equation (9).
  • m ′ is the sampling number
  • M ′ is the number of samplings
  • ⁇ t is the sampling interval of the received video signal after A / D conversion.
  • the received video signal V (m ′) shown in FIG. 8C is a sampled signal.
  • FIG. 9 is a flowchart showing the operations of the gate processing unit 60 and the frequency domain conversion unit 61, and shows details of the processing of step ST3 and step ST4 of FIG.
  • the gate processing unit 60 is based on a preset gate slide amount ⁇ m G and a gate width for the received video signal V (m ′).
  • the signal V G (n G , m ′) after gate processing is generated according to the following equation (10) (step ST1c).
  • n G is a gate number.
  • FIG. 10A is a diagram showing a waveform of the received video signal V (m ′).
  • FIG. 10B is a diagram illustrating a waveform of the signal V G (10, m ′) after gate processing of the gate number 10.
  • FIG. 10C is a diagram illustrating a waveform of the signal V G (11, m ′) after the gate processing of the gate number 11.
  • FIG. 10D is a diagram illustrating a waveform of the signal V G (12, m ′) after the gate processing of the gate number 12.
  • the gate processing unit 60 receives the received video signal V (m ′) of the symbol c shown in FIG. 10A, and receives the received gates G10 to G12 having gate numbers 10 to 12, for example, with respect to the received video signal V (m ′). To set the gate. As a result, a signal V G (10, m ′) after gate processing indicated by the symbol d in FIG. 10B is generated, and a signal V G (11, m ′) after gate processing indicated by the symbol e in FIG. 10C is generated. , The gate-processed signal V G (12, m ′) indicated by the symbol f in FIG. 10D is generated.
  • the gated signal V G (n G , m ′) is also a signal obtained by synthesizing the gated signal derived from the received RF signal reflected from each of the plural targets.
  • the signal V G (10, m ′) after gate processing indicated by reference symbol d is the target number 1 of gate number 10 indicated by reference symbol d1.
  • a signal after gate processing corresponding to the target number 2 of the gate number 10 indicated by the symbol d2 are synthesized.
  • the gate-processed signal V G (11, m ′) indicated by reference sign e is a gate-processed signal corresponding to target number 1 of gate number 11 indicated by reference sign e1 and gate number 11 indicated by reference sign e2.
  • the signal after the gate processing corresponding to the target number 2 is a synthesized signal.
  • the gate-processed signal V G (12, m ′) indicated by reference numeral f is the signal after gate processing corresponding to the target number 1 of gate number 12 indicated by reference numeral f1 and the gate number 12 indicated by reference numeral f2. This is a signal obtained by combining the gate-processed signal corresponding to the target number 2.
  • the reception gate G11 is a gate that is slid by the gate slide amount ⁇ m G from the reception gate G10
  • the reception gate G12 is a gate that is further slid by the gate slide amount ⁇ m G from the reception gate G11.
  • the gate processing unit 60 performs narrow-band filter processing (band-pass filter processing) for allowing the signal V G (n G , m ′) after gate processing to pass a signal in the band around the center spectrum in the frequency domain.
  • the gate processing unit 60 re-samples the signal V G (n G , m) after the narrow band filter processing (after the band pass filter processing) represented by the following formula (11), which is resampled as a sine wave. Is generated (step ST2c).
  • m is the sampling number of the signal after the narrowband filter processing
  • M is the sampling number of the signal after the narrowband filter processing.
  • V G, ntgt (n G , m) is a signal after the narrow band filter processing of the gate number n G of the target number n tgt represented by the following equation (12).
  • a nG, ntgt is the amplitude of the signal after the narrow band filter processing of the gate number n G of the target number n tgt .
  • the gate processing unit 60 outputs the signal V G (n G , m) after the narrowband filter processing to the frequency domain conversion unit 61. Further, the gate processing unit 60 outputs the signal after the gate processing to the frequency domain conversion unit 61 even when the narrowband filter processing is not performed.
  • the frequency domain transform unit 61 performs a Fourier transform process according to the following equation (13) as a frequency domain transform process on the signal V G (n G , m) after the narrowband filter process input from the gate processing unit 60.
  • the frequency domain signal f d (n G , k) is generated (step ST3c).
  • k is a sampling number in the frequency domain
  • M fft is the number of frequency domain transform points.
  • the frequency domain is represented by discrete Fourier transform, but the frequency domain transform processing may be realized by fast Fourier transform or chirp z transform.
  • the frequency domain conversion unit 61 similarly performs frequency domain conversion according to the following equation (13). To generate a frequency domain signal f d (n G , k). The frequency domain converter 61 outputs the frequency domain signal f d (n G , k) to the target distance calculator 62.
  • FIG. 11A is a diagram illustrating observed values of signals in a plurality of target frequency domains in the reception gate.
  • a signal waveform S is a synthesized wave obtained by synthesizing the target 1 signal and the target 2 signal.
  • FIG. 11B is a diagram illustrating a frequency-domain signal for each target in the reception gate.
  • the signal waveform S1 is the signal waveform of the target 1
  • the signal waveform S2 is the signal waveform of the target 2.
  • the conventional technique described in Patent Document 1 is used. Even the target distance can be calculated. However, if the target 1 and the target 2 have the same speed, the target cannot be separated based on the Doppler frequency as shown in FIG. 11A. For this reason, when there are a plurality of target numbers at the same speed, it becomes difficult to calculate the target distance due to interference of a plurality of signals. That is, as shown in FIG. 11B, when there are reflected RF signals from a plurality of targets having the same speed in the reception gate, the discrepancy pattern is different from the case where the number of targets is one. It becomes difficult to calculate.
  • FIG. 12 is a diagram illustrating the amplitude of the received RF signal reflected by a plurality of targets in the reception gate.
  • the amplitude and phase of the signals observed at each of the gate number n G by a difference of a plurality of targets of amplitude and phase (composite wave) are different, it is difficult to calculate the respective target distance become.
  • m G (n G ) is a sampling number m ′ corresponding to the gate start bin of the gate number n G.
  • the target distance calculation unit 62 in the first embodiment has the same speed as the target and there are reflected RF signals from a plurality of targets that cannot be separated based on the Doppler frequency in the reception gate, A target distance for each of the plurality of targets can be calculated.
  • the target number N tgt is 2 will be described as an example.
  • the frequency domain signal f d (n G , k) is given by This is a composite wave of the frequency domain signals f d, ntgt (n G , k) of a plurality of target numbers n tgt represented by (14).
  • the signal f d, ntgt (n G , k) in the frequency domain of the target number n tgt at the gate number n G is expressed by the following equation (15). From the following equation (15), when the relationship of the following equation (16) is satisfied, the signal f d, ntgt (n G , k) in the frequency domain of the target number n tgt at the gate number n G indicates the maximum amplitude value. .
  • the frequency domain signal f d, ntgt (n G , k) of the target number n tgt for the gate number n G is the frequency domain sampling number k indicating the maximum amplitude value, and the frequency domain sampling It is represented by the number k peak .
  • the frequency domain signal f d, ntgt (n G , k peak ) of the target number n tgt of the sampling number k peak of the frequency domain indicating the maximum amplitude value can be developed as in the following equation (17).
  • x (m G (n G ), m ntgt ) is a ratio (reception signal ratio) that the reflected RF signal from the target of the target number n tgt is present in the reception gate of the gate number n G.
  • M p is the number of sampling points of the pulse
  • a ntgt is the amplitude when all the reflected RF signals of the target number n tgt are present in the reception gate.
  • m Ntgt is the sampling number of the initial relative distance of the target number n tgt R 0, ntgt the incoming video signal V (m '), ⁇ ntgt is an initial relative distance R 0, Ntgt phase of the target number n tgt ,
  • is the absolute value of the variable X.
  • the sampling number m ntgt of the received video signal V (m ′) of the initial relative distance R 0, ntgt of the target number n tgt is expressed by the following equation (18). Note that the sampling number m ntgt does not have to be an integer as shown in the following formula (18), and may have a value after the decimal point.
  • FIG. 13A is a diagram showing a reception signal ratio of a reflected RF signal reflected by a target in the reception gate.
  • FIG. 13B is a diagram illustrating a waveform of a received video signal.
  • FIG. 13C is a diagram illustrating a waveform of a signal after gate processing of gate number 10.
  • FIG. 13D is a diagram illustrating a waveform of a signal after gate processing of gate number 11.
  • FIG. 13E is a diagram illustrating a waveform of a signal after gate processing of gate number 12. Since the gate processing unit 60 is provided with a plurality of reception gates, as shown in FIG. 13A, from the above equation (17), the ratio of the reflected RF signal from each target (reception signal ratio) x ( m G (n G ), m ntgt ) is different for each reception gate.
  • the passage start of the reception gate with the gate number 12 starts from the sampling number 12.
  • the frequency domain transform unit 61 starts the frequency domain transform process from the same time (same sampling number) regardless of the position of each reception gate, as shown in the above equation (13). Therefore, it is possible to perform control such that the phase of the sampling number k peak in the frequency domain indicating the maximum amplitude value of the signal after frequency domain conversion of each target does not change. That is, the phase ⁇ ntgt of the initial relative distance R 0, ntgt of the target number n tgt is shown regardless of the gate number n G. As a result, since the unknowns are reduced, it is possible to obtain a radar apparatus that can calculate a plurality of target distances with a small number of calculations.
  • the real part z ⁇ (n G ) and imaginary part z ⁇ of the signal f d (n G , k peak ) in the frequency domain of the sampling number k peak in the frequency domain of the gate number n G (N G ) is observed.
  • ⁇ 1 is the real part of the signal in the frequency domain of target 1 that has the maximum amplitude value.
  • ⁇ 1 is the imaginary part of the signal in the frequency domain of target 1 that has the maximum amplitude value.
  • ⁇ 2 is the real part of the signal in the frequency region of target 2 that is the maximum amplitude value.
  • ⁇ 2 is the imaginary part of the signal in the frequency domain of target 2 that is the maximum amplitude value.
  • ⁇ ′ 1 is the real part of the signal in the frequency domain of target 1 when target 1 is present in the reception gate of gate number n ′ G indicating the maximum amplitude
  • ⁇ ′ 1 is the target 1 is an imaginary part of the signal in the frequency domain of the target 1 when present in the receiving gate of the gate number n 'G showing the amplitude maximum value
  • ⁇ ′ 2 is the real part of the signal in the frequency domain of the target 2 when the target 1 exists in the reception gate of the gate number n ′ G indicating the maximum amplitude
  • ⁇ ′ 2 is the maximum amplitude of the target 1 an imaginary part of the signal in the frequency domain of the target 2 when present in gate number n 'in the receiving gate of G shown.
  • ⁇ ′′ 1 is the real part of the signal in the frequency domain of target 1 when target 2 is present in the receiving gate of gate number n ′′ G indicating the maximum amplitude
  • ⁇ ′′ 1 is the target 2 is the imaginary part of the signal in the frequency domain of the target 1 when it exists in the reception gate of the gate number n ′′ G indicating the maximum amplitude value.
  • ⁇ ′′ 2 is the real part of the signal in the frequency domain of the target 2 when the target 2 exists in the reception gate of the gate number n ′′ G indicating the maximum amplitude
  • ⁇ ′′ 2 is the maximum amplitude of the target 2 This is the imaginary part of the signal in the frequency domain of the target 2 when it exists in the reception gate of the gate number n ′′ G indicating the value.
  • gate number n "G gate number n 'G and the target second target 1 indicates the amplitude maximum value indicates a maximum amplitude value may be a real number.
  • gate number n Regardless of G without changing the phase ⁇ ntgt of each target, only the ratio at which the reflected RF signal from each target is present in the receiving gate is changed based on the gate number n G.
  • FIG. 15A is a diagram showing, for each target, the reception signal ratio of the reflected RF signal reflected by the target in the reception gate and the real part of the reflected RF signal reflected by the target.
  • C3 is the real part of the observed value of the reflected RF signal from the target present in the receiving gate of the gate number n G.
  • FIG. 15B is a diagram showing, for each target, the reception signal ratio of the reflected RF signal reflected by the target in the reception gate and the imaginary part of the reflected RF signal reflected by the target.
  • D3 is the imaginary part of the observed value of the reflected RF signal from the target present in the receiving gate of the gate number n G.
  • the gate processing is performed so that only the real part and the imaginary part of the reflected RF signal (received RF signal) are changed.
  • the target distance calculation unit 62 can calculate each target distance even when a plurality of targets having different target distances that cannot be separated from each other at the Doppler frequency exist in the reception gate. It is.
  • FIG. 16 is a flowchart showing an operation example of the target distance calculation unit 62 in the first embodiment, and shows details of the processing in step ST5 of FIG.
  • FIG. 17 is a flowchart showing another example of the operation of the target distance calculation unit 62 in the first embodiment.
  • the real part z ⁇ (n G ) and the imaginary part z ⁇ (n G ) of the reflected RF signal existing in the reception gate of the observed gate number n G are expressed by the following formula (19) and the following formula (20). Is done.
  • the sampling number of the target 1 to be assumed is calculated using the following equation (21).
  • M ′ 1 the sampling number of the target 2 to be assumed is m ′ 2
  • a simultaneous equation is derived, and the simultaneous equations are solved according to the following equation (22), whereby the sampling number m ′ 1 of the target 1 and the target 2
