WO2019237451A1 - 一种太阳能耦合水源热泵供热采暖***及使用方法 - Google Patents

一种太阳能耦合水源热泵供热采暖***及使用方法 Download PDF

Info

Publication number
WO2019237451A1
WO2019237451A1 PCT/CN2018/096128 CN2018096128W WO2019237451A1 WO 2019237451 A1 WO2019237451 A1 WO 2019237451A1 CN 2018096128 W CN2018096128 W CN 2018096128W WO 2019237451 A1 WO2019237451 A1 WO 2019237451A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
water
heat
pump
pipeline
Prior art date
Application number
PCT/CN2018/096128
Other languages
English (en)
French (fr)
Inventor
舒海文
张宏亮
姜珊
郭晓东
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2019237451A1 publication Critical patent/WO2019237451A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0228Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with conventional heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the invention relates to the technical field of heating devices, in particular to a solar-coupled water source heat pump heating and heating system and a use method thereof.
  • Water source heat pump as a renewable energy application technology, its reasonable application can achieve good energy conservation and environmental protection effects.
  • This technology uses the heat in surface water, groundwater, or domestic sewage such as rivers, lakes, and seas. Generally, 2 to 4 times of heat can be obtained by inputting a small amount of electricity during heating.
  • solar energy an easily available renewable energy auxiliary water source, is used.
  • the heat pump system heats the building, which is of great practical significance to alleviate the environmental problems such as the depletion of fossil energy and the increasing haze in China.
  • the operation mode of the combined system becomes the key to improve the energy efficiency and reliability of the combined system.
  • the general operation mode of the solar-coupled water source heat pump is: while the solar heat is stored, different operating modes are selected in real time according to the outlet water temperature of the hot water storage tank, so as to make full use of the hot water in the water tank for heating. This operation mode effectively raises the water temperature on the low-temperature water source side of the heat pump, and the operation energy efficiency of the heat pump unit is improved accordingly, thereby saving the operating energy consumption of the system.
  • the hot water in the water tank is used in real time, so that the average temperature of the hot water in the hot water storage tank cannot be sufficiently increased during the heating process of the system, which results in that the hot water in the water tank is directly used for heating for a short time, or The direct-supply temperature cannot be reached at all, so the heat pump unit needs a long time to open the heat.
  • This mode of operation seems to be able to utilize solar energy in a timely manner, but research has found that it cannot maximize the system's operating energy efficiency due to the inadequate use of the advantages of solar direct heating.
  • the present invention provides a solar-coupled water source heat pump heating and heating system and method, which can simultaneously provide domestic hot water and heating for users.
  • the present invention provides the following solutions:
  • the invention provides a solar-coupled water source heat pump heating and heating system, which includes a solar heat collector, a domestic hot water storage tank, a heating storage tank, a heat pump, a first heat exchanger, a second heat exchanger, and a low-temperature heat source. Side water pump, heat collector pump, intermediate water pump, low temperature heat source and controller;
  • the main circulating water outlet of the solar heat collector is connected to the first water inlet of the domestic hot water storage tank through a first pipeline, and the first water outlet of the domestic hot water storage tank is connected to all
  • the second water inlet of the heating water storage tank is connected through a second pipeline, and the second water outlet of the heating water storage tank and the main circulating water inlet of the solar heat collector are connected through a third pipeline.
  • the main circulating water outlet and the main circulating water inlet are connected inside the solar heat collector; the first water inlet and the first water outlet are inside the domestic hot water storage tank Communicating; the second water inlet and the second water outlet communicate with each other inside the heating and hot water storage tank;
  • the third water inlet of the heat pump is in communication with the fourth water outlet of the first heat exchanger through a fifth pipeline, and the fourth water inlet of the first heat exchanger is in communication with the second heat exchanger.
  • a fifth water outlet is communicated through a sixth pipeline, and a fifth water inlet of the second heat exchanger and a third water outlet of the heat pump are communicated through a seventh pipeline;
  • the third water inlet is in communication with the third water outlet inside the heat pump;
  • the fourth water outlet is in communication with the fourth water inlet inside the first heat exchanger;
  • the A fifth water outlet is in communication with the fifth water inlet inside the second heat exchanger;
  • the sixth water outlet of the heat pump is in communication with the heating user through an eighth pipeline; the sixth water inlet of the heat pump is in communication with the heating user through a ninth pipeline;
  • the sixth water outlet and the sixth water inlet are communicated inside the heat pump;
  • the seventh water inlet and the seventh water outlet of the second heat exchanger are both in communication with the low-temperature heat source; the seventh water inlet and the seventh water outlet are connected inside the second heat exchanger
  • the low-temperature heat source side water pump is provided between the seventh water inlet and the low-temperature heat source;
  • the eighth water outlet of the first heat exchanger is in communication with the ninth water inlet of the heating water storage tank through a tenth pipe, and the eighth water inlet of the first heat exchanger is connected to the heating water storage.
  • the ninth water outlet of the hot water tank is connected through an eleventh pipeline; the eleventh pipeline is provided with the intermediate water pump; the ninth water outlet and the eighth pipeline are connected through a twelfth pipeline Connected
  • the eighth water outlet is in communication with the eighth water inlet inside the first heat exchanger; the ninth water outlet and the ninth water inlet are connected inside the heating and heat storage tank through;
  • the eighth water outlet is in communication with the seventh pipeline through a thirteen pipeline; the seventh pipeline and the ninth pipeline are communicated through a fourteenth pipeline;
  • a fifteenth pipeline is further provided between the fifth pipeline and the eleventh pipeline, and a thirteenth valve is provided on the fifteenth pipeline;
