WO2019237368A1 - 测试*** - Google Patents

测试*** Download PDF

Info

Publication number
WO2019237368A1
WO2019237368A1 PCT/CN2018/091695 CN2018091695W WO2019237368A1 WO 2019237368 A1 WO2019237368 A1 WO 2019237368A1 CN 2018091695 W CN2018091695 W CN 2018091695W WO 2019237368 A1 WO2019237368 A1 WO 2019237368A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charging device
voltage
interface
test
Prior art date
Application number
PCT/CN2018/091695
Other languages
English (en)
French (fr)
Inventor
田晨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/091695 priority Critical patent/WO2019237368A1/zh
Publication of WO2019237368A1 publication Critical patent/WO2019237368A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus

Definitions

  • the present application relates to the field of testing technology, and in particular, to a testing system.
  • charging devices such as adapters
  • safety requirements for charging devices have also increased. Therefore, it is necessary to test the charging device for charging the electronic device to ensure the quality of the charging device.
  • the embodiment of the present application provides a test system, which can make the process of testing the charging device uninterrupted.
  • test system which includes:
  • a charging device comprising a first charging interface, said first charging interface outputting a pulsation signal
  • the program-controlled power supply includes a second charging interface, the second charging interface is connected to the first charging interface of the charging device, and when the voltage of the pulse signal output by the charging device is higher than a first voltage threshold, the The program-controlled power supply detects a pulsation signal output by the charging device, and when the voltage of the pulsation signal output by the charging device is lower than or equal to a first voltage threshold, the program-controlled power supply supplies power to the charging device.
  • the test system includes a charging device and a program-controlled power supply.
  • the charging device is connected to the program-controlled power supply.
  • the program-controlled power supply tests a pulsation signal output by the charging device.
  • the program-controlled power supply supplies power to the charging device so that the charging device is continuously powered.
  • the pulsation signal is input to a program-controlled power supply for testing.
  • the program-controlled power supply can better test various parameters of the charging device, instead of using the battery test, because the state of the battery cannot be changed, and it cannot simulate various situations like the program-controlled power supply (such as low battery, high battery, full battery). Power) test the charging device.
  • FIG. 1 is a schematic diagram of a first structure of a test system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of a test system provided by an embodiment of the present application.
  • FIG. 3 is a third schematic structural diagram of a test system provided by an embodiment of the present application.
  • FIG. 4 is a fourth structural schematic diagram of a test system provided by an embodiment of the present application.
  • FIG. 5 is a fifth schematic structural diagram of a test system provided by an embodiment of the present application.
  • FIG. 6 is a sixth schematic structural diagram of a test system provided by an embodiment of the present application.
  • FIG. 7 is a seventh schematic structural diagram of a test system provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a charging device and an electronic device according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a test method provided in an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more features.
  • the embodiment of the present application provides a test system. The details will be described below.
  • FIG. 1 is a schematic diagram of a first structure of a test system provided by an embodiment of the present application.
  • the charging device 10 of this embodiment includes a charging receiving end 1001, a voltage adjustment circuit 1002, and a central control module 1003.
  • the charging receiving end 1001 is configured to receive AC mains power.
  • the input terminal of the voltage adjustment circuit 1002 is connected to the charging receiving terminal 1001, and the output terminal of the voltage adjustment circuit 1002 is connected to the program-controlled power supply 70.
  • the voltage adjustment circuit 1002 is used to adjust the AC mains to output a voltage of a pulsating waveform, and The waveform voltage is directly applied to the program-controlled power supply 70.
  • the central control module 1003 is configured to control the voltage adjustment circuit to adjust the output voltage and / or current of the voltage adjustment circuit in response to the test demand of the program-controlled power supply 70.
  • FIG. 2 is a schematic diagram of a second structure of the test system provided by the embodiment of the present application
  • FIG. 3 is a schematic diagram of the third structure of the test system provided by the embodiment of the present application.
  • the charging device 10 may include a first rectifying unit 101, a switching unit 102, a transformer 103, a second rectifying unit 104, a first charging interface 105, a sampling unit 106, and a control unit 107.
  • the first rectifying unit 101 rectifies an input alternating current (commercial power, such as AC220V) to output a voltage of a first pulsating waveform, such as a hoe wave voltage.
  • the first rectifying unit 101 may be a full-bridge rectifier circuit composed of four diodes.
  • the switching unit 102 is configured to modulate the voltage of the first pulsating waveform according to the control signal.
  • the switching unit 102 may be composed of a MOS tube, and performs PWM (Pulse Width Modulation) control on the MOS tube to modulate the hob wave voltage. Chopper modulation.
  • the transformer 103 may include a primary winding and a secondary winding, one end of the primary winding is connected to the first output terminal of the first rectifying unit 101, the second output terminal of the first rectifying unit 101 is grounded, and the other of the primary winding is One end is connected to the switching unit 102 (for example, if the switching unit 102 is a MOS tube, then the other end of the primary winding is connected to the drain of the MOS tube).
  • the transformer 103 is used to adjust the voltage of the first pulse waveform after modulation. Outputs the voltage of the second pulsating waveform.
  • the transformer 103 is a high-frequency transformer, and its working frequency may be 50KHz-2MHz.
  • the high-frequency transformer couples the voltage of the modulated first pulse waveform to the secondary, and the secondary winding outputs the voltage.
  • a high-frequency transformer is used.
  • the high-frequency transformer is mainly used to refer to the frequency of a commercial power source, such as 50Hz or 60Hz AC
  • the small size makes it possible to reduce the size of the charging device 10.
  • the second rectifying unit 104 is connected to the secondary winding of the transformer 103.
  • the second rectifying unit 104 is configured to rectify the voltage of the second pulsating waveform to output the voltage of the third pulsating waveform.
  • the second rectifying unit 104 may include a diode or a MOS tube, which can implement secondary synchronous rectification, so that the third pulsating waveform is synchronized with the modulated first pulsating waveform.
  • the third pulsating waveform and the modulated The first pulsation waveform remains synchronized, specifically, the phase of the third pulsation waveform is consistent with the phase of the modulated first pulsation waveform, and the amplitude of the third pulsation waveform and the amplitude of the first pulsation waveform after modulation remain the same. Consistent.
  • the first charging interface 105 is connected to the second rectification unit 104, and the sampling unit 106 is configured to sample the voltage and / or current on the primary winding, that is, to sample the voltage of the modulated first pulse waveform, so as to achieve primary sampling.
  • the control unit 107 is respectively connected to the sampling unit 106 and the switching unit 102.
  • the control unit 107 outputs a control signal to the switching unit 102, and calculates a voltage corresponding to the output of the second rectification unit according to the voltage value and / or the current value sampled by the sampling unit 106.
  • the voltage sampling value and / or current sampling value that is, the calculated voltage sampling value and / or current sampling value correspond to the output of the second rectifier unit, are the output voltage and / or output current of the charging device, and are based on the voltage sampling value and / Or the current sampling value adjusts the duty cycle of the control signal, so that the voltage of the third pulsating waveform output by the second rectifying unit 104 can meet the charging requirement.
  • the magnitude of the output voltage and / or output current of the third pulsating waveform is periodically changed. Compared with the traditional constant voltage and constant current, it can reduce the lithium precipitation of the lithium battery, improve the battery life, and reduce the charging.
  • the probability and strength of the arcing of the contacts of the interface improve the life of the charging interface, as well as reduce the polarization effect of the battery, increase the charging speed, reduce the heating of the battery, and ensure the safety and reliability of the terminal when charging.
  • the power adapter outputs a voltage with a pulsating waveform, there is no need to set an electrolytic capacitor in the charging device (power adapter), which can not only simplify and miniaturize the charging device (power adapter), but also greatly reduce costs.
  • FIG. 4 is a schematic diagram of a fourth structure of a charging system according to an embodiment of the present application.
  • the charging system includes a charging device 10 and a program-controlled power supply 70.
  • the charging device 10 includes a first charging interface 105, and the first charging interface 105 outputs a pulsation signal.
  • Programmable power supply 70 which includes a second charging interface 701, and the second charging interface 701 is connected to the first charging interface 105 of the charging device 10.
  • the program-controlled power supply 70 When the voltage of the pulse signal output by the charging device 10 is higher than the first voltage threshold, the program-controlled power supply 70 The pulse signal output by the charging device 10 is received and detected. When the voltage of the pulse signal output by the charging device 10 is lower than or equal to the first voltage threshold, the program-controlled power supply 70 supplies power to the charging device 10.
  • the charging device 10 When the charging device 10 is tested, because the charging device 10 outputs a pulsation signal, that is, the charging device 10 outputs the third pulsating waveform described above.
  • the voltage of the pulsation signal is fluctuating, that is, the pulsation signal includes a peak voltage value (maximum voltage value) and a valley voltage value (minimum voltage value).
  • the voltage of the pulsation signal fluctuates between the peak voltage value and the valley voltage value. .
  • the charging device 10 directly charges the battery of the electronic device, if the voltage in the pulsation signal is lower than a certain value (for example, when the voltage of the pulsation signal is lower than 2.8V), the voltage of the pulsation signal will be embedded by the battery voltage. Therefore, the charging device 10 is continuously powered.
  • the voltage of the pulsation signal When the voltage of the pulsation signal is higher than a certain value (such as when the voltage of the pulsation signal is higher than 2.8V), the
  • the program-controlled power supply 70 is used for testing, and the program-controlled power supply 70 is used to simulate various states of the battery, so that it can smoothly, quickly and completely test.
  • the inventor found during actual testing that when the pulsating signal voltage output by the charging device 10 is lower than the first voltage threshold (such as 2.8V), the charging device 10 will be powered off, so that the normal test cannot be performed. Specifically, because the input of the charging device 10 is AC power, and the charging device 10 directly charges the battery, when the AC power is low voltage, multiple components inside the charging device 10 cannot supply power, which in turn causes multiple components inside the charging device 10 to fail. Work, causing the charging device to fail to work properly. After a long period of research and a large number of experiments by the inventor, testing with the program-controlled power supply 70 can solve this problem. When the voltage of the pulsation signal output by the charging device 10 is lower than the first voltage threshold, the program-controlled power supply 70 supplies power to the charging device 10 so that multiple components inside the charging device 10 continue to work.
  • the first voltage threshold such as 2.8V
  • the pulsation signal output by the charging device 10 is input to the program-controlled power supply 70 for testing. Then, when the voltage of the pulse signal output by the charging device 10 is lower than the first voltage threshold, the program-controlled power supply 70 supplies power to the charging device 10.
  • a detection module may be integrated in the program-controlled power supply 70, and the detection module may detect the current, voltage, and the like of the electrical signals input to the program-controlled power supply 70.
  • the test system further includes a communication module 60.
  • the communication module 60 includes a second communication interface 601.
  • the second communication interface 601 is connected to the first communication interface 108 of the charging device 10.
  • the communication module 60 and the charging device 10 are bidirectional. Communication, the communication module detects a communication function of the charging device.
  • the communication module 60 can be used to detect the communication function of the charging device 10. For example, the communication module 60 can first send a sending message to the charging device 10, and then receive the return information returned by it. Then, it is detected whether the transmitted information and the returned information match, thereby detecting whether the communication function of the charging device 10 is normal.
  • the test system further includes a communication module 60.
  • the communication module 60 includes a second communication interface 601.
  • the second communication interface 601 is connected to the first communication interface 108 of the charging device 10.
  • the communication module 60 can send control information to the charging.
  • Device 10 the control information is used to control the charging device 10 to change the output electrical signal;
  • the program-controlled power supply 70 includes a detection module, and the detection module is used to detect whether the changed output electrical signal matches the control information.
  • the communication module 60 of the test system first sends a control message to the charging device 10, and then the program-controlled power supply 70 obtains the output signal of the charging device 10, and then detects whether the voltage or current or frequency of the output signal of the charging device 10 matches the control information, thereby detecting Whether the communication function of the charging device 10 is normal or not, the performance of the charging device 10 is also detected.
  • the control information includes changing the voltage of the output signal, changing the peak value of the output voltage from 5V to 12V
  • the program-controlled power supply 70 detects the peak voltage of the output signal of the charging device 10, and if the peak voltage of the output signal changes from 5V to 12V, charging
  • the communication function of the device 10 is normal, and various parameters such as current, average voltage, frequency, etc. can be detected when the peak voltage of the output signal is 12V.
  • the program-controlled power supply is connected to a control computer, which controls the parameters such as the impedance of the program-controlled power supply, and simultaneously acquires information such as the voltage, current, and frequency output by the program-controlled power supply to detect the charging device.
  • the control computer is also connected to a communication module.
  • the control computer can simulate electronic equipment and send different control information to the charging device through the communication module.
  • the control information can be information such as the battery value, temperature, and voltage of the analog electronic device, and is used to detect the reaction of the charging device to the low, medium, high, and full battery conditions, such as low battery Charging for small current, fast charging for medium power, constant current charging for high power, no charging at full power, etc.
  • the low power can be less than 10% of the total power, the middle power is 10% -70% of the total power, the high power is 70% -98% of the total power, and the full power is 98% -100% of the total power. It can also be used to detect the response of the charging device to the low and high temperature of the battery, such as fast charging at low and high temperatures, intermittent charging at high temperatures, and so on. Among them, the low temperature and the high temperature differ depending on the type of the battery.
