WO2019234982A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2019234982A1
WO2019234982A1 PCT/JP2019/005999 JP2019005999W WO2019234982A1 WO 2019234982 A1 WO2019234982 A1 WO 2019234982A1 JP 2019005999 W JP2019005999 W JP 2019005999W WO 2019234982 A1 WO2019234982 A1 WO 2019234982A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
illumination
illumination light
illumination optical
frame
Prior art date
Application number
PCT/JP2019/005999
Other languages
English (en)
French (fr)
Inventor
井上 貴博
明彦 小竿
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019234982A1 publication Critical patent/WO2019234982A1/ja
Priority to US17/103,996 priority Critical patent/US20210076920A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope for medical use.
  • Patent Document 1 realizes illumination light distribution biased in the direction of the observation optical system by providing a reflecting surface on a part of the illumination lens.
  • the illumination light emitted from the light source is guided in the circumferential direction by the annular light guide unit and scattered by the scattering unit at the distal end of the endoscope insertion unit.
  • the distribution bias is reduced.
  • Patent Document 3 uses a liquid crystal lens or a liquid crystal prism as an illumination lens, and changes the light distribution according to the observation distance by changing the focal length.
  • JP 58-066910 A Japanese Patent No. 5526011 Japanese Patent Laid-Open No. 02-148013
  • the present invention has been made in view of the above-described circumstances, and optimal illumination from close-up observation to non-close-up observation is achieved while reducing parallax during close-up observation and reducing the diameter of the distal end portion of the endoscope.
  • An endoscope that achieves light distribution is provided.
  • an illumination optical system including a transparent medium that transmits illumination light emitted from a light source and irradiates the subject with the illumination light, and light from the subject irradiated with the illumination light is collected. And an illumination optical system and a tip frame made of a scattering medium that houses the objective optical system, and a part of the illumination light transmitted by the illumination optical system passes through the tip frame.
  • the endoscope 1 includes a distal end frame 3 disposed at the distal end of an elongated insertion portion (not shown) that is inserted into a body cavity.
  • the tip frame 3 is formed of a scattering medium. As shown in FIGS. 1 and 2, the distal end frame 3 includes a part of a light guide fiber 5 that guides illumination light emitted from a light source (not shown) to the distal end frame 3, and the light guide fiber 5.
  • the two illumination optical systems 7 that irradiate the subject S with the illumination light guided by the light source and the objective optical system 9 that collects the light from the subject S irradiated with the illumination light are housed.
  • the light guide fiber 5 is provided in the insertion portion along the longitudinal direction of the insertion portion, and the distal end portion is disposed in the distal end frame 3.
  • the light guide fiber 5 emits illumination light incident from the proximal end side from the distal end side, and causes the emitted illumination light to enter each illumination optical system 7.
  • the two illumination optical systems 7 are each formed of a transparent medium, and are arranged at an interval in the width direction of the front end frame 3.
  • the illumination optical system 7 includes an incident surface 7a on which illumination light emitted from the light guide fiber 5 is incident, a tip surface 7b that faces the subject S, and a side surface disposed between the incident surface 7a and the tip surface 7b. 7c.
  • the illumination optical system 7 has a positive refractive power, and is emitted from the tip surface 7b and the side surface 7c by transmitting the illumination light incident from the incident surface 7a.
  • Each illumination optical system 7 is molded integrally with the front end frame 3 by resin, and the illumination light emitted from the entire side surface 7c of each illumination optical system 7 enters the front end frame 3 without being blocked.
  • the front end surface 7 b of each illumination optical system 7 is exposed at the front end surface (exit surface) 3 a of the front end frame 3 that faces the subject S.
  • Each illumination optical system 7 emits a part of the transmitted illumination light from the side surface 7c and enters the front end frame 3, thereby passing the illumination light emitted from the side surface 7c through the inside of the front end frame 3 and The subject S is indirectly irradiated from the front end surface 3a of the frame 3.
  • Each illumination optical system 7 emits another part of the transmitted illumination light from the distal end surface 7b, so that the illumination light emitted from the distal end surface 7b is directly directed to the subject S without passing through the distal end frame 3. Irradiate.
  • the anisotropic scattering coefficient of the tip frame 3 is g
  • the scattering coefficient of the tip frame 3 is ⁇ s
  • the distance from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is L
  • the mean free path of the light beam traveling straight in the tip frame 3 made of a scattering medium, that is, the distance l * that the illumination light can travel straight in the tip frame 3 without being scattered is expressed by the following equation.
  • the number of times the illumination light is scattered in the tip frame 3 before the illumination light incident on the tip frame 3 from the side surface 7c of the illumination optical system 7 is emitted from the tip surface 3a of the tip frame 3 is L / l * .
  • the illumination light incident on the tip frame 3 can be scattered once in the tip frame 3, That is, It is necessary to satisfy the conditional expression.
  • the conditional expression (1) the illumination light can be scattered one or more times in the tip frame 3 and the subject S can be irradiated with the wide light distribution angle including a part of the tip frame 3. .
  • conditional expression (2) may be satisfied.
  • P f (g) is expressed by the following equation, and after the illumination light is scattered in the front end frame 3, it illuminates forward from the front end surface 3a of the front end frame 3, that is, the subject S side where the front end surface 3a faces. This means the probability that light will be emitted.
  • P (g, ⁇ ) is a probability density function with which the exit angle of the illumination light after scattering is ⁇ in the tip frame 3 having the anisotropic scattering coefficient g.