  • the real part ⁇ ′ 1, m′1, m′2 of the reflected RF signal from the target of the target number n tgt 1 when the sampling number is m ′ 2 and the sampling numbers m ′ 1 and 2 of the target 1
  • the imaginary part ⁇ ′ 2, m′1, and m′2 of the reflected RF signal from are calculated. The process so far is step ST1d.
  • m st is a combination of a plurality of target distance assumed (hereinafter referred to as the target distance candidate) is a target sampling starting number of, Delta] m, the interval of the sampling number of the target envisaged, m ed is assumed N G, 1 is a gate number of a preset number 1 and n G, 2 is a gate number of a preset number 2.
  • the real part and imaginary part of the signal in the frequency domain within the plurality of reception gates the real part and imaginary part of the signal used for calculating the target distance may be selected based on the signal strength of the signal.
  • the target distance calculation unit 62 when using the observed value of a number of received gate than the target number N tgt when calculating the target distance, according to the following equation (24), the sampling number of the target 1 to assume m '1 and then, it derives the simultaneous equations sampling number of the target 2 as m '2.
  • the following formula (24) shows a case where all the reception gates are used, but it is sufficient that there are more reception values of reception gates than the target number N tgt .
  • the target distance calculation unit 62 performs partial differentiation on the simultaneous equations represented by the following expression (24) by the reception signal ratio x (m G (n G ), m ntgt ), and the target distance candidate is determined according to the following expression (25). An evaluation value is calculated. Subsequently, the target distance calculation unit 62 defines the following formula (25) as the following formula (26).
  • the matrix X m′1, m′2 related to the signal ratio, the matrix A m′1, m′2 related to the real part and the imaginary part of the target signal, and the matrix Z m′1, m′2 related to the observed value are as follows : It is represented by equation (27).
  • the target distance calculation unit 62 solves the above equation (26) by the least square method according to the following equation (28), thereby obtaining a matrix A m′1 related to the real part and the imaginary part of the reflected RF signal from the target.
  • M′2 is calculated (step ST1e).
  • Y ⁇ 1 represents an inverse matrix of the matrix Y.
  • the target distance calculation unit 62 performs real part ⁇ ′ ntgt, m′1, m′2 of each combination of the sampling number m ′ 1 of the target 1 and the sampling number m ′ 2 of the target 2 according to the following equation (29). And the imaginary part ⁇ ′ ntgt, m′1, m′2 and the real part z ⁇ (n G ) and the imaginary part z ⁇ (n G ) of the observed value, that is, the real part residual ⁇ ⁇ (M ′ 1 , m ′ 2 ) and imaginary part residual ⁇ ⁇ (m ′ 1 , m ′ 2 ) are calculated.
  • FIG. 18 is a diagram illustrating the relationship between the combination of the sampling number of the target 1 and the sampling number of the target 2 and the evaluation value of the target distance candidate.
  • the vertical axis is the sampling number m ′ 1 for target 1
  • the horizontal axis is the sampling number m ′ 2 for target 2.
  • the target distance calculation unit 62 uses the real part residual ⁇ ⁇ (m ′ 1 , m ′ 2 ) and the imaginary part residual ⁇ ⁇ (m ′ 1 , m ′ 2 ).
  • the evaluation value ⁇ (m ′ 1 , m ′ 2 ) is calculated according to the following formula (30).
  • the target distance calculation unit 62 calculates the sampling number m ′′ 1 of target 1 and the sampling number m ′′ 2 of target 2 that maximize the evaluation value ⁇ (m ′ 1 , m ′ 2 ) according to the following equation (31). To do.
  • argmax ⁇ (p, q) is a function for calculating arguments p and q that maximize the evaluation value ⁇ (p, q) of the target distance candidate.
  • the target distance calculation unit 62 calculates the target distance R ′′ 0, ntgt of the target number n tgt using the following equation (32) (step ST2d, step ST2e).
  • the target distance calculation unit 62 can calculate a plurality of target distances even if only the real part or the imaginary part is used. Further, the target distance calculation unit 62 can calculate the target distance even if the target number is one. When the target number is 1, it may be calculated as m ′ 1 only.
  • the target distance calculation unit 62 outputs the target distance R ′′ 0, ntgt of the target number n tgt to the display unit 7.
  • the display unit 7 outputs the target distance R ′′ 0 of the target number n tgt input from the target distance calculation unit 62. , Ntgt are displayed on the screen as target information.
  • the radar apparatus 1 performs gate processing in which a plurality of reception gates are set on the received RF signal, performs frequency domain conversion processing on the signal after gate processing, and performs multiple processing.
  • the target distance is calculated based on at least one of the real part and the imaginary part of the signal in the frequency domain of the receiving gate.
  • the gate processing unit 60 sets a plurality of reception gates, generates a signal after narrowband filtering so that signals in a target frequency domain existing in each reception gate have the same phase, and performs frequency domain conversion.
  • the unit 61 performs frequency domain conversion on the signal existing in each reception gate from the same sampling number to generate a frequency domain signal.
  • the gate processor 60 regardless of the gate number n G, for performing gated such that only the real part and the imaginary part of each of the target is changed, the target distance calculation unit 62, by utilizing this characteristic, assuming The target distance is calculated based on at least one of the received signal ratio and the observed and real part and imaginary part even if there are reflected signals from multiple targets in the receiving gate at the same speed can do.
  • the target distance calculation unit 62 uses at least one of the real part and the imaginary part of the signals in the frequency domain of the plurality of reception gates, and uses the target in each reception gate.
  • the target distance candidate simultaneous equation based on the ratio of received signals from is solved to calculate an evaluation value of the target distance candidate, and the target distance is calculated based on the evaluation value of the target distance candidate.
  • the evaluation value it is possible to calculate a plurality of target distances with a small amount of calculation.
  • the target distance calculation unit 62 uses at least one of the real part and the imaginary part of the signals in the frequency domain of the plurality of reception gates, and the target in each reception gate.
  • a target distance candidate simultaneous equation is derived based on the ratio of received signals from, and the target distance candidate evaluation value is calculated by solving the derived simultaneous equation using the least squares method. Based on this, the target distance is calculated. Since the evaluation value is calculated using the least square method, the influence of noise is further reduced, and the ranging accuracy is improved.
  • the target number N tgt is set to 2, but even if it is a natural number other than 2, it is possible to calculate the target distance for the target number similarly.
  • FIG. FIG. 19 is a block diagram showing the configuration of the signal processing unit 6A of the radar apparatus according to Embodiment 2 of the present invention.
  • the radar apparatus according to the second embodiment includes an antenna 2, a transmission unit 3, a transmission / reception switching unit 4, a reception unit 5, and a display 7, as in FIG.
  • a signal processing unit 6A is provided instead of the signal processing unit 6.
  • the signal processing unit 6A includes a gate processing unit 60, a frequency domain conversion unit 61, a target distance calculation unit 62A, and a target candidate detection unit 63.
  • the target distance calculation unit 62A calculates the target distance based on at least one of the real part and the imaginary part of the signal in the frequency domain of the target candidate detected by the target candidate detection unit 63.
  • the target candidate detection unit 63 detects a target candidate based on the signal strength of the frequency domain signal generated by the frequency domain conversion unit 61.
  • the frequency domain transform unit 61 outputs the frequency domain signal f d (n G , k) to the target candidate detection unit 63.
  • the target candidate detection unit 63 detects a target candidate based on the signal strength of the signal f d (n G , k) in the frequency domain. For example, the target candidate detection unit 63 detects a target candidate by CA-CFAR (Cell Average Constant False Alarm Rate) processing.
  • CA-CFAR Cell Average Constant False Alarm Rate
  • FIG. 20 is a diagram illustrating the relationship between the amplitude of the reflected RF signal from the target in the reception gate, the amplitude of the reflected RF signal from the target candidate, and noise.
  • E1 is the amplitude of the reflected RF signal from the target present in the receiving gate of the gate number n G.
  • z ⁇ (n G ) is the real part of the reflected RF signal of gate number n G
  • z ⁇ (n G ) is the imaginary part.
  • E3 is noise.
  • the target candidate detection unit 63 receives the frequency domain signal f d (n G , k) input from the frequency domain conversion unit 61 and the gate number n G, tgt of the reception gate where the target candidate n tgt detected by the CFAR processing is present. And the sampling number k in the frequency domain are output to the target distance calculation unit 62A.
  • FIG. 21 is a flowchart illustrating an operation example of the target distance calculation unit 62A in the second embodiment.
  • the range of the target number to be assumed is 1 to N ′ tgt .
  • the target distance calculation unit 62A sets the target number n ′ tgt within the range of the assumed target number (step ST1f).
  • the target distance calculation unit 62A derives simultaneous equations according to the following equation (33) according to the assumed target number n ′ tgt .
  • m G (n G, tgt ) is a sampling number m ′ corresponding to the gate start bin of the gate number n G, tgt of the target candidate n tgt .
  • the target distance calculation unit 62A uses the simultaneous equations expressed by the above equation (33) as a ratio (reception signal ratio) x (m G (n G ) that the reflected RF signal from each target exists in the reception gate. , Tgt ), mn'tgt ), and is expressed by the following formula (34). Next, the target distance calculation unit 62A defines the following formula (34) as the following formula (35).
  • the matrices Z m′1,..., M′n′tgt are represented by the following formula (36).
  • the target distance calculation unit 62A solves the above equation (36) by the least square method according to the following equation (37) , whereby the matrix A m′1,..., M′n′tgt related to the real and imaginary parts of the target signal. Is calculated (step ST2f).
  • Y ⁇ 1 is an inverse matrix of the matrix Y
  • Y T represents the transpose of the matrix Y.
  • the target distance calculation unit 62A follows the following formula (38), and the real part ⁇ ′ n′tgt, m′1,... Of the combination of the sampling numbers m n′tgt of each target when the target number is n ′ tgt .
  • the target distance calculation unit 62A includes a real part residual ⁇ ⁇ (m ′ 1 ,..., M ′ n′tgt ) and an imaginary part residual ⁇ ⁇ (m ′ 1 ,..., M ′ n ′.
  • the target distance candidate evaluation value ⁇ (m ′ 1 , m ′ 2 ) is calculated according to the following formula (39) using tgt ).
  • Target distance calculation unit 62A in accordance with the following equation (40), the evaluation value ⁇ of the target distance candidate (m '1, ⁇ , m 'n'tgt) to maximize the target number N "tgt, each The target sampling number mn'tgt is calculated, where argmax ⁇ (q, p, ..., q) maximizes the evaluation value ⁇ (q, p, ..., q) of the target distance candidate. This is a function for calculating a variable q and arguments p,.
  • the target distance calculation unit 62A calculates the target distance R ′′ 0, ntgt of the target number n tgt according to the following formula (41) (step ST3f).
  • the amount of information is increased and the ranging accuracy is improved, and the target distances of a plurality of targets can be calculated using only one of the real part and the imaginary part.
  • the target distance calculation unit 62A derives the simultaneous equations expressed by the above equation (33) according to the target number, and further solves the simultaneous equations by the least square method according to the above equation (37), thereby , M′n′tgt related to the imaginary part and the imaginary part are calculated, and the evaluation value ⁇ (m ′ 1 ,..., M ′ n′tgt of the target distance candidate is calculated according to the above equation (40). ) To obtain the maximum target number N ′′ tgt and each target sampling number mn′tgt . Therefore, even if the target number is set in advance, the relative distance corresponding to the target number is calculated. Can be calculated.
  • the radar apparatus detects the target candidate based on the signal strength of the frequency domain signal f d (n G , k) generated by the frequency domain transform unit 61.
  • a portion 63 is provided.
  • the target distance calculation unit 62A calculates the target distance based on at least one of the real part and the imaginary part of the frequency domain signal f d (n G , k) of the target candidate detected by the target candidate detection unit 63. . That is, since the target distance candidate is calculated based on the observation value of the signal in the target candidate reception gate, it is not necessary to set the reception gate in advance.
  • the target candidate detection unit 63 since the target candidate is detected based on the signal strength, the target distance is calculated in a situation where the signal-to-noise ratio is high. Thereby, the target distance can be calculated with high accuracy.
  • the target candidate detection unit 63 further selects a target candidate based on the signal strength, so that the target distance can be calculated with higher accuracy.
  • the radar apparatus according to the present invention can accurately measure the target distance even when there are a plurality of targets in the reception gate, it can be used for various radar apparatuses.
  • 1 radar device 2,100 antenna, 3, transmission unit, 4 transmission / reception switching unit, 5 reception unit, 6, 6A signal processing unit, 7, 101 display, 30 transmitter, 31 pulse modulator, 32 local oscillator, 50 reception Machine, 51 A / D converter, 60 gate processing unit, 61 frequency domain conversion unit, 62, 62A target distance calculation unit, 63 target candidate detection unit, 102 input / output interface, 103 external storage device, 104 processing circuit, 105 signal Road, 106 processor, 107 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本発明は、受信ゲート内に複数の目標が存在する場合であっても目標距離を正確に計測することができるレーダ装置を得ることを目的とする。本発明のレーダ装置(1)は、送信信号を空間に放射する送信部(3)と、前記送信信号が空間内の目標で反射されて戻った信号である受信信号を受信する受信部(5)と、前記受信信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号を生成するゲート処理部(60)と、前記ゲート処理後の信号に対して周波数領域変換を行い、周波数領域の信号を生成する周波数領域変換部(61)と、前記周波数領域変換部によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出する目標距離算出部(62)とを備えたことを特徴とする。