  • the control information may also be a voltage value, a current value, etc. required by the analog battery. Used to detect the response of the charging device to the voltage value required by the battery. If the battery needs to be 5V and the input voltage before the charging device is 9V, the charging device needs to reduce the output voltage of the pulsation signal to 5V.
  • the charging device After receiving the control information, the charging device changes the output pulsation signal according to the control information.
  • the program-controlled power supply detects the pulsation information after changing the output, and obtains at least one of a test voltage value, a test current value, and a test frequency value from the pulsation information.
  • the control computer obtains the reference voltage value and reference value corresponding to the control information according to the pre-stored corresponding information. At least one of the current value and the reference frequency value, and then compare the test voltage value with the reference voltage value, the test current value with the reference current value, the test frequency value with the reference frequency value, and if the comparison result is within the range, such as both If the difference is within 5%, the charging device is determined to be qualified, otherwise the charging device is determined to be unqualified. Therefore, different performances such as whether the normal charging of the charging device is qualified, whether the fast charging is qualified, whether the over-voltage protection is qualified, and whether the over-current protection is qualified are tested.
  • the first charging interface and the first communication interface are integrated within the device interface.
  • Integrating the first charging interface and the first communication interface of the charging device in the same device interface can be conveniently connected to other devices, such as a smart phone.
  • the charging device and the electronic device may be connected through a universal serial bus (Universal Serial Bus, USB) interface.
  • the USB interface may be a common USB interface, a microUSB interface, or a Type-C interface.
  • the data pin (first communication interface) in the USB interface is used for two-way communication between the charging device and the communication module.
  • the data pin can be a D + line and / or a D- line in the USB interface.
  • the so-called two-way communication can refer to the charging device. Perform information interaction with both sides of the communication module.
  • the charging device performs two-way communication with the communication module through the data pins in the USB interface to determine that the electronic device is charged using the fast charging mode.
  • the charging device can communicate with an electronic device (such as a smart phone) through the USB interface.
  • FIG. 6 is a schematic diagram of a sixth structure of a charging system according to an embodiment of the present application.
  • the test system further includes a connection line 80 including a first transit interface 801, a second transit interface 802, and a third transit interface 803.
  • the first relay interface 801 is connected to the device interface of the charging device 10
  • the second relay interface 802 is connected to the second charging interface 701 of the program-controlled power supply 70
  • the third relay interface 803 is connected to the second communication interface of the communication module 60.
  • the charging device 10 and the program-controlled power supply 70 need to be connected so that the program-controlled power supply 70 tests the output signal of the charging device 10, but the interface of the program-controlled power supply 70 does not match the interface of the charging device 10, and an additional connection cable 80 is required .
  • the first relay interface 801 of the connection line 80 is connected to the device interface (integrated with the first charging interface 105 and the first communication interface 108) of the charging device 10, and then is divided into two branches, and one branch passes the second relay interface 802 Connect the program-controlled power supply 70 and the other branch to the communication module 60 through the third relay interface 803, which can quickly connect the charging device 10, the program-controlled power supply 70, and the communication module 60.
  • One line can meet the needs, and two lines are not required. , Stability is better.
  • the test system further includes a temperature detection element, and the temperature detection element is disposed on the first charging interface;
  • the communication module is connected to the temperature detection element.
  • the communication module acquires the temperature detected by the temperature detection element and sends control information to the charging device according to the temperature.
  • the temperature detection element of the test system is disposed on the first charging interface or may be disposed on the device interface to detect the temperature of the first charging interface.
  • the charging device stops outputting or reduces output power or intermittent output. The high-temperature protection of the first charging interface is realized, and the safety of charging is improved.
  • the charging device includes a charging circuit board, and the charging circuit board is provided with a first test point, and the first test point is connected to the first charging interface;
  • the test system also includes a test bench.
  • the test bench is provided with a driving mechanism and a first metal thimble. One end of the first metal thimble is connected to the second charging interface of the program-controlled power supply.
  • the driving mechanism can drive the first metal thimble to be connected to the first test point or disconnect.
  • the charging circuit board of the charging device can be tested first, and the charging circuit board can be installed in the casing of the charging device after the test is completed. Instead of testing after being installed in the housing, first of all, this test is more convenient, and it can save costs and facilitate maintenance.
  • the metal thimble is driven by the driving mechanism to make contact with the test point of the charging circuit board, instead of being connected through interfaces such as connection terminals (such as USB connection terminals). Test rate.
  • a positioning device may be provided on the test bench, for example, one or two or more positioning through holes are provided on the charging circuit board, and a positioning post passing through the positioning is provided on the test bench.
  • the driving device can also fix the charging circuit board.
  • the charging device includes a charging circuit board.
  • the charging circuit board is provided with a first test point and a second test point.
  • the first test point is connected to the first charging interface, and the second test point is connected to the first communication interface. .
  • the test system also includes a test bench.
  • the test bench is provided with a driving mechanism, a first metal thimble and a second metal thimble.
  • One end of the first metal thimble is connected to the second charging interface of the program-controlled power supply, and one end of the second metal thimble is connected to the first
  • the driving mechanism can drive the first metal thimble to connect or disconnect with the first test point
  • the driving mechanism can drive the second metal thimble to connect or disconnect with the second test point.
  • the charging circuit board of the charging device can be tested first, and the charging circuit board can be installed in the casing of the charging device after the test is completed. Instead of testing after being installed in the housing, first of all, this test is more convenient, and it can save costs and facilitate maintenance.
  • the metal thimble is driven by the driving mechanism to make contact with the test point of the charging circuit board, instead of being connected through interfaces such as connection terminals (such as USB connection terminals). Test rate.
  • a positioning device may be provided on the test bench, for example, one or two or more positioning through holes are provided on the charging circuit board, and a positioning post passing through the positioning is provided on the test bench.
  • the driving device can also fix the charging circuit board.
  • the first metal thimble and the second metal thimble can be driven to connect the corresponding test points at the same time.
  • FIG. 7 is a schematic structural diagram of a seventh charging system provided by an embodiment of the present application.
  • the test system further includes an electronic load 20, which is connected to the charging device 10.
  • the electronic load 20 is used to test the pulsation signal output by the charging device 10.
  • the test system includes an electronic load 20 and a program-controlled power supply 70.
  • the electronic load 20 is used to test the pulsation signal output by the charging device 10.
  • the program-controlled power supply 70 is used to supply power to the charging device 10 when the pulsation signal is lower than a first voltage threshold.
  • the electronic device 20 may be used to test the charging device 10.
  • the electronic load 20 is a device that consumes electrical energy by controlling the internal power (MOSFET) or the transistor's conduction (the amount of the duty cycle) and relying on the power dissipated by the power tube. It can accurately detect the load voltage, precisely adjust the load current, and at the same time, it can realize an analog load short circuit.
  • the electronic load 20 has perfect protection functions. Protection functions include internal (electronic load) protection and external (device under test) protection. Internal protection includes: over voltage protection, over current protection, over power protection, voltage reverse and over temperature protection. External protection includes: overcurrent protection, overpower protection, load voltage and low voltage protection.
  • the electronic load 20 can provide a powerful test environment to meet different external requirements, it is very suitable for testing the charging device 10, especially for production line testing. Various test environments can be provided to test various performances of the charging device 10.
  • the electronic load 20 may include at least one of four functions: constant current, constant voltage, constant resistance, and constant power.
  • the charging device includes a temperature detection unit, and the temperature detection unit is disposed on the voltage adjustment circuit.
  • the control unit is connected to the temperature detection unit and obtains temperature information detected by the temperature detection unit.
  • the control unit sends the temperature information to the communication module through the communication port of the control unit.
  • the detection module of the program-controlled power supply detects the output electrical signal of the charging device according to the temperature information obtained by the communication module.
  • the charging device is provided with a temperature detection unit.
  • the temperature detection unit detects temperature information of the voltage adjustment circuit, and the control unit obtains the temperature information. When the temperature corresponding to the temperature information is greater than a preset temperature threshold, the control unit adjusts the voltage adjustment circuit. Reduce output voltage, reduce output current, reduce output power, intermittently output electrical signals, stop outputting electrical signals, etc.
  • the control unit sends the temperature information to the communication module.
  • the communication module can display the temperature information to the user. For example, the temperature information is displayed on the display screen, and different temperature ranges are displayed by lighting up LEDs of different colors.
  • the output electric signal of the charging device determines whether the voltage adjustment circuit is normal according to the temperature.
  • the communication module may also send the temperature information to the program-controlled power supply, and the program-controlled power supply detects whether the electric signal output by the charging device matches a preset output electric signal corresponding to the temperature information.
  • the control unit 107 is further configured to adjust the duty cycle of the control signal according to the information sent by the communication module 60 and the sampling value of the electrical signal.
  • the electrical signal sampling value includes one or two of a voltage sampling value and a current sampling value.
  • the sent information may include information on the simulated battery power, information on the simulated battery temperature, voltage / current information on the simulated battery, interface information on the analog terminal, and information on the path impedance of the analog terminal.
  • the voltage of the third pulsating waveform meets the test requirements, which may mean that the voltage and current of the third pulsating waveform need to meet the charging voltage and charging current when the battery is charged. That is, the control unit 107 obtains the voltage and / or current output by the charging device 10 according to the sampled voltage value and / or current value of the primary side, and then adjusts the control signal according to the voltage and / or current output by the charging device 10. For example, the duty cycle of the PWM signal adjusts the output of the second rectifier unit in real time to implement closed-loop adjustment control, so that the voltage of the third pulsating waveform can meet the charging requirements of the electronic device, and the battery can be charged safely and reliably.
  • an adjustment instruction may be generated according to a voltage sampling value, a current sampling value, or a voltage sampling value and a current sampling value.
  • the chopped wave voltage which is the voltage of the first ripple waveform after full-bridge rectification
  • PWM chopping modulation is directly subjected to PWM chopping modulation and sent to the high-frequency transformer.
  • the primary is coupled to the secondary, and then reduced to a gimmicky wave voltage / current after synchronous rectification, which is directly sent to the battery to achieve fast charging of the battery.
  • the voltage amplitude of the hoe wave can be adjusted by the duty cycle of the PWM signal, so that the output of the charging device 10 can meet the charging requirements of the battery.
  • the charging device 10 in the embodiment of the present application eliminates the primary and secondary electrolytic capacitors and directly charges the battery by using a hoe wave voltage, thereby reducing the size of the charging device 10 and achieving miniaturization of the charging device 10, and Can greatly reduce costs.
  • control unit 107 communicates with the communication module 60 through the first charging port to determine a charging mode, wherein the charging mode includes a fast charging mode and a normal charging mode.
  • the charging modes supported by the charging device 10 and the electronic device may include a normal charging mode and a fast charging mode.
  • the charging speed in the fast charging mode is higher than the charging speed in the normal charging mode (for example, the charging current in the fast charging mode is larger than the charging current in the normal charging mode).
  • the normal charging mode can be understood as a charging mode with a rated output voltage of 5V and a rated output current of 2.5A or less.
  • D + and D- in the data pin of the output port of the charging device 10 can Short circuit.
  • the fast charging mode in the embodiment of the present application is different.
  • the charging device 10 can use D + and D- in the data line to communicate with the electronic device to implement data exchange, that is, the charging device 10 and Electronic devices can send fast charging instructions to each other:
  • the charging device 10 sends a fast charging query instruction to the electronic device.
  • the charging device 10 obtains the Status information, the fast charging mode is turned on, and the charging current in the fast charging mode can be greater than 2.5A, for example, it can reach 4.5A or even more.
  • the embodiment of the present application does not specifically limit the normal charging mode. As long as the charging device 10 supports two charging modes, the charging speed (or current) of one charging mode is higher than the charging speed of the other charging mode, the charging speed is slower.
  • the charging mode can be understood as a normal charging mode. Relative to the charging power, the charging power in the fast charging mode can be greater than or equal to 15W.
  • the communication module can simulate the sending and receiving of instructions by the electronic device.
  • the control unit 107 receives the test information sent by the communication module 60 to continuously adjust the current of the electric signal output by the charging device 10 by controlling the switching unit 102.
  • the test information includes imitation battery voltage information.
  • the charging device 10 can continuously inquire about the current state of the electronic device (communication module 60), so as to continuously adjust the charging current and charging voltage, such as inquiring the battery voltage and battery power of the electronic device.
  • the communication module 60 simulates the terminal sending test information, and the test information simulates voltage information and power information of the electronic device battery.
  • control unit 107 while the charging device 10 is using the fast charging mode to output electric signals, the control unit 107 also performs two-way communication with the communication module 60 through the first charging interface 105, and the communication module 60 is connected to the program-controlled power supply 70;