  • Scattering of illumination light that travels straight in the front end frame 3 made of a scattering medium is represented by a probability density function P ( ⁇ ) using an angle ⁇ in the traveling direction before and after scattering.
  • the probability density function P (g, ⁇ ) is approximately expressed by the following equation using the Henryy-Greenstein function.
  • the value of the anisotropic scattering coefficient g decreases, backscattering increases, and the subject S is illuminated. The component which can contribute will decrease.
  • FIG. 4 shows the dependence of the forward scattering ratio on the anisotropic scattering coefficient g.
  • the vertical axis indicates the value of P f (g)
  • conditional expression (3) is preferably 0.5 or more.
  • the probability that the illumination light incident on the tip frame 3 is scattered forward increases, and the scattered light can be efficiently emitted to the subject S side.
  • the distal end surface 3a of the distal end frame 3 is disposed facing the subject S with the insertion portion inserted into the body cavity, and illumination light is generated from the light source.
  • the illumination light emitted from the light source is guided to the distal end frame 3 by the light guide fiber 5 and is incident on the incident surface 7 a of the illumination optical system 7.
  • the illumination light incident on the incident surface 7a is transmitted through the illumination optical system 7, and then part of the illumination light is emitted from the tip surface 7b toward the front of the tip surface 3a, and the other part is emitted from the side surface 7c. 3 is incident.
  • the illumination light emitted from the front end surface 7b of the illumination optical system 7 is directly applied to the subject S, and the illumination light incident on the front end frame 3 from the side surface 7c of the illumination optical system 7 is a front end made of a scattering medium. After repeating scattering in the frame 3, the light is emitted from the front end surface 3 a of the front end frame 3 and indirectly irradiated onto the subject S.
  • a part of the illumination light emitted from the light source by the illumination optical system 7 is irradiated only from the illumination optical system 7 by indirectly irradiating the subject S from the tip surface 3a via the tip frame 3.
  • the other part of the illumination light emitted from the light source by the illumination optical system 7 is irradiated directly from the illumination optical system 7 to the subject S without passing through the distal end frame 3, so that excessive illumination light due to scattering is generated. Loss can be suppressed.
  • optimal illumination light distribution from close-up observation to non-close-up observation is achieved while reducing parallax during close-up observation and reducing the diameter of the distal end portion of the endoscope. Can be realized.
  • FIG. 5 shows an example of a conventional endoscope as a comparative example of the endoscope 1 according to the present embodiment.
  • the conventional endoscope 21 as shown in FIG. 5, all of the illumination light from the light source is directly irradiated onto the subject S from the front end surface 27 b of the illumination optical system 27. Since only the front end surface 27b of the illumination optical system 27 contributes to the illumination of the subject S, an imbalance of the object surface illuminance during close-up observation occurs.
  • the illumination optical system 7 has a positive refractive power, but instead, the illumination optical system 7 may have a negative refractive power.
  • the illumination optical system 7 a parallel plate having no refractive power may be adopted.
  • the illumination optical system 7 may be provided with a sleeve (not shown), and the light guide fiber 5 may be accommodated in the sleeve to hold the side surface of the light guide fiber 5. With this configuration, the positioning of the light guide fiber 5 can be facilitated.
  • FIG. 6 is an external view of the illumination optical system 7 made of a transparent medium in the present embodiment.
  • the illumination optical system 7 is formed with a concave illumination lens 13A in which the proximal end side of the distal end frame 3 is concave.
  • the illumination optical system 7, the diameter [Phi 2 equal diameter [Phi 1 and the distal end surface 7b of the end surface of the proximal end side, the side surface 7c has no inclination.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.150 mm, L ⁇ s (1-g) is 2.4, and P f L ⁇ s (1-g) is 0.82. It has become.
  • a sleeve 11 is provided, and the light guide fiber 5 is accommodated in the sleeve 11.
  • an endoscope according to a second embodiment of the present invention will be described below with reference to the drawings.
  • the endoscope 1 according to the present embodiment is different from the first embodiment in the shape of the illumination optical system 7.
  • the same reference numerals are given to portions having the same configuration as the endoscope 1 according to the first embodiment described above, and the description thereof is omitted.
  • the illumination optical system 7 of the present embodiment is formed in a tapered shape in which the diameter of the tip surface 7b is smaller than the diameter of the incident surface 7a, and the side surface 7c becomes narrower from the incident surface 7a side toward the tip surface 7b side. ing.
  • the illumination light incident from the incident surface 7a can be more effectively transmitted to the distal end frame 3 via the side surface 7c as much as the illumination optical system 7 is reduced in diameter toward the distal end surface 7b.
  • the imbalance of the object surface illuminance during the close-up observation can be more easily improved.
  • the illumination optical system 7 is provided with a sleeve 11, and the light guide fiber 5 is accommodated in the sleeve 11, thereby holding the side surface of the light guide fiber 5. It is good to do.
  • FIG. 10 is an external view of the illumination optical system 7 made of a transparent medium in the first embodiment.
  • the illumination optical system 7 is formed with a convex illumination lens 13 ⁇ / b> B whose base end side of the distal end frame 3 is convex.
  • the illumination optical system 7 is smaller in diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is formed in thinned tapered toward the distal end surface 7b side from the incident surface 7a side ing.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.282 mm, L ⁇ S (1-g) is 4.5, and P f L ⁇ s (1-G) is 0.69. It has become.