Description

レーダ装置および目標距離算出方法
 本発明は、目標距離を算出するレーダ装置に関する。
 例えば、特許文献1に記載される従来のレーダ装置では、送信高周波信号(以下、送信RF信号と記載する)を空中に放射し、目標で反射された送信RF信号の反射高周波信号(以下、反射RF信号と記載する)を受信する。従来のレーダ装置は、受信信号に対して異なるゲート幅の受信ゲートを設定して和信号および差信号を生成し、和信号と差信号との比と目標までの距離(以下、目標距離と記載する)との関係を示すディスクリパターンを用いて目標距離を計測する。
特開昭60-164275号公報
 特許文献1に記載される従来のレーダ装置では、受信ゲート内に複数の目標が存在する場合、複数の目標の状況(例えば、目標間の振幅の差または距離の差)ごとにディスクリパターンが異なるため、複数の目標のそれぞれについて目標距離が誤って計測されるという課題があった。
 本発明は上記課題を解決するものであり、受信ゲート内に複数の目標が存在する場合であっても目標距離を正確に計測することができるレーダ装置を得ることを目的とする。
 本発明に係るレーダ装置は、送信部、受信部、ゲート処理部、周波数領域変換部および目標距離算出部を備えている。送信部は、送信信号を空間に放射する。受信部は、送信信号が空間内の目標で反射されて戻った信号である受信信号を受信する。ゲート処理部は、受信信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号を生成する。周波数領域変換部は、ゲート処理後の信号に対して周波数領域変換を行い、周波数領域の信号を生成する。目標距離算出部は、周波数領域変換部によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて目標距離を算出する。
 本発明によれば、受信信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号に対して周波数領域変換処理を行い、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出する。これにより、受信ゲート内に複数の目標が存在する場合であっても目標距離を正確に計測することができる。
本発明の実施の形態1に係るレーダ装置の構成を示すブロック図である。 実施の形態1における送信部の構成を示すブロック図である。 実施の形態1における受信部の構成を示すブロック図である。 図4Aは、実施の形態1に係るレーダ装置の機能を実現するハードウェア構成を示すブロック図である。図4Bは、実施の形態1に係るレーダ装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。 実施の形態1に係るレーダ装置の動作を示すフローチャートである。 実施の形態1における送信部の動作を示すフローチャートである。 実施の形態1における受信部の動作を示すフローチャートである。 図8Aは、送信RF信号の波形を示す図である。図8Bは、受信RF信号の波形を示す図である。図8Cは、受信ビデオ信号の波形を示す図である。 実施の形態1におけるゲート処理部および周波数領域変換部の動作を示すフローチャートである。 図10Aは、受信ビデオ信号の波形を示す図である。図10Bは、ゲート番号10のゲート処理後の信号の波形を示す図である。図10Cは、ゲート番号11のゲート処理後の信号の波形を示す図である。図10Dは、ゲート番号12のゲート処理後の信号の波形を示す図である。 図11Aは、受信ゲート内にある複数の目標の周波数領域の信号の観測値を示す図である。図11Bは、受信ゲート内にある目標ごとの周波数領域の信号を示す図である。 受信ゲート内にある複数の目標で反射された受信信号の振幅を示す図である。 図13Aは、受信ゲート内にある目標で反射された反射信号の受信信号比率を示す図である。図13Bは、受信ビデオ信号の波形を示す図である。図13Cは、ゲート番号10のゲート処理後の信号の波形を示す図である。図13Dは、ゲート番号11のゲート処理後の信号の波形を示す図である。図13Eは、ゲート番号12のゲート処理後の信号の波形を示す図である。 図14Aは、目標1の周波数領域の信号が振幅最大値となる周波数領域のサンプリング番号の位相の関係を示す図である。図14Bは、目標2の周波数領域の信号が振幅最大値となる周波数領域のサンプリング番号の位相の関係を示す図である。 図15Aは、受信ゲート内にある目標で反射された反射信号の受信信号比率と目標で反射された反射信号の実部とを目標ごとに示す図である。図15Bは、受信ゲート内にある目標で反射された反射信号の受信信号比率と目標で反射された反射信号の虚部とを目標ごとに示す図である。 実施の形態1における目標距離算出部の動作例を示すフローチャートである。 実施の形態1における目標距離算出部の動作の別の例を示すフローチャートである。 目標1のサンプリング番号と目標2のサンプリング番号の組み合わせと目標距離候補の評価値との関係を示す図である。 本発明の実施の形態2に係るレーダ装置の信号処理部の構成を示すブロック図である。 受信ゲート内にある目標からの反射信号の振幅と目標候補からの反射信号の振幅と雑音との関係を示す図である。 実施の形態2における目標距離算出部の動作例を示すフローチャートである。
 以下、本発明をより詳細に説明するため、本発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るレーダ装置1の構成を示すブロック図である。
 レーダ装置1は、送信RF信号を空間に放射し、送信RF信号が目標で反射された反射RF信号である受信RF信号を受信し、受信RF信号に基づいて目標までの距離(目標距離)を算出する装置である。図1に示すように、レーダ装置1は、空中線2、送信部3、送受切替部4、受信部5、信号処理部6および表示器7を備える。信号処理部6は、ゲート処理部60、周波数領域変換部61および目標距離算出部62を備える。
 送信部3は、空中線2を介して送信RF信号を空間に放射する。送受切替部4は、送信部3から設定されたタイミングで、送信部3から空中線2への送信RF信号の出力と空中線2から受信部5への受信RF信号の出力を切り替える。受信部5は、空中線2を介して受信RF信号を受信する。信号処理部6は、受信RF信号に基づいて目標距離を算出する構成要素であり、算出した目標距離を表示器7に表示させる。
 ゲート処理部60は、受信部5から受信RF信号を入力し、受RF信信号に対して複数の受信ゲートを設定したゲート処理を施してゲート処理後の信号を生成する。周波数領域変換部61は、ゲート処理部60によるゲート処理後の信号に対して周波数領域変換処理を行って周波数領域の信号を生成する。目標距離算出部62は、周波数領域変換部61によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出する。
 図2は、送信部3の構成を示すブロック図である。図2に示すように、送信部3は、送信機30、パルス変調器31および局部発振器32を備える。送信機30は、パルス変調器31によってパルス化された送信信号を、送受切替部4を通して空中線2に出力する。パルス変調器31は、局部発振器32から入力した局部発振信号に対してパルス変調を施して送信RF信号を生成する。局部発振器32は、局部発振信号を発生して、受信部5およびパルス変調器31に出力する。
 図3は、受信部5の構成を示すブロック図である。図3に示すように、受信部5は、受信機50およびA/D変換器51を備える。受信機50は、空中線2によって受信された受信RF信号を、送受切替部4を通して入力してA/D変換器51に出力する。A/D変換器51は、受信機50から入力した受信RF信号をデジタル信号に変換して、信号処理部6が備えるゲート処理部60に出力する。
 次に、レーダ装置1の機能を実現するハードウェア構成について説明する。
 レーダ装置1における、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の機能は、処理回路によって実現される。
 すなわち、レーダ装置1は、図5を用いて後述するステップST1からステップST5までの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
 図4Aは、レーダ装置1の機能を実現するハードウェア構成を示すブロック図である。図4Bは、レーダ装置1の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図4Aおよび図4Bにおいて、空中線100は、図1に示した空中線2であり、表示器101は、図1に示した表示器7である。入出力インタフェース102は、図1に示した送信部3から空中線100への送信RF信号の出力と、空中線100から図1に示した受信部5への受信RF信号の出力とを中継するインタフェースである。すなわち、入出力インタフェース102は、図1に示した送受切替部4の機能を有する。さらに、入出力インタフェース102は、表示器101への出力信号を中継するインタフェースとしても機能する。
 外部記憶装置103は、図1に示した信号処理部6が行う信号処理に用いられる各種の設定データおよび信号データを記憶する記憶装置である。例えば、外部記憶装置103には、シンクロナスダイナミックランダムアクセスメモリ(SDRAM)といった、揮発性メモリ、ハードディスクドライブ装置(HDD)またはソリッドステートドライブ装置(SSD)を用いてもよい。また、オペレーティングシステム(OS)を含むプログラムを外部記憶装置103に記憶してもよい。さらに、外部記憶装置103に、図4Bに示すメモリ107を構築してもよい。外部記憶装置103は、レーダ装置1とは独立して設けられて、レーダ装置1から通信接続が可能な記憶装置、例えば、クラウド上に設けられた記憶装置であってもよい。
 信号路105は、信号データが伝送されるバスであり、図4Aにおいて、入出力インタフェース102、外部記憶装置103および処理回路104は、信号路105によって、相互に接続されている。また、図4Bでは、信号路105によって入出力インタフェース102、外部記憶装置103、プロセッサ106およびメモリ107が相互に接続されている。
 処理回路が、図4Aに示す専用のハードウェアの処理回路104である場合、処理回路104は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
 レーダ装置1における、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の機能を別々の処理回路で実現してもよく、これらの機能をまとめて1つの処理回路で実現してもよい。
 処理回路が、図4Bに示すプロセッサ106である場合、レーダ装置1における、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ107に記憶される。
 プロセッサ106は、メモリ107に記憶されたプログラムを読み出して実行することによって、レーダ装置1における、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の機能を実現する。すなわち、レーダ装置1は、プロセッサ106によって実行されるときに、図5に示すステップST1からステップST5までの処理が結果的に実行されるプログラムを記憶するためのメモリ107を備える。これらのプログラムは、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の手順または方法をコンピュータに実行させる。メモリ107は、コンピュータを、送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
 メモリ107には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
 送信部3、受信部5、ゲート処理部60、周波数領域変換部61および目標距離算出部62の機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、送信部3および受信部5は、専用のハードウェアである処理回路104で機能を実現し、ゲート処理部60、周波数領域変換部61および目標距離算出部62は、プロセッサ106がメモリ107に記憶されたプログラムを読み出して実行することによって機能を実現する。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。
 次に動作について説明する。
 図5は、実施の形態1に係るレーダ装置1の動作を示すフローチャートであり、実施の形態1に係る目標距離算出方法を示している。
 送信部3が、空中線2を介して送信RF信号を空間に放射する(ステップST1)。
 受信部5が、送信RF信号が空間内の目標で反射されて戻ってきた反射RF信号である受信RF信号を受信する(ステップST2)。
 ゲート処理部60が、受信RF信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号を生成する(ステップST3)。
 周波数領域変換部61が、ゲート処理部60によるゲート処理後の信号に対して周波数領域変換を行い、周波数領域の信号を生成する(ステップST4)。
