WO2019237929A1 - 物理下行控制信道监听参数配置方法、终端及网络侧设备 - Google Patents

物理下行控制信道监听参数配置方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2019237929A1
WO2019237929A1 PCT/CN2019/089155 CN2019089155W WO2019237929A1 WO 2019237929 A1 WO2019237929 A1 WO 2019237929A1 CN 2019089155 W CN2019089155 W CN 2019089155W WO 2019237929 A1 WO2019237929 A1 WO 2019237929A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control channel
physical downlink
terminal
monitoring
Prior art date
Application number
PCT/CN2019/089155
Other languages
English (en)
French (fr)
Inventor
姜大洁
姜蕾
丁昱
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019237929A1 publication Critical patent/WO2019237929A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, a terminal, and a network-side device for configuring a physical downlink control channel monitoring parameter.
  • a physical downlink control channel (Physical Downlink Control Channel, PDCCH) is used to schedule a data channel.
  • PDCCH Physical Downlink Control Channel
  • a user terminal (UE) (or user equipment) cannot initially know the number and location of control channel elements (Control Channel Elements) occupied by the PDCCH, and the downlink control information (DCI) format transmitted.
  • the UE is required to perform blind detection on the PDCCH.
  • the base station configures a blind detection monitoring period for the PDCCH.
  • the base station notifies the UE of the PDCCH monitoring period.
  • the UE monitors the PDCCH according to the monitoring period.
  • the arrival period of the service packet is 20 milliseconds
  • the monitoring period configured by the base station for the PDCCH is 2 milliseconds.
  • the UE performs blind detection on the PDCCH, but does not detect the PDCCH.
  • the power consumption of the UE monitoring the PDCCH is increased.
  • Embodiments of the present disclosure provide a method for configuring a physical downlink control channel monitoring parameter, a terminal, and a network-side device, so as to solve a problem that a terminal consumes high power consumption when monitoring a PDCCH.
  • an embodiment of the present disclosure provides a method for configuring a physical downlink control channel monitoring parameter.
  • the method includes: sending a configuration request for a monitoring parameter of a physical downlink control channel to a network-side device; wherein the configuration request includes a physical downlink control channel. Or the factors that affect the monitoring parameters of the physical downlink control channel.
  • an embodiment of the present disclosure provides a method for configuring a physical downlink control channel monitoring parameter.
  • the method includes: receiving a configuration request for a monitoring parameter of a physical downlink control channel from a terminal; wherein the configuration request includes monitoring of a physical downlink control channel. Parameters, or factors that affect the monitoring parameters of the physical downlink control channel.
  • an embodiment of the present disclosure provides a terminal.
  • the terminal includes a sending module configured to send a configuration request for monitoring parameters of a physical downlink control channel to a network-side device.
  • the configuration request includes monitoring of a physical downlink control channel. Parameters, or factors that affect the monitoring parameters of the physical downlink control channel.
  • an embodiment of the present disclosure provides a network-side device.
  • the network-side device includes a receiving module configured to receive a configuration request for a monitoring parameter of a physical downlink control channel from a terminal.
  • the configuration request includes a physical downlink control channel. Or the factors that affect the monitoring parameters of the physical downlink control channel.
  • an embodiment of the present disclosure provides a terminal, including a signal transmitter, a signal receiver, a processor, and a memory.
  • the memory stores a computer program, and the computer program is controlled by the processor to implement the signal transmitter and the signal receiver.
  • an embodiment of the present disclosure provides a network-side device, including a signal transmitter, a signal receiver, a processor, and a memory.
  • the memory stores a computer program, and the computer program controls the signal transmitter and signal reception when the computer program is executed by the processor.
  • the device implements the physical downlink control channel monitoring parameter configuration method in the above technical solution.
  • an embodiment of the present disclosure provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the physical downlink control channel monitoring parameter configuration method in the foregoing technical solution is implemented .
  • the present disclosure provides a physical downlink control channel monitoring parameter configuration method, a terminal, a network-side device, and a storage medium.
  • the terminal sends a configuration request including a PDCCH monitoring parameter or a factor affecting the PDCCH monitoring parameter to the network-side device. That is, the terminal may estimate the PDCCH monitoring parameters or the factors that affect the PDCCH monitoring parameters in advance according to the related information of the downlink service or the uplink service. Therefore, a configuration request is requested to configure a monitoring parameter with a high degree of matching with the arrival period of the service packet, thereby reducing the terminal's monitoring of the PDCCH, but the PDCCH is not detected, which can reduce the power consumption of the terminal monitoring the PDCCH.
  • FIG. 1 is a schematic diagram of a scenario provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for configuring a PDCCH monitoring parameter according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a first specific example of a PDCCH monitoring parameter configuration method of the present disclosure
  • FIG. 4 is a flowchart of a second specific example of a PDCCH monitoring parameter configuration method according to the present disclosure
  • FIG. 5 is a flowchart of a third specific example of a PDCCH monitoring parameter configuration method according to the present disclosure.
  • FIG. 6 is a flowchart of a PDCCH monitoring parameter configuration method according to another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a first specific example of a PDCCH monitoring parameter configuration method of the present disclosure
  • FIG. 8 is a flowchart of a second specific example of a method for configuring a PDCCH monitoring parameter according to the present disclosure
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure.
  • 16 is a schematic diagram of a hardware structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a hardware structure of a network-side device according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a method for configuring a physical downlink control channel monitoring parameter, a terminal, and a network-side device, which can be applied to a scenario in which a terminal communicates with a network-side device and monitors a physical downlink control channel.
  • the communication between the terminal and the network-side device may specifically include that the terminal sends service data to the network-side device, and the network-side device sends service data to the terminal.
  • the behavior of the terminal sending service data to the network-side device is uplink communication.
  • the behavior of the network-side device sending service data to the terminal is downlink communication.
  • the terminal may be a mobile phone, a tablet computer, a smart watch, a smart home appliance, or the like, which is not limited herein. FIG.
  • the network-side device A may be a base station.
  • the base station may be a commonly used base station, an evolved base station (eNB), or a network-side device in a 5G system (for example, Next-generation base stations (next generation nodes, base stations, or gNBs) or transmission and reception points (transmission and reception points (TRP)) or cells, or network-side devices in subsequent evolution communication systems.
  • eNB evolved base station
  • TRP transmission and reception points
  • the PDCCH can carry the uplink and downlink control information of the network-side device and the terminal.
  • the control information carried by the PDCCH may include public control information and dedicated control information.
  • the PDCCH channel can also carry scheduling information of a physical uplink shared channel (PUSCH) and scheduling information of a physical downlink shared channel (PDSCH).
  • the scheduling information carried by the PDCCH channel is called Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the time-frequency resource set occupied by the PDCCH is a control resource set (ie, CORESET).
  • the terminal searches for a specific wireless network temporary identity (RNTI) in the search space of the PDCCH. If the RNTI corresponding to the terminal itself is found, it means that the terminal has detected the PDCCH.
  • the terminal may perform periodic monitoring on the PDCCH according to monitoring parameters such as a monitoring period and an offset. For example, the PDCCH is monitored every 5 milliseconds.
  • an embodiment of the present disclosure provides a method for configuring PDCCH monitoring parameters.
  • FIG. 2 is a flowchart of a PDCCH monitoring parameter configuration method according to an embodiment of the present disclosure.
  • the execution body of the PDCCH monitoring parameter configuration method is a terminal.
  • the PDCCH monitoring parameter configuration method includes step S101.
  • step S101 a configuration request for monitoring parameters of a PDCCH is sent to a network-side device.
  • the configuration request is used to request a configuration of a monitoring parameter from a network-side device.
  • the configuration request may include monitoring parameters of the PDCCH, or factors that affect the monitoring parameters of the PDCCH.
  • the PDCCH monitoring parameter is used to configure the terminal to monitor the PDCCH. According to the factors that affect the monitoring parameters of the PDCCH, the monitoring parameters of the PDCCH can be obtained.
  • a terminal sends an uplink service to a network-side device through uplink communication.
  • the network-side device sends downlink services to the terminal through downlink communication.
  • the terminal can obtain the monitoring parameters of the PDCCH or the factors that affect the monitoring parameters of the PDCCH according to the downlink service in the downlink communication or the uplink service in the uplink communication.
  • the terminal sends a configuration request including a monitoring parameter of the PDCCH or a factor affecting the monitoring parameter of the PDCCH to the network-side device. That is, the terminal may pre-estimate the PDCCH monitoring parameters or factors affecting the PDCCH monitoring parameters according to the related information of the downlink service or the uplink service. Therefore, a configuration request is requested to configure a monitoring parameter with a high degree of matching with the arrival period of the service packet, thereby reducing the terminal's monitoring of the PDCCH, but the PDCCH is not detected, and the power consumption of the terminal monitoring the PDCCH is reduced. At the same time, the memory occupied by the terminal for monitoring the PDCCH can also be reduced.
  • the listening parameters include a listening period.
  • the listening parameters include a listening period and an offset (ie, offset).
  • the monitoring period is a period in which the terminal monitors the PDCCH.
  • the offset is used to indicate in which time slot (ie, slot) of the listening period or on which time slots the PDCCH is monitored.
  • the monitoring period of the PDCCH requested by the terminal to the network-side device is 10 time slots, and the monitoring offset is the fourth time slot and the fifth time slot in each 10 time slot monitoring period.
  • the monitoring period of the PDCCH requested by the terminal to the network-side device is 20 time slots, and the monitoring offset is the first time slot in the monitoring period of each 20 time slot.
  • the network-side device may also configure the PDCCH monitoring period and offset for the terminal in the above manner.
  • the time when the network-side device configures the terminal to monitor the PDCCH by setting the offset is within a certain time after the downlink synchronization is completed through the SSB.
  • the factors affecting the monitoring parameters of the PDCCH may include one or more of the uplink service packet arrival period, the uplink service packet size, the uplink data transmission rate, the uplink service delay requirement, the remaining power of the terminal, and the temperature of the terminal.
  • the combination of terms is not limited herein.
  • the uplink service packet arrival period is used to indicate the period during which the uplink service packet arrives at the terminal buffer, such as the average period.
  • the uplink data transmission rate can be obtained by the quotient of the total amount of uplink service packets in a statistical period and the statistical period in that period.
  • the delay requirement of the uplink service is used to indicate the delay requirement of the uplink service package in the uplink communication.
  • the factors affecting the monitoring parameters of the PDCCH may include one of the downlink service packet arrival period, the downlink service packet size, the downlink data transmission rate, the downlink service delay requirement, the remaining power of the terminal, the temperature of the terminal, or The combination of several items is not limited here.
  • the downlink service packet arrival period is used to indicate the generation period of the downlink service packet, such as the average period.
  • the downlink data transmission rate can be obtained by the quotient of the total amount of downlink service packets in a statistical period and the statistical period in that period.
  • the delay requirement of the downlink service is used to indicate the delay requirement of the downlink service package in the downlink communication.
  • the monitoring parameters of the PDCCH may be determined according to factors that affect the monitoring parameters of the PDCCH.
  • the uplink service packet arrival period or the downlink service packet arrival period may be used as the PDCCH monitoring period.
  • other factors are considered on the basis of the uplink service packet arrival period or the downlink service packet arrival period to obtain a PDCCH monitoring period.