  • FIG. 11 is an external view of the illumination optical system 7 made of a transparent medium in the second embodiment.
  • the illumination optical system 7 is formed with a concave illumination lens 13A in which the proximal end side of the distal end frame 3 is concave.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.200 mm
  • L ⁇ S (1-g) is 3.2
  • P f L ⁇ s (1-g) is 0.77. It has become.
  • FIG. 12 is an external view of the illumination optical system 7 made of a transparent medium in the third embodiment.
  • the illumination optical system 7 is formed with a convex illumination lens 13B having a convex shape on the base end side of the distal end frame 3.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.100 mm
  • L ⁇ s (1-g) is 1.6
  • P f L ⁇ s (1-g) is 0.1 . 88.
  • FIG. 13 is an external view of an illumination optical system made of a transparent medium in the fourth embodiment.
  • the illumination optical system 7 is formed with a convex illumination lens 13B having a convex shape on the base end side of the distal end frame 3.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.300 mm
  • L ⁇ S (1-g) is 4.8
  • P f L ⁇ s (1-g) is 0.67. It has become.
  • FIG. 14 is an external view of an illumination optical system made of a transparent medium in the fifth embodiment.
  • the illumination optical system 7 is formed with a convex illumination lens 13B having a convex shape on the base end side of the distal end frame 3.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.400 mm, L ⁇ s (1-g) is 6.4, and P f L ⁇ s (1-g) is 0.59. It has become.
  • FIG. 15 is an external view of an illumination optical system made of a transparent medium in Example 6.
  • the illumination optical system 7 is formed with a biconvex illumination lens 13 ⁇ / b> C in which both the proximal end side and the distal end side of the distal end frame 3 are convex.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.500 mm, L ⁇ s (1-g) is 8.0, and P f L ⁇ s (1-g) is 0.52. It has become.
  • FIG. 16 is an external view of an illumination optical system made of a transparent medium in Example 7.
  • a meniscus illumination lens 13D having a concave shape on the proximal end side of the distal end frame 3 and a convex shape on the distal end side is formed.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.250 mm
  • L ⁇ S (1-g) is 4.0
  • P f L ⁇ s (1-g) is 0.72. It has become.
  • FIG. 17 is an external view of an illumination optical system made of a transparent medium in Example 8.
  • the illumination optical system 7 is not formed with an optical surface having refractive power.
  • the illumination optical system 7 has a smaller towards the diameter [Phi 2 of the forward end surface 7b than the diameter [Phi 1 of the end face of the base end side, the side surface 7c is, in a tapered shape tapering toward the tip end surface 7b side from the incident surface 7a side Is formed.
  • the distance L from the incident surface 7a of the illumination optical system 7 to the tip surface 3a of the tip frame 3 is 0.150 mm
  • L ⁇ s (1-g) is 2.4
  • P f L ⁇ s (1-g) is 0.82. It has become.
  • the embodiment of the present invention has been described in detail with reference to the drawings.
  • the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention.
  • the present invention is not limited to those applied to each of the above-described embodiments and modifications, and may be applied to embodiments in which the above-described embodiments and modifications are appropriately combined, and is not particularly limited.
  • an illumination optical system including a transparent medium that transmits illumination light emitted from a light source and irradiates the subject with the illumination light, and light from the subject irradiated with the illumination light is collected. And an illumination optical system and a tip frame made of a scattering medium that houses the objective optical system, and a part of the illumination light transmitted by the illumination optical system passes through the tip frame.
  • the illumination optical system emits a part of the illumination light emitted from the light source from the tip frame in a state of being scattered in the tip frame made of the scattering medium.
  • the subject can be illuminated with illumination light, and an imbalance in object surface illuminance during close-up observation can be improved.
  • the tip frame With providing the tip frame with a scattering function, it is not necessary to separately provide a member for scattering the illumination light on the tip frame.
  • the illumination optical system causes a part of the illumination light to be incident on the distal end frame from a side surface disposed between an incident surface on which the illumination light is incident and a distal end surface that faces the subject. It is good as well. With this configuration, it is possible to make the illumination light incident on the wide range of the front end frame from the illumination optical system and easily emit the illumination light from the wide range of the front end frame.
  • the said side surface is good also as being formed in the taper shape which becomes thin toward the said front end surface side from the said incident surface side.
  • the anisotropic scattering coefficient of the tip frame is g
  • the scattering coefficient of the tip frame is ⁇ s
  • the distance from the entrance surface of the illumination optical system to the exit surface of the illumination light in the tip frame is When L is satisfied, the following conditional expression (1) may be satisfied.
  • the mean free path of the light beam traveling straight in the tip frame made of the scattering medium that is, the distance l * at which the illumination light can travel straight without scattering in the tip frame is expressed by the following equation.
  • the number of times the illumination light is scattered within the tip frame before the illumination light incident on the tip frame from the illumination optical system is emitted from the exit surface of the tip frame is L / l * .
  • the illumination light incident on the tip frame can be scattered once in the tip frame, That is, It is necessary to satisfy the conditional expression.
  • this conditional expression (1) the illumination light can be scattered once or more in the tip frame, and the subject can be illuminated with a wide light distribution angle including a part of the tip frame.
  • the anisotropic scattering coefficient of the tip frame is g
  • the scattering coefficient of the tip frame is ⁇ s
  • the distance from the entrance surface of the illumination optical system to the exit surface of the illumination light in the tip frame is
  • the following conditional expression (2) may be satisfied.