  • the communication module 60 sends exit information to the control unit 107, and the exit information is used to control the charging device 10 to exit the fast charging mode.
  • the program-controlled power supply 70 obtains the path impedance information of the first charging interface 105 and the second charging interface 701, and determines whether the contact between the first charging interface 105 and the second charging interface 701 is poor based on the path impedance information. When the contact is poor, communication The module 60 sends exit information to the control unit 107, and the exit information is used to control the charging device 10 to exit the fast charging mode.
  • the program-controlled power supply 70 can be connected to the communication module 60.
  • the program-controlled power supply 70 sends information about poor contact to the communication module 60, and the communication module 60 sends an exit message to the control unit 107.
  • the program-controlled power supply 70 may also send warning information after determining the bad contact information, such as the display screen displaying related information, LED lights flashing, and horn sounding. The user then sends the logout information to the control unit 107 through the communication module 60.
  • the communication module 60 may be a communication board.
  • the program-controlled power supply 70 can also be connected to a control computer, and the control computer can also be connected to the communication module 60.
  • the charging device may use any one of a flyback switching power supply, a forward switching power supply, a push-pull switching power supply, a half-bridge switching power supply, and a full-bridge switching power supply to output a voltage of a pulsating waveform. .
  • FIG. 8 is a schematic structural diagram of a charging device and an electronic device according to an embodiment of the present application.
  • the electronic device 50 includes a fifth charging interface 501 and a battery 502.
  • the fifth charging interface 501 is connected to the battery 502.
  • the fifth charging interface 501 changes the third pulse waveform.
  • the voltage is applied to the battery 502 to charge the battery 502.
  • the test device includes a program-controlled power supply, a communication module, and a control computer.
  • the program-controlled power supply is connected to the control computer.
  • the communication module is also connected to the control computer.
  • the control computer can control the program-controlled power supply or communicate with the charging device through the communication module.
  • the fast charge process can include five stages:
  • the electronic device After the electronic device (or test device) is connected to the power supply device, the electronic device (or test device) can detect the type of the power supply device through the data pins D + and D-. When it is detected that the power supply device is a charging device, the electronic device The current drawn by the device (or test device) may be greater than a preset current threshold I2 (for example, it may be 1A).
  • the charging device When the charging device detects that the output current of the charging device is greater than or equal to I2 within a preset time period (for example, it may be continuous T1 time), the charging device considers that the electronic device (or test device) has completed the type identification of the power supply device, and the charging The device initiates a handshake communication with the electronic device, and the charging device sends an instruction 1 to ask the electronic device (or the test device) whether the fast charging mode (or flash charging) is turned on.
  • a preset time period for example, it may be continuous T1 time
  • the charging device When the charging device receives a response instruction from the electronic device (or testing device) indicating that the electronic device (or testing device) does not agree to enable the fast charging mode, the output current of the charging device is detected again.
  • the output current of the charging device is at a preset When the continuous time (for example, continuous T1 time) is still greater than or equal to I2, a request is initiated again to ask the electronic device (or test device) whether to enable the fast charging mode, and the above steps of stage 1 are repeated until the electronic device (or test device) ) The answer agrees to start the fast charging mode, or the output current of the charging device no longer meets the condition greater than or equal to I2.
  • the fast charge charging process starts, and the fast charge communication process enters the second phase.
  • the gimmick voltage output by the charging device may include multiple gears.
  • the charging device sends an instruction to the electronic device (or testing device) 2 to inquire whether the output voltage of the charging device of the electronic device (or testing device) matches the current voltage of the battery (or is it appropriate, That is, whether it is suitable as the charging voltage in the fast charging mode), that is, whether it meets the charging requirements.
  • the test device simulates the condition of the battery at different voltages.
  • the electronic device responds that the output voltage of the charging device is high or low or matches. If the charging device receives feedback from the electronic device (or test device) about the high or low output voltage of the charging device, it controls The unit adjusts the output voltage of the charging device by one division by adjusting the duty cycle of the PWM signal, and sends a command 2 to the electronic device (or test device) again, and asks again whether the output voltage of the charging device of the electronic device (or test device) is match.
  • step 2 Repeat the above step 2 until the electronic device (or test device) responds that the output voltage of the charging device is in a matching range, and then enter the third phase.
  • the charging device When the charging device receives feedback from the electronic device (or testing device) that the output voltage of the charging device matches, the charging device sends an instruction 3 to the electronic device (or testing device) to inquire about the maximum charging currently supported by the electronic device (or testing device). Current, the electronic device (or test device) responds to the maximum charging current value that the charging device currently supports, and enters the fourth stage.
  • the charging device After the charging device receives feedback from the electronic device (or testing device) for the currently supported maximum charging current value, the charging device can set its output current reference value, and the control unit adjusts the duty cycle of the PWM signal according to the current reference value to make charging
  • the output current of the device meets the charging current requirements of the electronic equipment (or test device), that is, it enters the constant current phase.
  • the constant current phase here means that the peak value or average value of the output current of the charging device remains basically unchanged (that is, the peak value of the output current or The average value has a small change range, such as a change in the peak value of the output current or 5% of the average value), that is, the current peak value of the third pulse waveform remains constant in each cycle.
  • the charging device When entering the stage of constant current change, the charging device sends a command 4 at intervals to query the current voltage of the electronic device battery.
  • the electronic device can feedback the current voltage of the electronic device battery to the charging device.
  • the charging device can The current voltage feedback determines whether the USB contact, that is, the contact between the first charging interface and the second charging interface is good, and whether the current charging current value of the electronic device needs to be reduced.
  • the charging device determines that the USB connection is bad, it sends command 5 and then resets to re-enter stage 1.
  • the test device simulates the situation of the electronic equipment battery in this state.
  • the charging device When entering the stage of constant current change, the charging device sends a command 4 at intervals to query the current voltage of the electronic device battery.
  • the electronic device can feedback the current voltage of the electronic device battery to the charging device.
  • the charging device can The current voltage feedback determines whether the USB contact, that is, the contact between the first charging interface and the second charging interface is good, and whether the current charging current value of the electronic device needs to be reduced.
  • the charging device determines that the USB connection is bad, it sends command 5 and then resets to re-enter stage 1.
  • the test device simulates the situation of the electronic equipment battery in this state.
  • the test device simulates the testing of electronic equipment at various stages.
  • the program-controlled power supply simulates the voltage, current, and impedance of the electronic device battery at different stages.
  • the communication module simulates the information sent by the electronic device battery at different stages. The information sent and received by the communication module and the voltage detected by the program-controlled power supply. , Current and other signals to determine whether each function of the charging device is normal.
  • the data corresponding to the instruction 1 may be accompanied by data (or path impedance data) of the electronic device (or test device).
  • Information electronic device (or test device) path impedance data can be used to determine whether the USB contact is good at stage 5.
  • the time from when the electronic device (or test device) agrees to start the fast charging mode to when the charging device adjusts the voltage to a suitable value can be controlled within a certain range, the time Outside the predetermined range, the electronic device (or test device) may determine that the request is abnormal and perform a quick reset.
  • phase 2 when the output voltage of the charging device is adjusted to be higher than ⁇ V ( ⁇ V is about 200-500mV) compared to the current voltage of the battery, the electronic device (or test device) Feedback is given to the charging device as to whether the output voltage of the charging device is appropriate / matched.
  • the control unit 107 adjusts the duty cycle of the PWM signal according to the voltage sampling value. To adjust the output voltage of the charging device.
  • the speed of adjusting the size of the output current value of the charging device can be controlled within a certain range, so as to avoid the abnormal interruption of fast charging caused by the adjustment speed being too fast.
  • the variation range of the magnitude of the output current value of the charging device can be controlled within 5%, that is, it can be regarded as a constant current stage.
  • the charging device monitors the charging circuit impedance in real time, that is, the entire charging circuit impedance is monitored by measuring the output voltage of the charging device, the current charging current, and the read battery voltage of the electronic device.
  • the impedance of the charging circuit is measured> the path impedance of the electronic device + the impedance of the fast charge data line, it can be considered that the USB contact is bad, and the fast charge reset is performed.
  • the communication time interval between the charging device and the electronic device (or the testing device) may be controlled within a certain range to avoid a fast charging reset.
  • the stopping of the fast charging mode (or the fast charging process) can be divided into two types: a recoverable stop and an unrecoverable stop:
  • the fast charge stops and resets, and enters phase 1
  • the electronic device (or test device) does not agree to start the fast charge mode, and the fast charge communication process does not enter Phase 2.
  • the fast charging process stopped at this time may be an irrecoverable stop.
  • the fast charge stops and resets to enter phase 1.
  • the electronic device (or test device) agrees to start the fast charge mode.
  • the fast charging process stopped at this time may be a recoverable stop.
  • the fast charging stops and resets to enter the phase 1.
  • the electronic device or the testing device
  • the electronic device does not agree to start the fast charging mode.
  • the electronic device or test device
  • the electronic device agrees to start fast charging to resume the fast charging process, and the fast charging process stopped at this time may be a recoverable stop.
  • the above communication steps or operations are just examples.
  • the electronic device (or test device) after the electronic device (or test device) is connected to the charging device, the electronic device (or test device) and the charging device are connected.
  • the handshake communication can also be initiated by the electronic device (or test device), that is, the electronic device (or test device) sends an instruction 1 to ask the charging device whether the fast charging mode (or flash charging) is turned on.
  • the electronic device (or test device) When the electronic device (or test device) When the response command from the charging device is received to instruct the charging device to agree to start the fast charging mode, the fast charging process is started.
  • FIG. 9 is a schematic flowchart of a test method provided by an embodiment of the present application.
  • the test method is based on the test system in the foregoing embodiment, and the test method may specifically include:
  • the test method may further include: sending control information to the charging device, the control information is used to control the charging device to change the output electrical signal; using a program-controlled power supply to obtain the changed output electrical signal of the charging device; and detecting the change according to the control information Whether the subsequent output electrical signal is qualified.
  • the program-controlled power supply is connected to a control computer, and the control computer controls parameters such as the impedance of the program-controlled power supply, and simultaneously acquires information such as voltage, current, and frequency output by the program-controlled power supply for detecting the charging device.
  • the control computer is also connected to a communication module.
  • the control computer can simulate electronic equipment and send different control information to the charging device through the communication module.
  • the control information can be information such as the battery value, temperature, and voltage of the analog electronic device, and is used to detect the reaction of the charging device to the low, medium, high, and full battery conditions, such as low battery Charging for small current, fast charging for medium power, constant current charging for high power, no charging at full power, etc.
  • the low power can be less than 10% of the total power, the middle power is 10% -70% of the total power, the high power is 70% -98% of the total power, and the full power is 98% -100% of the total power. It can also be used to detect the response of the charging device to the low and high temperature of the battery, such as fast charging at low and high temperatures, intermittent charging at high temperatures, and so on. Among them, the low temperature and the high temperature differ depending on the type of the battery.
  • the control information may also be a voltage value, a current value, etc. required by the analog battery. Used to detect the response of the charging device to the voltage value required by the battery. If the battery needs to be 5V and the input voltage before the charging device is 9V, the charging device needs to reduce the output voltage of the pulsation signal to 5V.
  • the charging device After receiving the control information, the charging device changes the output pulsation signal according to the control information.
  • the program-controlled power supply detects the pulsation information after changing the output, and obtains at least one of a test voltage value, a test current value, and a test frequency value from the pulsation information.
  • the control computer obtains the reference voltage value and reference corresponding to the control information according to the pre-stored corresponding information At least one of the current value and the reference frequency value, and then compare the test voltage value with the reference voltage value, the test current value with the reference current value, the test frequency value with the reference frequency value, and if the comparison result is within the range, such as both If the difference is within 5%, the charging device is determined to be qualified, otherwise the charging device is determined to be unqualified. Therefore, different performances such as whether the normal charging of the charging device is qualified, whether the fast charging is qualified, whether the over-voltage protection is qualified, and whether the over-current protection is qualified are tested.
  • the charging device may be one of a power adapter, a power bank, and a charging base.
  • the electronic device may be a smart phone, a tablet computer, a notebook computer, a VR device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供一种测试***,该测试***包括充电装置和程控电源,所述充电装置包括第一充电接口,所述第一充电接口输出脉动信号;所述程控电源包括第二充电接口,所述第二充电接口连接所述充电装置的第一充电接口,当所述充电装置输出脉动信号的电压高于第一电压阈值时,所述程控电源检测所述充电装置输出的脉动信号,当所述充电装置输出脉动信号的电压低于或等于第一电压阈值时,所述程控电源给所述充电装置供电。程控电源测试充电装置输出的脉动信号时,当该脉动信号的电压低于第一电压阈值时,程控电源可以给充电装置供电,以使充电装置不断电,使测试顺利完成。