  • a fourth pipeline is further provided between the main circulating water outlet of the solar heat collector and the second water inlet of the heating water storage tank; a first valve is arranged on the fourth pipeline;
  • a second valve is provided on the first pipeline, a third valve is provided on the third pipeline, a fourth valve is provided on the tenth pipeline, and a fifth valve is provided on the sixth pipeline.
  • a thirteenth pipeline is provided with a sixth valve, the seventh pipeline is provided with a seventh valve, the fourteenth pipeline is provided with an eighth valve, and the twelfth pipeline is provided with a ninth valve.
  • the eleventh pipeline is provided with a tenth valve, the fifteenth pipeline is provided with an eleventh valve, the eighth pipeline is provided with a twelfth valve, and the ninth pipeline is provided with a thirteenth valve. valve;
  • the controller is used to control the first valve, the second valve, the third valve, the fourth valve, the fifth valve, the sixth valve, the seventh valve, the Opening and closing of the eighth valve, the ninth valve, the tenth valve, the eleventh valve, the twelfth valve, and the thirteenth valve;
  • the controller is electrically connected to the heat pump, the low-temperature heat source side water pump, the heat collection pump, and the intermediate water pump.
  • an end circulating water pump is provided on the eighth pipeline, and the end circulating water pump is electrically connected to the controller.
  • the domestic hot water storage tank is further provided with a water supply pipe and a user hot water pipe.
  • an auxiliary electric heater is further provided on the domestic hot water storage tank, and the auxiliary electric heater is electrically connected to the controller.
  • a secondary circulation pump is provided on the sixth pipeline, and the secondary circulation pump is electrically connected to the controller.
  • a temperature sensor is provided at the first water outlet and the second water outlet, and the temperature sensor is electrically connected to the controller.
  • the invention also provides a method for using the solar-coupled water source heat pump heating and heating system, which includes the following five operation modes:
  • the first type is the solar direct heating mode of domestic hot water: when the water outlet temperature of the first outlet of the domestic hot water storage tank is lower than the set water temperature of the domestic hot water storage tank, the first valve is closed, and the first The second valve and the third valve turn on the heat collecting pump, and the system directly uses the solar heat collector to heat the water in the domestic hot water storage tank to provide domestic hot water for hot water users;
  • Second, direct solar heating mode When the water temperature T of the second outlet of the heating hot water storage tank is higher than the set direct supply start temperature Td, the system directly uses solar hot water for heating. At this time, the first valve, The third, fourth, sixth, eighth, and ninth valves are open, and the second, fifth, seventh, tenth, eleventh, twelfth, and tenth valves are open. All three valves are closed, and the end circulating water pump is turned on, and the secondary circulating pump, heat pump, low-temperature heat source side water pump and intermediate water pump are closed;
  • the solar indirect heating heat pump heating mode When the temperature T of the hot water storage tank outlet is lower than the set direct supply start temperature Td and higher than the maximum working temperature Th of the heat pump, at this time, the first valve, the first valve, the first Three, fourth, fifth, seventh, tenth, twelfth and thirteenth valves are open, and second, sixth, eighth, ninth and eleventh valves are open.
  • the valves are all closed, the low-temperature heat source side pump, the end circulating water pump, the intermediate water pump, the secondary circulation pump and the heat pump are turned on.
  • the hot water in the heating water storage tank passes the heat to the low-temperature heat source through the first heat exchanger, thereby improving the low-temperature heat source water.
  • the main structure includes a solar heat collector, a domestic hot water storage tank, a heating water storage tank, a heat pump, a first heat exchanger, and a second heat exchange Heaters, low-temperature heat source side pumps, heat-collecting pumps, intermediate water pumps, low-temperature heat sources, and controllers; the controller can control the opening and closing of valves and pumps in the system to form different heating modes, thereby making full use of solar energy while providing users with Domestic hot water and heating.
  • FIG. 1 is a schematic structural diagram of a solar-coupled water source heat pump heating and heating system according to the present invention
  • FIG. 2 is a schematic structural diagram of a direct solar heating mode in a method of using a solar-coupled water source heat pump heating system according to the present invention
  • FIG. 3 is a schematic structural diagram of a solar indirect heating heat pump heating mode in a method of using a solar-coupled water source heat pump heating system according to the present invention
  • FIG. 4 is a schematic structural diagram of a solar energy series heat pump heating mode in a method of using a solar-coupled water source heat pump heating system according to the present invention
  • FIG. 5 is a schematic structural diagram of a single heating mode of a heat pump in a method of using a solar-coupled water source heat pump heating system according to the present invention.
  • this embodiment provides a solar-coupled water source heat pump 4 for heating and heating system, including a solar heat collector 1, a domestic hot water storage tank 2, a heating hot water storage tank 3, a heat pump 4, a first The heat exchanger 5A, the second heat exchanger 5B, the low-temperature heat source-side water pump 7, the heat collecting pump 9, the intermediate water pump 10, the low-temperature heat source 12, and the controller.
  • the main circulating water outlet of the solar heat collector 1 and the first water inlet of the domestic hot water storage tank 2 are communicated through a first pipeline, and the first outlet of the domestic hot water storage tank 2
  • the water outlet is in communication with the second water inlet of the heating water storage tank 3 through a second pipeline, and the second water outlet of the heating water storage tank 3 and the main circulating water inlet of the solar heat collector 1 pass through
  • the third pipeline is connected; the main circulating water outlet and the main circulating water inlet are connected inside the solar heat collector 1; the first water inlet and the first water outlet are in the living
  • the inside of the hot water storage tank 2 is in communication; the second water inlet and the second outlet are connected in the heating water storage tank 3; the third water inlet of the heat pump 4 is connected to all
  • the fourth water outlet of the first heat exchanger 5A is communicated through a fifth pipeline, and the fourth water inlet of the first heat exchanger 5A and the fifth water outlet of the second heat exchanger 5B are connected through a sixth