  • P f (g) is expressed by the following equation, and means the probability that the illumination light is emitted from the exit surface to the subject side even after the illumination light is scattered in the tip frame.
  • P (g, ⁇ ) is a probability density function in which the exit angle of the illumination light after scattering in the tip frame becomes ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

光源から発せられた照明光を透過させて、照明光を被写体(S)に照射する透明媒質からなる照明光学系(7)と、照明光が照射された被写体(S)からの光を集光する対物光学系(9)と、照明光学系(7)および対物光学系(9)を収容する散乱媒質からなる先端枠(3)とを備え、照明光学系(7)が、透過させた照明光の一部は先端枠(3)を経由させることによって被写体(S)に間接的に照射し、他の一部は先端枠(3)を経由させずに被写体(S)に直接的に照射する内視鏡(1)である。

Description

内視鏡
 本発明は、医療用途の内視鏡に関するものである。
 近接観察時において、照明レイアウトに起因して照明配光が不均一になり、照明レンズに近い部分が明るく照らされる一方、それ以外の部分が暗く照らされることによって、観察が困難になることがある。このような照明配光の不均一性、すなわちパララックスを解消しようとする技術が知られている(例えば、特許文献1,2,3参照。)。
 特許文献1に記載の技術は、照明レンズの一部に反射面を設けることによって、観察光学系の方向に偏った照明配光を実現している。特許文献2の技術は、内視鏡挿入部の先端において、光源から発せられた照明光を円環状の導光部により周方向に導光するとともに散乱部により散乱させることにより、発光部における位置分布の偏りを小さくしている。特許文献3の技術は、照明レンズとして液晶レンズまたは液晶プリズムを用いて、焦点距離を変更することにより、観察距離に応じて配光を変化させている。
特開昭58-066910号公報 特許第5526011号公報 特開平02-148013号公報
 特許文献1に記載の技術では、非近接観察時において、偏った照明配光により、観察視野内に照明の不均一性が生じる。特許文献2に記載の技術では、円環状の導光部材を用いるため、内視鏡先端部の細径化が困難であり、また、散乱部の拡散作用によって照明光を散乱させるため、照明配光の広がりを制御するのが困難である。特許文献3の技術では、内視鏡先端部に液晶レンズまたは液晶プリズムの制御素子を実装する必要があり、内視鏡先端部の細径化が困難である。
 本発明は上述した事情に鑑みてなされたものであって、近接観察時のパララックスの低減および内視鏡先端部の細径化を図りつつ、近接観察時から非近接観察時まで最適な照明配光を実現する内視鏡を提供する。
 本発明の一態様は、光源から発せられた照明光を透過させて、該照明光を被写体に照射する透明媒質からなる照明光学系と、前記照明光が照射された前記被写体からの光を集光する対物光学系と、前記照明光学系および前記対物光学系を収容する散乱媒質からなる先端枠とを備え、前記照明光学系が、透過させた前記照明光の一部は前記先端枠を経由させることによって前記被写体に間接的に照射し、他の一部は前記先端枠を経由させずに前記被写体に直接的に照射する内視鏡である。
本発明の第1実施形態に係る内視鏡の先端枠の外観図である。 図1の先端枠内の照明光学系および対物光学系を示す先端枠の縦断面図である。 非等方散乱係数g=-0.3,0,0.3,0.5のときの確率密度関数P(g,θ)の様子を示す図である。 前方散乱の割合の非等方散乱係数gへの依存性を説明するグラフである。 本実施形態に係る内視鏡の比較例としての従来の内視鏡による照明を説明する図である。 第1実施形態の実施例における照明光学系の外観図である。 本発明の第2実施形態に係る内視鏡の先端枠内の照明光学系および対物光学系を示す先端枠の縦断面図である。 図7の照明光学系の外観図である。 図7の先端枠の別の縦断面図である。 第2実施形態の実施例1における照明光学系の外観図である。 第2実施形態の実施例2における照明光学系の外観図である。 第2実施形態の実施例3における照明光学系の外観図である。 第2実施形態の実施例4における照明光学系の外観図である。 第2実施形態の実施例5における照明光学系の外観図である。 第2実施形態の実施例6における照明光学系の外観図である。 第2実施形態の実施例7における照明光学系の外観図である。 第2実施形態の実施例8における照明光学系の外観図である。
〔第1実施形態〕
 本発明の第1実施形態に係る内視鏡について、図面を参照して以下に説明する。
 本実施形態に係る内視鏡1は、図1に示されるように、体腔内に挿入される細長い挿入部(図示略)の先端に配置される先端枠3を備えている。
 先端枠3は、散乱媒質によって形成されている。この先端枠3には、図1および図2に示されるように、光源(図示略)から発せられた照明光を先端枠3へ導光するライトガイドファイバ5の一部と、ライトガイドファイバ5により導光されてきた照明光を被写体Sに照射する2つの照明光学系7と、照明光が照射された被写体Sからの光を集光する対物光学系9とが収容されている。
 ライトガイドファイバ5は、挿入部内に挿入部の長手方向に沿って設けられ、先端部が先端枠3内に配置されている。ライトガイドファイバ5は、基端側から入射した照明光を先端側から射出し、射出した照明光を各照明光学系7に入射させる。
 2つの照明光学系7は、それぞれ透明媒質によって形成されており、先端枠3の幅方向に間隔をあけて配置されている。照明光学系7は、ライトガイドファイバ5から射出された照明光が入射する入射面7aと、被写体Sに対面させられる先端面7bと、入射面7aと先端面7bとの間に配置された側面7cとを有している。
 また、照明光学系7は、正の屈折力を有しており、入射面7aから入射した照明光を透過させることによって先端面7bおよび側面7cから射出する。各照明光学系7は、それぞれ樹脂によって先端枠3と一体に成型されており、各照明光学系7の側面7c全体から射出された照明光が遮光されることなく先端枠3に入射する。各照明光学系7の先端面7bは、被写体Sに対面させられる先端枠3の先端表面(射出面)3aにおいて露出している。