Description

测试*** 技术领域
本申请涉及测试技术领域,特别涉及一种测试***。
背景技术
随着网络技术的发展和电子设备智能化程度的提高,用户可以通过电子设备实现越来越多的功能,比如通话、聊天、玩游戏等。同时,电子设备的显示屏也越来越大,显示效果也越来越好。用户使用电子设备的时间也越来越长,为了让用户更加方便的使用电子设备,电子设备电池的容量也越来越大,如此,就带来了一个问题,即电子设备的电池充电的时间也越来越长。
用户使用充电装置(如适配器)对电子设备充电的时间也越来越长,对充电装置的安全性要求也提高了。因此,需要对用于为电子设备充电的充电装置进行测试,用以保证充电装置的品质。
发明内容
本申请实施例提供一种测试***,可以使测试充电装置的过程不中断。
本申请实施例还提供一种测试***,其包括:
充电装置,所述充电装置包括第一充电接口,所述第一充电接口输出脉动信号;
程控电源,所述程控电源包括第二充电接口,所述第二充电接口连接所述充电装置的第一充电接口,当所述充电装置输出脉动信号的电压高于第一电压阈值时,所述程控电源检测所述充电装置输出的脉动信号,当所述充电装置输出脉动信号的电压低于或等于第一电压阈值时,所述程控电源给所述充电装置供电。
本申请实施例提供的测试***,其包括充电装置和程控电源,充电装置与程控电源连接,程控电源测试充电装置输出的脉动信号,当该脉动信号的电压低于第一电压阈值时,若电路的电压也低于第一电压阈值时,充电装置会断电,导致测试无法进行。此时,程控电源给充电装置供电,以使充电装置不断电。当该脉动信号的电压高于第一电压阈值时,充电装置输出的脉动信号输入程控电源用于测试。如此,在产线测试充电装置时,不配置电子设备的电池仍然可以对充电装置进行测试。此外,程控电源可以更好的测试充电装置的各项参数,而不像利用电池测试,因为电池的状态无法更改,无法像程控电 源那样可以模拟各种情况(例如电池低电量、高电量、满电量)测试充电装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的测试***的第一种结构示意图。
图2是本申请实施例提供的测试***的第二种结构示意图。
图3是本申请实施例提供的测试***的第三种结构示意图。
图4是本申请实施例提供的测试***的第四种结构示意图。
图5是本申请实施例提供的测试***的第五种结构示意图。
图6是本申请实施例提供的测试***的第六种结构示意图。
图7是本申请实施例提供的测试***的第七种结构示意图。
图8是本申请实施例提供的充电装置和电子设备的结构示意图。
图9是本申请实施例提供的测试方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
本申请实施例提供一种测试***。以下将进行详细说明。
电子设备如智能手机的功能越来越强,显示屏越来越大,用户使用电子设备的时间也越来越长,为了让用户更加方便的使用电子设备,电子设备的电池的容量也越来越大,电池充电的时间也越来越长。为了解决给电池充电时间太长的问题,出现了快速充电(闪 充)的技术,能够快速的给电池充电。
请参阅图1,图1是本申请一实施例提供的测试***的第一种结构示意图。本实施例的充电装置10包括充电接收端1001、电压调整电路1002和中央控制模块1003。
其中,充电接收端1001用于接收交流市电。电压调整电路1002的输入端与充电接收端1001相连,电压调整电路1002的输出端与程控电源70相连,电压调整电路1002用于对交流市电进行调整处理以输出脉动波形的电压,并将脉动波形的电压直接加载至程控电源70。中央控制模块1003用于对电压调整电路进行控制以调节其输出的电压和/或电流,以响应程控电源70的测试需求。
请参阅图2和图3,图2是本申请实施例提供的测试***的第二种结构示意图,图3是本申请实施例提供的测试***的第三种结构示意图。该充电装置10可以包括第一整流单元101、开关单元102、变压器103、第二整流单元104、第一充电接口105、采样单元106和控制单元107。
第一整流单元101对输入的交流电(市电,例如AC220V)进行整流以输出第一脉动波形的电压例如馒头波电压,其中,第一整流单元101可以是四个二极管构成的全桥整流电路。开关单元102用于根据控制信号对第一脉动波形的电压进行调制,其中,开关单元102可由MOS管构成,通过对MOS管进行PWM(Pulse Width Modulation,脉冲宽度调制)控制以对馒头波电压进行斩波调制。
在一些实施例中,变压器103可以包括初级绕组和次级绕组,初级绕组的一端与第一整流单元101的第一输出端相连,第一整流单元101的第二输出端接地,初级绕组的另一端与开关单元102相连(例如,该开关单元102为MOS管,则此处是指初级绕组的另一端与MOS管的漏极相连),变压器103用于根据调制后的第一脉动波形的电压输出第二脉动波形的电压。其中,变压器103为高频变压器,其工作频率可以为50KHz-2MHz,高频变压器将调制后的第一脉动波形的电压耦合到次级,由次级绕组进行输出。在本申请的实施例中,采用高频变压器,可以利用高频变压器相较于低频变压器(低频变压器又被称为工频变压器,主要用于指市电的频率,比如,50Hz或者60Hz的交流电)体积小的特点,从而能够实现充电装置10的小型化。
第二整流单元104与变压器103的次级绕组相连,第二整流单元104用于对第二脉动波形的电压进行整流以输出第三脉动波形的电压。其中,第二整流单元104可包括二 极管或MOS管,能够实现次级同步整流,从而第三脉动波形与调制后的第一脉动波形保持同步,需要说明的是,第三脉动波形与调制后的第一脉动波形保持同步,具体是指第三脉动波形的相位与调制后的第一脉动波形的相位保持一致,第三脉动波形的幅值与调制后的第一脉动波形的幅值变化趋势保持一致。第一充电接口105与第二整流单元104相连,采样单元106用于对初级绕组上的电压和/或电流进行采样即对调制后的第一脉动波形的电压进行采样,从而实现初级采样。控制单元107分别与采样单元106和开关单元102相连,控制单元107输出控制信号至开关单元102,并根据采样单元106采样的电压值和/或电流值计算与第二整流单元的输出相对应的电压采样值和/或电流采样值,即计算得到的电压采样值和/或电流采样值对应第二整流单元的输出,为充电装置的输出电压和/或输出电流,以及根据电压采样值和/或电流采样值对控制信号的占空比进行调节,以使该第二整流单元104输出的第三脉动波形的电压满足充电需求。其中,第三脉动波形的输出电压和/或输出电流的大小周期性变换,与传统的恒压恒流相比,能够降低锂电池的析锂现象,提高电池的使用寿命,并且还能够减少充电接口的触点的拉弧的概率和强度,提高充电接口的寿命,以及有利于降低电池的极化效应、提高充电速度、减少电池的发热,保证终端充电时的安全可靠。此外,由于电源适配器输出的是脉动波形的电压,从而无需在充电装置(电源适配器)中设置电解电容,不仅可以实现充电装置(电源适配器)的简单化、小型化,还可大大降低成本。
请参阅图4,图4是本申请实施例提供的充电***第四种结构示意图。该充电***包括充电装置10和程控电源70。
充电装置10,充电装置10包括第一充电接口105,第一充电接口105输出脉动信号。
程控电源70,程控电源70包括第二充电接口701,第二充电接口701连接充电装置10的第一充电接口105,当充电装置10输出脉动信号的电压高于第一电压阈值时,程控电源70接收并检测充电装置10输出的脉动信号,当充电装置10输出脉动信号的电压低于或等于第一电压阈值时,程控电源70给充电装置10供电。
在对充电装置10进行测试时,因为充电装置10输出的是脉动信号,即充电装置10输出上述的第三脉动波形。该脉动信号的电压是波动的,即该脉动信号包括峰值电压值(最大电压值)和谷值电压值(最小电压值),该脉动信号的电压在峰值电压值和谷值电压值之间波动。在充电装置10给电子设备的电池直充时,若脉动信号中的电压低于一 定值时(如脉动信号的电压低于2.8V时),脉动信号的电压会被电池电压反灌嵌位住,从而使充电装置10不断电。等脉动信号的电压高于一定值时(如脉动信号的电压高于2.8V时),脉动信号给电池充电。
但是,在产线测试时,若使用电池进行测试,无法准确模拟电池的各种状态进行测试,如电池低电量、中电量、高电量、满电量等情况,只能测试电池的一种情况,测试效果无法满足需要。或者需要更换多个不同电量的电池,增加操作步骤,操作繁琐,而且容易弄混,造成测试失败,需要重新测试,效率低且容易出错。另外,各个不同电量的电池在测试过程中不断改变其电量,需要定期检查并放电处理,使用不方便。大批量的充电装置10进行产线流水线测试,上述问题都很难解决,严重影响效率。因此,本申请实施例使用程控电源70进行测试,使用程控电源70模拟电池各种状态,使其能够顺利、快速、完整的测试。
使用程控电源70测试,发明人在实际测试时发现,当充电装置10输出的脉动信号电压低于第一电压阈值时(如2.8V),充电装置10会断电,以至无法正常测试。具体的,充电装置10因为输入的为交流电,而且充电装置10直接给电池充电,在交流电为低电压时,充电装置10内部的多个部件无法供电,进而导致充电装置10内部的多个部件无法工作,导致充电装置断电无法正常工作。发明人经过长时间研究,并进行大量试验后,使用程控电源70进行测试可以解决该问题。当充电装置10输出脉动信号的电压低于第一电压阈值时,程控电源70给充电装置10供电,以使充电装置10内部的多个部件继续工作。
具体的,当充电装置10输出脉动信号的电压高于或等于第一电压阈值时,充电装置10输出的脉动信号输入程控电源70进行测试。而后,当充电装置10输出脉动信号的电压低于第一电压阈值时,程控电源70给充电装置10供电。
需要说明的是,程控电源70内可以集成检测模块,该检测模块可以检测输入程控电源70的电信号的电流、电压等。
请参阅图5,图5是本申请实施例提供的充电***第五种结构示意图。在一些实施例中,测试***还包括通信模块60,通信模块60包括第二通信接口601,第二通信接口601与充电装置10的第一通信接口108连接;通信模块60与充电装置10进行双向通信,通信模块检测所述充电装置的通信功能。
通信模块60可以用来检测充电装置10的通信功能,例如,可以先发送一个发送信息至充电装置10,然后再接收其返回的返回信息。然后检测发送信息和返回信息是否匹配,从而检测充电装置10的通信功能是否正常。
在一些实施例中,测试***还包括通信模块60,通信模块60包括第二通信接口601,第二通信接口601与充电装置10的第一通信接口108连接;通信模块60可以发送控制信息至充电装置10,控制信息用于控制充电装置10改变输出电信号;程控电源70包括检测模块,检测模块用于检测改变后的输出电信号与控制信息是否匹配。