 目標距離算出部62が、周波数領域変換部61によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出する(ステップST5)。
 次に、送信部3による送信RF信号の送信処理について詳細を説明する。
 図6は、送信部3の動作を示すフローチャートであり、図5のステップST1の処理の詳細を示している。送信部3は、図2に示したように、送信機30、パルス変調器31、および局部発振器32を備えている。
 局部発振器32は、下記式(1)で表される一定周波数の局部発振信号L(t)を生成する(ステップST1a)。局部発振器32は、局部発振信号L(t)をパルス変調器31と受信部5とに出力する。tは時刻であり、Aは局部発振信号L(t)の振幅であり、fは送信周波数である。さらに、φは局部発振信号L(t)の初期位相であり、Tobsは観測時間であり、jは虚数単位である。
Figure JPOXMLDOC01-appb-I000001
 次いで、パルス変調器31は、予め設定したパルス繰り返し周期Tpriおよびパルス幅Tを用いて、局部発振信号L(t)に対し、下記式(2)に従うパルス変調を行って送信RF信号Tx(t)を生成する(ステップST2a)。送信RF信号Tx(t)は、パルス変調器31から送信部3の送信機30へ出力される。hはヒット番号、Hはヒット数である。ヒット数Hは、下記式(3)で表される。floor(X)は、変数Xの小数点以下を切り捨てた整数を意味する。
Figure JPOXMLDOC01-appb-I000002
 送信機30は、パルス変調器31から入力した送信RF信号Tx(t)を送受切替部4に出力する。送受切替部4は、送信RF信号Tx(t)を空中線2に出力する。空中線2は、送信RF信号Tx(t)を空中(空間)に放射する(ステップST3a)。
 図8Aは、送信RF信号Tx(t)の波形を示す図である。図8Aに示すように、送信RF信号Tx(t)は、予め設定されたパルス繰り返し周期Tpriおよびパルス幅a(=T)の信号である。
 次に、受信部5による受信RF信号の受信処理について詳細を説明する。
 図7は、受信部5の動作を示すフローチャートであり、図5のステップST2の処理の詳細を示している。受信部5は、図3に示したように、受信機50およびA/D変換器51を備えている。
 空中に放射された送信RF信号が目標で反射されて戻った反射RF信号は、空中線2に入射される。空中線2は、入射された反射RF信号を受信して、下記式(4)で表される受信RF信号Rx(t)として受信機50に出力する(ステップST1b)。
 下記式(4)において、ntgtは目標番号、Ntgtは目標数である。目標番号ntgtの受信RF信号Rxntgt(t)は、下記式(5)で表される。AR,ntgtは目標番号ntgtの受信RF信号Rxntgt(t)の振幅であり、R0,ntgtは目標番号ntgtの受信RF信号Rxntgt(t)の初期目標相対距離であり、vntgtは目標番号ntgtの受信RF信号Rxntgt(t)の目標相対速度である。また、cは光速である。
Figure JPOXMLDOC01-appb-I000003
 受信機50は、空中線2から入力した受信RF信号Rx(t)を、上記式(1)で表される局部発振信号L(t)を用いてダウンコンバートする(ステップST2b)。
 次に、受信機50は、ダウンコンバートした受信RF信号Rx(t)を、帯域フィルタを通過させた後、増幅および位相検波を行って、下記式(6)で表される受信ビデオ信号V(t)を生成してA/D変換器51に出力する。下記式(6)において、V0,ntgt(t)は、下記式(7)で表される目標番号ntgtの受信ビデオ信号であり、AV,ntgtは、目標番号ntgtの受信ビデオ信号V0,ntgt(t)の振幅である。
 図8Bは、受信RF信号Rx(t)の波形を示す図である。目標数が複数である場合、受信RF信号Rx(t)は、複数の目標のそれぞれから反射された受信RF信号が合成された信号となる。例えば、図8Bでは、目標が、目標番号1の目標と目標番号2の目標がある場合を示しており、符号bで示す受信RF信号は、符号b1で示す目標番号1の目標から反射された受信RF信号と符号b2で示す目標番号2の目標から反射された受信RF信号とが合成された信号である。
 図8Cは、受信ビデオ信号V(t)の波形を示す図である。目標数が複数であると、受信ビデオ信号V(t)も、複数の目標のそれぞれから反射された受信RF信号に由来する受信ビデオ信号が合成された信号となる。例えば、図8Cでは、符号cで示す受信ビデオ信号は、符号c1で示す目標番号1に対応する受信ビデオ信号と符号c2で示す目標番号2に対応する受信ビデオ信号とが合成された信号である。ただし、図8A、図8B、図8Cにおいて、mod(X,Y)は、変数Xを変数Yで割った後の剰余を表している。
Figure JPOXMLDOC01-appb-I000004
 A/D変換器51は、受信機50から入力した受信ビデオ信号V(t)をA/D変換し、下記式(8)で表される受信ビデオ信号V(m’)を生成する(ステップST3b)。受信ビデオ信号V(m’)は、A/D変換器51から信号処理部6に出力される。
 V0,tgt(m’)は、下記式(9)で表される目標番号ntgtに対応する受信ビデオ信号V0,tgt(t)がA/D変換された受信ビデオ信号である。m’はサンプリング番号、M’はサンプリング数であり、Δtは、A/D変換された受信ビデオ信号のサンプリング間隔である。図8Cに示す受信ビデオ信号V(m’)は、サンプリングされた信号となる。
Figure JPOXMLDOC01-appb-I000005
 次に、ゲート処理部60によるゲート処理および周波数領域変換部61による周波数領域変換処理について詳細を説明する。
 図9は、ゲート処理部60および周波数領域変換部61の動作を示すフローチャートであり、図5のステップST3およびステップST4の処理の詳細を示している。
 ゲート処理部60は、A/D変換器51から受信ビデオ信号V(m’)を入力すると、受信ビデオ信号V(m’)に対し、予め設定されたゲートスライド量Δmおよびゲート幅に基づいて、下記式(10)に従いゲート処理後の信号V(n,m’)を生成する(ステップST1c)。nはゲート番号である。
 なお、ゲート処理部60は、ゲート幅をパルス幅とみなしてゲート処理を行っている。ただし、ゲートの位置およびゲート幅は、任意に設定された値であってもよい。
 図10Aは、受信ビデオ信号V(m’)の波形を示す図である。図10Bは、ゲート番号10のゲート処理後の信号V(10,m’)の波形を示す図である。図10Cは、ゲート番号11のゲート処理後の信号V(11,m’)の波形を示す図である。図10Dは、ゲート番号12のゲート処理後の信号V(12,m’)の波形を示す図である。
 ゲート処理部60は、図10Aに示す符号cの受信ビデオ信号V(m’)を入力して、受信ビデオ信号V(m’)に対して、例えばゲート番号10~12の受信ゲートG10~G12を設定してゲート処理を行う。これにより、図10Bの符号dで示すゲート処理後の信号V(10,m’)が生成され、図10Cの符号eで示すゲート処理後の信号V(11,m’)が生成され、図10Dの符号fで示すゲート処理後の信号V(12,m’)が生成される。目標数が複数であると、ゲート処理後の信号V(n,m’)も複数の目標のそれぞれから反射された受信RF信号に由来するゲート処理後の信号が合成された信号となる。例えば、目標が、目標番号1の目標と目標番号2の目標がある場合、符号dで示すゲート処理後の信号V(10,m’)は、符号d1で示すゲート番号10の目標番号1に対応するゲート処理後の信号と、符号d2で示すゲート番号10の目標番号2に対応するゲート処理後の信号とが合成された信号である。同様に、符号eで示すゲート処理後の信号V(11,m’)は、符号e1で示すゲート番号11の目標番号1に対応するゲート処理後の信号と、符号e2で示すゲート番号11の目標番号2に対応するゲート処理後の信号とが合成された信号である。さらに、符号fで示すゲート処理後の信号V(12,m’)は、符号f1で示すゲート番号12の目標番号1に対応するゲート処理後の信号と、符号f2で示すゲート番号12の目標番号2に対応するゲート処理後の信号とが合成された信号である。
 また、受信ゲートG11は、受信ゲートG10からゲートスライド量Δmスライドされたゲートであり、受信ゲートG12は、受信ゲートG11から、さらにゲートスライド量Δmスライドされたゲートである。
Figure JPOXMLDOC01-appb-I000006
 続いて、ゲート処理部60は、ゲート処理後の信号V(n,m’)に対し、周波数領域の中心スペクトル周辺の帯域の信号を通過させる狭帯域フィルタ処理(帯域通過フィルタ処理)を施す。これにより、ゲート処理部60は、正弦波となってリサンプリングされた、下記式(11)で表される狭帯域フィルタ処理後(帯域通過フィルタ処理後)の信号V(n,m)を生成する(ステップST2c)。
 なお、下記式(11)において、mは、狭帯域フィルタ処理後の信号のサンプリング番号であり、Mは狭帯域フィルタ処理後の信号のサンプリング数である。
 VG,ntgt(n,m)は、下記式(12)で表される目標番号ntgtのゲート番号nの狭帯域フィルタ処理後の信号である。AnG,ntgtは、目標番号ntgtのゲート番号nの狭帯域フィルタ処理後の信号の振幅である。
 狭帯域フィルタ処理を行うことで、周波数領域の中心スペクトルの情報を損なわずに、サンプリング間隔が粗いリサンプリングが可能となる。これにより、信号点数を減らしてもよくなって演算量が低減されるので、ハードウェア規模を小さくしたレーダ装置1を実現することができる。
Figure JPOXMLDOC01-appb-I000007
 ゲート処理部60は、狭帯域フィルタ処理後の信号V(n,m)を周波数領域変換部61に出力する。また、ゲート処理部60は、狭帯域フィルタ処理を行わない場合も、ゲート処理後の信号を周波数領域変換部61に出力する。
 周波数領域変換部61は、ゲート処理部60から入力した狭帯域フィルタ処理後の信号V(n,m)に対して、下記式(13)に従うフーリエ変換処理を、周波数領域変換処理として行い、周波数領域の信号f(n,k)を生成する(ステップST3c)。ここで、kは、周波数領域のサンプリング番号であり、Mfftは、周波数領域変換点数である。下記式(13)では、周波数領域を離散フーリエ変換で表しているが、高速フーリエ変換またはチャープz変換で周波数領域変換処理を実現してもよい。
 また、周波数領域変換部61は、ゲート処理部60から入力した信号が、狭帯域フィルタ処理が行われなかったゲート処理後の信号である場合も、同様に下記式(13)に従い周波数領域変換を行って、周波数領域の信号f(n,k)を生成する。
 周波数領域変換部61は、周波数領域の信号f(n,k)を目標距離算出部62に出力する。
Figure JPOXMLDOC01-appb-I000008
  次に、目標距離算出部62による目標距離算出処理について詳細を説明する。
 図11Aは、受信ゲート内にある複数の目標の周波数領域の信号の観測値を示す図である。図11Aにおいて、信号波形Sは、目標1の信号と目標2の信号が合成された合成波である。図11Bは、受信ゲート内にある目標ごとの周波数領域の信号を示す図である。図11Bにおいて、信号波形S1は目標1の信号波形であり、信号波形S2は目標2の信号波形である。目標数が1つである場合、あるいは、目標数が複数であっても速度が異なるか、距離がパルス幅以上で十分に異なる場合であれば、特許文献1に記載された従来の技術であっても目標距離を算出することができる。ただし、目標1と目標2とが同じ速度であると、図11Aに示すように、ドップラー周波数に基づいて目標を分離することができなくなる。このため、同じ速度の目標数が複数である場合、複数の信号が干渉して目標距離を算出することが困難になる。すなわち、図11Bに示すように、受信ゲート内に、同じ速度の複数の目標からの反射RF信号が存在する場合、目標数が1つである場合とはディスクリパターンが異なるため、目標距離を算出することが困難になる。
 図12は、受信ゲート内にある複数の目標で反射された受信RF信号の振幅を示す図である。図12において、振幅A1は、ゲート番号nの目標番号ntgt=1に対応する目標からの反射RF信号(受信RF信号)の振幅であり、振幅A2は、ゲート番号nの目標番号ntgt=2に対応する目標からの反射RF信号(受信RF信号)の振幅である。
 また、振幅A3は、ゲート番号nの反射RF信号(受信RF信号)の観測値の振幅であり、A3=(zα(n+zβ(n1/2である。zα(n)はゲート番号nの反射RF信号の実部であり、zβ(n)は虚部である。
 図12に示すように、複数の目標の振幅および位相の差によって各々のゲート番号nで観測される信号(合成波)の振幅および位相が異なるため、各々の目標距離を算出することが困難になる。m(n)は、ゲート番号nのゲート開始ビンに相当するサンプリング番号m’である。
 実施の形態1における目標距離算出部62は、目標が同じ速度であり、ドップラー周波数に基づいて分離することができない複数の目標からの反射RF信号が受信ゲート内に存在する場合であっても、複数の目標の各々の目標距離を算出することができる。以降、目標数Ntgtが2である場合を例に挙げて説明する。