 各照明光学系7は、透過させた照明光の一部を側面7cから射出して先端枠3に入射させることによって、側面7cから射出した照明光を先端枠3の内部を経由させて、先端枠3の先端表面3aから被写体Sに間接的に照射する。各照明光学系7は、透過させた照明光の他の一部を先端面7bから射出することによって、先端面7bから射出した照明光を先端枠3を経由させずに被写体Sに直接的に照射する。
 先端枠3の非等方散乱係数をg、先端枠3の散乱係数をμ、照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離をLとしたとき、下記条件式(1)を満足することとしてもよい。
Figure JPOXMLDOC01-appb-M000004
 散乱媒質からなる先端枠3内を直進する光線の平均自由行程、すなわち、先端枠3内において照明光が散乱せずに直進できる距離lは、下記の式で表される。
Figure JPOXMLDOC01-appb-M000005
 照明光学系7の側面7cから先端枠3に入射した照明光が先端枠3の先端表面3aから射出されるまでに、先端枠3内で照明光が散乱を受ける回数は、L/lとなる。
 したがって、先端枠3に入射した照明光が先端枠3内で1回は散乱するためには、
Figure JPOXMLDOC01-appb-M000006
すなわち、
Figure JPOXMLDOC01-appb-M000007
の条件式を満たす必要がある。条件式(1)を満足することにより、先端枠3内で照明光を1回以上散乱させて、先端枠3の一部を含む広い配光角によって被写体Sに照明光を照射することができる。
 下記条件式(2)を満足することとしてもよい。
Figure JPOXMLDOC01-appb-M000008
 ただし、P(g)は、以下の式で表され、先端枠3内で照明光が散乱した後も先端枠3の先端表面3aから前方、すなわち先端表面3aが対面する被写体S側へ照明光が射出される確率を意味している。
Figure JPOXMLDOC01-appb-M000009
 P(g,θ)は、非等方散乱係数gの先端枠3において、散乱後の照明光の射出角がθとなる確率密度関数である。
 散乱媒質からなる先端枠3内を直進する照明光の散乱は、散乱前後の進行方向の角度θを用いて確率密度関数P(θ)で表される。確率密度関数P(g,θ)は、Henyey-Greenstein関数によって、近似的に以下の式で表される。
Figure JPOXMLDOC01-appb-M000010
 非等方散乱係数g=-0.3,0,0.3,0.5のときの確率密度関数P(g,θ)の様子を図3に示す。非等方散乱係数g=0.5では、先端枠3の先端表面3aからほぼ前方へ散乱されるが、非等方散乱係数gの数値が小さくなるに従って後方散乱が増え、被写体Sの照明に寄与できる成分が少なくなってしまう。
 前方散乱の割合の非等方散乱係数gへの依存性を図4に示す。図4において、縦軸はP(g)の値を示し、横軸は非等方散乱係数gの値を示している。近似曲線から、簡易的に前方散乱となる照明光の割合P(g)は、以下の式で表される。
  P(g)=-0.51g+1.03g+0.49
 先端枠3内を進む照明光が散乱を受ける回数は、L*(μ*(1-g))と表されるため、散乱を繰り返した後にも先端枠3から前方へ射出される照明光の割合は、近似的に以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000011
 散乱媒質からなる先端枠3に入射した照明光のうちの少なくとも50%は照明に寄与する必要があるため、条件式(3)の数値が0.5以上であることが好ましい。条件式(3)の数値が0.5以上であることにより、先端枠3に入射した照明光が前方散乱される確率が増し、散乱光を効率的に被写体S側へ射出させることができる。
 次に、本実施形態に係る内視鏡1の作用について説明する。
 上記構成の内視鏡1により被写体Sを観察するには、体腔内に挿入部を挿入した状態で、被写体Sに先端枠3の先端表面3aを対向させて配置し、光源から照明光を発生させる。
 光源から発せられた照明光は、ライトガイドファイバ5によって先端枠3へ導光され、照明光学系7の入射面7aに入射される。入射面7aに入射した照明光は、照明光学系7を透過した後、一部が先端面7bから先端表面3aの前方に向かって射出され、他の一部が側面7cから射出されて先端枠3に入射する。
 照明光学系7の先端面7bから射出された照明光が、被写体Sに直接的に照射されるとともに、照明光学系7の側面7cから先端枠3に入射した照明光が、散乱媒質からなる先端枠3内で散乱を繰り返した後に先端枠3の先端表面3aから射出されて、被写体Sに間接的に照射される。
 この場合において、照明光学系7により、光源から発せられた照明光の一部は、先端枠3を経由させて先端表面3aから被写体Sに間接的に照射することによって、照明光学系7からだけでなく、先端枠3の一部を含む広い配光角によって被写体Sに照明光を照射し、近接観察時における物体面照度の不均衡を改善することができる。先端枠3が散乱機能を有することによって、照明光を散乱させるための部材を先端枠3に別個に設ける必要がない。照明光学系7により、光源から発せられた照明光の他の一部は、先端枠3を経由させずに照明光学系7から被写体Sに直接的に照射することによって、散乱による照明光の過度の損失を抑えることができる。
 本実施形態に係る内視鏡1によれば、近接観察時のパララックスの低減および内視鏡先端部の細径化を図りつつ、近接観察時から非近接観察時まで最適な照明配光を実現することができる。
 本実施形態に係る内視鏡1の比較例として、従来の内視鏡の一例を図5に示す。従来の内視鏡21では、図5に示されるように、光源からの照明光のすべてが照明光学系27の先端面27bから被写体Sに直接的に照射される。被写体Sへの照明に寄与する部分が照明光学系27の先端面27bのみであるため、近接観察時における物体面照度の不均衡が発生する。
 本実施形態においては、照明光学系7が正の屈折力を有していることとしたが、これに代えて、照明光学系7が負の屈折力を有することとしてもよい。照明光学系7として、屈折力を持たない平行平板を採用することとしてもよい。
 本実施形態においては、照明光学系7にスリーブ(図示略)を設け、スリーブにライトガイドファイバ5を収容することによって、ライトガイドファイバ5の側面を保持することとしてもよい。この構成によって、ライトガイドファイバ5の位置決めを容易にすることができる。