测试***的通信模块60先发送一个控制信息至充电装置10,然后程控电源70获取充电装置10的输出信号,然后检测充电装置10的输出信号的电压或电流或频率与控制信息是否匹配,从而检测充电装置10的通信功能是否正常,同时也检测充电装置10的性能。例如,控制信息包括改变输出信号的电压,将输出电压的峰值从5V改为12V,程控电源70检测充电装置10的输出信号的峰值电压,若输出信号的峰值电压从5V变为12V,说明充电装置10的通信功能正常,且可以检测当输出信号的峰值电压为12V时的各个参数,如电流、平均电压、频率等。
程控电源连接一控制电脑,该控制电脑控制程控电源的阻抗等参数,同时获取程控电源检测充电装置输出的电压、电流、频率等信息。控制电脑还连接通信模块,控制电脑可以模拟电子设备,通过通信模块发送不同的控制信息至充电装置。其中,控制信息可以为模拟电子设备电池的电量值、温度值、电压值等信息,用于检测充电装置面对电池低电量、中电量、高电量、满电量等情况下的反应,如低电量为小电流充电,中电量为快速充电,高电量为恒流充电,满电量不充电等。其中,低电量可以为低于10%的总电量,中电量为10%-70%的总电量,高电量为70%-98%的总电量,满电量为98%-100%的总电量。还可以用于检测充电装置面对电池低温和高温的反应,如低温和高温退出快速充电,高温间断充电等。其中,低温和高温根据电池的种类不同而不同。
控制信息还可以为模拟电池需要的电压值、电流值等。用于检测充电装置面对电池需要的电压值的反应,如电池需要为5V,充电装置之前的输入电压为9V,则充电装置需要将脉动信号的输出电压降到5V。
充电装置接收到控制信息后,根据该控制信息改变输出的脉动信号。程控电源检测改变输出后的脉动信息,从脉动信息中得到测试电压值、测试电流值、测试频率值中的 至少一项,控制电脑根据预存的对应信息,得到控制信息对应的参考电压值、参考电流值、参考频率值中的至少一项,接着将测试电压值与参考电压值、测试电流值与参考电流值、测试频率值与参考频率值进行比较,若比较结果在范围内,如两者相差在5%以内,则判定充电装置合格,否则判定充电装置不合格。从而可以测试充电装置的普通充电是否合格、快速充电是否合格、过压保护是否合格、过流保护是否合格等不同的性能。
在一些实施例中,第一充电接口与第一通信接口集成在装置接口内。
将充电装置的第一充电接口与第一通信接口集成在同一个装置接口内,可以方便的与其他设备连接,如智能手机。
具体地说,充电装置与电子设备可以通过通用串行总线(Universal Serial Bus,USB)接口相连,该USB接口可以是普通的USB接口,也可以是microUSB接口,也可以是Type-C接口。USB接口中的数据引脚(第一通信接口)用于充电装置和通信模块进行双向通信,该数据引脚可以是USB接口中的D+线和/或D-线,所谓双向通信可以指充电装置和通信模块双方进行信息的交互。
其中,充电装置通过USB接口中的数据引脚与通信模块进行双向通信,以确定使用快速充电模式为电子设备充电。在日常使用中,该充电装置可以通过该USB接口与电子设备(如智能手机)进行通信。
请参阅图6,图6是本申请实施例提供的充电***第六种结构示意图。该测试***还包括连接线80,连接线80包括第一中转接口801、第二中转接口802和第三中转接口803。
第一中转接口801与充电装置10的装置接口连接,第二中转接口802与程控电源70的第二充电接口701连接,第三中转接口803与通信模块60的第二通信接口连接。
在测试过程中,充电装置10与程控电源70需要连接,以使程控电源70测试充电装置10的输出信号,但是程控电源70的接口与充电装置10的接口不匹配,需要额外设置一条连接线80。该连接线80的第一中转接口801与充电装置10的装置接口(集成了第一充电接口105和第一通信接口108)连接,然后分成两个支路,一个支路通过第二中转接口802连接程控电源70,另一个支路通过第三中转接口803连接通信模块60,可以快速将充电装置10、程控电源70和通信模块60连接起来,一条线就能满足需求,不需要两条线连接,稳定性也更好。
在一些实施例中,测试***还包括温度检测元件,温度检测元件设置在第一充电接 口上;
通信模块与温度检测元件连接,通信模块获取温度检测元件检测到的温度,并根据温度发送控制信息至充电装置。
测试***的温度检测元件设置在第一充电接口上,也可以设置在装置接口上,用来检测第一充电接口的温度。当第一充电接口的温度高于接口温度阈值时,充电装置会停止输出或降低输出功率或间断输出。实现对第一充电接口的高温保护,提高了充电的安全性。
在一些实施例中,充电装置包括充电电路板,充电电路板上设有第一测试点,第一测试点与第一充电接口连接;
测试***还包括测试台,测试台上设有驱动机构和第一金属顶针,第一金属顶针一端与程控电源的第二充电接口连接,驱动机构可驱动第一金属顶针与第一测试点连接或断开。
在产线测试时,可以先对充电装置的充电电路板测试,测试完成后才将充电电路板安装到充电装置的壳体内。而不是安装到壳体内后再测试,首先,这样测试比较方便,而且可以节约成本,维修方便。测试充电电路板时,通过驱动机构驱动金属顶针与充电电路板的测试点接触导通,而不是通过连接端子(如USB连接端子)等接口连接,不需要插拔连接端子,接触快速方便,提高测试速率。测试台上可以设置定位装置,如充电电路板上设有一个或两个或多个定位通孔,测试台上设置穿过该定位通过的定位柱。驱动装置还可以将充电电路板固定住。
在一些实施例中,充电装置包括充电电路板,充电电路板上设有第一测试点和第二测试点,第一测试点与第一充电接口连接,第二测试点与第一通信接口连接。
测试***还包括测试台,测试台上设有驱动机构、第一金属顶针和第二金属顶针,第一金属顶针一端与程控电源的第二充电接口连接,第二金属顶针一端与通信模块的第二通信接口连接,驱动机构可驱动第一金属顶针与第一测试点连接或断开,驱动机构可驱动第二金属顶针与第二测试点连接或断开。
在产线测试时,可以先对充电装置的充电电路板测试,测试完成后才将充电电路板安装到充电装置的壳体内。而不是安装到壳体内后再测试,首先,这样测试比较方便,而且可以节约成本,维修方便。测试充电电路板时,通过驱动机构驱动金属顶针与充电 电路板的测试点接触导通,而不是通过连接端子(如USB连接端子)等接口连接,不需要插拔连接端子,接触快速方便,提高测试速率。测试台上可以设置定位装置,如充电电路板上设有一个或两个或多个定位通孔,测试台上设置穿过该定位通过的定位柱。驱动装置还可以将充电电路板固定住。可以驱动第一金属顶针和第二金属顶针同时连接对应的测试点。
请参阅图7,图7是本申请实施例提供的充电***第七种的结构示意图。该测试***还包括电子负载20,电子负载20与充电装置10连接,电子负载20用于测试充电装置10输出的脉动信号。
测试***包括电子负载20和程控电源70,电子负载20用于测试充电装置10输出的脉动信号,程控电源70用于当脉动信号低于第一电压阈值时,给充电装置10供电。
在产线测试充电装置10时,可以使用电子负载20对充电装置10进行测试。电子负载20是通过控制内部功率(MOSFET)或晶体管的导通量(量占空比大小),依靠功率管的耗散功率消耗电能的设备。它能够准确检测出负载电压,精确调整负载电流,同时可以实现模拟负载短路。
电子负载20有完善的保护功能。保护功能包括对内(电子负载)保护功能和对外(被测设备)保护功能。对内保护有:过压保护,过流保护,过功率保护,电压反向和过温保护。对外保护有:过流保护,过功率保护,吃载电压和低电压保护。
由于电子负载20可以提供强大的测试环境,以满足不同的外界需求,因此非常适用于测试充电装置10,尤其是产线测试,可以提供各种测试环境以测试充电装置10的各个性能。电子负载20可以包括恒流、恒压、恒阻和恒功率四项功能中的至少一种。
在一些实施例中,充电装置包括温度检测单元,温度检测单元设置在电压调整电路上。控制单元与温度检测单元连接,并获取温度检测单元检测到的温度信息。控制单元将温度信息通过控制单元的通信端口发送至通信模块。程控电源的检测模块根据通信模块获取的温度信息,检测充电装置的输出电信号。
充电装置内部设有温度检测单元,该温度检测单元检测电压调整电路的温度信息,控制单元获取该温度信息,当温度信息对应的温度大于预设温度阈值时,控制单元调整电压调整电路,例如可以降低输出电压、降低输出电流、降低输出功率、间断输出电信号、停止输出电信号等。控制单元将该温度信息发送给通信模块,通信模块可以将该温 度信息展示给用户看,如通过显示屏显示、通过点亮不同颜色的LED表示不同的温度范围,然后查看对比程控电源检测到的充电装置的输出电信号,确定根据温度调整电压调整电路是否正常。也可以通信模块将该温度信息发送给程控电源,程控电源检测充电装置输出的电信号与该温度信息对应的预设输出电信号是否匹配。
请继续参阅图2和图3,控制单元107,还用于根据通信模块60的发送信息、电信号采样值对控制信号的占空比进行调节。
其中,电信号采样值包括电压采样值、电流采样值中的一项或两项。发送信息可包括模拟电池电量的信息、模拟电池温度的信息、模拟电池的电压/电流信息、模拟终端的接口信息、模拟终端的通路阻抗的信息等。
其中,需要说明的是,第三脉动波形的电压满足测试需求,可以是指第三脉动波形的电压和电流需满足电池充电时的充电电压和充电电流。也就是说,控制单元107根据采样到的初级侧的电压值和/或电流值来获得充电装置10输出的电压和/或电流,然后根据充电装置10输出的电压和/或电流来调节控制信号例如PWM信号的占空比,实时地调整第二整流单元的输出,实现闭环调节控制,从而使得第三脉动波形的电压满足电子设备的充电需求,保证电池安全可靠地充电。
可以理解的是,在对PWM信号的占空比进行调节时,可根据电压采样值、也可根据电流采样值、或者根据电压采样值和电流采样值来生成调节指令。译
因此,在本申请的实施例中,通过控制开关单元102,直接对全桥整流后的第一脉动波形的电压即馒头波电压进行PWM斩波调制,送到高频变压器,通过高频变压器从初级耦合到次级,然后经过同步整流后还原成馒头波电压/电流,直接输送到电池,实现对电池的快速充电。其中,馒头波的电压幅值,可通过PWM信号的占空比进行调节,实现充电装置10的输出满足电池的充电需求。由此可知,本申请实施例的充电装置10,取消初级、次级的电解电容器,通过馒头波电压直接对电池充电,从而可以减小充电装置10的体积,实现充电装置10的小型化,并可大大降低成本。
在一些实施例中,控制单元107通过第一充电端口与通信模块60进行通信以确定充电模式,其中,充电模式包括快速充电模式和普通充电模式。