  • the eleventh pipeline is provided with the intermediate water pump 10; the ninth water outlet is in communication with the eighth pipeline through a twelfth pipeline; the eighth water outlet is in communication with the eighth
  • the water inlet is in communication with the inside of the first heat exchanger 5A; the ninth water outlet is in communication with the ninth water inlet in the heating and thermal storage tank 3; the eighth water outlet is in communication with
  • the seventh pipeline communicates with the thirteenth pipeline; the seventh pipeline communicates with the ninth pipeline through the fourteenth pipeline; the fifth pipeline communicates with the eleventh pipeline
  • a fifteenth pipeline is also provided between the roads, and the thirteenth pipeline is provided with a thirteenth valve 13M; the main circulating water outlet of the solar heat collector 1 and the first fifteenth of the heating and thermal storage tank 3
  • a fourth pipeline is also provided between the two water inlets; a first valve 13A is arranged on the fourth pipeline; a second valve 13B is arranged on the first pipeline; and a third valve is arranged on the third pipeline 13C, a fourth valve 13D is provided on
  • a tenth valve 13J is provided on the eleventh pipeline, an eleventh valve 13K is provided on the fifteenth pipeline, a twelfth valve 13L is provided on the eighth pipeline, and a tenth is provided on the ninth pipeline.
  • the three valves 13M are opened and closed; the controller is electrically connected to the heat pump 4, the low-temperature heat source side water pump 7, the heat collection pump 9, and the intermediate water pump 10.
  • An end circulating water pump 8 is provided on the eighth pipeline, and the end circulating water pump 8 is electrically connected to the controller.
  • the domestic hot water storage tank 2 is further provided with a water supply pipe and a user hot water pipe.
  • the domestic hot water storage tank 2 is further provided with an auxiliary electric heater 6, and the auxiliary electric heater 6 is electrically connected to the controller.
  • a secondary circulation pump 11 is provided on the sixth pipeline, and the secondary circulation pump 11 is electrically connected to the controller.
  • a temperature sensor is provided at each of the first water outlet and the second water outlet, and the temperature sensor is electrically connected to the controller.
  • This embodiment also provides a method for using the solar-coupled water-source heat pump 4 heating and heating system, including the following five operation modes:
  • the first type is direct solar heating mode of domestic hot water: when the outlet temperature of the first water outlet of the domestic hot water storage tank 2 is lower than the set water temperature of the domestic hot water storage tank 2, the first valve 13A is closed. The second valve 13B and the third valve 13C are opened, and the heat collecting pump 9 is turned on.
  • the system directly uses the solar heat collector 1 to heat the water in the domestic hot water storage tank 2 to provide domestic hot water for hot water users;
  • the heating mode of solar indirect heating heat pump 4 As shown in FIG. 3, when the outlet temperature T of the heating water storage tank 3 is lower than the set direct supply start temperature Td and higher than the maximum operating temperature Th of the heat pump 4 The hot water in the heating hot water storage tank 3 directly transfers heat to the heating user without passing through the evaporator in the heat pump 4.
  • the first valve 13A, the third valve 13C, the fourth valve 13D, and the fifth The valve 13E, the seventh valve 13G, the tenth valve 13J, the twelfth valve 13L, and the thirteenth valve 13M are all opened, and the second valve 13B, the sixth valve 13F, the eighth valve 13H, the ninth valve 13I, and the eleventh valve
  • the valves 13K are all closed, and the low-temperature heat source-side water pump 7, the end circulating water pump 8, the intermediate water pump 10, the secondary circulating pump 11, and the heat pump 4 are turned on.
  • the hot water in the heating water storage tank 3 passes the heat through the first heat exchanger 5A.
  • Give the low-temperature heat source 12 to raise the temperature of the water entering the heat pump 4 from the low-temperature heat source 12 and heat the user through the heat pump 4;
  • the heating mode of the solar series heat pump 4 As shown in FIG. 4, when the temperature T of the outlet of the heating water storage tank 3 is higher than the temperature Tw of the low-temperature heat source 12 and lower than the maximum operating temperature Th of the heat pump 4, at this time, the first The first valve 13A, the third valve 13C, the fourth valve 13D, the sixth valve 13F, the eleventh valve 13K, the twelfth valve 13L, and the thirteenth valve 13M are all opened, and the second valve 13B, the fifth valve 13E, the first valve Seven valves 13G, eighth valve 13H, ninth valve 13I and tenth valve 13J are all closed, the end circulating water pump 8, the heat pump 4 and the intermediate water pump 10 are turned on, and the low-temperature heat source side water pump 7 and the secondary circulation pump 11 are turned off for heating and heat storage
  • the hot water in the water tank 3 directly enters the heat pump 4 for heat exchange, increases the temperature of the water entering the heat pump 4, and heats the user through the heat pump 4;
  • the heating mode of the heat pump 4 alone As shown in FIG. 5, when the temperature T of the outlet of the heating water storage tank 3 is lower than the temperature Tw of the low-temperature heat source 12, at this time, the first valve 13A, the third valve 13C, the third valve The five valves 13E, the seventh valve 13G, the twelfth valve 13L, and the thirteenth valve 13M are all opened, the second valve 13B, the fourth valve 13D, the sixth valve 13F, the eighth valve 13H, the ninth valve 13I, and the tenth valve.
  • valve 13J and the eleventh valve 13K are both closed, the low-temperature heat source side water pump 7, the end circulating water pump 8, the secondary circulating pump 11 and the heat pump 4 are turned on, and the intermediate water pump 10 is turned off.
  • the system stops taking heat from the heating water storage tank 3.
  • the heat pump 4 operates alone, the heat extracted by the heat pump 4 comes from the low-temperature heat source 12.
  • the first type is the solar direct heating domestic hot water mode
  • which heating mode the system specifically uses depends on the water temperature T of the second outlet of the heating water storage tank 3; and when auxiliary electric heating is needed
  • the second valve 13B is in a closed state, and the hot water heated by the auxiliary electric heater 6 is only used by hot water users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种太阳能耦合水源热泵供热采暖***及使用方法,涉及供热装置技术领域,主要结构包括太阳能集热器(1)、生活热水蓄热水箱(2)、供暖蓄热水箱(3)、热泵(4)、第一换热器(5A)、第二换热器(5B0、低温热源侧水泵(7)、集热泵(9)、中间水泵(10)、低温热源(12)和控制器;通过控制器控制***中各阀门以及泵的开启和关闭,生活热水蓄热水箱和供暖蓄热水箱通过串联运行或供暖蓄热水箱单独运行,能够形成不同的加热模式,从而充分利用太阳能同时为用户提供生活热水和供暖。

Description

一种太阳能耦合水源热泵供热采暖***及使用方法 技术领域
本发明涉及供热装置技术领域,特别是涉及一种太阳能耦合水源热泵供热采暖***及使用方法。
背景技术
随着建筑能耗的逐年增长,建筑节能以及可再生能源的利用技术已经成为众多学者关注的热点。水源热泵作为一种可再生能源的应用技术,其合理应用能够取得良好的节能环保效果。该技术利用江河湖海等地表水、地下水、或生活污水中的热量,供暖时通过输入少量的电能一般可获得2~4倍的热量;同时,利用太阳能这种容易获取的可再生能源辅助水源热泵***为建筑供暖,对缓解我国化石能源枯竭以及日趋严重的雾霾等环境问题有非常重要的现实意义。
太阳能耦合水源热泵技术的可行性已成为众多研究者的共识,研究表明,该双热源供暖技术一方面可以解决太阳能单独供暖时集热器面积过大的问题,另一方面可以提高热泵机组低温水源侧水温,进而提高机组的运行能效,降低***的运行能耗。单一的水源热泵技术比较成熟,太阳能供暖***也有技术规范指导,但关于太阳能-水源热泵联合***在建筑供暖方面的研究,特别是在短期蓄热太阳能耦合水源热泵供暖方面的研究仍不充分。对于太阳能短期蓄热,由于太阳能具有昼夜间歇性和白天日照时间及强度的不规则性的特点,所以该联合***的运行方式就成为提高该联合***能效和可靠性的关键。当前太阳能耦合水源热泵的一般运行方式为:在太阳能蓄热的同时,根据蓄热水箱的出口水温实时地选择不同的运行模式,以充分利用水箱中的热水进行供暖。这种运行方式有效地提高了热泵低温水源侧的水温,热泵机组的运行能效随之提高,从而节约***的运行能耗。但是,水箱中的热水被实时加以利用使得在***供暖过程中蓄热水箱中的热水平均温度得不到充分提高,导致水箱中的热水被直接用于供暖的时间较短,或根本达不到直供的温度,因而热泵机组需要长时间的开机制热。这种运行方式看似能够及时地利用太阳能,但通过研究发现由于不 能充分利用太阳能直接供暖的优势,因而并不能最大限度地提高***的运行能效。
发明内容
为解决以上技术问题,本发明提供一种太阳能耦合水源热泵供热采暖***及方法,能够同时为用户提供生活热水和供暖。
为实现上述目的,本发明提供了如下方案:
本发明提供一种太阳能耦合水源热泵供热采暖***,包括太阳能集热器、生活热水蓄热水箱、供暖蓄热水箱、热泵、第一换热器、第二换热器、低温热源侧水泵、集热泵、中间水泵、低温热源和和控制器;
所述太阳能集热器的主循环水出口与所述生活热水蓄热水箱的第一进水口通过第一管路相连通,所述生活热水蓄热水箱的第一出水口与所述供暖蓄热水箱的第二进水口通过第二管路相连通,所述供暖蓄热水箱的第二出水口与所述太阳能集热器的主循环水进口通过第三管路相连通;
所述主循环水出口与所述主循环水进口在所述太阳能集热器的内部相连通;所述第一进水口与所述第一出水口在所述生活热水蓄热水箱的内部相连通;所述第二进水口与所述第二出水口在所述供暖蓄热水箱的内部相连通;
所述热泵的第三进水口与所述第一换热器的第四出水口通过第五管路相连通,所述第一换热器的第四进水口与所述第二换热器的第五出水口通过第六管路相连通,所述第二换热器的第五进水口与所述热泵的第三出水口通过第七管路相连通;
所述第三进水口与所述第三出水口在所述热泵的内部相连通;所述第四出水口与所述第四进水口在所述第一换热器的内部相连通;所述第五出水口与所述第五进水口在所述第二换热器的内部相连通;
所述热泵的第六出水口与供暖用户通过第八管路相连通;所述热泵的第六进水口与供暖用户通过第九管路相连通;
所述第六出水口和所述第六进水口在所述热泵的内部相连通;
所述第二换热器的第七进水口和第七出水口均与所述低温热源相连通;所述第七进水口与所述第七出水口在所述第二换热器的内部相连通;所述第七进水口与所述低温热源之间设置有所述低温热源侧水泵;
所述第一换热器的第八出水口与所述供暖蓄热水箱的第九进水口通过第十管路相连通,所述第一换热器的第八进水口与所述供暖蓄热水箱的第九出水口通过第十一管路相连通;所述第十一管路上设置有所述中间水泵;所述第九出水口与所述第八管路通过第十二管路相连通;
所述第八出水口与所述第八进水口在所述第一换热器的内部相连通;所述第九出水口与所述第九进水口在所述供暖蓄热水箱的内部相连通;
所述第八出水口与所述第七管路通过第十三管路相连通;所述第七管路与所述第九管路通过第十四管路相连通;
所述第五管路与所述第十一管路之间还设置有第十五管路,所述第十五管路上设置有第十三阀门;
所述太阳能集热器的主循环水出口与所述供暖蓄热水箱的第二进水口之间还设置有第四管路;所述第四管路上设置有第一阀门;
所述第一管路上设置有第二阀门,所述第三管路上设置有第三阀门,所述第十管路上设置有第四阀门,所述第六管路上设置有第五阀门,所述第十三管路上设置有第六阀门,所述第七管路上设置有第七阀门,所述第十四管路上设置有第八阀门,所述第十二管路上设置有第九阀门,所述第十一管路上设置有第十阀门,所述第十五管路上设置有第十一阀门,所述第八管路上设置有第十二阀门,所述第九管路上设置有第十三阀门;
所述控制器用于控制所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门、所述第六阀门、所述第七阀门、所述第八阀门、所述第九阀门、所述第十阀门、所述第十一阀门、所述第十二阀门、所述第十三阀门的开启和关闭;
所述控制器与所述热泵、所述低温热源侧水泵、所述集热泵和所述中间水泵电连接。
可选的,所述第八管路上设置有一末端循环水泵,所述末端循环水泵与所述控制器电连接。
可选的,所述生活热水蓄热水箱上还设置有补水管和用户热水管。
可选的,所述生活热水蓄热水箱上还设置有辅助电加热器,所述辅助电加热器与所述控制器电连接。
可选的,所述第六管路上设置有二次循环泵,所述二次循环泵与所述 控制器电连接。
可选的,所述第一出水口和所述第二出水口处均设置有温度传感器,所述温度传感器与所述控制器电连接。
本发明还提供一种上述太阳能耦合水源热泵供热采暖***的使用方法,包括以下五种运行模式:
第一种、太阳能直接加热生活热水模式:生活热水蓄热水箱的第一出水口的出水温度低于生活热水蓄热水箱的设定出水温度时,关闭第一阀门,开启第二阀门和第三阀门,开启集热泵,***直接利用太阳能集热器加热生活热水蓄热水箱中的水,为热水用户提供生活热水;
第二种、太阳能直接供暖模式:当供暖蓄热水箱的第二出水口水温T高于设定的直供启动温度Td时,***直接利用太阳能热水进行供暖,此时,第一阀门、第三阀门、第四阀门、第六阀门、第八阀门和第九阀门均开启,第二阀门、第五阀门、第七阀门、第十阀门、第十一阀门、第十二阀门和第十三阀门均关闭,并开启末端循环水泵,关闭二次循环泵、热泵、低温热源侧水泵和中间水泵;
第三种、太阳能间接加热热泵供暖模式:当供暖蓄热水箱出口温度T低于设定的直供启动温度Td,又高于热泵的最高工作温度Th时,此时,第一阀门、第三阀门、第四阀门、第五阀门、第七阀门、第十阀门、第十二阀门和第十三阀门均开启,第二阀门、第六阀门、第八阀门、第九阀门和第十一阀门均关闭,开启低温热源侧水泵、末端循环水泵、中间水泵、二次循环泵和热泵,供暖蓄热水箱内的热水经过第一换热器将热量传递给低温热源,提升低温热源水进入热泵中的水的温度,通过热泵对用户进行供暖;
第四种、太阳能串联热泵供暖模式:当供暖蓄热水箱出口温度T高于低温热源温度Tw且低于热泵的最高工作温度Th时,此时,第一阀门、第三阀门、第四阀门、第六阀门、第十一阀门、第十二阀门和第十三阀门均开启,第二阀门、第五阀门、第七阀门、第八阀门、第九阀门和第十阀门均关闭,开启末端循环水泵、热泵和中间水泵,关闭低温热源侧水泵和二次循环泵,供暖蓄热水箱中的热水直接进入热泵进行换热,提高进入热泵的水温,通过热泵对用户进行供暖;
第五种、热泵单独供暖模式:当供暖蓄热水箱出口温度T低于低温热源的温度Tw时,此时,第一阀门、第三阀门、第五阀门、第七阀门、第十二阀门和第十三阀门均开启,第二阀门、第四阀门、第六阀门、第八阀门、第九阀门、第十阀门和第十一阀门均关闭,开启低温热源侧水泵、末端循环水泵、二次循环泵和热泵,关闭中间水泵,***停止从供暖蓄热水箱取热,此时热泵单独运行,热泵提取的热量来自于低温热源。
本发明相对于现有技术取得了以下技术效果:
本发明中的太阳能耦合水源热泵供热采暖***及使用方法,主要结构包括太阳能集热器、生活热水蓄热水箱、供暖蓄热水箱、热泵、第一换热器、第二换热器、低温热源侧水泵、集热泵、中间水泵、低温热源和和控制器;通过控制器控制***中各阀门以及泵的开启和关闭,能够形成不同的加热模式,从而充分利用太阳能同时为用户提供生活热水和供暖。
附图说明
图1为本发明太阳能耦合水源热泵供热采暖***的结构示意图;
图2为本发明太阳能耦合水源热泵供热采暖***的使用方法中太阳能直接供暖模式的结构示意图;
图3为本发明太阳能耦合水源热泵供热采暖***的使用方法中太阳能间接加热热泵供暖模式的结构示意图;
图4为本发明太阳能耦合水源热泵供热采暖***的使用方法中太阳能串联热泵供暖模式的结构示意图;
图5为本发明太阳能耦合水源热泵供热采暖***的使用方法中热泵单独供暖模式的结构示意图。
附图标记说明:1、太阳能集热器;2、生活热水蓄热水箱;3、供暖蓄热水箱;4、热泵;5A、第一换热器;5B、第二换热器;6、辅助电加热器;7、低温热源侧水泵;8、末端循环水泵;9、集热泵;10、中间水泵;11、二次循环泵;12、低温热源;13A、第一阀门;13B、第二阀门;13C、第三阀门;13D、第四阀门;13E、第五阀门;13F、第六阀门;13G、第七阀门;13H、第八阀门;13I、第九阀门;13J、第十阀门;13K、第十一阀门;13L、第十二阀门;13M、第十三阀门。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图1所示,本实施例提供一种太阳能耦合水源热泵4供热采暖***,包括太阳能集热器1、生活热水蓄热水箱2、供暖蓄热水箱3、热泵4、第一换热器5A、第二换热器5B、低温热源侧水泵7、集热泵9、中间水泵10、低温热源12和和控制器。
所述太阳能集热器1的主循环水出口与所述生活热水蓄热水箱2的第一进水口通过第一管路相连通,所述生活热水蓄热水箱2的第一出水口与所述供暖蓄热水箱3的第二进水口通过第二管路相连通,所述供暖蓄热水箱3的第二出水口与所述太阳能集热器1的主循环水进口通过第三管路相连通;所述主循环水出口与所述主循环水进口在所述太阳能集热器1的内部相连通;所述第一进水口与所述第一出水口在所述生活热水蓄热水箱2的内部相连通;所述第二进水口与所述第二出水口在所述供暖蓄热水箱3的内部相连通;所述热泵4的第三进水口与所述第一换热器5A的第四出水口通过第五管路相连通,所述第一换热器5A的第四进水口与所述第二换热器5B的第五出水口通过第六管路相连通,所述第二换热器5B的第五进水口与所述热泵4的第三出水口通过第七管路相连通;所述第三进水口与所述第三出水口在所述热泵4的内部相连通;所述第四出水口与所述第四进水口在所述第一换热器5A的内部相连通;所述第五出水口与所述第五进水口在所述第二换热器5B的内部相连通;所述热泵4的第六出水口与供暖用户通过第八管路相连通;所述热泵4的第六进水口与供暖用户通过第九管路相连通;所述第六出水口和所述第六进水口在所述热泵4的内部相连通;所述第二换热器5B的第七进水口和第七出水口均与所述低温热源12相连通;所述第七进水口与所述第七出水口在所述第二换热器5B的内部相连通;所述第七进水口与所述低温热源12之间设置有所述低温热源侧水泵7;所述第一换热器5A的第八出水口与所述供暖蓄热 