 本実施形態に係る内視鏡1の実施例について、図6を用いて以下に説明する。
 図6は、本実施例における透明媒質からなる照明光学系7の外観図である。照明光学系7には、先端枠3の基端側が凹形状となる凹平形状の照明レンズ13Aが形成されている。照明光学系7は、基端側の端面の直径Φと先端面7bの直径Φが等しく、側面7cが傾きを有していない。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.150mm、Lμ(1-g)が2.4、P Lμs(1-g)が0.82となっている。図6に示す例では、スリーブ11を設けて、スリーブ11にライトガイドファイバ5を収容している。
〔第2実施形態〕
 次に、本発明の第2実施形態に係る内視鏡について、図面を参照して以下に説明する。
 本実施形態に係る内視鏡1は、図7に示されるように、照明光学系7の形状が第1実施形態と異なる。
 本実施形態の説明において、上述した第1実施形態に係る内視鏡1と構成を共通とする箇所には同一符号を付して説明を省略する。
 本実施形態の照明光学系7は、入射面7aの直径よりも先端面7bの直径の方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。
 この構成によって、照明光学系7が先端面7b側ほど細径化する分だけ、入射面7aから入射した照明光を側面7cを経由させて先端枠3へより効果的に透過させることができる。これにより、近接観察時における物体面照度の不均衡をより改善し易くすることができる。
 本実施形態においても、例えば、図8および図9に示されるように、照明光学系7にスリーブ11を設け、スリーブ11にライトガイドファイバ5を収容することによって、ライトガイドファイバ5の側面を保持することとしてもよい。
 本実施形態に係る内視鏡1の実施例1~8について、図10から図17を用いて以下に説明する。
(実施例1)
 図10は、実施例1における透明媒質からなる照明光学系7の外観図である。照明光学系7には、先端枠3の基端側が凸となる凸平形状の照明レンズ13Bが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φが小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.282mm、Lμ(1-g)が4.5、P Lμs(1-G)が0.69となっている。
(実施例2)
 図11は、実施例2における透明媒質からなる照明光学系7の外観図である。照明光学系7には、先端枠3の基端側が凹形状となる凹平形状の照明レンズ13Aが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.200mm、Lμ(1-g)が3.2、P Lμs(1-g)が0.77となっている。
(実施例3)
 図12は、実施例3における透明媒質からなる照明光学系7の外観図である。照明光学系7には、先端枠3の基端側が凸形状となる凸平形状の照明レンズ13Bが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。また、照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.100mm、Lμ(1-g)が1.6、P Lμs(1-g)が0.88となっている。
(実施例4)
 図13は、実施例4における透明媒質からなる照明光学系の外観図である。照明光学系7には、先端枠3の基端側が凸形状となる凸平形状の照明レンズ13Bが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.300mm、Lμ(1-g)が4.8、P Lμs(1-g)が0.67となっている。
(実施例5)
 図14は、実施例5における透明媒質からなる照明光学系の外観図である。照明光学系7には、先端枠3の基端側が凸形状となる凸平形状の照明レンズ13Bが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.400mm、Lμ(1-g)が6.4、P Lμs(1-g)が0.59となっている。
(実施例6)
 図15は、実施例6における透明媒質からなる照明光学系の外観図である。照明光学系7には、先端枠3の基端側および先端側がともに凸形状となる両凸形状の照明レンズ13Cが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.500mm、Lμ(1-g)が8.0、P Lμs(1-g)が0.52となっている。
 (実施例7)
 図16は、実施例7における透明媒質からなる照明光学系の外観図である。照明光学系7には、先端枠3の基端側が凹形状、先端側が凸形状となるメニスカス形状の照明レンズ13Dが形成されている。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.250mm、Lμ(1-g)が4.0、P Lμs(1-g)が0.72となっている。
(実施例8)
 図17は、実施例8における透明媒質からなる照明光学系の外観図である。照明光学系7には、屈折力を持つ光学面は形成されていない。照明光学系7は、基端側の端面の直径Φよりも先端面7bの直径Φの方が小さく、側面7cが、入射面7a側から先端面7b側に向かって細くなるテーパ状に形成されている。照明光学系7の入射面7aから先端枠3の先端表面3aまでの距離Lが0.150mm、Lμ(1-g)が2.4、P Lμs(1-g)が0.82となっている。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記各実施形態および変形例に適用したものに限定されることなく、上記実施形態および変形例を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。
 本発明の一態様は、光源から発せられた照明光を透過させて、該照明光を被写体に照射する透明媒質からなる照明光学系と、前記照明光が照射された前記被写体からの光を集光する対物光学系と、前記照明光学系および前記対物光学系を収容する散乱媒質からなる先端枠とを備え、前記照明光学系が、透過させた前記照明光の一部は前記先端枠を経由させることによって前記被写体に間接的に照射し、他の一部は前記先端枠を経由させずに前記被写体に直接的に照射する内視鏡である。