其中,充电装置10和电子设备支持的充电模式可以包括普通充电模式和快速充电模式。快速充电模式的充电速度大于普通充电模式的充电速度(例如,快速充电模式的充电 电流大于普通充电模式的充电电流)。一般而言,普通充电模式可以理解为额定输出电压为5V,额定输出电流小于等于2.5A的充电模式,此外,在普通充电模式下,充电装置10输出端口数据引脚中的D+和D-可以短路。而本申请实施例中的快速充电模式则不同,本申请实施例的快速充电模式下充电装置10可以利用数据线中的D+和D-与电子设备进行通信以实现数据交换,即充电装置10与电子设备之间可相互发送快速充电指令:充电装置10向电子设备发送快速充电询问指令,在接收到电子设备的快速充电应答指令后,根据电子设备的应答指令,充电装置10获取到电子设备的状态信息,开启快速充电模式,快速充电模式下的充电电流可以大于2.5A,例如,可以达到4.5A,甚至更大。但本申请实施例对普通充电模式不作具体限定,只要充电装置10支持两种充电模式,其中一种充电模式的充电速度(或电流)大于另一种充电模式的充电速度,则充电速度较慢的充电模式就可以理解为普通充电模式。相对充电功率而言,快速充电模式下的充电功率可大于等于15W。在测试时,可以通过通信模块模拟电子设备发送和接收指令。
在一些实施例中,在充电装置10使用快速充电模式输出电信号的过程中,控制单元107接收通信模块60发送的测试信息,以通过控制开关单元102不断调整充电装置10输出电信号的电流,测试信息包括仿电池电压信息。
其中,充电装置10可以不断向询问电子设备(通信模块60)的当前状态,从而不断调整充电电流和充电电压,如询问电子设备的电池电压、电池电量等。测试时,通信模块60模拟终端发送测试信息,测试信息模拟电子设备电池的电压信息、电量信息等。
在一些实施例中,在充电装置10使用快速充电模式输出电信号的过程中,控制单元107还通过第一充电接口105与通信模块60进行双向通信,通信模块60与程控电源70连接;
当程控电源70检测到第一充电接口105与第二充电接口701之间接触不良时,通信模块60发送退出信息至控制单元107,退出信息用于控制充电装置10退出快速充电模式。
程控电源70获取第一充电接口105和第二充电接口701的通路阻抗的信息,根据该通路阻抗信息判断第一充电接口105和第二充电接口701之间接触是否不良,当接触不良时,通信模块60发送退出信息至控制单元107,退出信息用于控制充电装置10退出快速充电模式。其中可以程控电源70连接通信模块60,程控电源70将接触不良信息发送至通信模块60,通信模块60再发送退出信息至控制单元107。也可以程控电源70确定 接触不良信息后发送警示信息,如显示屏显示相关信息、LED灯闪烁、喇叭发声等方式。然后用户再通过通信模块60发送退出信息给控制单元107。
上述实施例中,通信模块60可以为一个通信小板。程控电源70还可以连接一控制电脑,该控制电脑也可以连接该通信模块60。
在一些实施例中,充电装置可采用反激式开关电源、正激式开关电源、推挽式开关电源、半桥式开关电源和全桥式开关电源中的任意一种来输出脉动波形的电压。
请参阅图8,图8是本申请实施例提供的充电装置和电子设备的结构示意图。电子设备50包括第五充电接口501和电池502,第五充电接口501与电池502相连,其中,当第五充电接口501与第一充电接口105连接时,第五充电接口501将第三脉动波形的电压加载至电池502,实现对电池502的充电。
在一些实施例中,测试装置包括程控电源、通信模块和控制电脑,程控电源与控制电脑连接,通信模块也与控制电脑连接,控制电脑可以控制程控电源,也可以通过通信模块与充电装置通信。快充过程可以包含五个阶段:
阶段1:
电子设备(或测试装置)与电源提供装置连接后,电子设备(或测试装置)可以通过数据引脚D+、D-检测电源提供装置的类型,当检测到电源提供装置为充电装置时,则电子设备(或测试装置)吸收的电流可以大于预设的电流阈值I2(例如可以是1A)。当充电装置检测到预设时长(例如,可以是连续T1时间)内充电装置输出电流大于或等于I2时,则充电装置认为电子设备(或测试装置)对于电源提供装置的类型识别已经完成,充电装置开启与电子设备之间的握手通信,充电装置发送指令1询问电子设备(或测试装置)是否开启快速充电模式(或称为闪充)。
当充电装置收到电子设备(或测试装置)的回复指令指示电子设备(或测试装置)不同意开启快速充电模式时,则再次检测充电装置的输出电流,当充电装置的输出电流在预设的连续时长内(例如,可以是连续T1时间)仍然大于或等于I2时,再次发起请求询问电子设备(或测试装置)是否开启快速充电模式,重复阶段1的上述步骤,直到电子设备(或测试装置)答复同意开启快速充电模式,或充电装置的输出电流不再满足大于或等于I2的条件。
当电子设备同意开启快充模式后,快充充电过程开启,快充通信流程进入第2阶段。
阶段2:
充电装置输出的馒头波电压可以包括多个档位,充电装置向电子设备(或测试装置)发送指令2询问电子设备(或测试装置)充电装置的输出电压是否匹配电池当前电压(或是否合适,即是否适合作为快速充电模式下的充电电压),即是否满足充电需求。测试装置则是模拟电池处于不同电压时的状况。
电子设备(或测试装置)答复充电装置的输出电压偏高或偏低或匹配,如充电装置接收到电子设备(或测试装置)关于充电装置的输出电压偏高或偏低的反馈时,则控制单元通过调节PWM信号的占空比将充电装置的输出电压调整一格档位,并再次向电子设备(或测试装置)发送指令2,重新询问电子设备(或测试装置)充电装置的输出电压是否匹配。
重复阶段2以上步骤直到电子设备(或测试装置)答复充电装置其输出电压处于匹配档位后,进入第3阶段。
阶段3:
当充电装置收到电子设备(或测试装置)答复充电装置的输出电压匹配的反馈后,充电装置向电子设备(或测试装置)发送指令3,询问电子设备(或测试装置)当前支持的最大充电电流,电子设备(或测试装置)答复充电装置其当前支持的最大充电电流值,并进入第4阶段。
阶段4:
充电装置接收电子设备(或测试装置)答复的当前支持的最大充电电流值的反馈后,充电装置可以设置其输出电流基准值,控制单元根据该电流基准值调节PWM信号的占空比,使得充电装置的输出电流满足电子设备(或测试装置)充电电流需求,即进入恒流阶段,这里的恒流阶段是指充电装置的输出电流峰值或平均值基本保持不变(也就是说输出电流峰值或平均值的变化幅度很小,比如在输出电流峰值或平均值的5%范围内变化),即第三脉动波形的电流峰值在每个周期保持恒定。
阶段5:
当进入电流恒定变化阶段时,充电装置每间隔一段时间发送指令4,询问电子设备电池的当前电压,电子设备可以向充电装置反馈电子设备电池的当前电压,充电装置可以根据电子设备关于电子设备电池的当前电压的反馈,判断USB接触即第一充电接口与第 二充电接口之间接触是否良好以及是否需要降低电子设备当前的充电电流值。当充电装置判断为USB接触不良,发送指令5,之后复位以重新进入阶段1。测试装置则模拟电子设备电池此状态下的情况。
当进入电流恒定变化阶段时,充电装置每间隔一段时间发送指令4,询问电子设备电池的当前电压,电子设备可以向充电装置反馈电子设备电池的当前电压,充电装置可以根据电子设备关于电子设备电池的当前电压的反馈,判断USB接触即第一充电接口与第二充电接口之间接触是否良好以及是否需要降低电子设备当前的充电电流值。当充电装置判断为USB接触不良,发送指令5,之后复位以重新进入阶段1。测试装置则模拟电子设备电池此状态下的情况。
在测试过程中,测试装置模拟电子设备在各个不同阶段情况下进行测试。具体的,程控电源模拟电子设备电池在不同阶段情况下的电压、电流、阻抗等,通信模块模拟电子设备电池在不同阶段情况下发送的信息,通过通信模块收发的信息和程控电源检测到的电压、电流等信号来判断充电装置各个功能是否正常。
可选地,在一些实施例中,在阶段1中,电子设备(或测试装置)回复指令1时,指令1对应的数据中可以附带该电子设备(或测试装置)的通路阻抗的数据(或信息),电子设备(或测试装置)通路阻抗数据可以用于在阶段5判断USB接触是否良好。
可选地,在一些实施例中,在阶段2中,从电子设备(或测试装置)同意启动快速充电模式,到充电装置将电压调整到合适值的时间可以控制在一定范围之内,该时间超出预定范围则电子设备(或测试装置)可以判定为请求异常,进行快速复位。
可选地,在一些实施例中,在阶段2中,可以在充电装置的输出电压调整到相较于电池当前电压高于ΔV(ΔV约为200-500mV)时,电子设备(或测试装置)对充电装置作出关于充电装置的输出电压合适/匹配的反馈。其中,在电子设备(或测试装置)对充电装置作出关于充电装置的输出电压不合适(即偏高或偏低)的反馈时,控制单元107根据电压采样值对PWM信号的占空比进行调节,从而对充电装置的输出电压进行调整。
可选地,在一些实施例中,在阶段4中,充电装置的输出电流值的大小调整速度可以控制一定范围之内,这样可以避免由于调整速度过快导致快充异常中断。
可选地,在一些实施例中,在阶段5中,充电装置的输出电流值的大小的变化幅度可以控制在5%以内,即可以认定为恒流阶段。
可选地,在一些实施例中,在阶段5中,充电装置实时监测充电回路阻抗,即通过测量充电装置的输出电压、当前充电电流及读取的电子设备电池电压,监测整个充电回路阻抗。当测出充电回路阻抗>电子设备通路阻抗+快充数据线阻抗时,可以认为USB接触不良,进行快充复位。
可选地,在一些实施例中,开启快充模式之后,充电装置与电子设备(或测试装置)之间的通信时间间隔可以控制在一定范围之内,避免出现快充复位。
可选地,在一些实施例中,快速充电模式(或快速充电过程)的停止可以分为可恢复的停止和不可恢复的停止两种:
例如,当电子设备(或测试装置)检测到电池充满或USB接触不良时,快充停止并复位,进入阶段1,电子设备(或测试装置)不同意开启快速充电模式,快充通信流程不进入阶段2,此时停止的快充过程可以为不可恢复的停止。
又例如,当电子设备(或测试装置)和充电装置之间出现通信异常时,快充停止并复位以进入阶段1,在满足阶段1要求后,电子设备(或测试装置)同意开启快充模式以恢复快充充电过程,此时停止的快充过程可以为可恢复的停止。
还例如,当电子设备(或测试装置)检测到电池出现异常时,快充停止并复位以进入阶段1,在进入阶段1后,电子设备(或测试装置)不同意开启快充模式。直到电池恢复正常,且满足阶段1要求后,电子设备(或测试装置)同意开启快充以恢复快充过程,此时停止的快充过程可以为可恢复的停止。
需要特别说明地,以上的通信步骤或操作仅是示例,举例来说,在阶段1中,电子设备(或测试装置)与充电装置进行连接后,电子设备(或测试装置)与充电装置之间的握手通信也可以由电子设备(或测试装置)发起,即电子设备(或测试装置)发送指令1询问充电装置是否开启快速充电模式(或称为闪充),当电子设备(或测试装置)接收到充电装置的回复指令指示充电装置同意开启快速充电模式时,快速充电过程开启。
请参阅图9,图9是本申请实施例提供的测试方法的流程示意图。该测试方法基于上述实施例中的测试***,该测试方法具体可以包括:
101,将充电装置连接程控电源。
102,当充电装置输出脉动信号的电压高于第一电压阈值时,利用程控电源测试充电装置输出的脉动信号。
103,当充电装置输出脉动信号的电压低于或等于第一电压阈值时,利用程控电源给充电装置供电。
在一些实施例中,该测试方法还可以包括:发送控制信息至充电装置,控制信息用于控制充电装置改变输出电信号;利用程控电源获取充电装置改变后的输出电信号;根据控制信息检测改变后的输出电信号是否合格。
具体的,程控电源连接一控制电脑,该控制电脑控制程控电源的阻抗等参数,同时获取程控电源检测充电装置输出的电压、电流、频率等信息。控制电脑还连接通信模块,控制电脑可以模拟电子设备,通过通信模块发送不同的控制信息至充电装置。其中,控制信息可以为模拟电子设备电池的电量值、温度值、电压值等信息,用于检测充电装置面对电池低电量、中电量、高电量、满电量等情况下的反应,如低电量为小电流充电,中电量为快速充电,高电量为恒流充电,满电量不充电等。其中,低电量可以为低于10%的总电量,中电量为10%-70%的总电量,高电量为70%-98%的总电量,满电量为98%-100%的总电量。还可以用于检测充电装置面对电池低温和高温的反应,如低温和高温退出快速充电,高温间断充电等。其中,低温和高温根据电池的种类不同而不同。
控制信息还可以为模拟电池需要的电压值、电流值等。用于检测充电装置面对电池需要的电压值的反应,如电池需要为5V,充电装置之前的输入电压为9V,则充电装置需要将脉动信号的输出电压降到5V。
充电装置接收到控制信息后,根据该控制信息改变输出的脉动信号。程控电源检测改变输出后的脉动信息,从脉动信息中得到测试电压值、测试电流值、测试频率值中的至少一项,控制电脑根据预存的对应信息,得到控制信息对应的参考电压值、参考电流值、参考频率值中的至少一项,接着将测试电压值与参考电压值、测试电流值与参考电流值、测试频率值与参考频率值进行比较,若比较结果在范围内,如两者相差在5%以内,则判定充电装置合格,否则判定充电装置不合格。从而可以测试充电装置的普通充电是否合格、快速充电是否合格、过压保护是否合格、过流保护是否合格等不同的性能。
上述实施例中,充电装置可以为电源适配器、充电宝、充电底座中的一项。电子设备可以为智能手机、平板电脑、笔记本电脑、VR设备等设备。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例提供的测试***进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种测试***,其中,包括:
    充电装置,所述充电装置包括第一充电接口,所述第一充电接口输出脉动信号;
    程控电源,所述程控电源包括第二充电接口,所述第二充电接口连接所述充电装置的第一充电接口,当所述充电装置输出脉动信号的电压高于第一电压阈值时,所述程控电源测试所述充电装置输出的脉动信号,当所述充电装置输出脉动信号的电压低于或等于第一电压阈值时,所述程控电源给所述充电装置供电。
  2. 根据权利要求1所述的测试***,其中,所述充电装置包括第一通信接口;
    所述测试***还包括通信模块,所述通信模块包括第二通信接口,所述第二通信接口与所述充电装置的第一通信接口连接,所述通信模块与所述充电装置进行双向通信,所述通信模块检测所述充电装置的通信功能。
  3. 根据权利要求2所述的测试***,其中,所述测试***还包括温度检测元件,所述温度检测元件设置在第一充电接口上;
    所述通信模块与所述温度检测元件连接,所述通信模块获取所述温度检测元件检测到的温度,并根据所述温度发送控制信息至所述充电装置。
  4. 根据权利要求2所述的测试***,其中,所述充电装置包括充电电路板,所述充电电路板上设有第一测试点和第二测试点,所述第一测试点与所述第一充电接口连接,所述第二测试点与所述第一通信接口连接;
    所述测试***还包括测试台,所述测试台上设有驱动机构、第一金属顶针和第二金属顶针,所述第一金属顶针一端与所述程控电源的第二充电接口连接,所述第二金属顶针一端与所述通信模块的第二通信接口连接,所述驱动机构可驱动所述第一金属顶针与所述第一测试点连接或断开,所述驱动机构可驱动所述第二金属顶针与所述第二测试点连接或断开。
  5. 根据权利要求1所述的测试***,其中,所述充电装置包括第一通信接口;
    所述测试***还包括通信模块,所述通信模块包括第二通信接口,所述第二通信接口与所述充电装置的第一通信接口连接;
    所述通信模块发送控制信息至所述充电装置,所述控制信息用于改变所述充电装置输出电信号;
    所述程控电源包括检测模块,所述检测模块用于检测改变后的输出电信号与所述控制信息是否匹配。
  6. 根据权利要求5所述的测试***,其中,所述第一充电接口与所述第一通信接口集成在装置接口内。
  7. 根据权利要求6所述的测试***,其中,所述测试***还包括连接线,所述连接线包括第一中转接口、第二中转接口和第三中转接口;
    所述第一中转接口与所述充电装置的装置接口连接,所述第二中转接口与所述程控电源的第二充电接口连接,所述第三中转接口与所述通信模块的第二通信接口连接。
  8. 根据权利要求5所述的测试***,其中,所述测试***还包括温度检测元件,所述温度检测元件设置在第一充电接口上;
    所述通信模块与所述温度检测元件连接,所述通信模块获取所述温度检测元件检测到的温度,并根据所述温度发送控制信息至所述充电装置。
  9. 根据权利要求5所述的测试***,其中,所述充电装置包括充电电路板,所述充电电路板上设有第一测试点和第二测试点,所述第一测试点与所述第一充电接口连接,所述第二测试点与所述第一通信接口连接;
    所述测试***还包括测试台,所述测试台上设有驱动机构、第一金属顶针和第二金属顶针,所述第一金属顶针一端与所述程控电源的第二充电接口连接,所述第二金属顶针一端与所述通信模块的第二通信接口连接,所述驱动机构可驱动所述第一金属顶针与所述第一测试点连接或断开,所述驱动机构可驱动所述第二金属顶针与所述第二测试点连接或断开。
  10. 根据权利要求1所述的测试***,其中,所述充电装置包括充电电路板,所述充电电路板上设有第一测试点,所述第一测试点与所述第一充电接口连接;
    所述测试***还包括测试台,所述测试台上设有驱动机构和第一金属顶针,所述第一金属顶针一端与所述程控电源的第二充电接口连接,所述驱动机构可驱动所述第一金属顶针与所述第一测试点连接或断开。
  11. 根据权利要求1所述的测试***,其中,所述测试***还包括电子负载,所述电子负载与所述充电装置连接,所述电子负载用于测试所述充电装置输出的脉动信号。
  12. 根据权利要求5所述的测试***,其中,所述充电装置还包括:
    充电接收端,所述充电接收端用于接收交流市电;
    电压调整电路,所述电压调整电路的输入端与所述充电接收端相连,所述电压调整电路的输出端与所述程控电源连接,所述电压调整电路用于对所述交流市电进行调整处理以输出脉动波形的电压,并将所述脉动波形的电压直接加载至所述程控电源;
    中央控制模块,所述中央控制模块用于对所述电压调整电路进行控制以调节所述电压调整电路输出的电压和电流,以响应所述程控电源的测试需求。
  13. 根据权利要求12所述的测试***,其中,所述充电装置包括温度检测单元,所述温度检测单元设置在所述电压调整电路上;
    所述控制单元与所述温度检测单元连接,并获取所述温度检测单元检测到的温度信息;
    所述控制单元将所述温度信息通过控制单元的通信端口发送至通信模块;
    所述程控电源的检测模块根据所述通信模块获取的温度信息,检测所述充电装置的输出电信号。
  14. 根据权利要求12所述的测试***,其中,所述控制单元,还用于根据所述通信模块的发送信息、所述电信号采样值对所述控制信号的占空比进行调节。
  15. 根据权利要求12所述的测试***,其中,所述控制单元与所述通信模块进行通信以确定充电模式,其中,所述充电模式包括快速充电模式和普通充电模式。
  16. 根据权利要求15所述的测试***,其中,在所述充电装置使用所述快速充电模式输出电信号的过程中,所述控制单元接收所述通信模块发送的测试信息,以通过控制所述开关单元不断调整所述充电装置输出电信号的电流,所述测试信息包括仿电池电压信息。
  17. 根据权利要求15所述的测试***,其中,在所述充电装置使用所述快速充电模式输出电信号的过程中,所述控制单元还通过所述第一充电接口与所述通信模块进行双向通信,所述通信模块与所述程控电源连接;
    当所述程控电源检测到所述第一充电接口与所述第二充电接口之间接触不良时,所述通信模块发送退出信息至所述控制单元,所述退出信息用于控制所述充电装置退出所述快速充电模式。
  18. 根据权利要求1所述的测试***,其中,所述充电装置还包括:
    第一整流单元,所述第一整流单元用于对输入的交流电进行整流以输出第一脉动波形的电压;
    开关单元,所述开关单元用于根据控制信号对所述第一脉动波形的电压进行调制;
    变压器,所述变压器包括初级绕组和次级绕组,所述变压器用于根据调制后的所述第一脉动波形的电压输出第二脉动波形的电压;
    第二整流单元,所述第二整流单元与所述次级绕组相连,所述第二整流单元用于对所述第二脉动波形的电压进行整流以输出第三脉动波形的电压;
    所述第一充电接口与所述第二整流单元相连,所述第一充电接口在与所述程控电源连接时,将所述第三脉动波形的电压加载至所述程控电源;
    采样单元,所述采样单元用于对所述初级绕组上的电信号进行采样;
    控制单元,所述控制单元分别与所述采样单元和所述开关单元相连,所述控制单元输出所述控制信号至所述开关单元,并根据所述采样单元采样的电信号值计算与所述第二整流单元的输出相对应的电信号采样值,以及根据所述电信号采样值对所述控制信号的占空比进行调节,以使所述第三脉动波形的电压满足所述程控电源的测试需求。
  19. 一种测试方法,其中,包括:
    将充电装置连接程控电源;
    当所述充电装置输出脉动信号的电压高于第一电压阈值时,利用所述程控电源测试所述充电装置输出的脉动信号;
    当所述充电装置输出脉动信号的电压低于或等于第一电压阈值时,利用所述程控电源给所述充电装置供电。
  20. 根据权利要求19所述的测试方法,其中,还包括:
    发送控制信息至所述充电装置,所述控制信息用于控制所述充电装置改变输出电信号;
    利用所述程控电源获取所述充电装置改变后的输出电信号;
    根据所述控制信息检测所述改变后的输出电信号是否合格。
PCT/CN2018/091695 2018-06-15 2018-06-15 测试*** WO2019237368A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091695 WO2019237368A1 (zh) 2018-06-15 2018-06-15 测试***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091695 WO2019237368A1 (zh) 2018-06-15 2018-06-15 测试***

Publications (1)

Publication Number Publication Date
WO2019237368A1 true WO2019237368A1 (zh) 2019-12-19

Family

ID=68841759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091695 WO2019237368A1 (zh) 2018-06-15 2018-06-15 测试***

Country Status (1)

Country Link
WO (1) WO2019237368A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701049A (zh) * 2016-03-23 2016-06-22 广东欧珀移动通信有限公司 写入充电标志位的***、方法、装置和移动终端
CN106899064A (zh) * 2017-03-29 2017-06-27 深圳天珑无线科技有限公司 移动终端电流测试电路及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701049A (zh) * 2016-03-23 2016-06-22 广东欧珀移动通信有限公司 写入充电标志位的***、方法、装置和移动终端
CN106899064A (zh) * 2017-03-29 2017-06-27 深圳天珑无线科技有限公司 移动终端电流测试电路及装置

Similar Documents

Publication Publication Date Title
US10340717B2 (en) Charging system, charging method, and power adapter
AU2017215263B2 (en) Charging system, charging method, and power adapter for terminal
CN105098900B (zh) 移动终端、可直充电源适配器及充电方法
US9054584B2 (en) Load detection for a low power mode in an AC-DC adapter
TWI437492B (zh) Battery simulator
TW201838282A (zh) 不斷電智能充電裝置及其操作方法
CN208736943U (zh) 测试***
CN208636408U (zh) 测试电路及测试***
CN111433619B (zh) 待充电设备的适配器老化检测方法和装置
US11527962B2 (en) Power adapter having ultra low standby power
WO2019237368A1 (zh) 测试***
CN202111492U (zh) 一种多功能充电器
WO2019237367A1 (zh) 测试电路及测试***
CN106199295B (zh) 一种串联快充老化控制***
CN108770137A (zh) 一种后置式led调光控制装置和方法
TW202101853A (zh) 充電負載檢測電路
CN219018501U (zh) 电池包及不间断电源装置
CN209963775U (zh) 一种便携无线充电器
EP3276781B1 (en) Charging device, charging method, power adapter and terminal
CN117081205A (zh) 多路快充控制电路和方法、充电芯片以及供电设备
WO2019237331A1 (zh) 待充电设备的适配器老化检测方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922844

Country of ref document: EP

Kind code of ref document: A1