水箱3的第九进水口通过第十管路相连通,所述第一换热器5A的第八进水口与所述供暖蓄热水箱3的第九出水口通过第十一管路相连通;所述第十一管路上设置有所述中间水泵10;所述第九出水口与所述第八管路通过第十二管路相连通;所述第八出水口与所述第八进水口在所述第一换热器5A的内部相连通;所述第九出水口与所述第九进水口在所述供暖蓄热水箱3的内部相连通;所述第八出水口与所述第七管路通过第十三管路相连通;所述第七管路与所述第九管路通过第十四管路相连通;所述第五管路与所述第十一管路之间还设置有第十五管路,所述第十五管路上设置有第十三阀门13M;所述太阳能集热器1的主循环水出口与所述供暖蓄热水箱3的第二进水口之间还设置有第四管路;所述第四管路上设置有第一阀门13A;所述第一管路上设置有第二阀门13B,所述第三管路上设置有第三阀门13C,所述第十管路上设置有第四阀门13D,所述第六管路上设置有第五阀门13E,所述第十三管路上设置有第六阀门13F,所述第七管路上设置有第七阀门13G,所述第十四管路上设置有第八阀门13H,所述第十二管路上设置有第九阀门13I,所述第十一管路上设置有第十阀门13J,所述第十五管路上设置有第十一阀门13K,所述第八管路上设置有第十二阀门13L,所述第九管路上设置有第十三阀门13M;所述控制器用于控制所述第一阀门13A、所述第二阀门13B、所述第三阀门13C、所述第四阀门13D、所述第五阀门13E、所述第六阀门13F、所述第七阀门13G、所述第八阀门13H、所述第九阀门13I、所述第十阀门13J、所述第十一阀门13K、所述第十二阀门13L、所述第十三阀门13M的开启和关闭;所述控制器与所述热泵4、所述低温热源侧水泵7、所述集热泵9和所述中间水泵10电连接。
所述第八管路上设置有一末端循环水泵8,所述末端循环水泵8与所述控制器电连接。
所述生活热水蓄热水箱2上还设置有补水管和用户热水管。
所述生活热水蓄热水箱2上还设置有辅助电加热器6,所述辅助电加热器6与所述控制器电连接。
所述第六管路上设置有二次循环泵11,所述二次循环泵11与所述控制器电连接。
所述第一出水口和所述第二出水口处均设置有温度传感器,所述温度传感器与所述控制器电连接。
本实施例还提供一种上述太阳能耦合水源热泵4供热采暖***的使用方法,包括以下五种运行模式:
第一种、太阳能直接加热生活热水模式:生活热水蓄热水箱2的第一出水口的出水温度低于生活热水蓄热水箱2的设定出水温度时,关闭第一阀门13A,开启第二阀门13B和第三阀门13C,开启集热泵9,***直接利用太阳能集热器1加热生活热水蓄热水箱2中的水,为热水用户提供生活热水;
第二种、太阳能直接供暖模式:如图2所示,当供暖蓄热水箱3的第二出水口水温T高于设定的直供启动温度Td时,***直接利用太阳能热水进行供暖,此时,第一阀门13A、第三阀门13C、第四阀门13D、第六阀门13F、第八阀门13H和第九阀门13I均开启,第二阀门13B、第五阀门13E、第七阀门13G、第十阀门13J、第十一阀门13K、第十二阀门13L和第十三阀门13M均关闭,并开启末端循环水泵8,关闭二次循环泵11、热泵4、低温热源侧水泵7和中间水泵10;
第三种、太阳能间接加热热泵4供暖模式:如图3所示,当供暖蓄热水箱3出口温度T低于设定的直供启动温度Td,又高于热泵4的最高工作温度Th时,供暖蓄热水箱3中的热水不经过热泵4中的蒸发器而直接将热量传递到供暖用户一侧,此时,第一阀门13A、第三阀门13C、第四阀门13D、第五阀门13E、第七阀门13G、第十阀门13J、第十二阀门13L和第十三阀门13M均开启,第二阀门13B、第六阀门13F、第八阀门13H、第九阀门13I和第十一阀门13K均关闭,开启低温热源侧水泵7、末端循环水泵8、中间水泵10、二次循环泵11和热泵4,供暖蓄热水箱3内的热水经过第一换热器5A将热量传递给低温热源12,提升低温热源12水进入热泵4中的水的温度,通过热泵4对用户进行供暖;
第四种、太阳能串联热泵4供暖模式:如图4所示,当供暖蓄热水箱3出口温度T高于低温热源12温度Tw且低于热泵4的最高工作温度Th时,此时,第一阀门13A、第三阀门13C、第四阀门13D、第六阀门13F、第十一阀门13K、第十二阀门13L和第十三阀门13M均开启,第二阀门 13B、第五阀门13E、第七阀门13G、第八阀门13H、第九阀门13I和第十阀门13J均关闭,开启末端循环水泵8、热泵4和中间水泵10,关闭低温热源侧水泵7和二次循环泵11,供暖蓄热水箱3中的热水直接进入热泵4进行换热,提高进入热泵4的水温,通过热泵4对用户进行供暖;
第五种、热泵4单独供暖模式:如图5所示,当供暖蓄热水箱3出口温度T低于低温热源12的温度Tw时,此时,第一阀门13A、第三阀门13C、第五阀门13E、第七阀门13G、第十二阀门13L和第十三阀门13M均开启,第二阀门13B、第四阀门13D、第六阀门13F、第八阀门13H、第九阀门13I、第十阀门13J和第十一阀门13K均关闭,开启低温热源侧水泵7、末端循环水泵8、二次循环泵11和热泵4,关闭中间水泵10,***停止从供暖蓄热水箱3取热,此时热泵4单独运行,热泵4提取的热量来自于低温热源12。
需要说明的是,当采用第一种即太阳能直接加热生活热水模式时,***具体采用哪种供暖模式,取决于供暖蓄热水箱3的第二出水口水温T;且在需要辅助电加热器6对生活热水蓄热水箱2进行辅助加热时,第二阀门13B处于关闭状态,辅助电加热器6加热后的热水只供热水用户使用。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (7)

  1. 一种太阳能耦合水源热泵供热采暖***,其特征在于,包括太阳能集热器、生活热水蓄热水箱、供暖蓄热水箱、热泵、第一换热器、第二换热器、低温热源侧水泵、集热泵、中间水泵、低温热源和和控制器;
    所述太阳能集热器的主循环水出口与所述生活热水蓄热水箱的第一进水口通过第一管路相连通,所述生活热水蓄热水箱的第一出水口与所述供暖蓄热水箱的第二进水口通过第二管路相连通,所述供暖蓄热水箱的第二出水口与所述太阳能集热器的主循环水进口通过第三管路相连通;
    所述主循环水出口与所述主循环水进口在所述太阳能集热器的内部相连通;所述第一进水口与所述第一出水口在所述生活热水蓄热水箱的内部相连通;所述第二进水口与所述第二出水口在所述供暖蓄热水箱的内部相连通;
    所述热泵的第三进水口与所述第一换热器的第四出水口通过第五管路相连通,所述第一换热器的第四进水口与所述第二换热器的第五出水口通过第六管路相连通,所述第二换热器的第五进水口与所述热泵的第三出水口通过第七管路相连通;
    所述第三进水口与所述第三出水口在所述热泵的内部相连通;所述第四出水口与所述第四进水口在所述第一换热器的内部相连通;所述第五出水口与所述第五进水口在所述第二换热器的内部相连通;
    所述热泵的第六出水口与供暖用户通过第八管路相连通;所述热泵的第六进水口与供暖用户通过第九管路相连通;
    所述第六出水口和所述第六进水口在所述热泵的内部相连通;
    所述第二换热器的第七进水口和第七出水口均与所述低温热源相连通;所述第七进水口与所述第七出水口在所述第二换热器的内部相连通;所述第七进水口与所述低温热源之间设置有所述低温热源侧水泵;
    所述第一换热器的第八出水口与所述供暖蓄热水箱的第九进水口通过第十管路相连通,所述第一换热器的第八进水口与所述供暖蓄热水箱的第九出水口通过第十一管路相连通;所述第十一管路上设置有所述中间水泵;所述第九出水口与所述第八管路通过第十二管路相连通;
    所述第八出水口与所述第八进水口在所述第一换热器的内部相连通;所述第九出水口与所述第九进水口在所述供暖蓄热水箱的内部相连通;
    所述第八出水口与所述第七管路通过第十三管路相连通;所述第七管路与所述第九管路通过第十四管路相连通;
    所述第五管路与所述第十一管路之间还设置有第十五管路,所述第十五管路上设置有第十三阀门;
    所述太阳能集热器的主循环水出口与所述供暖蓄热水箱的第二进水口之间还设置有第四管路;所述第四管路上设置有第一阀门;
    所述第一管路上设置有第二阀门,所述第三管路上设置有第三阀门,所述第十管路上设置有第四阀门,所述第六管路上设置有第五阀门,所述第十三管路上设置有第六阀门,所述第七管路上设置有第七阀门,所述第十四管路上设置有第八阀门,所述第十二管路上设置有第九阀门,所述第十一管路上设置有第十阀门,所述第十五管路上设置有第十一阀门,所述第八管路上设置有第十二阀门,所述第九管路上设置有第十三阀门;
    所述控制器用于控制所述第一阀门、所述第二阀门、所述第三阀门、所述第四阀门、所述第五阀门、所述第六阀门、所述第七阀门、所述第八阀门、所述第九阀门、所述第十阀门、所述第十一阀门、所述第十二阀门、所述第十三阀门的开启和关闭;
    所述控制器与所述热泵、所述低温热源侧水泵、所述集热泵和所述中间水泵电连接。
  2. 根据权利要求1所述的太阳能耦合水源热泵供热采暖***,其特征在于,所述第八管路上设置有一末端循环水泵,所述末端循环水泵与所述控制器电连接。
  3. 根据权利要求1所述的太阳能耦合水源热泵供热采暖***,其特征在于,所述生活热水蓄热水箱上还设置有补水管和用户热水管。
  4. 根据权利要求1所述的太阳能耦合水源热泵供热采暖***,其特征在于,所述生活热水蓄热水箱上还设置有辅助电加热器,所述辅助电加热器与所述控制器电连接。
  5. 根据权利要求1所述的太阳能耦合水源热泵供热采暖***,其特 征在于,所述第六管路上设置有二次循环泵,所述二次循环泵与所述控制器电连接。
  6. 根据权利要求1所述的太阳能耦合水源热泵供热采暖***,其特征在于,所述第一出水口和所述第二出水口处均设置有温度传感器,所述温度传感器与所述控制器电连接。
  7. 一种权利要求1-6所述的太阳能耦合水源热泵供热采暖***的使用方法,其特征在于,包括以下五种运行模式:
    第一种、太阳能直接加热生活热水模式:生活热水蓄热水箱的第一出水口的出水温度低于生活热水蓄热水箱的设定出水温度时,关闭第一阀门,开启第二阀门和第三阀门,开启集热泵,***直接利用太阳能集热器加热生活热水蓄热水箱中的水,为热水用户提供生活热水;
    第二种、太阳能直接供暖模式:当供暖蓄热水箱的第二出水口水温T高于设定的直供启动温度Td时,***直接利用太阳能热水进行供暖,此时,第一阀门、第三阀门、第四阀门、第六阀门、第八阀门和第九阀门均开启,第二阀门、第五阀门、第七阀门、第十阀门、第十一阀门、第十二阀门和第十三阀门均关闭,并开启末端循环水泵,关闭二次循环泵、热泵、低温热源侧水泵和中间水泵;
    第三种、太阳能间接加热热泵供暖模式:当供暖蓄热水箱出口温度T低于设定的直供启动温度Td,又高于热泵的最高工作温度Th时,此时,第一阀门、第三阀门、第四阀门、第五阀门、第七阀门、第十阀门、第十二阀门和第十三阀门均开启,第二阀门、第六阀门、第八阀门、第九阀门和第十一阀门均关闭,开启低温热源侧水泵、末端循环水泵、中间水泵、二次循环泵和热泵,供暖蓄热水箱内的热水经过第一换热器将热量传递给低温热源,提升低温热源水进入热泵中的水的温度,通过热泵对用户进行供暖;
    第四种、太阳能串联热泵供暖模式:当供暖蓄热水箱出口温度T高于低温热源温度Tw且低于热泵的最高工作温度Th时,此时,第一阀门、第三阀门、第四阀门、第六阀门、第十一阀门、第十二阀门和第十三阀门均开启,第二阀门、第五阀门、第七阀门、第八阀门、第九阀门和第十阀 门均关闭,开启末端循环水泵、热泵和中间水泵,关闭低温热源侧水泵和二次循环泵,供暖蓄热水箱中的热水直接进入热泵进行换热,提高进入热泵的水温,通过热泵对用户进行供暖;
    第五种、热泵单独供暖模式:当供暖蓄热水箱出口温度T低于低温热源的温度Tw时,此时,第一阀门、第三阀门、第五阀门、第七阀门、第十二阀门和第十三阀门均开启,第二阀门、第四阀门、第六阀门、第八阀门、第九阀门、第十阀门和第十一阀门均关闭,开启低温热源侧水泵、末端循环水泵、二次循环泵和热泵,关闭中间水泵,***停止从供暖蓄热水箱取热,此时热泵单独运行,热泵提取的热量来自于低温热源。
PCT/CN2018/096128 2018-06-12 2018-07-18 一种太阳能耦合水源热泵供热采暖***及使用方法 WO2019237451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810603232.4A CN108644866B (zh) 2018-06-12 2018-06-12 一种太阳能耦合水源热泵供热采暖***及使用方法
CN201810603232.4 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019237451A1 true WO2019237451A1 (zh) 2019-12-19

Family

ID=63752447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096128 WO2019237451A1 (zh) 2018-06-12 2018-07-18 一种太阳能耦合水源热泵供热采暖***及使用方法

Country Status (2)

Country Link
CN (1) CN108644866B (zh)
WO (1) WO2019237451A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023231A (zh) * 2019-12-27 2020-04-17 思安新能源股份有限公司 太阳能-水源热泵联合供暖***

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019237296A1 (zh) * 2018-06-13 2019-12-19 江苏蓄能谷实业有限公司 一种太阳能热泵联合供暖***及控制方法
CN109595828A (zh) * 2018-12-13 2019-04-09 内蒙古科技大学 一种太阳能空气源热泵联合供暖供热水制冷***
CN113531634A (zh) * 2020-04-17 2021-10-22 青岛海尔空调电子有限公司 一种太阳能与水源热泵耦合***及方法
CN113007769A (zh) * 2021-03-04 2021-06-22 武汉理工大学 一种基于风力磁涡流的海水源热泵供暖***
CN113048539B (zh) * 2021-03-29 2022-04-15 武汉理工大学 基于风力磁涡流的海水源热泵供暖装置及其控制方法
CN113883590B (zh) * 2021-11-10 2023-05-26 西安建筑科技大学 一种太阳能供暖的柔性控制方法及***
CN114608052A (zh) * 2022-02-25 2022-06-10 北京市京海换热设备制造有限责任公司 一种热电联供分布式供热站装置
CN117704456A (zh) * 2024-01-04 2024-03-15 中国电建集团河北省电力勘测设计研究院有限公司 一种利用压缩空气储能的集热器供暖***和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337519A (ja) * 2004-05-24 2005-12-08 Toshiba Kyaria Kk 空気調和機
CN2874356Y (zh) * 2006-01-24 2007-02-28 黄永伟 太阳能地板辐射采暖***
CN201074928Y (zh) * 2007-06-27 2008-06-18 王全龄 空气源、太阳能水源热泵空调
CN201429169Y (zh) * 2009-06-29 2010-03-24 大连葆光节能空调设备厂 太阳能式海水源热泵***
CN104748407A (zh) * 2015-03-04 2015-07-01 大连理工大学 一种太阳能热电联产联供***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341848B2 (ja) * 2007-02-15 2009-10-14 オーエム計画株式会社 空気集熱式ソーラー除湿涼房システム
CN101476760B (zh) * 2009-01-23 2012-04-18 曼瑞德自控***(乐清)有限公司 一种基于太阳能的多热源住宅舒适集成***
CN106594840B (zh) * 2016-12-26 2019-08-13 大连葆光节能空调设备厂 一种直膨式太阳能热泵与污水源热泵耦合供热***
CN208282225U (zh) * 2018-06-12 2018-12-25 大连理工大学 一种太阳能耦合水源热泵供热采暖***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337519A (ja) * 2004-05-24 2005-12-08 Toshiba Kyaria Kk 空気調和機
CN2874356Y (zh) * 2006-01-24 2007-02-28 黄永伟 太阳能地板辐射采暖***
CN201074928Y (zh) * 2007-06-27 2008-06-18 王全龄 空气源、太阳能水源热泵空调
CN201429169Y (zh) * 2009-06-29 2010-03-24 大连葆光节能空调设备厂 太阳能式海水源热泵***
CN104748407A (zh) * 2015-03-04 2015-07-01 大连理工大学 一种太阳能热电联产联供***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, PENGLI ET AL.: "Non-official translation: Simulation Body of Solar-Seawater Source Heat Pump Combined Heating System", ENERGY CONSERVATION, vol. 4, 31 December 2014 (2014-12-31), pages 25 - 28, ISSN: 1004-7948 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023231A (zh) * 2019-12-27 2020-04-17 思安新能源股份有限公司 太阳能-水源热泵联合供暖***

Also Published As

Publication number Publication date
CN108644866A (zh) 2018-10-12
CN108644866B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2019237451A1 (zh) 一种太阳能耦合水源热泵供热采暖***及使用方法
CN206959110U (zh) 一种太阳能光伏光热一体化联合空气源热泵供暖***
CN209027121U (zh) 一种高效太阳能集热联合电能供热***
CN107355841A (zh) 一种低谷电驱动的空气源热泵多模式采暖***
CN204084946U (zh) 一种单蒸发器型太阳能空气源复合热泵
CN106451724B (zh) 太阳能与单井循环热泵调温、供电、供热水***及方法
CN106288490A (zh) 聚光式光伏/光热一体化热/电/冷联供***
CN104251573A (zh) 一种单蒸发器型太阳能空气源复合热泵及其运行方法
CN205447976U (zh) 太阳能与空气能互补热水***
CN109268922A (zh) 直膨式热泵加光伏发电耦合利用采暖***
CN208282225U (zh) 一种太阳能耦合水源热泵供热采暖***
CN205619578U (zh) 一种建筑物的太阳能热水***
CN210197447U (zh) 多能源互补的学校供暖节能***
CN104089407A (zh) 基于太阳能辅助燃气轮机的分布式多联供装置及方法
CN207334870U (zh) 一种小区被动式太阳能采暖***
CN202008190U (zh) 太阳能、空气源及电能互补使用的供热供暖***
CN205980359U (zh) 一种太阳能热泵联动热水器
CN211011985U (zh) 一种结合太阳能冷暖两联双供***
CN109681952B (zh) 光伏光热混合热泵***
CN209147217U (zh) 直膨式热泵加光伏发电耦合利用采暖***
CN208475683U (zh) 一种光热光伏采暖制冷***
CN208720339U (zh) 电锅炉与太阳能联合供热***
CN201724298U (zh) 太阳能供暖***
CN215765324U (zh) 一种带蓄热功能的pvt热泵供热***
CN207963199U (zh) 太阳能热泵热水***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922652

Country of ref document: EP

Kind code of ref document: A1