 本態様によれば、照明光学系により、光源から発せられた照明光の一部が、散乱媒質からなる先端枠内で散乱された状態で先端枠から射出される。これにより、照明光学系からだけでなく、先端枠の一部を含む広い配光角によって被写体に照明光を照射し、近接観察時における物体面照度の不均衡を改善することができる。先端枠に散乱機能を持たせることによって、照明光を散乱させるための部材を先端枠に別個に設ける必要がない。照明光学系により、光源から発せられた照明光の他の一部は、先端枠を経由させずに被写体に直接的に照射することによって、散乱による照明光の過度の損失を抑えることができる。
 したがって、近接観察時のパララックスの低減および内視鏡先端部の細径化を図りつつ、近接観察時から非近接観察時まで最適な照明配光を実現することができる。
 上記態様においては、前記照明光学系が、前記照明光が入射する入射面と前記被写体に対面させられる先端面との間に配置された側面から前記先端枠に前記照明光の一部を入射させることとしてもよい。
 この構成によって、照明光学系から先端枠の広範囲に照明光を入射させて、先端枠の広範囲から照明光を射出させ易くすることができる。
 上記態様においては、前記側面が、前記入射面側から前記先端面側に向かって細くなるテーパ状に形成されていることとしてもよい。
 この構成によって、照明光学系において、入射面から入射した照明光をより効果的に先端枠へ透過させることができる。これにより、近接観察時における物体面照度の不均衡をより改善し易くすることができる。
 上記態様においては、前記先端枠の非等方散乱係数をg、前記先端枠の散乱係数をμ、前記照明光学系の前記入射面から前記先端枠における前記照明光の射出面までの距離をLとしたとき、下記条件式(1)を満足することとしてもよい。
Figure JPOXMLDOC01-appb-M000012
 散乱媒質からなる先端枠内を直進する光線の平均自由行程、すなわち、先端枠内において照明光が散乱せずに直進できる距離lは、下記の式で表される。
Figure JPOXMLDOC01-appb-M000013
 また、照明光学系から先端枠に入射した照明光が先端枠の射出面から射出されるまでに、先端枠内で照明光が散乱を受ける回数は、L/lとなる。
 先端枠に入射した照明光が先端枠内で1回は散乱するためには、
Figure JPOXMLDOC01-appb-M000014
すなわち、
Figure JPOXMLDOC01-appb-M000015
の条件式を満たす必要がある。この条件式(1)を満足することにより、先端枠内で照明光を1回以上散乱させて、先端枠の一部を含む広い配光角によって被写体に照明光を照射することができる。
 上記態様においては、前記先端枠の非等方散乱係数をg、前記先端枠の散乱係数をμ、前記照明光学系の前記入射面から前記先端枠における前記照明光の射出面までの距離をLとしたとき、下記条件式(2)を満足することとしてもよい。
Figure JPOXMLDOC01-appb-M000016
 ただし、P(g)は、以下の式で表され、前記先端枠内で前記照明光が散乱した後も前記射出面から前記被写体側へ前記照明光が射出される確率を意味する。
Figure JPOXMLDOC01-appb-M000017
 ここで、P(g,θ)は、前記先端枠において散乱後の前記照明光の射出角がθとなる確率密度関数である。
 1     内視鏡
 3     先端枠
 7     照明光学系
 9     対物光学系
 S     被写体

Claims (5)

  1.  光源から発せられた照明光を透過させて、該照明光を被写体に照射する透明媒質からなる照明光学系と、
     前記照明光が照射された前記被写体からの光を集光する対物光学系と、
     前記照明光学系および前記対物光学系を収容する散乱媒質からなる先端枠とを備え、
     前記照明光学系が、透過させた前記照明光の一部は前記先端枠を経由させることによって前記被写体に間接的に照射し、他の一部は前記先端枠を経由させずに前記被写体に直接的に照射する内視鏡。
  2.  前記照明光学系が、前記照明光が入射する入射面と前記被写体に対面させられる先端面との間に配置された側面から前記先端枠に前記照明光の一部を入射させる請求項1に記載の内視鏡。
  3.  前記側面が、前記入射面側から前記先端面側に向かって細くなるテーパ状に形成されている請求項2に記載の内視鏡。
  4.  前記先端枠の非等方散乱係数をg、前記先端枠の散乱係数をμ、前記照明光学系の前記入射面から前記先端枠における前記照明光の射出面までの距離をLとしたとき、下記条件式(1)を満足する請求項2または請求項3に記載の内視鏡。
    Figure JPOXMLDOC01-appb-M000001
  5.  前記先端枠の非等方散乱係数をg、前記先端枠の散乱係数をμ、前記照明光学系の前記入射面から前記先端枠における前記照明光の射出面までの距離をLとしたとき、下記条件式(2)を満足する請求項2または請求項3に記載の内視鏡。
    Figure JPOXMLDOC01-appb-M000002
     ただし、P(g)は、以下の式で表され、前記先端枠内で前記照明光が散乱した後も前記射出面から前記被写体側へ前記照明光が射出される確率を意味する。
    Figure JPOXMLDOC01-appb-M000003
     ここで、P(g,θ)は、前記先端枠において散乱後の前記照明光の射出角がθとなる確率密度関数である。
     
PCT/JP2019/005999 2018-06-05 2019-02-19 内視鏡 WO2019234982A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/103,996 US20210076920A1 (en) 2018-06-05 2020-11-25 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-107468 2018-06-05
JP2018107468 2018-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/103,996 Continuation US20210076920A1 (en) 2018-06-05 2020-11-25 Endoscope

Publications (1)

Publication Number Publication Date
WO2019234982A1 true WO2019234982A1 (ja) 2019-12-12

Family

ID=68769271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005999 WO2019234982A1 (ja) 2018-06-05 2019-02-19 内視鏡