 目標が同じ速度であり、ドップラー周波数に基づいて分離することができない2つの目標からの反射RF信号が受信ゲート内に存在する場合、周波数領域の信号f(n,k)は、下記式(14)で表される、複数の目標番号ntgtの周波数領域の信号fd,ntgt(n,k)の合成波となる。
Figure JPOXMLDOC01-appb-I000009
 ゲート番号nにおける目標番号ntgtの周波数領域の信号fd,ntgt(n,k)は、下記式(15)で表される。下記式(15)から、下記式(16)の関係になるときに、ゲート番号nにおける目標番号ntgtの周波数領域の信号fd,ntgt(n,k)は、振幅最大値を示す。下記式(16)において、ゲート番号nにおける目標番号ntgtの周波数領域の信号fd,ntgt(n,k)は、振幅最大値を示す周波数領域のサンプリング番号kを、周波数領域のサンプリング番号kpeakで表している。
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011
 振幅最大値を示す周波数領域のサンプリング番号kpeakの目標番号ntgtの周波数領域の信号fd,ntgt(n,kpeak)は、下記式(17)のように展開することが可能である。x(m(n),mntgt)は、目標番号ntgtの目標からの反射RF信号が、ゲート番号nの受信ゲート内に存在する割合(受信信号比率)である。Mは、パルスのサンプリング点数であり、Antgtは、受信ゲート内に目標番号ntgtの反射RF信号が全て存在する場合の振幅である。mntgtは目標番号ntgtの初期相対距離R0,ntgtの受信ビデオ信号V(m’)のサンプリング番号であり、θntgtは、目標番号ntgtの初期相対距離R0,ntgtの位相であり、|X|は変数Xの絶対値である。
 なお、目標番号ntgtの初期相対距離R0,ntgtの受信ビデオ信号V(m’)のサンプリング番号mntgtは、下記式(18)で表される。なお、サンプリング番号mntgtは、下記式(18)式に示すように、整数でなくてもよく小数点以下の値が存在してもよい。
Figure JPOXMLDOC01-appb-I000012
 図13Aは、受信ゲート内にある目標で反射された反射RF信号の受信信号比率を示す図である。図13Aにおいて、B1は、目標番号ntgt=1の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する割合(受信信号比率)である。B2は目標番号ntgt=2の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する割合(受信信号比率)である。図13Bは、受信ビデオ信号の波形を示す図である。図13Cは、ゲート番号10のゲート処理後の信号の波形を示す図である。図13Dは、ゲート番号11のゲート処理後の信号の波形を示す図である。図13Eは、ゲート番号12のゲート処理後の信号の波形を示す図である。ゲート処理部60が複数の受信ゲートを設けたため、図13Aに示すように、上記式(17)から、各々の目標からの反射RF信号が受信ゲート内に存在する割合(受信信号比率)x(m(n),mntgt)が受信ゲートごとに異なる。
 一方、図13Dに示すように、ゲート番号11(ゲート番号n=11)の受信ゲートの通過開始は、サンプリング番号11からである。また、図13Eに示すように、ゲート番号12(ゲート番号n=12)の受信ゲートの通過開始はサンプリング番号12からである。このように、ゲート処理部60によるゲート処理では、各々の受信ゲートの通過開始時刻は異なるが、ゲート処理後の信号V(n,m’)および狭帯域フィルタ処理後の信号V(n,m)は、受信ゲート間で時刻の同期がとられている。
 周波数領域変換部61は、上記式(13)に示したように、各々の受信ゲートの位置によらず、同時刻(同じサンプリング番号)から周波数領域変換処理を開始する。
 このため、各々の目標の周波数領域変換後の信号の振幅最大値を示す周波数領域のサンプリング番号kpeakの位相が変化しないような制御が可能になる。
 すなわち、ゲート番号nによらず、目標番号ntgtの初期相対距離R0,ntgtの位相θntgtを示す。この結果、未知数が減るため、少ない演算で複数の目標距離が算出可能なレーダ装置を得ることが可能になる。
 図14Aは、目標1(目標番号ntgt=1の目標)の周波数領域の信号が振幅最大値となる周波数領域のサンプリング番号kpeakの位相の関係を示す図である。図14Bは、目標2(目標番号ntgt=2の目標)の周波数領域の信号が振幅最大値となる周波数領域のサンプリング番号kpeakの位相の関係を示す図である。図14Aおよび図14Bに示すように、ゲート番号nの周波数領域のサンプリング番号kpeakの周波数領域の信号f(n,kpeak)の実部zα(n)および虚部zβ(n)が観測される。
 αは、振幅最大値となる目標1の周波数領域の信号の実部である。
 βは、振幅最大値となる目標1の周波数領域の信号の虚部である。
 αは、振幅最大値となる目標2の周波数領域の信号の実部である。
 βは、振幅最大値となる目標2の周波数領域の信号の虚部である。
 図14Aにおいて、α’は、目標1が振幅最大値を示すゲート番号n’の受信ゲート内に存在する場合の目標1の周波数領域の信号の実部であり、β’は、目標1が振幅最大値を示すゲート番号n’の受信ゲート内に存在する場合の目標1の周波数領域の信号の虚部である。α’は、目標1が振幅最大値を示すゲート番号n’の受信ゲート内に存在する場合の目標2の周波数領域の信号の実部で、β’は目標1が振幅最大値を示すゲート番号n’の受信ゲート内に存在する場合の目標2の周波数領域の信号の虚部である。
 図14Bにおいて、α”は、目標2が振幅最大値を示すゲート番号n”の受信ゲート内に存在する場合の目標1の周波数領域の信号の実部であり、β”は、目標2が振幅最大値を示すゲート番号n”の受信ゲート内に存在する場合の目標1の周波数領域の信号の虚部である。α”は、目標2が振幅最大値を示すゲート番号n”の受信ゲート内に存在する場合の目標2の周波数領域の信号の実部であり、β”は、目標2が振幅最大値を示すゲート番号n”の受信ゲート内に存在する場合の目標2の周波数領域の信号の虚部である。
 ただし、目標1が振幅最大値を示すゲート番号n’および目標2が振幅最大値を示すゲート番号n”は実数であってもよい。図14Aおよび図14Bに示すように、ゲート番号nによらず、各々目標の位相θntgtを変化させずに、ゲート番号nに基づいて、各々の目標からの反射RF信号が受信ゲート内に存在する割合だけが変化する。
 図15Aは、受信ゲート内にある目標で反射された反射RF信号の受信信号比率と目標で反射された反射RF信号の実部とを目標ごとに示す図である。図15Aにおいて、B1は、目標番号ntgt=1の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する割合(受信信号比率)である。C1は、ゲート番号nの受信ゲート内に存在する目標番号ntgt=1の目標からの反射RF信号の実部である。B2は目標番号ntgt=2の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する受信信号比率である。C2は、ゲート番号nの受信ゲート内に存在する目標番号ntgt=2の目標からの反射RF信号の実部である。C3は、ゲート番号nの受信ゲート内に存在する目標からの反射RF信号の観測値の実部である。
 図15Bは、受信ゲート内にある目標で反射された反射RF信号の受信信号比率と目標で反射された反射RF信号の虚部とを目標ごとに示す図である。図15Bにおいて、B1は、目標番号ntgt=1の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する割合(受信信号比率)である。D1は、ゲート番号nの受信ゲート内に存在する目標番号ntgt=1の目標からの反射RF信号の虚部である。B2は目標番号ntgt=2の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する受信信号比率である。D2は、ゲート番号nの受信ゲート内に存在する目標番号ntgt=2の目標からの反射RF信号の虚部である。D3は、ゲート番号nの受信ゲート内に存在する目標からの反射RF信号の観測値の虚部である。
 ドップラー周波数で分離できない距離の異なる複数の目標からの反射RF信号がゲート番号nの受信ゲート内に存在する場合に、反射RF信号の実部および虚部は、図15Aおよび図15Bに示す関係にある。この関係は目標数が1つである場合と異なっており、従来の技術では、目標距離を算出することが困難であった。
 一方、図13Aから図13Eに示したように、ゲート番号nによらず、各々の目標の位相θntgtを変化させずに、ゲート番号nに基づいて各々の目標からの反射RF信号が受信ゲート内に存在している割合だけが変化している。すなわち、実施の形態1に係るレーダ装置1では、反射RF信号(受信RF信号)の実部および虚部のみが変化するようにゲート処理が行われる。目標距離算出部62では、この特性を利用して、ドップラー周波数で互いに分離できない目標距離の異なる複数の目標が受信ゲート内に存在する場合であっても、各々の目標距離を算出することが可能である。
 図16は、実施の形態1における目標距離算出部62の動作例を示すフローチャートであり、図5のステップST5の処理の詳細を示している。また、図17は、実施の形態1における目標距離算出部62の動作の別の例を示すフローチャートである。図16に示すステップST2dの処理は、図17に示すステップST2eと同じ処理である。
 図16および図17において、目標距離算出部62は、予め設定された目標数Ntgt=2である場合を前提として目標距離を算出する。
 観測されたゲート番号nの受信ゲート内に存在する反射RF信号の実部zα(n)と虚部zβ(n)は、下記式(19)および下記式(20)で表される。
Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
 図16において、目標距離算出部62は、目標距離を算出するときに目標数Ntgtと同数の受信ゲートの観測値を用いる場合、下記式(21)を用いて、想定する目標1のサンプリング番号をm’とし、想定する目標2のサンプリング番号をm’として連立方程式を導出して、下記式(22)に従い連立方程式を解くことにより、目標1のサンプリング番号m’および目標2のサンプリング番号m’である場合の目標番号ntgt=1の目標からの反射RF信号の実部α’1,m’1,m’2と、目標1のサンプリング番号m’および目標2のサンプリング番号m’である場合の目標番号ntgt=2の目標からの反射RF信号の実部α’2,m’1,m’2を算出する。
 さらに、目標距離算出部62は、下記式(23に従って連立方程式を解くことにより、目標1のサンプリング番号m’および目標2のサンプリング番号m’である場合の目標番号ntgt=1の目標からの反射RF信号の虚部β’1,m’1,m’2と、目標1のサンプリング番号m’および目標2のサンプリング番号m’である場合の目標番号ntgt=2の目標からの反射RF信号の虚部β’2,m’1,m’2とを算出する。
 ここまでの処理がステップST1dである。なお、mstは、想定する複数の目標距離の組み合わせ(以下、目標距離候補と記載する)の目標のサンプリング開始番号であり、Δmは、想定する目標のサンプリング番号の間隔、medは、想定する複数の目標距離候補の目標のサンプリング終了番号であり、nG,1は、予め設定された番号1のゲート番号、nG,2は、予め設定された番号2のゲート番号である。
 なお、複数の受信ゲート内の周波数領域の信号の実部および虚部のうち、目標距離の算出に用いる信号の実部および虚部は、当該信号の信号強度に基づいて選択してもよい。
Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016
 一方、目標距離算出部62は、目標距離を算出するときに目標数Ntgtより多数の受信ゲートの観測値を用いる場合、下記式(24)に従って、想定する目標1のサンプリング番号をm’とし、目標2のサンプリング番号をm’として連立方程式を導出する。
 下記式(24)は、全ての受信ゲートを用いた場合を示しているが、目標数Ntgtより多い受信ゲートの観測値があればよい。なお、複数の受信ゲートのうち、受信ゲート内の信号の信号強度に基づいて、目標距離の算出に使用する受信ゲートを選択してもよい。
 目標距離算出部62は、下記式(24)で表される連立方程式を、受信信号比率x(m(n),mntgt)で偏微分し、下記式(25)に従って目標距離候補の評価値を算出する。続いて、目標距離算出部62は、下記式(25)を、下記式(26)のように定義する。ここで、信号比率に関する行列Xm’1,m’2、目標信号の実部および虚部に関する行列Am’1,m’2、観測値に関する行列Zm’1,m’2は、下記式(27)で表される。
Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
 図17において、目標距離算出部62は、上記式(26)を下記式(28)に従って、最小二乗法によって解くことにより、目標からの反射RF信号の実部および虚部に関する行列Am’1,m’2を算出する(ステップST1e)。Y-1は、行列Yの逆行列を表す。
Figure JPOXMLDOC01-appb-I000019
 目標距離算出部62は、下記式(29)に従い、目標1のサンプリング番号m’と目標2のサンプリング番号m’との各々の組み合わせの実部α’ntgt,m’1,m’2および虚部β’ntgt,m’1,m’2と、観測値の実部zα(n)および虚部zβ(n)との残差、すなわち、実部の残差εα(m’,m’)と虚部の残差εβ(m’,m’)とを算出する。
Figure JPOXMLDOC01-appb-I000020
 目標1のサンプリング番号m’と目標2のサンプリング番号m’との組み合わせが真値に近くなるほど、残差は小さくなる。従って、目標距離候補の評価値として、残差を分母にした場合、評価値が大きくなるほど、真値との差が小さくなる。
 図18は、目標1のサンプリング番号と目標2のサンプリング番号の組み合わせと目標距離候補の評価値との関係を示す図である。図18において、縦軸は目標1のサンプリング番号m’であり、横軸は目標2のサンプリング番号m’である。図18に示すように、目標距離算出部62は、実部の残差εα(m’,m’)および虚部の残差εβ(m’,m’)を用いて、下記式(30)に従い、評価値ε(m’,m’)を算出する。目標距離算出部62は、下記式(31)に従い、評価値ε(m’,m’)を最大にする目標1のサンプリング番号m”と目標2のサンプリング番号m”とを算出する。ここで、argmaxε(p,q)は、目標距離候補の評価値ε(p,q)を最大にする引数p,qを算出する関数である。
 この後、目標距離算出部62は、下記式(32)を用いて、目標番号ntgtの目標距離R”0,ntgtを算出する(ステップST2d、ステップST2e)。
 このように実部および虚部の情報を用いることで、測距精度が向上する効果がある。
 目標距離算出部62は、実部あるいは虚部のみを用いても、複数の目標距離算出は可能である。また、目標距離算出部62は、目標数が1つであっても目標距離の算出が可能である。目標数が1である場合、m’のみとして算出すればよい。
Figure JPOXMLDOC01-appb-I000021
 目標距離算出部62は、目標番号ntgtの目標距離R”0,ntgtを表示器7に出力する。表示器7は、目標距離算出部62から入力した目標番号ntgtの目標距離R”0,ntgtを目標情報として画面上に表示する。
 前述したように、実施の形態1に係るレーダ装置1は、受信RF信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号に対して周波数領域変換処理を行い、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて目標距離を算出する。これにより、受信ゲート内に複数の目標が存在する場合であっても目標距離を正確に計測することができる。
 例えば、ゲート処理部60が、複数の受信ゲートを設定して狭帯域フィルタ後の信号を各々の受信ゲート内に存在する目標の周波数領域の信号が同じ位相になるように生成し、周波数領域変換部61が、各々の受信ゲート内に存在する信号に対して同じサンプリング番号から周波数領域変換して周波数領域の信号を生成する。ゲート処理部60は、ゲート番号nによらず、各々の目標の実部および虚部だけが変化するようにゲート処理を行うため、目標距離算出部62は、この特性を利用して、想定する受信信号比率と観測値である実部および虚部のうちの少なくとも一方に基づいて、同じ速度で、受信ゲート内に複数の目標からの反射信号が存在した場合であっても目標距離を算出することができる。
 実施の形態1に係るレーダ装置1において、目標距離算出部62は、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて、各々の受信ゲート内にある目標からの受信信号比率に基づく目標距離候補の連立方程式を解いて目標距離候補の評価値を算出し、目標距離候補の評価値に基づいて目標距離を算出する。評価値を用いることで、少ない演算量で複数の目標距離を算出することが可能である。
 実施の形態1に係るレーダ装置1において、目標距離算出部62は、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて、各々の受信ゲート内にある目標からの受信信号比率に基づく目標距離候補の連立方程式を導出し、導出した前記連立方程式を、最小二乗法を用いて解くことにより目標距離候補の評価値を算出し、目標距離候補の評価値に基づいて目標距離を算出する。評価値を、最小二乗法を用いて算出するので、より雑音の影響が低減し、測距精度が向上する。
 なお、実施の形態1では、目標数Ntgtを2としたが、2以外の自然数であっても同様に目標数分の目標距離を算出することは可能である。
実施の形態2.
 図19は、本発明の実施の形態2に係るレーダ装置の信号処理部6Aの構成を示すブロック図である。図19において図1と同一の構成要素には同一の符号を付して説明を省略する。実施の形態2に係るレーダ装置は、図1と同様に、空中線2、送信部3、送受切替部4、受信部5および表示器7を備えている。実施の形態2に係るレーダ装置では、信号処理部6の代わりに、信号処理部6Aが設けられている。
 信号処理部6Aは、図19に示すように、ゲート処理部60、周波数領域変換部61、目標距離算出部62Aおよび目標候補検出部63を備える。
 目標距離算出部62Aは、目標候補検出部63によって検出された目標候補の周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて目標距離を算出する。
 目標候補検出部63は、周波数領域変換部61によって生成された周波数領域の信号の信号強度に基づいて目標候補を検出する。
 周波数領域変換部61は、周波数領域の信号f(n,k)を目標候補検出部63に出力する。目標候補検出部63は、周波数領域の信号f(n,k)の信号強度に基づいて目標候補を検出する。例えば、目標候補検出部63は、CA-CFAR(Cell Average Constant False Alarm Rate)処理によって目標候補を検出する。
 図20は、受信ゲート内にある目標からの反射RF信号の振幅と目標候補からの反射RF信号の振幅と雑音との関係を示す図である。図20において、E1は、ゲート番号nの受信ゲート内に存在する目標からの反射RF信号の振幅である。E2は、CFAR処理で検出されたゲート番号nの受信ゲート内に存在する目標候補からの反射RF信号の振幅の観測値であって、E2=(zα(n+zβ(n1/2である。zα(n)はゲート番号nの反射RF信号の実部であり、zβ(n)は虚部である。E3は、雑音である。
 図20に示すように、CFAR処理を用いると、一定の誤警報確率Pfaとなるように目標候補が検出される。このため、目標候補の誤検出を制御することで、雑音をなるべく検出せずに、信号強度に基づいて目標候補を検出することが可能となる。また、信号強度に基づいて目標候補を検出するため、目標候補の信号強度を制御でき、信号強度に基づく距離精度が得られる。目標候補検出部63は、周波数領域変換部61から入力した周波数領域の信号f(n,k)と、CFAR処理で検出した目標候補ntgtが存在する受信ゲートのゲート番号nG,tgtと、周波数領域のサンプリング番号kとを目標距離算出部62Aに出力する。
 図21は、実施の形態2における目標距離算出部62Aの動作例を示すフローチャートである。以下、想定する目標数の範囲が1からN’tgtであると仮定して説明する。
 目標距離算出部62Aは、想定する目標数の範囲内で目標数n’tgtを設定する(ステップST1f)。目標距離算出部62Aは、想定する目標数n’tgtに応じて下記式(33)に従って連立方程式を導出する。m(nG,tgt)は、目標候補ntgtのゲート番号nG,tgtのゲート開始ビンに相当するサンプリング番号m’である。
Figure JPOXMLDOC01-appb-I000022
 目標距離算出部62Aは、上記式(33)で表された連立方程式を、各々の目標からの反射RF信号が受信ゲート内に存在している割合(受信信号比率)x(m(nG,tgt),mn’tgt)で偏微分して、下記式(34)で表す。次に、目標距離算出部62Aは、下記式(34)を下記式(35)のように定義する。ここで、信号比率に関する行列Xm’1,・・・,m’n’tgtと、目標信号の実部および虚部に関する行列Am’1,…,m’n’tgtと、観測値に関する行列Zm’1,…,m’n’tgtとは、下記式(36)で表される。
Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025
 目標距離算出部62Aは、上記式(36)を、下記式(37)に従い最小二乗法によって解くことにより、目標信号の実部および虚部に関する行列Am’1,…,m’n’tgtを算出する(ステップST2f)。ここで、Y-1は行列Yの逆行列であり、Yは行列Yの転置を表す。
Figure JPOXMLDOC01-appb-I000026
 目標距離算出部62Aは、下記式(38)に従い、目標数n’tgtである場合における各々の目標のサンプリング番号mn’tgtの組み合わせの実部α’n’tgt,m’1,…,m’n’tgtおよび虚部β’n’tgt, m’1,…,m’n’tgtと、観測値の実部zα(n)および虚部zβ(n)の残差、すなわち、実部の残差εα(m’,・・・,m’n’tgt)および虚部の残差εβ(m’,・・・,m’n’tgt)を算出する。
Figure JPOXMLDOC01-appb-I000027
 目標数n’tgtである場合の各々の目標のサンプリング番号mn’tgtの組み合わせが真値に近いほど、残差は小さくなる。従って、残差を分母にした場合、目標距離候補の評価値が大きくなるほど、真値との差が小さくなる。
 目標距離算出部62Aは、実部の残差εα(m’,・・・,m’n’tgt)および虚部の残差εβ(m’,・・・,m’n’tgt)を用いて下記式(39)に従い、目標距離候補の評価値ε(m’,m’)を算出する。
 目標距離算出部62Aは、下記式(40)に従い、目標距離候補の評価値ε(m’,・・・,m’n’tgt)を最大にする、目標数N”tgtと、各々の目標のサンプリング番号mn’tgtを算出する。なお、argmaxε(q,p,・・・,q)は、目標距離候補の評価値ε(q,p,・・・,q)を最大にする変数q、引数p,・・・,qを算出する関数である。
Figure JPOXMLDOC01-appb-I000028
 目標距離算出部62Aは、下記式(41)に従って、目標番号ntgtの目標の距離R”0,ntgtを算出する(ステップST3f)。このように、実部および虚部の情報を用いることで、情報量が増え、測距精度が向上する効果がある。実部および虚部のいずれかのみを用いても、複数の目標の目標距離の算出は可能である。
Figure JPOXMLDOC01-appb-I000029
 目標距離算出部62Aは、目標数に応じて上記式(33)で表される連立方程式を導出し、さらに上記式(37)に従い最小二乗法によって上記連立方程式を解くことにより、目標信号の実部および虚部に関する行列Am’1,…,m’n’tgtを算出し、上記式(40)に従い、目標距離候補の評価値ε(m’,・・・,m’n’tgt)を、最大にする目標数N”tgtと、各々の目標のサンプリング番号mn’tgtを算出する。このため、予め目標数が設定されている場合であっても、目標数分の相対距離を算出することが可能になる。
 前述したように、実施の形態2に係るレーダ装置は、周波数領域変換部61によって生成された周波数領域の信号f(n,k)の信号強度に基づいて目標候補を検出する目標候補検出部63を備えている。目標距離算出部62Aは、目標候補検出部63によって検出された目標候補の周波数領域の信号f(n,k)の実部および虚部のうちの少なくとも一方に基づいて目標距離を算出する。すなわち、目標候補の受信ゲート内の信号の観測値に基づいて目標距離候補が算出されるため、受信ゲートを予め設定する必要がない。また、信号強度に基づいて目標候補を検出するため、信号対雑音比が高い状況で目標距離が算出される。これにより、目標距離を高精度に算出することが可能となる。
 目標候補検出部63によって検出された目標候補のうち、目標候補検出部63がさらに信号強度に基づいて目標候補を選定することで、目標距離をさらに高精度に算出することが可能となる。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本発明に係るレーダ装置は、受信ゲート内に複数の目標が存在する場合であっても目標距離を正確に計測することができるので、各種のレーダ装置に利用可能である。
 1 レーダ装置、2,100 空中線、3 送信部、4 送受切替部、5 受信部、6,6A 信号処理部、7,101 表示器、30 送信機、31 パルス変調器、32 局部発振器、50 受信機、51 A/D変換器、60 ゲート処理部、61 周波数領域変換部、62,62A 目標距離算出部、63 目標候補検出部、102 入出力インタフェース、103 外部記憶装置、104 処理回路、105 信号路、106 プロセッサ、107 メモリ。

Claims (13)

  1.  送信信号を空間に放射する送信部と、
     前記送信信号が空間内の目標で反射されて戻った信号である受信信号を受信する受信部と、
     前記受信信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号を生成するゲート処理部と、
     前記ゲート処理後の信号に対して周波数領域変換を行い、周波数領域の信号を生成する周波数領域変換部と、
     前記周波数領域変換部によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出する目標距離算出部とを備えたこと
     を特徴とするレーダ装置。
  2.  前記目標距離算出部は、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて、各々の受信ゲート内にある目標からの受信信号比率に基づく目標距離候補の連立方程式を解いて目標距離候補の評価値を算出し、目標距離候補の評価値に基づいて目標距離を算出すること
     特徴とする請求項1記載のレーダ装置。
  3.  前記目標距離算出部は、複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて、各々の受信ゲート内にある目標からの受信信号比率に基づく目標距離候補の連立方程式を導出し、導出した前記連立方程式を最小二乗法を用いて解くことにより目標距離候補の評価値を算出し、目標距離候補の評価値に基づいて目標距離を算出すること
     特徴とする請求項1記載のレーダ装置。
  4.  前記目標距離算出部は、目標距離候補と観測値に基づいて目標距離候補の評価値を算出すること
     を特徴とする請求項2または請求項3記載のレーダ装置。
  5.  前記目標距離算出部は、予め設定された目標数に基づいて目標距離を算出すること
     を特徴とする請求項1記載のレーダ装置。
  6.  前記目標距離算出部は、目標距離候補の評価値に基づいて目標数を算出し、目標数分の目標距離を算出すること
     を特徴とする請求項2または請求項3記載のレーダ装置。
  7.  前記周波数領域変換部は、各々の受信ゲート内にある目標の周波数領域変換後の信号の位相が同じになるように、各々の受信ゲートの位置によらず、同時刻に周波数領域変換を開始すること
     を特徴とする請求項1記載のレーダ装置。
  8.  前記ゲート処理部は、ゲート処理に加え、前記受信信号に対して帯域通過フィルタ処理を行い、帯域通過フィルタ処理後の信号を生成すること
     を特徴とする請求項1記載のレーダ装置。
  9.  前記ゲート処理部は、各々の受信ゲート内にある目標の周波数領域変換後の信号の位相が同じになるように、各々の受信ゲートの位置によらず、同時刻に帯域通過フィルタ処理を開始すること
     を特徴とする請求項8記載のレーダ装置。
  10.  前記周波数領域変換部によって生成された周波数領域の信号の信号強度に基づいて目標候補を検出する目標候補検出部を備え、
     前記目標距離算出部は、前記目標候補検出部によって検出された目標候補の周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出すること
     を特徴とする請求項1記載のレーダ装置。
  11.  前記目標距離算出部は、予め設定した複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて目標距離を算出すること
     特徴とする請求項1記載のレーダ装置。
  12.  前記目標距離算出部は、信号強度に基づいて選択した複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方を用いて目標距離を算出すること
     特徴とする請求項1記載のレーダ装置。
  13.  送信部が、送信信号を空間に放射するステップと、
     受信部が、前記送信信号が空間内の目標で反射されて戻った信号である受信信号を受信するステップと、
     ゲート処理部が、前記受信信号に対して複数の受信ゲートを設定したゲート処理を行い、ゲート処理後の信号を生成するステップと、
     周波数領域変換部が、前記ゲート処理後の信号に対して周波数領域変換を行い、周波数領域の信号を生成するステップと、
     目標距離算出部が、前記周波数領域変換部によって生成された複数の受信ゲートの周波数領域の信号の実部および虚部のうちの少なくとも一方に基づいて、目標距離を算出するステップとを備えたこと
     を特徴とする目標距離算出方法。
PCT/JP2018/022934 2018-06-15 2018-06-15 レーダ装置および目標距離算出方法 WO2019239584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2019410.6A GB2588331B (en) 2018-06-15 2018-06-15 Radar device and target distance calculation method
PCT/JP2018/022934 WO2019239584A1 (ja) 2018-06-15 2018-06-15 レーダ装置および目標距離算出方法
JP2020525061A JP6779415B2 (ja) 2018-06-15 2018-06-15 レーダ装置および目標距離算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022934 WO2019239584A1 (ja) 2018-06-15 2018-06-15 レーダ装置および目標距離算出方法

Publications (1)

Publication Number Publication Date
WO2019239584A1 true WO2019239584A1 (ja) 2019-12-19

Family

ID=68843089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022934 WO2019239584A1 (ja) 2018-06-15 2018-06-15 レーダ装置および目標距離算出方法

Country Status (3)

Country Link
JP (1) JP6779415B2 (ja)
GB (1) GB2588331B (ja)
WO (1) WO2019239584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907983A (zh) * 2024-03-19 2024-04-19 深圳市速腾聚创科技有限公司 激光雷达测距测速的方法、激光雷达以及信号处理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323556A (ja) * 2001-04-27 2002-11-08 Nec Corp 距離計測装置
US20100302088A1 (en) * 2009-06-02 2010-12-02 Honeywell International Inc. Doppler beam-sharpened radar altimeter
JP2015125062A (ja) * 2013-12-26 2015-07-06 株式会社豊田中央研究所 レーダ装置および速度の方向測定方法
JP2017138230A (ja) * 2016-02-04 2017-08-10 三菱電機株式会社 目標検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150125A (en) * 1990-12-24 1992-09-22 Honeywell Inc. High Doppler rate, high altitude capability coherent pulse Doppler radar altimeter
JP2655127B2 (ja) * 1995-03-11 1997-09-17 日本電気株式会社 Fmcwレーダ装置
US8259003B2 (en) * 2010-05-14 2012-09-04 Massachusetts Institute Of Technology High duty cycle radar with near/far pulse compression interference mitigation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323556A (ja) * 2001-04-27 2002-11-08 Nec Corp 距離計測装置
US20100302088A1 (en) * 2009-06-02 2010-12-02 Honeywell International Inc. Doppler beam-sharpened radar altimeter
JP2015125062A (ja) * 2013-12-26 2015-07-06 株式会社豊田中央研究所 レーダ装置および速度の方向測定方法
JP2017138230A (ja) * 2016-02-04 2017-08-10 三菱電機株式会社 目標検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907983A (zh) * 2024-03-19 2024-04-19 深圳市速腾聚创科技有限公司 激光雷达测距测速的方法、激光雷达以及信号处理设备
CN117907983B (zh) * 2024-03-19 2024-05-31 深圳市速腾聚创科技有限公司 激光雷达测距测速的方法、激光雷达以及信号处理设备

Also Published As

Publication number Publication date
GB2588331A (en) 2021-04-21
JP6779415B2 (ja) 2020-11-04
GB202019410D0 (en) 2021-01-20
JPWO2019239584A1 (ja) 2020-12-17
GB2588331B (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US11016171B2 (en) Radar sensing with phase correction
US11693085B2 (en) FMCW radar with interference signal suppression
CN108885254B (zh) 物体检测装置
EP3816665B1 (en) Interference suppression in a fmcw radar system
US10871557B2 (en) Velocity detection apparatus
KR20150094240A (ko) 레이더를 이용한 표적 검출 장치 및 표적을 검출하는 방법
JP5811931B2 (ja) 位相モノパルスレーダ装置
US10761205B2 (en) Systems for determining target direction and methods therefor
JP5656505B2 (ja) レーダ装置
US8760340B2 (en) Processing radar return signals to detect targets
JP2015514971A (ja) 物標検出の方法
WO2021166205A1 (ja) レーダ装置、観測対象検出方法および車載装置
WO2019239584A1 (ja) レーダ装置および目標距離算出方法
JP2013167580A (ja) 物標速度測定装置、信号処理装置、レーダー装置、物標速度測定方法及びプログラム
JP6037625B2 (ja) レーダ干渉除去装置及びレーダ干渉除去方法
KR102235571B1 (ko) 저가형 다중 레이다를 이용한 거리 해상도 향상 기법
JP6567220B1 (ja) レーダ装置および目標距離計測方法
JP7261302B2 (ja) レーダ装置
JP7452310B2 (ja) レーダ装置とその制御方法
WO2019159231A1 (ja) レーダ装置
JP2013205268A (ja) レーダ信号処理装置
CN115267721B (zh) 一种基于双频sar的地面动目标径向速度估计方法
JP2007033326A (ja) 測角装置
JP2002162462A (ja) Rcs計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525061

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202019410

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180615

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922808

Country of ref document: EP

Kind code of ref document: A1