  • the uplink service package or the downlink service package needs to be successfully transmitted through multiple data scheduling.
  • the PDCCH monitoring period can be reduced to increase the transmission opportunity of service packets.
  • the PDCCH monitoring period can be reduced. If the uplink data transmission rate or the downlink data transmission rate is slow (for example, the uplink data transmission rate or the downlink data transmission rate is lower than the second rate threshold, and the second rate threshold is less than the first rate threshold), the PDCCH monitoring period may be increased.
  • the PDCCH monitoring period may be increased.
  • the uplink service delay demand or the downlink service delay demand is high (such as the uplink service delay demand or the downlink service delay demand is higher than the second demand threshold, and the second demand threshold is higher than the first demand threshold), the PDCCH can be reduced Listening cycle.
  • the PDCCH monitoring period may be increased to achieve the purpose of saving power.
  • the PDCCH monitoring period may be increased to reduce the temperature of the terminal.
  • the monitoring parameters of the PDCCH can also be obtained by combining the multiple factors that affect the monitoring parameters of the PDCCH. For specific combination, refer to the foregoing description, and details are not described herein again.
  • step S101 in the above embodiment may be specifically implemented as sending a configuration request of a PDCCH monitoring parameter to a network-side device through a PUSCH.
  • a PUSCH scheduled by an uplink grant that is, uplink grant
  • step S101 in the above embodiment may be specifically implemented as sending a configuration request of a PDCCH monitoring parameter to a network-side device through a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • step S101 in the above embodiment may be specifically implemented as sending a configuration request of a PDCCH monitoring parameter to a network-side device through a physical random access channel ((Physical Random Access Channel, PRACH).
  • a physical random access channel (Physical Random Access Channel, PRACH).
  • PRACH Physical Random Access Channel
  • the configuration request sent by the terminal may include one or more of the following combinations:
  • One or more downlink control information format (Downlink Control Information Format, DCI format) PDCCH monitoring parameters, one or more RNTI PDCCH monitoring parameters, one or more search space types corresponding to PDCCH monitoring parameters Monitoring parameters, monitoring parameters of the PDCCH corresponding to one or more search spaces, monitoring parameters of the PDCCH corresponding to one or more search space sets (Search Space Set), PDCCH corresponding to one or more control resource sets (that is, CORESET) Listening parameters.
  • DCI Format Downlink Control Information Format
  • different PDCCH monitoring parameters can be configured. For example, for DCI format 0_1, the requested PDCCH monitoring parameter is 10 milliseconds or 10 time slots; for DCI format 1_1, the requested PDCCH monitoring parameter is 20 milliseconds or 20 time slots.
  • different monitoring parameters can be configured.
  • search space types include public search space and private search space. Subdivided specifically, the public search space can also include public search spaces with different scrambling methods.
  • the dedicated search space may also include dedicated search spaces for different scrambling methods.
  • different PDCCH monitoring parameters can be configured. For different search spaces of the same search space type, different monitoring parameters can be configured.
  • a search space set may include multiple search spaces, for example, search spaces of the same type may form a search space set.
  • a terminal is in communication with a network-side device, a service with a long service packet arrival period is being performed.
  • the network-side device configures the terminal to monitor the PDCCH at each time slot. Then there are cases where a large number of terminals blindly detect the PDCCH, but no PDCCH is detected.
  • the terminal may send a configuration request for monitoring parameters of the PDCCH to the network-side device according to the specific situation of the uplink service between the terminal and the network-side device.
  • the terminal determines that the DCI format is 0_1 according to the specific situation of the uplink service.
  • the terminal may report a configuration request in which the PDCCH monitoring period corresponding to DCI format 0_1 is 10 milliseconds or 10 time slots to the network-side device.
  • the network-side device configures the UE to monitor the PDCCH at each time slot. Then there are cases where a large number of terminals blindly detect the PDCCH, but there is no service packet in the PDCCH.
  • the terminal may send a configuration request for monitoring parameters of the PDCCH to the network-side device according to the specific situation of the uplink service between the terminal and the network-side device.
  • the terminal determines that the DCI format is 0_1 according to the specific situation of the uplink service, and the DCI format 0_1 is configured on the second search space search space 2. Then, the terminal may report a configuration request for the monitoring period of the PDCCH corresponding to search space 2 to 10 milliseconds or 10 time slots to the network-side device.
  • the network-side device configures the terminal to monitor the PDCCH every 10 timeslots, and monitors in the second timeslot (that is, partial The displacement is 2 slots).
  • the time interval from downlink synchronization to monitoring the PDCCH is long, and the terminal needs to wait too long.
  • the terminal determines that the 8th time slot is closest to the SSB, and determines that an appropriate offset is 8 time slots. Then the terminal may set a configuration request including a listening period of 10 time slots and an offset of 8 time slots, and send the configuration request to the network-side device.
  • the factors that affect the monitoring parameters of the PDCCH may include a service level.
  • the service level is used to identify service packages with different configuration requirements.
  • the business level can be set according to the work scenario and work requirements, which is not limited here.
  • the service level and the monitoring parameters have a mapping relationship.
  • the service level and monitoring parameters can form a mapping table.
  • the mapping table records each service level and the monitoring parameters corresponding to the service level.
  • the service level is the first level, and the listening period corresponding to the first level is 5 milliseconds or 5 time slots.
  • the service level is the second level.
  • the listening period corresponding to the second level is 10 milliseconds or 10 time slots, and the offset is 2.
  • the service level is the third level, and the listening period corresponding to the third level is 20 milliseconds or 20 time slots.
  • the service level here may also be called the PDCCH monitoring level or other terms.
  • the terminal can configure the monitoring parameters of the PDCCH by exchanging information with the network-side device.
  • the PDCCH monitoring parameter configuration method applied to the terminal side. It should be noted that the PDCCH monitoring parameter configuration method protected by the present disclosure includes, but is not limited to, the following three specific examples.
  • FIG. 3 is a flowchart of a first specific example of a method for configuring a PDCCH monitoring parameter in the present disclosure. 3 is different from FIG. 1 in that the PDCCH monitoring parameter configuration method shown in FIG. 3 further includes steps S102 and S103.
  • step S102 the reconfigured PDCCH monitoring parameters are received from the network-side device.
  • the network-side device may reconfigure the monitoring parameters of the PDCCH according to the configuration request, and send the reconfigured monitoring parameters of the PDCCH to the terminal.
  • the terminal receives the reconfigured PDCCH monitoring parameters from the network-side device.
  • the reconfigured PDCCH monitoring parameters received by the terminal from the network-side device are related to the configuration request sent by the terminal to the network-side device. If the configuration request sent by the terminal to the network-side device includes a monitoring parameter, the monitoring parameter of the reconfigured PDCCH received by the terminal from the network-side device in step S102 may be the same as the monitoring parameter in the configuration request, or may be included in the configuration request. Adjusting based on the monitoring parameters to obtain new monitoring parameters is not limited here.
  • the terminal uses a radio resource control (RRC) message, or a media access control (MAC) message, or a downlink control message (Downlink Control Information, DCI) to send the terminal from the network-side device.
  • RRC radio resource control
  • MAC media access control
  • DCI Downlink Control Information
  • step S103 the PDCCH is monitored according to the reconfigured PDCCH monitoring parameters.
  • the terminal monitors the PDCCH according to the reconfigured monitoring period of the PDCCH.
  • the listening parameters include a listening period and an offset, the terminal monitors the PDCCH according to the reconfigured monitoring period and offset of the PDCCH.
  • FIG. 4 is a flowchart of a second specific embodiment of a PDCCH monitoring parameter configuration method according to the present disclosure. 4 is different from FIG. 1 in that the PDCCH monitoring parameter configuration method shown in FIG. 4 further includes steps S104 and S105.
  • step S104 confirmation information for indicating that the configuration request is approved is received from the network-side device.
  • the confirmation information does not include the monitoring parameters.
  • the confirmation information indicates that the network-side device agrees that the terminal monitors the PDCCH according to the monitoring parameters in the configuration request.
  • the confirmation information indicates that the network-side device agrees with the terminal to monitor the PDCCH according to the monitoring parameters obtained according to the factors affecting the monitoring parameters of the PDCCH in the configuration request.
  • the terminal receives the confirmation information from the network-side device through an RRC message, or a MAC message, or a DCI.
  • step S105 the PDCCH is monitored according to the monitoring parameters of the PDCCH indicated by the configuration request.
  • the terminal monitors the PDCCH according to the monitoring parameter in the configuration request. If the configuration request previously sent by the terminal to the network-side device includes factors that affect the monitoring parameters of the PDCCH, the terminal may determine the monitoring parameters according to the factors that affect the monitoring parameters of the PDCCH in the configuration request, and monitor the PDCCH according to the monitoring parameters.
  • FIG. 5 is a flowchart of a third specific embodiment of a PDCCH monitoring parameter configuration method according to the present disclosure. 5 is different from FIG. 1 in that the PDCCH monitoring parameter configuration method shown in FIG. 5 further includes step S106.
  • step S106 the PDCCH is monitored according to the monitoring parameters of the PDCCH indicated by the configuration request.
  • the network-side device may directly monitor the PDCCH according to the monitoring parameters of the PDCCH indicated by the configuration request.
  • the terminal monitors the PDCCH according to the monitoring parameter in the configuration request. If the previous configuration request sent by the terminal to the network-side device includes factors that affect the PDCCH monitoring parameters, the terminal may determine the monitoring parameters according to the factors that affect the PDCCH monitoring parameters in the configuration request, and monitor the PDCCH according to the monitoring parameters.
  • FIG. 6 is a flowchart of a PDCCH monitoring parameter configuration method according to another embodiment of the present disclosure.
  • the execution body of the PDCCH monitoring parameter configuration method is a network-side device.
  • the method for configuring PDCCH monitoring parameters includes step S201.
  • step S201 a configuration request for monitoring parameters of a PDCCH is received from a terminal.
  • the configuration request includes a monitoring parameter of the PDCCH, or a factor that affects the monitoring parameter of the PDCCH.
  • an uplink service terminal sends an uplink service packet to a network-side device, and a downlink communication network side device sends a downlink service packet to the terminal.
  • the PDCCH monitoring parameters in the configuration request received by the network-side device from the terminal, or the factors affecting the PDCCH monitoring parameters are obtained by the terminal according to the downlink service in the downlink communication or the uplink service in the uplink communication.
  • the network-side device receives a configuration request from a terminal that includes a monitoring parameter of the PDCCH or a factor that affects the monitoring parameter of the PDCCH. And the monitoring parameters of the PDCCH or the factors affecting the monitoring parameters of the PDCCH in the configuration request received by the network-side device are estimated in advance by the terminal according to the related information of the downlink service or the uplink service.
  • the network-side device can determine the monitoring parameters with a high degree of matching with the arrival period of the service packet through the configuration request, thereby reducing the terminal's monitoring of the PDCCH, but the PDCCH is not detected, and the power consumption of the terminal monitoring the PDCCH is reduced.
  • the memory occupied by the terminal for monitoring the PDCCH can also be reduced.
  • step S201 in the foregoing embodiment may be specifically implemented as receiving a configuration request of a PDCCH monitoring parameter from a terminal through a PUSCH.
  • a configuration request for monitoring parameters of a PDCCH may be received from a terminal.
  • step S201 in the foregoing embodiment may be specifically implemented as receiving a configuration request of a PDCCH monitoring parameter from a terminal through a PUCCH.
  • step S201 in the above embodiment may be specifically implemented as receiving a configuration request of a PDCCH monitoring parameter from a terminal through a PRACH.
  • a random access message_1 or message_3 may be used to receive a configuration request for monitoring parameters of the PDCCH from the terminal.
  • the configuration request sent by the terminal may include one or more of the following combinations:
  • PDCCH monitoring parameters corresponding to one or more DCI formats PDCCH monitoring parameters corresponding to one or more RNTIs, PDCCH monitoring parameters corresponding to one or more search space types, and one or more search space corresponding PDCCH monitoring parameters, PDCCH monitoring parameters corresponding to one or more search space sets, and PDCCH monitoring parameters corresponding to one or more control resource sets.
  • the factors that affect the monitoring parameters of the PDCCH may include a service level.
  • the service level and the monitoring parameters have a mapping relationship.
  • the service level and the monitoring parameters refer to related content in the foregoing embodiments, and details are not described herein again.
  • the network-side device can configure the monitoring parameters of the PDCCH by exchanging information with the terminal.
  • two specific embodiments are used to describe a PDCCH monitoring parameter configuration method applied to a network-side device. It should be noted that the PDCCH monitoring parameter configuration method protected by the present disclosure includes, but is not limited to, the following two specific embodiments.
  • FIG. 7 is a flowchart of a first specific embodiment of a PDCCH monitoring parameter configuration method of the present disclosure. 7 is different from FIG. 6 in that the PDCCH monitoring parameter configuration method shown in FIG. 7 further includes steps S202 and S203.
  • step S202 the PDCCH monitoring parameters are reconfigured according to the configuration request.
  • the network-side device may directly reconfigure the monitoring parameters of the PDCCH. If the configuration request includes factors that affect the monitoring parameters of the PDCCH, the network-side device may determine the monitoring parameters of the PDCCH according to the factors that affect the monitoring parameters of the PDCCH. Then reconfigure the monitoring parameters of the PDCCH.
  • step S203 the reconfigured PDCCH monitoring parameters are sent to the terminal.
  • the network-side device sends the reconfigured PDCCH monitoring parameters to the terminal through an RRC message, or a MAC message, or a DCI.
  • FIG. 8 is a flowchart of a second specific embodiment of a PDCCH monitoring parameter configuration method according to the present disclosure. 8 is different from FIG. 6 in that the PDCCH monitoring parameter configuration method shown in FIG. 8 further includes step S204.
  • step S204 confirmation information for indicating that the configuration request is approved is sent to the terminal.
  • the confirmation information is sent to the terminal through an RRC message, or a MAC message, or a DCI.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 9, the terminal 300 includes a sending module 301.
  • the sending module 301 is configured to send a configuration request of a PDCCH monitoring parameter to a network-side device.
  • the configuration request includes monitoring parameters of the PDCCH, or factors that affect the monitoring parameters of the PDCCH.
  • the terminal sends a configuration request including a monitoring parameter of the PDCCH or a factor affecting the monitoring parameter of the PDCCH to a network-side device. That is, the terminal may pre-estimate the PDCCH monitoring parameters or factors affecting the PDCCH monitoring parameters according to the related information of the downlink service or the uplink service.
  • the configuration request it is requested to configure a monitoring parameter with a high degree of matching with the arrival period of the service packet, thereby reducing the terminal's monitoring of the PDCCH but not detecting the PDCCH, and reducing the power consumption of the terminal's monitoring of the PDCCH.
  • the memory occupied by the terminal for monitoring the PDCCH can also be reduced.
  • the listening parameters include a listening period, or the listening parameters include a listening period and an offset.
  • the factors affecting the monitoring parameters of the PDCCH include one or a combination of the following: the uplink service packet arrival period, the uplink service packet size, the uplink data transmission rate, the uplink service delay requirement, the terminal ’s remaining power, and Terminal temperature.
  • the factors affecting the monitoring parameters of the PDCCH include one or a combination of the following: a downlink service packet arrival period, a downlink service packet size, a downlink data transmission rate, a downlink service delay requirement, and a terminal's remaining power And terminal temperature.
  • the sending module 301 in the foregoing embodiment may be specifically configured to send a configuration request for monitoring parameters of the PDCCH to a network-side device through a PUSCH, a PUCCH, or a PRACH.
  • the configuration request includes a combination of one or more of the following:
  • PDCCH monitoring parameters corresponding to one or more DCI formats PDCCH monitoring parameters corresponding to one or more RNTIs, PDCCH monitoring parameters corresponding to one or more search space types, and one or more search space corresponding PDCCH monitoring parameters, PDCCH monitoring parameters corresponding to one or more search space sets, and PDCCH monitoring parameters corresponding to one or more control resource sets.
  • the factors affecting the monitoring parameters of the PDCCH include a service level, and the service level has a mapping relationship with the monitoring parameters.
  • FIG. 10 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure. 10 is different from FIG. 9 in that the terminal 300 shown in FIG. 10 may further include a first receiving module 302 and a first monitoring module 303.
  • the first receiving module 302 is configured to receive a reconfigured monitoring parameter of a PDCCH from a network-side device.
  • the first monitoring module 303 is configured to monitor the PDCCH according to the reconfigured monitoring parameters of the PDCCH.
  • the above-mentioned first receiving module 302 may be specifically configured to receive a reconfigured monitoring parameter of a physical downlink control channel from a network-side device through an RRC message, a MAC message, or a DCI.
  • FIG. 11 is a schematic structural diagram of a terminal in another embodiment of the present disclosure. 11 is different from FIG. 9 in that the terminal 300 shown in FIG. 11 may further include a second receiving module 304 and a second monitoring module 305.
  • the second receiving module 304 is configured to receive confirmation information from the network-side device for indicating that the configuration request is approved.
  • the second monitoring module 305 is configured to monitor the PDCCH according to the monitoring parameters of the PDCCH indicated by the configuration request.
  • the second receiving module 304 may be specifically configured to receive confirmation information from a network-side device through an RRC message, or a MAC message, or a DCI.
  • FIG. 12 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure. 12 is different from FIG. 9 in that the terminal 300 shown in FIG. 12 may further include a third monitoring module 306.
  • the third monitoring module 306 is configured to monitor the PDCCH according to the monitoring parameters of the PDCCH indicated by the configuration request.
  • FIG. 13 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure. As shown in FIG. 13, the network-side device 400 may include a receiving module 401.
  • the receiving module 401 is configured to receive a configuration request for monitoring parameters of a PDCCH from a terminal.
  • the configuration request includes monitoring parameters of the PDCCH, or factors that affect the monitoring parameters of the PDCCH.
  • the network-side device receives a configuration request from a terminal that includes a monitoring parameter of the PDCCH or a factor that affects the monitoring parameter of the PDCCH. And the monitoring parameters of the PDCCH or the factors affecting the monitoring parameters of the PDCCH in the configuration request received by the network-side device are estimated in advance by the terminal according to the related information of the downlink service or the uplink service.
  • the network-side device can determine a monitoring parameter with a high degree of matching with the arrival period of the service packet through a configuration request, thereby reducing the terminal's monitoring of the PDCCH, but no PDCCH is detected. Furthermore, the power consumption of the terminal monitoring the PDCCH is reduced.
  • the memory occupied by the terminal for monitoring the PDCCH can also be reduced.
  • the listening parameters include a listening period.
  • the listening parameters include a listening period and an offset.
  • the factors affecting the monitoring parameters of the PDCCH include one or a combination of the following: the uplink service packet arrival period, the uplink service packet size, the uplink data transmission rate, the uplink service delay requirement, the terminal ’s remaining power, and Terminal temperature.
  • the factors affecting the monitoring parameters of the PDCCH include one or a combination of the following: a downlink service packet arrival period, a downlink service packet size, a downlink data transmission rate, a downlink service delay requirement, and a terminal's remaining power And terminal temperature.
  • the receiving module 401 in the foregoing embodiment may be specifically configured to receive a configuration request for monitoring parameters of a PDCCH from a terminal through a PUSCH, a PUCCH, or a PRACH.
  • the configuration request includes a combination of one or more of the following:
  • PDCCH monitoring parameters corresponding to one or more DCI formats PDCCH monitoring parameters corresponding to one or more RNTIs, PDCCH monitoring parameters corresponding to one or more search space types, and one or more search space corresponding PDCCH monitoring parameters, PDCCH monitoring parameters corresponding to one or more search space sets, and PDCCH monitoring parameters corresponding to one or more control resource sets.
  • the factors affecting the monitoring parameters of the PDCCH include the service level, and the service level has a mapping relationship with the monitoring parameters.
  • FIG. 14 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure. 14 is different from FIG. 13 in that the network-side device 400 shown in FIG. 14 may further include a configuration module 402 and a first sending module 403.
  • the configuration module 402 is configured to reconfigure the monitoring parameters of the PDCCH according to the configuration request.
  • the first sending module 403 is configured to send the reconfigured PDCCH monitoring parameters to the terminal.
  • the above-mentioned first sending module 403 may be specifically configured to send the reconfigured PDCCH monitoring parameters to the terminal through an RRC message, or a MAC message, or a DCI.
  • FIG. 15 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure. 15 is different from FIG. 13 in that the network-side device 400 shown in FIG. 15 may further include a second sending module 404.
  • the second sending module 404 is configured to send confirmation information to the terminal to indicate that the configuration request is approved.
  • the foregoing second sending module 404 may be specifically configured to send confirmation information to the terminal through an RRC message, or a MAC message, or a DCI.
  • An embodiment of the present disclosure further provides a terminal, which may include a signal transmitter, a signal receiver, a processor, and a memory.
  • the computer stores a computer program.
  • the signal transmitter and the signal receiver are controlled to implement the PDCCH monitoring parameter configuration method applied to the terminal in the foregoing embodiment.
  • the signal transmitter and the signal receiver may be implemented as a radio frequency unit.
  • FIG. 16 is a schematic diagram of a hardware structure of a terminal according to an embodiment of the present disclosure.
  • the terminal 500 includes, but is not limited to, a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, The processor 510, and the power supply 511 and other components.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 501 (implements the function of a signal transmitter) is configured to send a configuration request for monitoring parameters of a PDCCH to a network-side device.
  • the configuration request includes monitoring parameters of the PDCCH, or factors that affect the monitoring parameters of the PDCCH.
  • the listening parameters include a listening period, or the listening parameters include a listening period and an offset.
  • the radio frequency unit 501 (implements the function of a signal receiver) is configured to receive a reconfigured PDCCH monitoring parameter from a network-side device.
  • the processor 510 is configured to monitor the PDCCH according to the reconfigured monitoring parameters of the PDCCH.
  • the radio frequency unit 501 (implements the function of a signal receiver) is configured to receive confirmation information from a network-side device to indicate consent to a configuration request.
  • the processor 510 is configured to monitor a PDCCH according to a monitoring parameter of the PDCCH indicated by the configuration request.
  • the processor 510 is configured to monitor a PDCCH according to a monitoring parameter of the PDCCH indicated by the configuration request.
  • the factors affecting the monitoring parameters of the PDCCH may include one or a combination of the following: uplink service packet arrival period, uplink service packet size, uplink data transmission rate, uplink service delay requirement, and remaining power of the terminal And terminal temperature.
  • the factors that affect the monitoring parameters of the PDCCH may include one or a combination of the following: a downlink service packet arrival period, a downlink service packet size, a downlink data transmission rate, a downlink service delay requirement, a terminal's remaining power, and a terminal temperature.
  • the radio frequency unit 501 (which implements the function of a signal transmitter) may be specifically configured to send a configuration request for monitoring parameters of a PDCCH to a network-side device through a PUSCH, a PUCCH, or a PRACH.
  • the above configuration request includes a combination of one or more of the following:
  • PDCCH monitoring parameters corresponding to one or more DCI formats PDCCH monitoring parameters corresponding to one or more RNTIs, PDCCH monitoring parameters corresponding to one or more search space types, and one or more search space corresponding PDCCH monitoring parameters, PDCCH monitoring parameters corresponding to one or more search space sets, and PDCCH monitoring parameters corresponding to one or more control resource sets.
  • the factors affecting the monitoring parameters of the PDCCH include a service level, and the service level has a mapping relationship with the monitoring parameters.
  • the radio frequency unit 501 (implements a signal receiver function) is configured to receive a reconfigured PDCCH monitoring parameter from a network-side device through an RRC message, or a MAC message, or a DCI.
  • the radio frequency unit 501 (implements a signal receiver function) is configured to receive confirmation information from a network-side device through an RRC message, or a MAC message, or a DCI.
  • the terminal sends a configuration request including a monitoring parameter of the PDCCH or a factor affecting the monitoring parameter of the PDCCH to a network-side device. That is, the terminal may pre-estimate a PDCCH monitoring parameter or a factor affecting the PDCCH monitoring parameter according to a downlink service or an uplink service.
  • the configuration request it is requested to configure a monitoring parameter that has a high degree of matching with the arrival period of the service packet, thereby reducing the situation in which the terminal monitors the PDCCH, but the PDCCH is not detected.
  • the power consumption of the terminal monitoring the PDCCH is reduced.
  • the memory occupied by the terminal for monitoring the PDCCH can also be reduced.
  • the radio frequency unit 501 may be used to receive and send signals during the process of receiving and sending information or during a call. Specifically, the downlink data from the network-side device is received and processed by the processor 510; To send the uplink data to the network-side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 501 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 502, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 503 may convert audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into audio signals and output them as sound. Moreover, the audio output unit 503 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 500.
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is used for receiving audio or video signals.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on a display unit 506.
  • the image frames processed by the graphics processor 5041 may be stored in the memory 509 (or other computer-readable storage medium) or transmitted via the radio frequency unit 501 or the network module 502.
  • the microphone 5042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to the mobile communication network side device via the radio frequency unit 501 and output in the case of a telephone call mode.
  • the terminal 500 further includes at least one sensor 505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 5061 and / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 505 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 506 is configured to display information input by the user or information provided to the user.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 507 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • Touch panel 5071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 5071 or near touch panel 5071 operating).
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 510, receive the command sent by the processor 510 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 5071.
  • the user input unit 507 may also include other input devices 5072.
  • other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which are not described herein again.
  • the touch panel 5071 may be overlaid on the display panel 5061.
  • the touch panel 5071 detects a touch operation on or near the touch panel 5071, the touch panel 5071 transmits the touch operation to the processor 510 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 5061.
  • the touch panel 5071 and the display panel 5061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 5071 and the display panel 5061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 508 is an interface for connecting an external device to the terminal 500.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 508 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 500 or may be used to communicate between the terminal 500 and an external device. Transfer data.
  • the memory 509 can be used to store software programs and various data.
  • the memory 509 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 509 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 510 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 509, and calling data stored in the memory 509, execution is performed. Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 510.
  • the terminal 500 may further include a power source 511 (such as a battery) for supplying power to various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power management through the power management system. And other functions.
  • the terminal 500 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 510, a memory 509, and a computer program stored on the memory 509 and executable on the processor 510.
  • a terminal including a processor 510, a memory 509, and a computer program stored on the memory 509 and executable on the processor 510.
  • the computer program is executed by the processor 510, the foregoing is implemented.
  • Each process of the PDCCH monitoring parameter configuration method can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • An embodiment of the present disclosure further provides a network-side device, which may include a signal transmitter, a signal receiver, a processor, and a memory.
  • the computer stores a computer program.
  • the signal transmitter and the signal receiver are controlled to implement the PDCCH monitoring parameter configuration method in the foregoing embodiment.
  • the signal transmitter and the signal receiver may be implemented as a transceiver.
  • FIG. 17 is a schematic diagram of a hardware structure of a network-side device according to an embodiment of the present disclosure.
  • the network-side device includes a memory 601, a processor 602, a transceiver 603, and a computer program stored in the memory 601 and executable on the processor 602.
  • the transceiver 603 (implements a signal receiver function) is configured to receive a configuration request for monitoring parameters of a PDCCH from a terminal.
  • the configuration request includes monitoring parameters of the PDCCH, or factors that affect the monitoring parameters of the PDCCH.
  • the listening parameters include a listening period, or the listening parameters include a listening period and an offset.
  • the processor 602 is configured to reconfigure the monitoring parameters of the PDCCH according to the configuration request.
  • the transceiver 603 (implements a signal transmitter function) is configured to send the reconfigured PDCCH monitoring parameters to the terminal.
  • the transceiver 603 (implements a signal transmitter function) is used to send confirmation information to the terminal to indicate consent to the configuration request.
  • the above factors that affect the monitoring parameters of the PDCCH include one or a combination of the following: the uplink service packet arrival period, the uplink service packet size, the uplink data transmission rate, the uplink service delay requirement, and the remaining power of the terminal And terminal temperature.
  • the above factors that affect the PDCCH monitoring parameters include one or a combination of the following: the downlink service packet arrival period, the downlink service packet size, the downlink data transmission rate, the downlink service delay requirement, the remaining power of the terminal, and the terminal's temperature.
  • the transceiver 603 (implements a signal receiver function) is specifically configured to receive a configuration request for monitoring parameters of a PDCCH from a terminal through a PUSCH, a PUCCH, or a PRACH.
  • the configuration request includes a combination of one or more of the following:
  • PDCCH monitoring parameters corresponding to one or more DCI formats PDCCH monitoring parameters corresponding to one or more RNTIs, PDCCH monitoring parameters corresponding to one or more search space types, and one or more search space corresponding PDCCH monitoring parameters, PDCCH monitoring parameters corresponding to one or more search space sets, and PDCCH monitoring parameters corresponding to one or more control resource sets.
  • the factors affecting the monitoring parameters of the PDCCH include a service level, and the service level has a mapping relationship with the monitoring parameters.
  • the transceiver 603 (implements a signal transmitter function) is specifically configured to send the reconfigured PDCCH monitoring parameters to the terminal through an RRC message, or a MAC message, or a DCI.
  • the transceiver 603 (implements a signal transmitter function) is specifically configured to send confirmation information to the terminal through an RRC message, or a MAC message, or a DCI.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 602 and various circuits of the memory represented by the memory 601 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 603 may be a plurality of elements, including a signal transmitter and a signal receiver, providing a unit for communicating with various other devices on a transmission medium for receiving and transmitting data under the control of the processor 602.
  • the processor 602 is responsible for managing the bus architecture and general processing, and the memory 601 can store data used by the processor 602 when performing operations.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for configuring a PDCCH monitoring parameter applied to a terminal and / or applied to a network is implemented.
  • Each process of the PDCCH monitoring parameter configuration method of the side device can achieve the same technical effect. To avoid repetition, details are not described herein again.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种物理下行控制信道监听参数配置方法、终端及网络侧设备。该方法包括:向网络侧设备发送物理下行控制信道的监听参数的配置请求;其中,配置请求包括物理下行控制信道的监听参数,或,影响物理下行控制信道的监听参数的因素。

Description

物理下行控制信道监听参数配置方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2018年6月14日在中国提交的中国专利申请号No.201810613117.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种物理下行控制信道监听参数配置方法、终端及网络侧设备。
背景技术
物理下行控制信道(Physical Downlink Control Channel,PDCCH)用于调度数据信道。用户终端(User Equipment,UE)(或称作用户设备)最初无法得知PDCCH占用的控制信道单元(Control Channel Element)的数目、位置以及传输的下行控制信息(Downlink Control Information,DCI)格式。需要UE对PDCCH进行盲检测。
具体的,基站会为PDCCH配置盲检测的监听周期。基站向UE通知PDCCH的监听周期。UE按照监听周期对PDCCH进行监听。但基站配置的PDCCH的监听周期与业务包的到达周期可能存在不匹配的现象,从而造成无效的PDCCH监听。比如,业务包的到达周期为20毫秒,基站为PDCCH配置的监听周期为2毫秒。则存在UE对PDCCH进行盲检测,但却没有检测到PDCCH的情况。UE每次对PDCCH进行监听均需耗费一定电量,因此增加了UE对PDCCH进行监听的电量消耗。
发明内容
本公开实施例提供了一种物理下行控制信道监听参数配置方法、终端及网络侧设备,以解决终端对PDCCH进行监听电量消耗高的问题。
第一方面,本公开实施例提供了一种物理下行控制信道监听参数配置方法,该方法包括:向网络侧设备发送物理下行控制信道的监听参数的配置请 求;其中,配置请求包括物理下行控制信道的监听参数,或,影响物理下行控制信道的监听参数的因素。
第二方面,本公开实施例提供了一种物理下行控制信道监听参数配置方法,该方法包括:从终端接收物理下行控制信道的监听参数的配置请求;其中,配置请求包括物理下行控制信道的监听参数,或,影响物理下行控制信道的监听参数的因素。
第三方面,本公开实施例提供了一种终端,该终端包括:发送模块,用于向网络侧设备发送物理下行控制信道的监听参数的配置请求;其中,配置请求包括物理下行控制信道的监听参数,或,影响物理下行控制信道的监听参数的因素。
第四方面,本公开实施例提供了一种网络侧设备,该网络侧设备包括:接收模块,用于从终端接收物理下行控制信道的监听参数的配置请求;其中,配置请求包括物理下行控制信道的监听参数,或,影响物理下行控制信道的监听参数的因素。
第五方面,本公开实施例提供了一种终端,包括信号发射器、信号接收器、处理器和存储器,存储器存储有计算机程序,计算机程序被处理器执行时控制信号发射器和信号接收器实现上述技术方案中的物理下行控制信道监听参数配置方法。
第六方面,本公开实施例提供了一种网络侧设备,包括信号发射器、信号接收器、处理器和存储器,存储器存储有计算机程序,计算机程序被处理器执行时控制信号发射器和信号接收器实现上述技术方案中的物理下行控制信道监听参数配置方法。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述技术方案中的物理下行控制信道监听参数配置方法。
本公开提供了一种物理下行控制信道监听参数配置方法、终端、网络侧设备及存储介质,终端向网络侧设备发送包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求。也就是说,终端可根据下行业务或上行业务的相关信息,预先估计得到PDCCH的监听参数或影响PDCCH的监 听参数的因素。从而通过配置请求,请求配置与业务包的到达周期匹配度较高的监听参数,进而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况,可以降低终端对PDCCH进行监听的电量消耗。
附图说明
从下面结合附图对本公开的具体实施方式的描述中可以更好地理解本公开其中,相同或相似的附图标记表示相同或相似的特征。
图1为本公开一实施例提供的场景示意图;
图2为本公开一实施例中PDCCH监听参数配置方法的流程图;
图3为本公开的PDCCH监听参数配置方法的第一个具体实例中的流程图;
图4为本公开的PDCCH监听参数配置方法的第二个具体实例中的流程图;
图5为本公开的PDCCH监听参数配置方法的第三个具体实例中的流程图;
图6为本公开另一实施例提供的PDCCH监听参数配置方法的流程图;
图7为本公开的PDCCH监听参数配置方法的第一个具体实例中的流程图;
图8为本公开的PDCCH监听参数配置方法的第二个具体实例中的流程图;
图9为本公开一实施例中终端的结构示意图;
图10为本公开另一实施例中终端的结构示意图;
图11为本公开另一实施例中终端的结构示意图;
图12为本公开又一实施例中终端的结构示意图;
图13为本公开一实施例中网络侧设备的结构示意图;
图14为本公开另一实施例中网络侧设备的结构示意图;
图15为本公开另一实施例中网络侧设备的结构示意图;
图16为本公开一实施例中终端的硬件结构示意图;
图17为本公开一实施例中网络侧设备的硬件结构示意图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本公开的全面理解。但是,对于本领域技术人员来说很明显的是,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开的更好的理解。本公开决不限于下面所提出的任何具体配置和算法,而是在不脱离本公开的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本公开造成不必要的模糊。
本公开实施例提供了一种物理下行控制信道监听参数配置方法、终端及网络侧设备,可应用于终端与网络侧设备进行通信,监听物理下行控制信道的场景中。终端与网络侧设备之间可进行通信,具体包括终端向网络侧设备发送业务数据,和网络侧设备向终端发送业务数据。其中,终端向网络侧设备发送业务数据的行为为上行通信。网络侧设备向终端发送业务数据的行为为下行通信。在一些实例中,终端可为手机、平板电脑、智能手表、智能家电等,在此并不限定。图1为本公开一实施例提供的场景示意图。如图1所示,在网络侧设备A的信号覆盖范围内存在三个终端,分别为终端B1、终端B2与终端B3。网络侧设备A与每一个终端均能够进行上行通信和下行通信。本公开实施例提供的网络侧设备A可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G***中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))或者小区cell等设备,或者后续演进通信***中的网络侧设备。然用词并不构成对本公开保护范围的限制。
为了能够有效管理包括网络侧设备和终端的通信网络,需要得知物理下行控制信道(Physical Downlink Control Channel,PDCCH)所占用的资源。PDCCH可承载网络侧设备与终端的上、下行控制信息。比如,PDCCH承载的控制信息可包括公共控制信息和专用控制信息。PDCCH信道还可承载物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的调度信息和物理 下行共享信道(Physical Downlink Shared Channel,PDSCH)的调度信息。PDCCH信道承载的调度信息称为下行控制信息(Downlink Control Information,DCI)。PDCCH占用的时频资源集为控制资源集(即CORESET)。终端会在PDCCH的搜索空间(Search Space)去搜索特定的无线网络临时标识(Radio Network Temporary Identity,RNTI),如果搜到与终端自身对应的RNTI,就意味着终端检测到了PDCCH。终端可以按照监听周期和偏移量等监听参数,对PDCCH进行周期性的监听。比如,每5毫秒监听一次PDCCH。
为了使配置的PDCCH的监听参数与实际情况中业务包的传递周期较为匹配,避免不必要的PDCCH监听,本公开实施例提供了一种PDCCH监听参数配置方法。
图2为本公开一实施例中PDCCH监听参数配置方法的流程图。该PDCCH监听参数配置方法的执行主体为终端。如图2所示,该PDCCH监听参数配置方法包括步骤S101。
在步骤S101中,向网络侧设备发送PDCCH的监听参数的配置请求。
其中,配置请求用于向网络侧设备请求监听参数的配置。配置请求可包括PDCCH的监听参数,或者,影响PDCCH的监听参数的因素。PDCCH的监听参数用于配置终端对PDCCH的监听。依据影响PDCCH的监听参数的因素,可得到PDCCH的监听参数。
在实际通信网络中,终端通过上行通信向网络侧设备发送上行业务。网络侧设备通过下行通信向终端发送下行业务。终端可根据下行通信中的下行业务或上行通信中的上行业务,得到PDCCH的监听参数或影响PDCCH的监听参数的因素。
在本公开实施例中,终端向网络侧设备发送包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求。也就是说,终端可根据下行业务或上行业务的相关信息,预先估计得到PDCCH的监听参数或影响PDCCH的监听参数的因素。从而通过配置请求,请求配置与业务包的到达周期匹配度较高的监听参数,进而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况,降低终端对PDCCH进行监听的电量消耗。同时还可减少终端对PDCCH进行监听所占用的内存。
在一些示例中,监听参数包括监听周期。或者,监听参数包括监听周期和偏移量(即offset)。其中,监听周期即为终端对PDCCH进行监听的周期。偏移量用于指示在监听周期的哪个时隙(即slot)或者哪些时隙上监听PDCCH。例如,终端向网络侧设备请求的PDCCH的监听周期是10个时隙,监听偏移量是每个10时隙的监听周期中的第4个时隙和第5个时隙。又例如,终端向网络侧设备请求的PDCCH的监听周期是20个时隙,监听偏移量是每个20时隙的监听周期中的第一个时隙。
需要说明的是,网络侧设备也可以按照上述方式为终端配置PDCCH的监听周期和偏移量。
PDCCH监听周期越大,在相同的时长内,监听次数越少。同理,监听周期越小,在相同的时长内,监听次数越多。监听PDCCH的时隙距离同步信号块(Synchronization Signal Block,SSB)越近,那么终端可以在通过SSB完成下行同步后尽快的在相应时隙上检测PDCCH,终端消耗的电量也越少。因此,终端可以通过偏移量来请求监听PDCCH的时刻在通过SSB完成下行同步后的一定时间内。网络侧设备通过偏移量的设置为终端配置监听PDCCH的时刻在通过SSB完成下行同步后的一定时间内。
在一些示例中,影响PDCCH的监听参数的因素可包括上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量、终端的温度中的一项或几项的组合,在此并不限定。
其中,上行业务包到达周期用于指示上行业务包到达终端缓存的周期,如平均周期。上行数据传输速率可通过一段统计时间内上行业务包总量的大小与该段统计时间的商得到。上行业务时延需求用于指示上行通信中上行业务包对时延的要求。
在另一些示例中,影响PDCCH的监听参数的因素可包括下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量、终端的温度中的一项或几项的组合,在此并不限定。
其中,下行业务包到达周期用于指示下行业务包的生成周期,如平均周期。下行数据传输速率可通过一段统计时间内下行业务包总量的大小与该段统计时间的商得到。下行业务时延需求用于指示下行通信中下行业务包对时 延的要求。
需要说明的是,根据影响PDCCH的监听参数的因素,可确定PDCCH的监听参数。
比如,可将上行业务包到达周期或下行业务包到达周期作为PDCCH监听周期。或者,在上行业务包到达周期或下行业务包到达周期的基础上考虑其他因素,得到PDCCH监听周期。
比如,若上行业务包大小或下行业务包大小过大(如上行业务包大小或下行业务包大小超过数据阈值),则需要在通过多次数据调度才能将该上行业务包或下行业务包成功传输,则可减少PDCCH监听周期以增加业务包的传输机会。
比如,上行数据传输速率或下行数据传输速率较快(如上行数据传输速率或下行数据传输速率超过第一速率阈值),则可减小PDCCH监听周期。上行数据传输速率或下行数据传输速率较慢(如上行数据传输速率或下行数据传输速率低于第二速率阈值,第二速率阈值小于第一速率阈值),则可增大PDCCH监听周期。
比如,上行业务时延需求或下行业务时延需求较低(如上行业务时延需求或下行业务时延需求低于第一需求阈值),则可增大PDCCH监听周期。上行业务时延需求或下行业务时延需求较高(如上行业务时延需求或下行业务时延需求高于第二需求阈值,第二需求阈值高于第一需求阈值),则可减小PDCCH监听周期。
比如,终端的剩余电量较低(如终端的剩余电量低于电量阈值),则可增大PDCCH监听周期,以达到节省电量的目的。
比如,终端的温度较高(如终端的温度高于温度阈值),则可增大PDCCH监听周期,以降低终端的温度。
也可结合上述多项影响PDCCH的监听参数的因素,得到PDCCH的监听参数。具体结合可参考上述说明,在此不再赘述。
在一些示例中,上述实施例中的步骤S101可具体实现为通过PUSCH,向网络侧设备发送PDCCH的监听参数的配置请求。比如,可以在终端进行上行数据调度时,例如通过上行链路授权(即Uplink grant)调度的PUSCH 向网络侧设备发送PDCCH的监听参数的配置请求。
在另一些示例中,上述实施例中的步骤S101可具体实现为通过物理上行控制信道(Physical Uplink Control Channel,PUCCH),向网络侧设备发送PDCCH的监听参数的配置请求。
在又一些示例中,上述实施例中的步骤S101可具体实现为通过物理随机接入信道((Physical Random Access Channel,PRACH),向网络侧设备发送PDCCH的监听参数的配置请求。比如,可通过随机接入的Message_1或Message_3,向网络侧设备发送PDCCH的监听参数的配置请求。
由于PDCCH承载的控制信息多种多样,与不同的控制信息所对应的业务包所匹配的监听参数也可能不同。因此,终端发送的配置请求可包括以下一项或多项的组合:
一种或多种下行控制信息格式(Downlink Control Information format,DCI format)对应的PDCCH的监听参数、一种或多种RNTI对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集(Search Space Set)对应的PDCCH的监听参数、一个或多个控制资源集(即CORESET)对应的PDCCH的监听参数。
也就是说,针对不同的DCI format,可配置不同的PDCCH监听参数。如,对DCI format 0_1,请求的PDCCH的监听参数为10毫秒或10个时隙;对DCI format 1_1,请求的PDCCH的监听参数为20毫秒或20个时隙。针对不同的搜索空间类型,可配置不同的监听参数。比如,搜索空间类型包括公共搜索空间和专用搜索空间。再具体细分,公共搜索空间还可包括不同加扰方式的公共搜索空间。专用搜索空间还可包括不同加扰方式的专用搜索空间。针对不同种类的搜索空间,可配置不同的PDCCH监听参数。对于同一搜索空间类型的不同的搜索空间,可配置不同的监听参数。搜索空间集可包括多个搜索空间,例如相同类型的搜索空间可组成一个搜索空间集。针对不同的搜索空间集,可配置不同的监听参数。针对不同的RNTI,可配置不同的监听参数。针对不同的控制资源集,可配置不同的监听参数。
比如,若在终端与网络侧设备的通信中正在进行业务包到达周期较长的 业务。在终端向网络侧设备发送PDCCH的监听参数的配置请求之前,网络侧设备配置终端在每个时隙均对PDCCH进行监听。则存在大量终端对PDCCH进行盲检测,但没有检测到PDCCH的情况。终端可根据自身对终端与网络侧设备之间的上行业务的具体情况,向网络侧设备发送PDCCH的监听参数的配置请求。终端根据上行业务的具体情况,确定DCI format为0_1。则终端可向网络侧设备上报DCI format 0_1对应的PDCCH监听周期为10毫秒或10个时隙的配置请求。
又比如,若在终端与网络侧设备的通信中正在进行业务包到达周期较长的业务。在终端向网络侧设备发送PDCCH的监听参数的配置请求之前,网络侧设备配置UE在每个时隙均对PDCCH进行监听。则存在大量终端对PDCCH进行盲检测,但PDCCH中没有业务包的情况。终端可根据自身对终端与网络侧设备之间的上行业务的具体情况,向网络侧设备发送PDCCH的监听参数的配置请求。终端根据上行业务的具体情况,确定DCI format为0_1,且DCI format 0_1配置在第二个搜索空间search space 2上。则终端可向网络侧设备上报search space 2对应的PDCCH的监听周期为10毫秒或10个时隙的配置请求。
还比如,若在终端与网络侧设备的通信中正在进行业务包到达周期较长的业务。在终端向网络侧设备发送PDCCH的监听参数的配置请求之前,网络侧设备配置终端每10个时隙对PDCCH进行一次监听,且在10个时隙中的第2个时隙进行监听(即偏移量为2个时隙)。下行同步到监听PDCCH的时间间距较长,终端需要等待过长时间。终端确定第8个时隙距离SSB最近,确定合适的偏移量为8个时隙。则终端可设置包括监听周期为10个时隙,偏移量为8个时隙的配置请求,并将该配置请求向网络侧设备发送。
在一些示例中,影响PDCCH的监听参数的因素可包括业务等级。业务等级用于标识不同配置要求的业务包。业务等级可根据工作场景和工作需求设定,在此并不限定。业务等级与监听参数具有映射关系。比如,业务等级与监听参数可形成映射表。映射表中记录每一个业务等级以及与该业务等级对应的监听参数。例如,业务等级为第一级,第一级对应的监听周期为5毫秒或5个时隙。业务等级为第二级,第二级对应的监听周期为10毫秒或10个 时隙,偏移量为2。业务等级为第三级,第三级对应的监听周期为20毫秒或20个时隙。此处的业务等级也可以称为PDCCH的监听等级或者其他名词。
终端可通过与网络侧设备的信息交互,实现对PDCCH的监听参数的配置。下面将以三个具体实例说明应用于终端侧的PDCCH监听参数配置方法。需要说明的是,本公开保护的PDCCH监听参数配置方法包括但不限于下述三个具体实例。
图3为本公开中PDCCH监听参数配置方法的第一个具体实例中的流程图。图3与图1的不同之处在于,图3所示的PDCCH监听参数配置方法还包括步骤S102和步骤S103。
在步骤S102中,从网络侧设备接收重新配置的PDCCH的监听参数。
网络侧设备在接收终端发送的配置请求后,可依据配置请求重新配置PDCCH的监听参数,并向终端发送重新配置的PDCCH的监听参数。终端从网络侧设备接收重新配置的PDCCH的监听参数。
需要说明的是,终端从网络侧设备接收的重新配置的PDCCH的监听参数,与终端向网络侧设备发送的配置请求相关。若终端向网络侧设备发送的配置请求包括监听参数,则终端在步骤S102中从网络侧设备接收的重新配置的PDCCH的监听参数,可以与配置请求中的监听参数相同,也可以在配置请求中的监听参数的基础上进行调整,得到新的监听参数,在此并不限定。
在一些示例中,通过无线资源控制(Radio Resource Contro,RRC)消息,或媒介访问控制(Media Access Control,MAC)消息,或下行链路控制消息(Downlink Control Information,DCI),终端从网络侧设备接收重新配置的PDCCH的监听参数。
在步骤S103中,依据重新配置的PDCCH的监听参数,对PDCCH进行监听。
比如,若监听参数包括监听周期,则终端按照重新配置的PDCCH的监听周期,对PDCCH进行监听。若监听参数包括监听周期和偏移量,则终端按照重新配置的PDCCH的监听周期和偏移量,对PDCCH进行监听。
图4为本公开的PDCCH监听参数配置方法的第二个具体实施例中的流程图。图4与图1的不同之处在于,图4所示的PDCCH监听参数配置方法 还包括步骤S104和步骤S105。
在步骤S104中,从网络侧设备接收用于指示同意配置请求的确认信息。
其中,确认信息不包括监听参数。确认信息表征网络侧设备同意终端按照配置请求中的监听参数对PDCCH进行监听。或者,确认信息表征网络侧设备同意终端按照依据配置请求中的影响PDCCH的监听参数的因素得到的监听参数,对PDCCH进行监听。
在一些示例中,通过RRC消息,或MAC消息,或DCI,终端从网络侧设备接收确认信息。
在步骤S105中,依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
其中,若终端之前向网络侧设备发送的配置请求包括监听参数,则终端按照配置请求中的监听参数对PDCCH进行监听。若终端之前向网络侧设备发送的配置请求包括影响PDCCH的监听参数的因素,则终端可根据配置请求中的影响PDCCH的监听参数的因素,确定监听参数,并按照监听参数对PDCCH进行监听。
图5为本公开的PDCCH监听参数配置方法的第三个具体实施例中的流程图。图5与图1的不同之处在于,图5所示的PDCCH监听参数配置方法还包括步骤S106。
在步骤S106中,依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
在本具体实施例中,不管网络侧设备是否发送重新配置的监听参数或确认信息。终端可直接依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
其中,若终端之前向网络侧设备发送的配置请求包括监听参数,则终端按照配置请求中的监听参数对PDCCH进行监听。若终端之前向网络侧设备发送的配置请求包括影响PDCCH的监听参数的因素,则终端可根据配置请求中的影响PDCCH的监听参数的因素,确定监听参数,并按照监听参数对PDCCH进行监听。
图6为本公开另一实施例提供的PDCCH监听参数配置方法的流程图。 该PDCCH监听参数配置方法的执行主体为网络侧设备。如图6所示,该PDCCH监听参数配置方法包括步骤S201。
在步骤S201中,从终端接收PDCCH的监听参数的配置请求。
其中,所述配置请求包括PDCCH的监听参数,或,影响所述PDCCH的监听参数的因素。
在实际通信网络中,通过上行通信终端向网络侧设备发送上行业务包,通过下行通信网络侧设备向终端发送下行业务包。网络侧设备从终端接收的配置请求中的PDCCH的监听参数,或,影响PDCCH的监听参数的因素,是终端根据下行通信中的下行业务或上行通信中的上行业务得到的。
在本公开实施例中,网络侧设备从终端接收包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求。且网络侧设备接收到的配置请求中的PDCCH的监听参数或影响PDCCH的监听参数的因素,是终端根据下行业务或上行业务的相关信息,预先估计得到的。网络侧设备通过配置请求,可确定与业务包的到达周期匹配度较高的监听参数,从而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况,降低终端对PDCCH进行监听的电量消耗。而且,还可减少终端对PDCCH进行监听所占用的内存。
需要说明的是,关于PDCCH的监听参数和影响PDCCH的监听参数的因素的相关说明请参见上述实施例中的相关内容,在此不再赘述。
在一些实例中,上述实施例中的步骤S201可具体实现为通过PUSCH,从终端接收PDCCH的监听参数的配置请求。比如,可以在进行上行数据调度时,例如通过上行链路授权(即Uplink grant)调度的PUSCH,从终端接收PDCCH的监听参数的配置请求。
在另一些实例中,上述实施例中的步骤S201可具体实现为通过PUCCH,从终端接收PDCCH的监听参数的配置请求。
在又一些实例中,上述实施例中的步骤S201可具体实现为通过PRACH,从终端接收PDCCH的监听参数的配置请求。比如,可通过随机接入的Message_1或Message_3,从终端接收PDCCH的监听参数的配置请求。
由于PDCCH承载的控制信息多种多样,与不同的控制信息所对应的业务包所匹配的监听参数也可能不同。因此,终端发送的配置请求可包括以下 一项或多项的组合:
一种或多种DCI format对应的PDCCH的监听参数、一种或多种RNTI对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集对应的PDCCH的监听参数、一个或多个控制资源集对应的PDCCH的监听参数。
针对配置请求,以及根据配置请求配置监听参数的相关说明请参见上述实施例中的相关内容,在此不再赘述。
在一些示例中,影响PDCCH的监听参数的因素可包括业务等级。业务等级与监听参数具有映射关系。其中,关于业务等级与监听参数的相关说明请参见上述实施例中的相关内容,在此不再赘述。
网络侧设备可通过与终端的信息交互,实现对PDCCH的监听参数的配置。下面将以两个具体实施例说明应用于网络侧设备的PDCCH监听参数配置方法。需要说明的是,本公开保护的PDCCH监听参数配置方法包括但不限于下述两个具体实施例。
图7为本公开的PDCCH监听参数配置方法的第一个具体实施例中的流程图。图7与图6的不同之处在于,图7所示的PDCCH监听参数配置方法还包括步骤S202和步骤S203。
在步骤S202中,依据配置请求,重新配置PDCCH的监听参数。
若配置请求包括PDCCH的监听参数,则网络侧设备可直接重新配置PDCCH的监听参数。若配置请求包括影响PDCCH的监听参数的因素,则网络侧设备可根据影响PDCCH的监听参数的因素,确定PDCCH的监听参数。然后重新配置PDCCH的监听参数。
在步骤S203中,将重新配置的PDCCH的监听参数向终端发送。
在一些示例中,网络侧设备通过RRC消息,或MAC消息,或DCI,将重新配置的PDCCH的监听参数向终端发送。
图8为本公开的PDCCH监听参数配置方法的第二个具体实施例中的流程图。图8与图6的不同之处在于,图8所示的PDCCH监听参数配置方法还包括步骤S204。
在步骤S204中,向终端发送用于指示同意配置请求的确认信息。
其中,确认信息的相关说明可参见上述实施例中的相关内容,在此不再赘述。
在一些示例中,通过RRC消息,或MAC消息,或DCI,向终端发送确认信息。
图9为本公开一实施例中终端的结构示意图。如图9所示,终端300包括发送模块301。
发送模块301,用于向网络侧设备发送PDCCH的监听参数的配置请求。
其中,配置请求包括PDCCH的监听参数,或,影响PDCCH的监听参数的因素。
在本公开实施例中,终端将包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求,向网络侧设备发送。也就是说,终端可根据下行业务或上行业务的相关信息,预先估计得到PDCCH的监听参数或影响PDCCH的监听参数的因素。通过配置请求,请求配置与业务包的到达周期匹配度较高的监听参数,从而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况,降低终端对PDCCH进行监听的电量消耗。而且,还可减少终端对PDCCH进行监听所占用的内存。
在一些示例中,监听参数包括监听周期,或者,监听参数包括监听周期和偏移量。
在一些示例中,影响PDCCH的监听参数的因素,包括以下一项或几项的组合:上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和终端的温度。
在另一些示例中,影响PDCCH的监听参数的因素,包括以下一项或几项的组合:下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和终端的温度。
上述实施例中的发送模块301可具体用于:通过PUSCH,或PUCCH,或PRACH,向网络侧设备发送PDCCH的监听参数的配置请求。
在一些示例中,配置请求包括以下一项或多项的组合:
一种或多种DCI format对应的PDCCH的监听参数、一种或多种RNTI 对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集对应的PDCCH的监听参数、一个或多个控制资源集对应的PDCCH的监听参数。
在一些示例中,影响PDCCH的监听参数的因素包括业务等级,业务等级与监听参数具有映射关系。
图10为本公开另一实施例中终端的结构示意图。图10与图9的不同之处在于,图10所示的终端300还可包括第一接收模块302和第一监听模块303。
第一接收模块302,用于从网络侧设备接收重新配置的PDCCH的监听参数。
第一监听模块303,用于依据重新配置的PDCCH的监听参数,对PDCCH进行监听。
在一些示例中,上述第一接收模块302可具体用于通过RRC消息,或MAC消息,或DCI,从网络侧设备接收重新配置的物理下行控制信道的监听参数。
图11为本公开另一实施例中终端的结构示意图。图11与图9的不同之处在于,图11所示的终端300还可包括第二接收模块304和第二监听模块305。
第二接收模块304,用于从网络侧设备接收用于指示同意配置请求的确认信息。
第二监听模块305,用于依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
在一些示例中,第二接收模块304可具体用于通过RRC消息,或MAC消息,或DCI,从网络侧设备接收确认信息。
图12为本公开又一实施例中终端的结构示意图。图12与图9的不同之处在于,图12所示的终端300还可包括第三监听模块306。
第三监听模块306,用于依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
图13为本公开一实施例中网络侧设备的结构示意图。如图13所示,网络侧设备400可包括接收模块401。
接收模块401,用于从终端接收PDCCH的监听参数的配置请求。
其中,配置请求包括PDCCH的监听参数,或,影响PDCCH的监听参数的因素。
在本公开实施例中,网络侧设备从终端接收包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求。且网络侧设备接收到的配置请求中的PDCCH的监听参数或影响PDCCH的监听参数的因素,是终端根据下行业务或上行业务的相关信息,预先估计得到的。网络侧设备通过配置请求,可确定与业务包的到达周期匹配度较高的监听参数,从而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况。进而降低终端对PDCCH进行监听的电量消耗。还可降低终端对PDCCH进行监听所占用的内存。
在一些示例中,监听参数包括监听周期。或者,监听参数包括监听周期和偏移量。
在一些示例中,影响PDCCH的监听参数的因素,包括以下一项或几项的组合:上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和终端的温度。
在另一些示例中,影响PDCCH的监听参数的因素,包括以下一项或几项的组合:下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和终端的温度。
上述实施例中的接收模块401可具体用于:通过PUSCH,或PUCCH,或PRACH,从终端接收PDCCH的监听参数的配置请求。
在一些示例中,配置请求包括以下一项或多项的组合:
一种或多种DCI format对应的PDCCH的监听参数、一种或多种RNTI对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集对应的PDCCH的监听参数、一个或多个控制资源集对应的PDCCH的监听参数。
在一些示例中,影响PDCCH的监听参数的因素包括业务等级,业务等 级与监听参数具有映射关系。
图14为本公开另一实施例中网络侧设备的结构示意图。图14与图13的不同之处在于,图14所示的网络侧设备400还可包括配置模块402和第一发送模块403。
配置模块402,用于依据配置请求,重新配置PDCCH的监听参数。
第一发送模块403,用于将重新配置的PDCCH的监听参数向终端发送。
在一些示例中,上述第一发送模块403可具体用于:通过RRC消息,或MAC消息,或DCI,将重新配置的PDCCH的监听参数向终端发送。
图15为本公开另一实施例中网络侧设备的结构示意图。图15与图13的不同之处在于,图15所示的网络侧设备400还可包括第二发送模块404。
第二发送模块404,用于向终端发送用于指示同意配置请求的确认信息。
在一些示例中,上述第二发送模块404可具体用于:通过RRC消息,或MAC消息,或DCI,向终端发送确认信息。
本公开实施例还提供一种终端,该终端可包括信号发射器、信号接收器、处理器和存储器。存储器存储有计算机程序。该计算机程序被处理器执行时控制信号发射器和信号接收器实现上述实施例中应用于终端的PDCCH监听参数配置方法。具体的,信号发射器和信号接收器可实现为射频单元。
比如,图16为本公开一实施例中终端的硬件结构示意图。如图16所示,该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元501(实现信号发射器的功能),用于向网络侧设备发送PDCCH的监听参数的配置请求。
配置请求包括PDCCH的监听参数,或,影响PDCCH的监听参数的因素。
在一些示例中,监听参数包括监听周期,或者,监听参数包括监听周期和偏移量。
在一些示例中,射频单元501(实现信号接收器的功能),用于从网络侧设备接收重新配置的PDCCH的监听参数。
处理器510,用于依据重新配置的PDCCH的监听参数,对PDCCH进行监听。
在一些示例中,射频单元501(实现信号接收器的功能),用于从网络侧设备接收用于指示同意配置请求的确认信息。
处理器510,用于依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
在一个示例中,处理器510,用于依据配置请求指示的PDCCH的监听参数,对PDCCH进行监听。
需要说明的是,影响PDCCH的监听参数的因素,可包括以下一项或几项的组合:上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和终端的温度。
影响PDCCH的监听参数的因素,可包括以下一项或几项的组合:下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和终端的温度。
射频单元501(实现信号发射器的功能),可具体用于通过PUSCH,或PUCCH,或PRACH,向网络侧设备发送PDCCH的监听参数的配置请求。
在一些示例中,上述配置请求包括以下一项或多项的组合:
一种或多种DCI format对应的PDCCH的监听参数、一种或多种RNTI对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集对应的PDCCH的监听参数、一个或多个控制资源集对应的PDCCH的监听参数。
在一些示例中,影响PDCCH的监听参数的因素包括业务等级,业务等级与监听参数具有映射关系。
在一些示例中,射频单元501(实现信号接收器功能),用于通过RRC消 息,或MAC消息,或DCI,从网络侧设备接收重新配置的PDCCH的监听参数。
在一些示例中,射频单元501(实现信号接收器功能),用于通过RRC消息,或MAC消息,或DCI,从网络侧设备接收确认信息。
在本公开提供的技术方案中,终端将包括PDCCH的监听参数或影响PDCCH的监听参数的因素的配置请求,向网络侧设备发送。也就是说,终端可根据下行业务或上行业务,预先估计得到PDCCH的监听参数或影响PDCCH的监听参数的因素。通过配置请求,请求配置与业务包的到达周期匹配度较高的监听参数,从而减少终端对PDCCH进行监听,但却没有检测到PDCCH的情况。进而降低终端对PDCCH进行监听的电量消耗。还可降低终端对PDCCH进行监听所占用的内存。
应理解的是,本公开实施例中,射频单元501可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络侧设备的下行数据接收后,给处理器510处理;另外,将上行的数据发送给网络侧设备。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信***与网络和其他设备通信。
终端通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与终端500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其 它计算机可读存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信网络侧设备的格式输出。
终端500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在终端500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图5中,触控面板5071与显示面板5061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与终端500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端500内的一个或多个元件或者可以用于在终端500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
终端500还可以包括给各个部件供电的电源511(比如电池),可选的,电源511可以通过电源管理***与处理器510逻辑相连,从而通过电源管理 ***实现管理充电、放电、以及功耗管理等功能。
另外,终端500包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器510,存储器509,存储在存储器509上并可在处理器510上运行的计算机程序,该计算机程序被处理器510执行时实现上述PDCCH监听参数配置方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供了一种网络侧设备,该网络侧设备可包括信号发射器、信号接收器、处理器和存储器。存储器存储有计算机程序。该计算机程序被处理器执行时控制信号发射器和信号接收器实现上述实施例中的PDCCH监听参数配置方法。具体的,信号发射器和信号接收器可实现为收发机。
比如,图17为本公开一实施例中网络侧设备的硬件结构示意图。如图17所示,网络侧设备包括存储器601、处理器602、收发机603及存储在存储器601上并可在处理器602上运行的计算机程序。
其中,收发机603(实现信号接收器功能),用于从终端接收PDCCH的监听参数的配置请求。
配置请求包括PDCCH的监听参数,或,影响PDCCH的监听参数的因素。
在一些示例中,监听参数包括监听周期,或者,监听参数包括监听周期和偏移量。
在一些示例中,处理器602,用于依据配置请求,重新配置PDCCH的监听参数。
收发机603(实现信号发射机功能),用于将重新配置的PDCCH的监听参数向终端发送。
在一些示例中,收发机603(实现信号发射机功能),用于向终端发送用于指示同意配置请求的确认信息。
需要说明的是,上述影响PDCCH的监听参数的因素,包括以下一项或几项的组合:上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和终端的温度。
或者,上述影响PDCCH的监听参数的因素,包括以下一项或几项的组 合:下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和终端的温度。
在一些示例中,收发机603(实现信号接收器功能),具体用于通过PUSCH,或PUCCH,或PRACH,从终端接收PDCCH的监听参数的配置请求。
在一些示例中,配置请求包括以下一项或多项的组合:
一种或多种DCI format对应的PDCCH的监听参数、一种或多种RNTI对应的PDCCH的监听参数、一种或多种搜索空间类型对应的PDCCH的监听参数、一个或多个搜索空间对应的PDCCH的监听参数、一个或多个搜索空间集对应的PDCCH的监听参数、一个或多个控制资源集对应的PDCCH的监听参数。
在一些示例中,影响PDCCH的监听参数的因素包括业务等级,业务等级与监听参数具有映射关系。
在一些示例中,收发机603(实现信号发射器功能),具体用于通过RRC消息,或MAC消息,或DCI,将重新配置的PDCCH的监听参数向终端发送。
在一些示例中,收发机603(实现信号发射器功能),具体用于通过RRC消息,或MAC消息,或DCI,向终端发送确认信息。
其中,在图17中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器602代表的一个或多个处理器和存储器601代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机603可以是多个元件,即包括信号发射器和信号接收器,提供用于在传输介质上与各种其他装置通信的单元,用于在处理器602的控制下接收和发送数据。处理器602负责管理总线架构和通常的处理,存储器601可以存储处理器602在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于终端的PDCCH监听参数配置方法和/或应用于网络侧设备的PDCCH监听参数配置 方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于终端实施例、网络侧设备实施例以及计算机可读存储介质实施例而言,相关之处可以参见方法实施例的说明部分。本公开并不局限于上文所描述并在图中示出的特定步骤和结构。本领域的技术人员可以在领会本公开的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。并且,为了简明起见,这里省略对已知方法技术的详细描述。

Claims (29)

  1. 一种物理下行控制信道监听参数配置方法,包括:
    向网络侧设备发送物理下行控制信道的监听参数的配置请求;
    其中,所述配置请求包括所述物理下行控制信道的监听参数,或,影响所述物理下行控制信道的监听参数的因素。
  2. 根据权利要求1所述的方法,其中,所述监听参数包括监听周期,或者,所述监听参数包括所述监听周期和偏移量。
  3. 根据权利要求1或2所述的方法,还包括:
    从所述网络侧设备接收重新配置的所述物理下行控制信道的监听参数;
    依据所述重新配置的所述物理下行控制信道的监听参数,对所述物理下行控制信道进行监听。
  4. 根据权利要求1或2所述的方法,还包括:
    从所述网络侧设备接收用于指示同意所述配置请求的确认信息;
    依据所述配置请求指示的所述物理下行控制信道的监听参数,对所述物理下行控制信道进行监听。
  5. 根据权利要求1或2所述的方法,还包括:
    依据所述配置请求指示的所述物理下行控制信道的监听参数,对所述物理下行控制信道进行监听。
  6. 根据权利要求1或2所述的方法,其中,影响所述物理下行控制信道的监听参数的因素,包括以下一项或几项的组合:
    上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和所述终端的温度。
  7. 根据权利要求1或2所述的方法,其中,影响所述物理下行控制信道的监听参数的因素,包括以下一项或几项的组合:
    下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和所述终端的温度。
  8. 根据权利要求1所述的方法,其中,所述向网络侧设备发送物理下行控制信道的监听参数的配置请求,包括:
    通过物理上行共享信道PUSCH,或物理上行控制信道PUCCH,或物理随机接入信道PRACH,向所述网络侧设备发送所述物理下行控制信道的监听参数的配置请求。
  9. 根据权利要求1或2所述的方法,其中,所述配置请求包括以下一项或多项的组合:
    一种或多种下行控制信息格式DCI format对应的所述物理下行控制信道的监听参数;
    一种或多种无线网络临时标识RNTI对应的所述物理下行控制信道的监听参数;
    一种或多种搜索空间类型对应的所述物理下行控制信道的监听参数;
    一个或多个搜索空间对应的所述物理下行控制信道的监听参数;
    一个或多个搜索空间集对应的所述物理下行控制信道的监听参数;
    一个或多个控制资源集CORESET对应的所述物理下行控制信道的监听参数。
  10. 根据权利要求1所述的方法,其中,所述影响所述物理下行控制信道的监听参数的因素包括业务等级,所述业务等级与所述监听参数具有映射关系。
  11. 根据权利要求3所述的方法,其中,所述从所述网络侧设备接收重新配置的所述物理下行控制信道的监听参数,包括:
    通过无线资源控制RRC消息,或媒介访问控制MAC消息,或下行链路控制消息DCI,从所述网络侧设备接收重新配置的所述物理下行控制信道的监听参数。
  12. 根据权利要求4所述的方法,其中,所述从所述网络侧设备接收用于指示同意所述配置请求的确认信息,包括:
    通过无线资源控制RRC消息,或媒介访问控制MAC消息,或下行链路控制消息DCI,从所述网络侧设备接收所述确认信息。
  13. 一种物理下行控制信道监听参数配置方法,包括:
    从终端接收物理下行控制信道的监听参数的配置请求;
    其中,所述配置请求包括物理下行控制信道的监听参数,或,影响所述 物理下行控制信道的监听参数的因素。
  14. 根据权利要求13所述的方法,其中,所述监听参数包括监听周期,或者,所述监听参数包括所述监听周期和偏移量。
  15. 根据权利要求13或14所述的方法,还包括:
    依据所述配置请求,重新配置所述物理下行控制信道的监听参数;
    将重新配置的所述物理下行控制信道的监听参数向所述终端发送。
  16. 根据权利要求13或14所述的方法,还包括:
    向所述终端发送用于指示同意所述配置请求的确认信息。
  17. 根据权利要求13或14所述的方法,其中,影响所述物理下行控制信道的监听参数的因素,包括以下一项或几项的组合:
    上行业务包到达周期、上行业务包大小、上行数据传输速率、上行业务时延需求、终端的剩余电量和所述终端的温度。
  18. 根据权利要求13或14所述的方法,其中,影响所述物理下行控制信道的监听参数的因素,包括以下一项或几项的组合:
    下行业务包到达周期、下行业务包大小、下行数据传输速率、下行业务时延需求、终端的剩余电量和所述终端的温度。
  19. 根据权利要求13所述的方法,其中,所述从终端接收物理下行控制信道的监听参数的配置请求,包括:
    通过物理上行共享信道PUSCH,或物理上行控制信道PUCCH,或物理随机接入信道PRACH,从所述终端接收所述物理下行控制信道的监听参数的配置请求。
  20. 根据权利要求13或14所述的方法,其中,所述配置请求包括以下一项或多项的组合:
    一种或多种下行控制信息格式DCI format对应的所述物理下行控制信道的监听参数;
    一种或多种无线网络临时标识RNTI对应的所述物理下行控制信道的监听参数;
    一种或多种搜索空间类型对应的所述物理下行控制信道的监听参数;
    一个或多个搜索空间对应的所述物理下行控制信道的监听参数;
    一个或多个搜索空间集对应的所述物理下行控制信道的监听参数;
    一个或多个控制资源集CORESET对应的所述物理下行控制信道的监听参数。
  21. 根据权利要求13所述的方法,其中,所述影响所述物理下行控制信道的监听参数的因素包括业务等级,所述业务等级与所述监听参数具有映射关系。
  22. 根据权利要求15所述的方法,其中,所述将重新配置的所述物理下行控制信道的监听参数向所述终端发送,包括:
    通过无线资源控制RRC消息,或媒介访问控制MAC消息,或下行链路控制消息DCI,将重新配置的所述物理下行控制信道的监听参数向所述终端发送。
  23. 根据权利要求16所述的方法,其中,所述向所述终端发送用于指示同意所述配置请求的确认信息,包括:
    通过无线资源控制RRC消息,或媒介访问控制MAC消息,或下行链路控制消息DCI,向所述终端发送所述确认信息。
  24. 一种终端,包括:
    发送模块,用于向网络侧设备发送物理下行控制信道的监听参数的配置请求;
    其中,所述配置请求包括物理下行控制信道的监听参数,或,影响所述物理下行控制信道的监听参数的因素。
  25. 一种网络侧设备,包括:
    接收模块,用于从终端接收物理下行控制信道的监听参数的配置请求;
    其中,所述配置请求包括物理下行控制信道的监听参数,或,影响所述物理下行控制信道的监听参数的因素。
  26. 一种终端,包括信号发射器、信号接收器、处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时控制所述信号发射器和所述信号接收器实现如权利要求1至12中任意一项所述的物理下行控制信道监听参数配置方法。
  27. 一种网络侧设备,包括信号发射器、信号接收器、处理器和存储器, 所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时控制所述信号发射器和所述信号接收器实现如权利要求13至23中任意一项所述的物理下行控制信道监听参数配置方法。
  28. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任意一项所述的物理下行控制信道监听参数配置方法。
  29. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求13至23中任意一项所述的物理下行控制信道监听参数配置方法。
PCT/CN2019/089155 2018-06-14 2019-05-30 物理下行控制信道监听参数配置方法、终端及网络侧设备 WO2019237929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810613117.5 2018-06-14
CN201810613117.5A CN110611925B (zh) 2018-06-14 2018-06-14 物理下行控制信道监听参数配置方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2019237929A1 true WO2019237929A1 (zh) 2019-12-19

Family

ID=68842725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089155 WO2019237929A1 (zh) 2018-06-14 2019-05-30 物理下行控制信道监听参数配置方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN110611925B (zh)
WO (1) WO2019237929A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225751A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 搜索空间的监听方法和设备
WO2024067010A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 通信控制方法、可读介质、程序产品和电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603875A (zh) * 2021-07-07 2023-01-13 华为技术有限公司(Cn) 控制信道配置方法和通信装置
CN117280801A (zh) * 2021-07-14 2023-12-22 Oppo广东移动通信有限公司 一种pdcch监听及发送方法、装置、终端设备、网络设备
CN117528669A (zh) * 2022-07-28 2024-02-06 维沃移动通信有限公司 接收方法、终端、网络侧设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、***和装置
CN103037470A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 一种获取接入控制信息的方法、装置和***
CN103491516A (zh) * 2013-09-27 2014-01-01 东莞宇龙通信科技有限公司 控制信令的传输方法和基站
WO2014094212A1 (zh) * 2012-12-17 2014-06-26 华为技术有限公司 一种分时监听方法、设备及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170318620A1 (en) * 2016-04-28 2017-11-02 Mediatek Inc. Connected Mode Discontinuous Reception for Narrow Band Internet of Things
CN107370562A (zh) * 2016-05-13 2017-11-21 华为技术有限公司 传输下行控制信息的方法和装置
CN108093495B (zh) * 2018-02-13 2020-04-17 Oppo广东移动通信有限公司 Drx周期配置方法、终端、接入网设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998281A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种传输数据的方法、***和装置
CN103037470A (zh) * 2011-09-29 2013-04-10 华为技术有限公司 一种获取接入控制信息的方法、装置和***
WO2014094212A1 (zh) * 2012-12-17 2014-06-26 华为技术有限公司 一种分时监听方法、设备及***
CN103491516A (zh) * 2013-09-27 2014-01-01 东莞宇龙通信科技有限公司 控制信令的传输方法和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225751A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 搜索空间的监听方法和设备
WO2024067010A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 通信控制方法、可读介质、程序产品和电子设备

Also Published As

Publication number Publication date
CN110611925B (zh) 2022-03-18
CN110611925A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
US11337269B2 (en) Cell processing method, terminal device, and network device
WO2019237929A1 (zh) 物理下行控制信道监听参数配置方法、终端及网络侧设备
WO2021088907A1 (zh) 失败报告的上报方法及相关设备
US20220248244A1 (en) Measurement processing method, indication information sending method, terminal, and network device
US20230247468A1 (en) Measurement control method, terminal, and network-side device
US20220264462A1 (en) Wake-up signal configuration method, wake-up signal processing method, and related device
US20220264696A1 (en) Wake up signal processing method, wake up signal configuration method, and related device
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
CN111050422B (zh) 一种非连续接收的控制方法及终端
WO2021155787A1 (zh) Bwp切换方法、终端和网络侧设备
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
WO2019242567A1 (zh) 调整带宽的方法、移动终端、网络侧设备和介质
US20240147305A1 (en) Data processing method, information configuration method, terminal, and network device
WO2020063240A1 (zh) 信道接入方法、配置方法、终端及网络侧设备
WO2019242725A1 (zh) 调度传输方法及终端
WO2019238027A1 (zh) 链路质量监测方法及终端
US11418996B2 (en) Operation control method, mobile communications terminal, and network-side device
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
US20220124742A1 (en) Sending method, interference handling method, terminal, and network-side device
US20210352739A1 (en) Information transmission method and terminal
US20220015137A1 (en) Method for changing uplink grant, method for sending information, and communications apparatus
WO2021164681A1 (zh) 解码方法、解码配置方法、终端及网络侧设备
WO2021204152A1 (zh) 资源确定方法及终端
WO2020024876A1 (zh) 信息接收方法、信息发送方法、终端及网络侧设备
CN111614452B (zh) 检测位置的确定方法、配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819189

Country of ref document: EP

Kind code of ref document: A1