Country Status (2)

Country Link
US (1) US20210076920A1 (ja)
WO (1) WO2019234982A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209417A (ja) * 1988-02-17 1989-08-23 Toshiba Corp 内視鏡装置
WO2016181724A1 (ja) * 2015-05-08 2016-11-17 オリンパス株式会社 内視鏡用樹脂製先端部品
US20170078583A1 (en) * 2013-02-01 2017-03-16 Deka Products Limited Partnership Endoscope with Pannable Camera and Related Method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132646A (en) * 1961-10-18 1964-05-12 American Cystoscope Makers Inc Flexible optical surgical instrument
US4733937A (en) * 1986-10-17 1988-03-29 Welch Allyn, Inc. Illuminating system for endoscope or borescope
US6829411B2 (en) * 2000-09-01 2004-12-07 Syntec, Inc. Wide angle light diffusing optical fiber tip
JP3854946B2 (ja) * 2003-05-30 2006-12-06 オリンパス株式会社 内視鏡
US9451885B2 (en) * 2010-12-22 2016-09-27 University of Pittsburgh—of the Commonwealth System of Higher Education Depth-selective fiber-optic probe
EP3517018A1 (en) * 2011-11-21 2019-07-31 Boston Scientific Scimed, Inc. Endoscopic system for optimized visualization
JP5639313B2 (ja) * 2012-07-19 2014-12-10 オリンパスメディカルシステムズ株式会社 内視鏡の挿入部の先端硬質部及び、この先端硬質部を用いた内視鏡
JP5596889B1 (ja) * 2012-11-07 2014-09-24 オリンパスメディカルシステムズ株式会社 内視鏡
US10441156B2 (en) * 2014-09-10 2019-10-15 Medical Instrument Development Laboratories, Inc. Application of highly scattering materials to surgical illumination
JP6342515B2 (ja) * 2014-12-05 2018-06-13 オリンパス株式会社 照明装置および内視鏡
CN107105965B (zh) * 2014-12-17 2019-03-01 奥林巴斯株式会社 内窥镜用照明装置和内窥镜
WO2017068404A1 (en) * 2015-10-23 2017-04-27 Hoya Corporation Edndoscope tip attachment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209417A (ja) * 1988-02-17 1989-08-23 Toshiba Corp 内視鏡装置
US20170078583A1 (en) * 2013-02-01 2017-03-16 Deka Products Limited Partnership Endoscope with Pannable Camera and Related Method
WO2016181724A1 (ja) * 2015-05-08 2016-11-17 オリンパス株式会社 内視鏡用樹脂製先端部品

Also Published As

Publication number Publication date
US20210076920A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US8123680B2 (en) Endoscope
JP4704386B2 (ja) 内視鏡
US11278195B2 (en) Illumination optical system
JP2015016022A (ja) 照明装置
JP2005323737A (ja) 内視鏡装置
WO2013168594A1 (ja) 内視鏡用照明光学系および内視鏡
US8177405B2 (en) Illumination optical system of endoscope
US20160353983A1 (en) Endoscope
JP2015016021A (ja) 照明装置
JP4504438B2 (ja) 照明光照射構造及びそれを備えた内視鏡
JP6464251B2 (ja) 照明ユニット及び内視鏡
JP5075658B2 (ja) 内視鏡
WO2019234982A1 (ja) 内視鏡
WO2018216118A1 (ja) 照明装置
CN113613544B (zh) 内窥镜
JP2008206819A (ja) 内視鏡アダプタ光学系及び内視鏡
JP6589044B2 (ja) 内視鏡
WO2020012697A1 (ja) 内視鏡照明光学系
JP6980922B2 (ja) 内視鏡および内視鏡の挿入部
US10849487B2 (en) Illumination unit and endoscope system
JP6180195B2 (ja) 内視鏡、内視鏡システム
CN110248588B (zh) 内窥镜
US20240016374A1 (en) Endoscope
JP2012125411A (ja) 導光部材および内視鏡装置
CN116391144A (zh) 内窥镜和内窥镜***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP