WO2019234808A1 - Water pump system, water pump pipe, hydroelectric power generation system, and water feed system - Google Patents

Water pump system, water pump pipe, hydroelectric power generation system, and water feed system Download PDF

Info

Publication number
WO2019234808A1
WO2019234808A1 PCT/JP2018/021483 JP2018021483W WO2019234808A1 WO 2019234808 A1 WO2019234808 A1 WO 2019234808A1 JP 2018021483 W JP2018021483 W JP 2018021483W WO 2019234808 A1 WO2019234808 A1 WO 2019234808A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pumping
compressed air
water
supply pipe
Prior art date
Application number
PCT/JP2018/021483
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 茂吉
兵動 正幸
ムザミール ハサン
Original Assignee
株式会社アサヒテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサヒテクノ filed Critical 株式会社アサヒテクノ
Priority to PCT/JP2018/021483 priority Critical patent/WO2019234808A1/en
Publication of WO2019234808A1 publication Critical patent/WO2019234808A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention provides a pumping system having a pumping pump at the lower end of a pumping pipe, a pumping pipe used in the pumping system, and a generator driven by rotating a water turbine with water guided to a pipe having a head difference.
  • the present invention relates to a hydroelectric power generation system that generates power and a water supply system that includes a water supply pipe connected to a water supply device.
  • the improvement method of the ground is proposed.
  • the saturated groundwater is pumped up by negative pressure propagation using SWP (Super Well Point), so that only the target area is concentrated and the water level can be lowered spotwise to create an unsaturated zone.
  • SWP Super Well Point
  • VOCs volatile organic compounds
  • oily components such as oil, etc.
  • the basis of the conventional ground improvement method is a method of forcibly draining groundwater by vacuum suction, forming an unsaturated zone, promoting vacuum vaporization, and promoting dehydration and drying.
  • Japanese Patent No. 4114944 Japanese Patent Laid-Open No. 2007-303095
  • An object of the present invention is to increase a pumping amount and a pumping amount without using a vacuum pump in a pumping system including a pumping pump at the lower end of a pumping pipe.
  • a pumping system comprising a pump at the lower end of a pumping pipe buried in the ground, A compressed air supply pipe connected to the outer periphery of the pumping pipe and supplying compressed air obliquely upward with respect to the pumping pipe; A compressor connected to the compressed air supply pipe; It is characterized by providing.
  • the invention according to claim 3 The pumping system according to claim 1, The pumping pipe is arranged in a well.
  • the invention according to claim 4 A pumping system according to claim 3,
  • the well is characterized in that the end on the ground side is sealed and the inside of the well is maintained in a negative pressure state.
  • a compressed air supply pipe that is connected to the outer periphery of the pumping pipe and supplies compressed air obliquely upward to the inside of the pumping pipe is provided.
  • the invention described in claim 6 In a hydroelectric power generation system that generates electricity by driving a generator by rotating a water turbine with water guided to a pipe having a hydraulic head difference, A water discharge pipe for discharging water from the water wheel; A compressed air supply pipe connected to the outer periphery of the water discharge pipe and supplying compressed air obliquely to the water discharge direction in the water discharge pipe; A compressor connected to the compressed air supply pipe; It is characterized by providing.
  • a water supply system comprising a water supply pipe connected to a water supply device, A compressed air supply pipe connected to the outer periphery of the water supply pipe and supplying compressed air obliquely with respect to the water supply direction into the water supply pipe; A compressor connected to the compressed air supply pipe; It is characterized by providing.
  • the pumping height can be increased and the pumping volume can be increased without using a vacuum pump.
  • FIG. 1 shows the principle of a pumping system according to the present invention.
  • 1 is a well (steel pipe), 2 is an upper lid, 3 is a screen, 5 is a pumping pipe, 6 is a pumping pump, 7 is a compressed air supply pipe, and 8 is a compressor. It is.
  • a well 1 made of steel pipe is buried in the ground, and the above-ground end of the well 1 is sealed with an upper lid 2.
  • the well 1 has a number of water absorption holes 1a formed at the lower end thereof, and a winding type screen 3 is mounted on the outer periphery of the lower end including the water absorption hole 1a.
  • a pumping pipe 5 is disposed inside the well 1.
  • the pumping pipe 5 includes a pumping pump 6 at the lower end, and the upper end is led out from the upper lid 2 to the ground.
  • a compressed air supply pipe 7 passing through the inside of the well 1 is connected to the outer peripheral portion of the pumping pipe 5.
  • the compressed air supply pipe 7 is connected to the outer peripheral part of the pumping pipe 5 with a nozzle part 7a bent so that the lower end passed through the inside of the well 1 is folded upward, and the upper end led to the ground from the upper lid 2
  • the section is connected to a compressor 8 installed on the ground.
  • the groundwater sucked up by the pumping pump 6 through the screen 3 and the water suction hole 1a is pumped into the pumping pipe 5 from the lower end at the lower end of the well 1.
  • the normal discharge amount Q1 of the pump 6 is, for example, 1 t / min.
  • the compressed air pumped to the compressed air supply pipe 7 by the compressor 8 is blown obliquely upward from the nozzle portion 7a at a height of about 5 m from the pump 6 and sucked in the suction pipe )
  • the phenomenon occurs. Due to the suction pipe phenomenon, an air lift acts on the pumping water in the pumping pipe 5, and the discharge amount Q2 by pumping using the air lift is, for example, 5 t / min. Can be exhausted.
  • the discharge rate of the compressed air supply pipe 7 by pumping with the air lift is 5 t / min, which is 5 times higher.
  • the head by pumping with the air lift using the pump 6 and the compressed air supply pipe 7 is set about 80 m deeper than the case of the pump 6 alone.
  • FIG. 2 shows a configuration of an embodiment to which the pumping system of the present invention is applied.
  • 1 is a well (steel pipe)
  • 2 is an upper lid
  • 3 is a screen
  • 5 is a pumping pipe.
  • 6 is a pump
  • 7 is a compressed air supply pipe
  • 4 is a vacuum facility
  • 9 is an observation pipe
  • 10 is a filter material (marble gravel)
  • 31 and 32 are auxiliary screens
  • 33 is a screen connection band.
  • a vacuum facility 4 is installed on the ground, and an observation tube is formed along the outside of the well 1.
  • 9 is buried, and around the well 1, a filter material 10 made of gravel of about 5 to 10 mm is buried.
  • the power line 21 for the power source of the pumping pump 6 is led out from the upper lid 2 of the well 1, and the auxiliary screens 31 and 32 are attached to the outer periphery above the screen 3 at the lower end of the well 1 from below. Yes.
  • the screen 3 and the auxiliary screen 31 are connected by a screen connection band 33, and the auxiliary screens 31 and 32 are connected by a screen connection band 33.
  • the vacuum equipment 4 installed on the ground includes a vacuum pump 41 and a cooling water tank (notch tank) 45, and a drain pipe 22 is connected to the upper end of the pumping pipe 5 via a valve 23.
  • the vacuum pump 41 is connected.
  • the intake pipe 24 connected to the upper lid 2 is connected to the vacuum pump 41, and the drain hose 42 led out from the vacuum pump 41 is opened inside the cooling water tank 45.
  • an exhaust silencer 44 is connected to an extended end portion of the exhaust hose 43 led out from the vacuum pump 41 at an inner upper portion of the cooling water tank 45.
  • the nozzle portion 7a bent so that the lower end portion of the compressed air supply pipe 7 passed through the inside of the well 1 is folded upward is the head position of the pump 6 (the normal discharge amount is, for example, 7t).
  • the pumping pump 6 is connected to the outer peripheral portion of the pumping pipe 5 at a height of about 10 m.
  • the periphery of the pumping pipe 5 inside the well 1 is hermetically sealed with the upper lid 2 and maintained in a negative pressure state by vacuum suction of a vacuum pump 41 connected to the upper lid 2 via an intake pipe 24.
  • the pumped water in the pumping pipe 5 is vacuum sucked by the vacuum pump 41 through the drain pipe 22, and then drained into the cooling water tank 45 through the drain hose 42, and at the same time through the exhaust hose 43, the cooling water tank Exhaust air is exhausted from the exhaust silencer 44 at the inner upper portion of 45. Thereby, the water and air of the peripheral part of the pump 6 are sucked up, and a vacuum degree is raised.
  • FIG. 3 shows an enlarged cross section of the compressed air supply portion of FIG. 2.
  • the pumped water in the pumping pipe 5 by the pumping pump 6 is supplied to the compressed air supply pipe 7 by a compressor 8 (see FIG. 1).
  • the compressed compressed air is blown obliquely upward from the nozzle portion 7a, and a suction pipe phenomenon occurs.
  • the suction pipe phenomenon an air lift acts in the pumping pipe 5, and the discharge amount Q2 and the head by pumping with the air lift can be increased to pump the water to the ground.
  • the air lift can be used together, and as a result, the discharge capacity of the pumping pump 6 is increased.
  • FIG. 4 shows a pumping pipe 51 provided with the compressed air supply pipe 71 of FIG. 2, and a compressed air supply pipe 71 is connected to the outer peripheral portion of the pumping pipe 51 as shown in the figure.
  • the pumping pipe 51 is a divided body that forms a part of the long pumping pipe 5 described above, and is provided with joint flanges 52 at both ends thereof.
  • the compressed air supply pipe 71 is a divided body that forms the lower end of the long compressed air supply pipe 7 described above, and is formed with a nozzle portion 7a extending from the folded-back bent portion 7b.
  • the nozzle portion 7 a is connected to the outer peripheral portion of the pumped-up pipe 51.
  • a long compressed air supply pipe 7 passing through the inside of the well 1 is connected to the end of the folded bent portion 7b opposite to the nozzle portion 7a.
  • FIG. 5 shows the characteristics of the lift-discharge amount.
  • the discharge amount Q can be increased to 6.3 t / min as shown by the pumping characteristic B.
  • the compressed air supply pipe 7 connected to the outer periphery of the pumping pipe 5 provided with the pumping pump 6 at the lower end and supplying the compressed air obliquely upward with respect to the pumping pipe 5;
  • the compressor 8 connected to the compressed air supply pipe 7 is used together with an air lift by suction pipe phenomenon, so that the amount of pumping and the pumping speed can be greatly improved without using a vacuum pump.
  • the head can be raised and the amount of pumped water can be increased.
  • FIG. 6 shows the structure of Embodiment 2 to which the pumping system of the present invention is applied.
  • 1 is a well (steel pipe)
  • 1a is a water absorption hole
  • 2 is an upper lid
  • 3 is a screen
  • 6 is a pumping pump
  • 7 is a compressed air supply pipe
  • 7a is a nozzle section
  • 9 is an observation pipe
  • 10 is a filter material (marvel)
  • 31 and 32 are auxiliary screens
  • 33 is a screen connection band.
  • Embodiment 2 is a hot spring pumping system, which is composed of a well 1, an upper lid 2, a screen 3, a pumping pipe 5, a pumping pump 6, and a compressed air supply pipe 7, as shown in the figure. That is, in the well 1 made of steel pipe, as shown in the drawing, the hot spring (source spring) pumped into the pumping pipe 5 by the pumping pump 6 is compressed by the compressor 8 (see FIG. 1) and pumped to the compressed air supply pipe 7. Air is blown obliquely upward from the nozzle portion 7a, and a suction tube phenomenon occurs. Due to the suction pipe phenomenon, an air lift acts in the pumping pipe 5, and the discharge amount Q ⁇ b> 2 and the pumping height by the pumping combined with the air lift can be increased to pump the hot spring to the ground.
  • the air lift can be used together, and as a result, the hot spring discharge capacity of the pumping pump 6 is increased. Therefore, the amount of hot water and the pumping speed of the hot spring can be significantly increased, and thereby the temperature loss during the pumping process can be suppressed as much as possible, and the temperature of the hot spring pumped to the ground can be increased.
  • the air lift by the suction pipe phenomenon which supplies compressed air diagonally upward with the compressed air supply pipe 7 is used together with the pumping pipe 5 having the pump 6 at the lower end. Therefore, the pumping amount and the pumping speed can be remarkably improved, and the pumping amount of the hot spring can be increased by increasing the hot spring head without using a vacuum pump.
  • FIG. 7 shows the configuration of Embodiment 3 to which the hydroelectric power generation system of the present invention is applied.
  • 101 is a reservoir
  • 102 is a water pressure line
  • 103 is a water wheel
  • 104 is a water discharge pipe
  • 105 is a compressed air supply pipe.
  • 105a is a nozzle portion
  • 106 is a compressor.
  • a hydroelectric power generation system that generates electricity by rotating a water wheel 103 with water guided from a reservoir 101 to a hydraulic line 102 having a head difference and driving a power generator (not shown)
  • water is discharged from the water wheel 103.
  • a water discharge pipe 104 that is connected to the outer periphery of the water discharge pipe 104, a compressed air supply pipe 105 that supplies compressed air obliquely with respect to the water discharge direction into the water discharge pipe 104, and a compressed air supply pipe 105.
  • Compressor 106 Compressor
  • the water in the water discharge pipe 104 from the water wheel 103 is blown obliquely downward from the nozzle portion 105a by the compressed air that is pressure-fed to the compressed air supply pipe 105 by the compressor 106, and a suction pipe phenomenon occurs.
  • the suction pipe phenomenon causes an air lift to act in the water discharge pipe 104, and the water discharge combined with the air lift increases the speed and amount of water flowing from the hydraulic pipe line 102 into the water turbine 103, thereby improving the power generation efficiency by the generator. can do.
  • the air lift by the suction pipe phenomenon that supplies the compressed air obliquely downward by the compressed air supply pipe 105 is used together with the discharge pipe 104 from the sewer wheel 103.
  • the speed and amount of water flowing into the water wheel 103 from the water pressure line 102 can be increased to increase the power generation efficiency.
  • Embodiment 4 is connected to the outer periphery of the water supply pipe in a water supply system including a water supply pipe connected to a water supply device such as a water supply pump, and is compressed obliquely with respect to the water supply direction in the water supply pipe. It is set as the structure provided with the compressed air supply pipe
  • the water supply amount and the water supply speed can be remarkably improved by the combined use of the air lift due to the suction pipe phenomenon.
  • the present invention is a pumping system provided with a pumping pump at the lower end of the pumping pipe, and can be used as a device for raising the pumping head and raising the pumping amount without using a vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Provided is a water pump system comprising a water pump 6 on the bottom end of a water pump pipe 5 buried in the ground, wherein the pump lift is increased and the amount of water pumped is increased even when a vacuum pump is not used. The water pump system comprises: a compressed air supply pipe 7 that is connected to the outer circumference of the water pump pipe 5 and supplies compressed air into the water pump pipe 5 in the diagonally upward direction; and a compressor 8 that is connected to the compressed air supply pipe 7. Specifically, the compressor 8 is installed above ground. The water pump pipe 5 is disposed inside a well 1.

Description

揚水システム、及び揚水管と、水力発電システム、及び送水システムPumping system, pumping pipe, hydroelectric power generation system, and water transmission system
 本発明は、揚水管の下端に揚水ポンプを備える揚水システムと、その揚水システムに用いる揚水管と、水頭差を有する管路に導かれた水で水車を回転させて発電機を駆動することにより発電する水力発電システムと、送水装置に接続される送水管を備える送水システムに関する。 The present invention provides a pumping system having a pumping pump at the lower end of a pumping pipe, a pumping pipe used in the pumping system, and a generator driven by rotating a water turbine with water guided to a pipe having a head difference. The present invention relates to a hydroelectric power generation system that generates power and a water supply system that includes a water supply pipe connected to a water supply device.
 特許文献1において、地盤の改良工法が提案されている。
 この工法は、SWP(スーパーウェルポイント)を用いて飽和地下水を負圧伝播で揚水することで、主に目的のエリアのみ集中してスポット的に水位低下が望め不飽和ゾーンを作り出す。その後、SWPの真空ポンプや、ボルテックスポンプを用いて、不飽和ゾーンの範囲で真空気化を促進して水分の除去やVOCs(揮発性有機化合物)、油分など気化性のものを地中から除去し、地盤改良や土壌浄化を進める。
 以上、従来の地盤改良工法の基本は、地下水を真空吸引で強制排水し、不飽和ゾーンを形成して真空気化を促し、脱水及び乾燥を促進させる工法である。
In patent document 1, the improvement method of the ground is proposed.
In this construction method, the saturated groundwater is pumped up by negative pressure propagation using SWP (Super Well Point), so that only the target area is concentrated and the water level can be lowered spotwise to create an unsaturated zone. After that, use a SWP vacuum pump or vortex pump to accelerate vacuum vaporization in the range of the unsaturated zone to remove moisture, VOCs (volatile organic compounds), oily components such as oil, etc. from the ground. Promote ground improvement and soil purification.
As described above, the basis of the conventional ground improvement method is a method of forcibly draining groundwater by vacuum suction, forming an unsaturated zone, promoting vacuum vaporization, and promoting dehydration and drying.
特許第4114944(特開2007-303095)号公報Japanese Patent No. 4114944 (Japanese Patent Laid-Open No. 2007-303095)
 ところで、井戸及びSWP工法等での揚水において、湧水量が多く、ポンプ能力が不足の場合、井戸の増設を必要とするが、井戸の揚水量は、揚水ポンプの出力(能力)とその揚程により決まっており、井戸の増設工事の費用がコストアップとなっていた。
 そして、ポンプ能力をアップするために、大きな揚水ポンプを入れ替えようとしても、井戸径が小さく挿入することができない問題があった。
By the way, in the pumping of wells and SWP methods, etc., when the amount of spring water is large and the pump capacity is insufficient, it is necessary to add a well. The pumping capacity of the well depends on the output (capacity) of the pump and its head. As a result, the cost of expanding wells was increasing.
And even if it tried to replace a big pumping pump in order to improve a pump capability, there existed a problem which a well diameter could not be inserted small.
 本発明の課題は、揚水管の下端に揚水ポンプを備える揚水システムにおいて、真空ポンプを用いなくても、揚程をアップして、揚水量をアップすることである。 An object of the present invention is to increase a pumping amount and a pumping amount without using a vacuum pump in a pumping system including a pumping pump at the lower end of a pumping pipe.
 以上の課題を解決するため、請求項1に記載の発明は、
 地中に埋設される揚水管の下端に揚水ポンプを備える揚水システムにおいて、
 前記揚水管の外周に接続されて、当該揚水管内に対し斜め上方に圧縮エアーを供給する圧縮エアー供給管と、
 前記圧縮エアー供給管に接続されるコンプレッサーと、
を備えることを特徴とする。
In order to solve the above problems, the invention described in claim 1
In a pumping system comprising a pump at the lower end of a pumping pipe buried in the ground,
A compressed air supply pipe connected to the outer periphery of the pumping pipe and supplying compressed air obliquely upward with respect to the pumping pipe;
A compressor connected to the compressed air supply pipe;
It is characterized by providing.
 請求項2に記載の発明は、
 請求項1に記載の揚水システムであって、
 前記コンプレッサーは地上に設置されていることを特徴とする。
The invention described in claim 2
The pumping system according to claim 1,
The compressor is installed on the ground.
 請求項3に記載の発明は、
 請求項1に記載の揚水システムであって、
 前記揚水管は井戸内に配置されていることを特徴とする。
The invention according to claim 3
The pumping system according to claim 1,
The pumping pipe is arranged in a well.
 請求項4に記載の発明は、
 請求項3に記載の揚水システムであって、
 前記井戸は、地上側端部が密閉されて、当該井戸内が負圧状態に維持されていることを特徴とする。
The invention according to claim 4
A pumping system according to claim 3,
The well is characterized in that the end on the ground side is sealed and the inside of the well is maintained in a negative pressure state.
 請求項5に記載の発明は、
 地中に埋設されて下端に揚水ポンプが接続される揚水管において、
 当該揚水管の外周に接続されて、当該揚水管内に対し斜め上方に圧縮エアーを供給する圧縮エアー供給管を備えることを特徴とする。
The invention described in claim 5
In a pumping pipe buried in the ground and connected to a pump at the lower end,
A compressed air supply pipe that is connected to the outer periphery of the pumping pipe and supplies compressed air obliquely upward to the inside of the pumping pipe is provided.
 請求項6に記載の発明は、
 水頭差を有する管路に導かれた水で水車を回転させて発電機を駆動することにより発電する水力発電システムにおいて、
 前記水車から水を放水する放水管と、
 前記放水管の外周に接続されて、当該放水管内に放水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管と、
 前記圧縮エアー供給管に接続されるコンプレッサーと、
を備えることを特徴とする。
The invention described in claim 6
In a hydroelectric power generation system that generates electricity by driving a generator by rotating a water turbine with water guided to a pipe having a hydraulic head difference,
A water discharge pipe for discharging water from the water wheel;
A compressed air supply pipe connected to the outer periphery of the water discharge pipe and supplying compressed air obliquely to the water discharge direction in the water discharge pipe;
A compressor connected to the compressed air supply pipe;
It is characterized by providing.
 請求項7に記載の発明は、
 送水装置に接続される送水管を備える送水システムにおいて、
 前記送水管の外周に接続されて、当該送水管内に送水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管と、
 前記圧縮エアー供給管に接続されるコンプレッサーと、
を備えることを特徴とする。
The invention described in claim 7
In a water supply system comprising a water supply pipe connected to a water supply device,
A compressed air supply pipe connected to the outer periphery of the water supply pipe and supplying compressed air obliquely with respect to the water supply direction into the water supply pipe;
A compressor connected to the compressed air supply pipe;
It is characterized by providing.
 本発明によれば、揚水管の下端に揚水ポンプを備える揚水システムにおいて、真空ポンプを用いなくても、揚程をアップして、揚水量をアップすることができる。 According to the present invention, in a pumping system having a pumping pump at the lower end of the pumping pipe, the pumping height can be increased and the pumping volume can be increased without using a vacuum pump.
本発明の揚水システムの原理を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principle of the pumping system of this invention. 本発明の揚水システムを適用した一実施形態の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of one Embodiment to which the pumping system of this invention is applied. 図2の圧縮エアー供給部分の拡大断面図である。It is an expanded sectional view of the compressed air supply part of FIG. 図2の圧縮エアー供給管を備える揚水管の側面図である。It is a side view of a pumping pipe provided with the compressed air supply pipe | tube of FIG. 揚程-吐出し量の特性図である。It is a characteristic figure of a lift-discharge amount. 本発明の揚水システムを適用した実施形態2の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Embodiment 2 to which the pumping system of this invention is applied. 本発明の水力発電システムを適用した実施形態3の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Embodiment 3 to which the hydroelectric power generation system of this invention is applied.
 以下、図を参照して本発明を実施するための形態を詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
(原理)
 図1は本発明の揚水システムの原理を示すもので、1は井戸(鋼管)、2は上蓋、3はスクリーン、5は揚水管、6は揚水ポンプ、7は圧縮エアー供給管、8はコンプレッサーである。
(principle)
FIG. 1 shows the principle of a pumping system according to the present invention. 1 is a well (steel pipe), 2 is an upper lid, 3 is a screen, 5 is a pumping pipe, 6 is a pumping pump, 7 is a compressed air supply pipe, and 8 is a compressor. It is.
 図示のように、地中には、鋼管による井戸1が埋設されており、この井戸1の地上側端部は上蓋2で密閉されている。井戸1には、下端部に多数の吸水孔1aが形成されていて、この吸水孔1aの部分を含む下端部外周に巻線タイプのスクリーン3が装着されている。
 この井戸1の内部に揚水管5が配置されている。揚水管5は、下端部に揚水ポンプ6を備えて、上端部は上蓋2から地上に導出されている。
As shown in the drawing, a well 1 made of steel pipe is buried in the ground, and the above-ground end of the well 1 is sealed with an upper lid 2. The well 1 has a number of water absorption holes 1a formed at the lower end thereof, and a winding type screen 3 is mounted on the outer periphery of the lower end including the water absorption hole 1a.
A pumping pipe 5 is disposed inside the well 1. The pumping pipe 5 includes a pumping pump 6 at the lower end, and the upper end is led out from the upper lid 2 to the ground.
 そして、揚水管5の外周部には、井戸1の内部に通した圧縮エアー供給管7が接続されている。
 圧縮エアー供給管7は、井戸1の内部に通した下端部を上方に折り返すように屈曲させたノズル部7aが、揚水管5の外周部に接続されて、上蓋2から地上に導出された上端部が、地上に設置したコンプレッサー8に接続されている。
A compressed air supply pipe 7 passing through the inside of the well 1 is connected to the outer peripheral portion of the pumping pipe 5.
The compressed air supply pipe 7 is connected to the outer peripheral part of the pumping pipe 5 with a nozzle part 7a bent so that the lower end passed through the inside of the well 1 is folded upward, and the upper end led to the ground from the upper lid 2 The section is connected to a compressor 8 installed on the ground.
 以上の構成による揚水システムは、井戸1の下端部において、矢印で示すように、揚水ポンプ6によりスクリーン3及び吸水孔1aを介して吸い上げられる地下水が、揚水管5の内部に下端部から揚水される。その揚水ポンプ6の通常吐出し量Q1は、例えば1t/minである。
 そして、その揚水には、揚水ポンプ6から5m程度の高さにおいて、コンプレッサー8により圧縮エアー供給管7に圧送された圧縮エアーがノズル部7aから斜め上方に向けて吹き出されて、吸管(すいかん)現象が発生する。その吸管現象によって、揚水管5内の揚水にエアーリフトが作用し、そのエアーリフト併用揚水による吐出し量Q2が、例えば5t/minとなって、揚程50mの地上まで揚水できて、排水と同時に排気することができる。
In the pumping system having the above-described configuration, as shown by an arrow, the groundwater sucked up by the pumping pump 6 through the screen 3 and the water suction hole 1a is pumped into the pumping pipe 5 from the lower end at the lower end of the well 1. The The normal discharge amount Q1 of the pump 6 is, for example, 1 t / min.
In the pumping, the compressed air pumped to the compressed air supply pipe 7 by the compressor 8 is blown obliquely upward from the nozzle portion 7a at a height of about 5 m from the pump 6 and sucked in the suction pipe ) The phenomenon occurs. Due to the suction pipe phenomenon, an air lift acts on the pumping water in the pumping pipe 5, and the discharge amount Q2 by pumping using the air lift is, for example, 5 t / min. Can be exhausted.
 以上の揚水システムによれば、揚水ポンプ6から地上までの揚程50m、揚水ポンプ6から揚水管5における圧縮エアー供給管7の接続部までの高さ5mの場合、揚水ポンプ6の通常吐出し量1t/minに対し、圧縮エアー供給管7のエアーリフト併用揚水による吐出し量5t/minと5倍の能力アップを達成することができる。 According to the above pumping system, when the head is 50 m from the pump 6 to the ground and the height from the pump 6 to the connection of the compressed air supply pipe 7 in the pump 5 is a normal discharge amount of the pump 6. Compared to 1 t / min, the discharge rate of the compressed air supply pipe 7 by pumping with the air lift is 5 t / min, which is 5 times higher.
 以上のとおり、本発明の揚水システムを使用すると、SWP等で、真空ポンプを使用しなくても、ある程度の真空は保持できて、真空吸引が可能となる。
 すなわち、井戸1の天端を、SWPのように、密閉型の上蓋2に加工することで、SWP仕様となり、真空吸引が可能となる。
 また、大深度であるため、SWPのように、セパレートスクリーンのような二重管でなくても、負圧伝播での揚水が可能となる。
As described above, when the pumping system of the present invention is used, a certain degree of vacuum can be maintained with SWP or the like without using a vacuum pump, and vacuum suction is possible.
That is, by processing the top end of the well 1 into a sealed upper lid 2 like SWP, it becomes SWP specification and vacuum suction becomes possible.
Moreover, since it is a deep depth, even if it is not a double pipe like a separate screen like SWP, the pumping by negative pressure propagation is attained.
 例えばコンプレッサー圧P=8kg/cmのコンプレッサー8を使用すると、揚水ポンプ6と圧縮エアー供給管7を用いたエアーリフト併用揚水による揚程を、揚水ポンプ6のみの場合よりも約80m程度深く設置することができる。
 例えば揚水ポンプ6のポンプ能力が揚程H=5m位の所の揚水量及び揚水速度を、吸管現象によるエアーリフト併用揚水により格段にアップすることができる。
 すなわち、揚水ポンプ6のレベルより5m位高い所でエアーリフトを行うことで、揚水ポンプ6の吸水口で負圧が生じ、吸管現象にて真空吸引することができる。
For example, if the compressor 8 with a compressor pressure P = 8 kg / cm 2 is used, the head by pumping with the air lift using the pump 6 and the compressed air supply pipe 7 is set about 80 m deeper than the case of the pump 6 alone. be able to.
For example, the pumping capacity and pumping speed when the pumping capacity of the pumping pump 6 is about H = 5 m can be significantly increased by pumping with an air lift due to a suction pipe phenomenon.
That is, by performing an air lift at a place about 5 m higher than the level of the pump 6, a negative pressure is generated at the suction port of the pump 6, and vacuum suction can be performed by a suction pipe phenomenon.
(実施形態1)
 次に、図2は本発明の揚水システムを適用した一実施形態の構成を示すもので、前述した原理説明と同様、1は井戸(鋼管)、2は上蓋、3はスクリーン、5は揚水管、6は揚水ポンプ、7は圧縮エアー供給管であって、4は真空設備、9は観測管、10はフィルター材(玉砂利)、31・32は補助スクリーン、33はスクリーン接続バンドである。
(Embodiment 1)
Next, FIG. 2 shows a configuration of an embodiment to which the pumping system of the present invention is applied. As in the principle explanation described above, 1 is a well (steel pipe), 2 is an upper lid, 3 is a screen, and 5 is a pumping pipe. , 6 is a pump, 7 is a compressed air supply pipe, 4 is a vacuum facility, 9 is an observation pipe, 10 is a filter material (marble gravel), 31 and 32 are auxiliary screens, and 33 is a screen connection band.
 図示のように、井戸1、上蓋2、スクリーン3、揚水管5、揚水ポンプ6及び圧縮エアー供給管7に加えて、地上に真空設備4が設置されて、井戸1の外側に沿って観測管9が埋設されており、井戸1の周囲には、5~10mm程度の玉砂利によるフィルター材10が埋設されている。
 なお、図示例では、井戸1の上蓋2から揚水ポンプ6の電源用の動力線21が導出され、井戸1の下端部のスクリーン3から上の外周に下方から補助スクリーン31・32が装着されている。スクリーン3と補助スクリーン31の間がスクリーン接続バンド33で接続されるとともに、補助スクリーン31・32間がスクリーン接続バンド33で接続されている。
As shown in the figure, in addition to the well 1, the upper lid 2, the screen 3, the pumping pipe 5, the pumping pump 6 and the compressed air supply pipe 7, a vacuum facility 4 is installed on the ground, and an observation tube is formed along the outside of the well 1. 9 is buried, and around the well 1, a filter material 10 made of gravel of about 5 to 10 mm is buried.
In the illustrated example, the power line 21 for the power source of the pumping pump 6 is led out from the upper lid 2 of the well 1, and the auxiliary screens 31 and 32 are attached to the outer periphery above the screen 3 at the lower end of the well 1 from below. Yes. The screen 3 and the auxiliary screen 31 are connected by a screen connection band 33, and the auxiliary screens 31 and 32 are connected by a screen connection band 33.
 地上に設置された真空設備4は、真空ポンプ41と冷却水槽(ノッチタンク)45とからなり、揚水管5の上端部に排水管22がバルブ23を介して接続されており、排水管22は真空ポンプ41に接続されている。
 そして、上蓋2に接続した吸気管24が真空ポンプ41に接続されて、真空ポンプ41から導出された排水ホース42が冷却水槽45の内部に開放されている。
 また、真空ポンプ41から導出された排気ホース43の延長端部には、冷却水槽45の内方上部において、排気消音装置44が接続されている。
The vacuum equipment 4 installed on the ground includes a vacuum pump 41 and a cooling water tank (notch tank) 45, and a drain pipe 22 is connected to the upper end of the pumping pipe 5 via a valve 23. The vacuum pump 41 is connected.
The intake pipe 24 connected to the upper lid 2 is connected to the vacuum pump 41, and the drain hose 42 led out from the vacuum pump 41 is opened inside the cooling water tank 45.
Further, an exhaust silencer 44 is connected to an extended end portion of the exhaust hose 43 led out from the vacuum pump 41 at an inner upper portion of the cooling water tank 45.
 以上の揚水システムにおいて、井戸1の内部に通した圧縮エアー供給管7の下端部を上方に折り返すように屈曲させたノズル部7aが、揚水ポンプ6の揚程位置(通常吐出し量が、例えば7t/minの場合、揚水ポンプ6から10m程度の高さ)で、揚水管5の外周部に接続されている。
 また、井戸1の内部で揚水管5の周囲は、上蓋2で密閉されて、上蓋2に吸気管24を介して接続した真空ポンプ41の真空吸引により負圧状態に維持されている。
 そして、揚水管5内の揚水は、排水管22を介して真空ポンプ41に真空吸引されてから、排水ホース42を介して冷却水槽45に排水されると同時に、排気ホース43を経て、冷却水槽45の内方上部において、排気消音装置44から排気される。
 これにより、揚水ポンプ6の周辺部の水と空気が吸い上げられて真空度が高められる。
In the above pumping system, the nozzle portion 7a bent so that the lower end portion of the compressed air supply pipe 7 passed through the inside of the well 1 is folded upward is the head position of the pump 6 (the normal discharge amount is, for example, 7t). In the case of / min, the pumping pump 6 is connected to the outer peripheral portion of the pumping pipe 5 at a height of about 10 m.
Further, the periphery of the pumping pipe 5 inside the well 1 is hermetically sealed with the upper lid 2 and maintained in a negative pressure state by vacuum suction of a vacuum pump 41 connected to the upper lid 2 via an intake pipe 24.
Then, the pumped water in the pumping pipe 5 is vacuum sucked by the vacuum pump 41 through the drain pipe 22, and then drained into the cooling water tank 45 through the drain hose 42, and at the same time through the exhaust hose 43, the cooling water tank Exhaust air is exhausted from the exhaust silencer 44 at the inner upper portion of 45.
Thereby, the water and air of the peripheral part of the pump 6 are sucked up, and a vacuum degree is raised.
 図3は図2の圧縮エアー供給部分の拡大断面を示すもので、図示のように、揚水ポンプ6による揚水管5内の揚水には、コンプレッサー8(図1参照)により圧縮エアー供給管7に圧送された圧縮エアーがノズル部7aから斜め上方に向けて吹き出されて、吸管現象が発生する。その吸管現象によって、揚水管5内にエアーリフトが作用し、そのエアーリフト併用揚水による吐出し量Q2及び揚程を増大して、地上まで揚水することができる。 FIG. 3 shows an enlarged cross section of the compressed air supply portion of FIG. 2. As shown in the drawing, the pumped water in the pumping pipe 5 by the pumping pump 6 is supplied to the compressed air supply pipe 7 by a compressor 8 (see FIG. 1). The compressed compressed air is blown obliquely upward from the nozzle portion 7a, and a suction pipe phenomenon occurs. By the suction pipe phenomenon, an air lift acts in the pumping pipe 5, and the discharge amount Q2 and the head by pumping with the air lift can be increased to pump the water to the ground.
 このように、揚水管5内に吹き管状となるように圧縮エアー供給管7を取り付けることで、エアーリフトを併用できることによって、結果として、揚水ポンプ6の吐出し能力が上昇する。 Thus, by attaching the compressed air supply pipe 7 so as to form a blown tube in the pumping pipe 5, the air lift can be used together, and as a result, the discharge capacity of the pumping pump 6 is increased.
 図4は図2の圧縮エアー供給管71を備える揚水管51を示すもので、図示のように、揚水管51の外周部には、圧縮エアー供給管71が接続されている。
 すなわち、揚水管51は、前述した長尺の揚水管5の一部をなす分割体で、その両端部にジョイント用フランジ52を備えている。
 圧縮エアー供給管71は、前述した長尺の圧縮エアー供給管7の下端部をなす分割体で、折り返し状屈曲部7bから延びるノズル部7aが形成されている。
 そのノズル部7aが、揚水管51の外周部に接続されている。折り返し状屈曲部7bのノズル部7aと反対側端部に、井戸1の内部に通す長尺の圧縮エアー供給管7が接続される。
FIG. 4 shows a pumping pipe 51 provided with the compressed air supply pipe 71 of FIG. 2, and a compressed air supply pipe 71 is connected to the outer peripheral portion of the pumping pipe 51 as shown in the figure.
That is, the pumping pipe 51 is a divided body that forms a part of the long pumping pipe 5 described above, and is provided with joint flanges 52 at both ends thereof.
The compressed air supply pipe 71 is a divided body that forms the lower end of the long compressed air supply pipe 7 described above, and is formed with a nozzle portion 7a extending from the folded-back bent portion 7b.
The nozzle portion 7 a is connected to the outer peripheral portion of the pumped-up pipe 51. A long compressed air supply pipe 7 passing through the inside of the well 1 is connected to the end of the folded bent portion 7b opposite to the nozzle portion 7a.
 図5は揚程-吐出し量の特性を示すもので、図示のように、例えば揚水ポンプ6のみによる揚水特性Aに対し、圧縮エアー供給管7を用いたエアーリフト併用揚水による、吐出し量及び揚程を増大した揚水特性Bが得られる。
 すなわち、揚水特性Aの揚水ポンプ6の能力で対比した場合、揚程H=30mで吐出し量Q=2.0t/minの揚水ポンプ6において、揚水ポンプ6から高さ5.0mの所で圧縮エアー供給管7を用いたエアーリフトを併用すると、揚水特性Bで示したように、吐出し量Q=6.3t/minに増大することができる。
FIG. 5 shows the characteristics of the lift-discharge amount. As shown in the figure, for example, the discharge amount and the discharge amount by pumping combined with an air lift using the compressed air supply pipe 7 with respect to the pumping characteristic A by the pump 6 alone. A pumping characteristic B with an increased head is obtained.
That is, when compared with the capacity of the pump 6 having the pumping characteristic A, the pump at the height of 5.0 m from the pump 6 is compressed in the pump 6 having a head H = 30 m and a discharge amount Q = 2.0 t / min. When an air lift using the air supply pipe 7 is used in combination, the discharge amount Q can be increased to 6.3 t / min as shown by the pumping characteristic B.
 以上、実施形態の揚水システムによれば、下端に揚水ポンプ6を備える揚水管5の外周に接続されて、当該揚水管5内に対し斜め上方に圧縮エアーを供給する圧縮エアー供給管7と、その圧縮エアー供給管7に接続されるコンプレッサー8と、を備えて、吸管現象によるエアーリフトを併用しているため、揚水量及び揚水速度を格段に向上して、真空ポンプを用いなくても、揚程をアップして、揚水量をアップすることができる。 As described above, according to the pumping system of the embodiment, the compressed air supply pipe 7 connected to the outer periphery of the pumping pipe 5 provided with the pumping pump 6 at the lower end and supplying the compressed air obliquely upward with respect to the pumping pipe 5; The compressor 8 connected to the compressed air supply pipe 7 is used together with an air lift by suction pipe phenomenon, so that the amount of pumping and the pumping speed can be greatly improved without using a vacuum pump. The head can be raised and the amount of pumped water can be increased.
(変形例)
 以上の実施形態においては、SWPに適用したが、本発明はSWPに限定されるものではなく、通常の井戸掘削や温泉掘削等に用いる揚水管であってもよい。
(Modification)
In the above embodiment, although applied to SWP, this invention is not limited to SWP, The pumping pipe used for normal well excavation, hot spring excavation, etc. may be sufficient.
(実施形態2)
 次に、図6は本発明の揚水システムを適用した実施形態2の構成を示すもので、図2と同様、1は井戸(鋼管)、1aは吸水孔、2は上蓋、3はスクリーン、5は揚水管、6は揚水ポンプ、7は圧縮エアー供給管、7aはノズル部、9は観測管、10はフィルター材(玉砂利)、31・32は補助スクリーン、33はスクリーン接続バンドである。
(Embodiment 2)
Next, FIG. 6 shows the structure of Embodiment 2 to which the pumping system of the present invention is applied. As in FIG. 2, 1 is a well (steel pipe), 1a is a water absorption hole, 2 is an upper lid, 3 is a screen, 5 Is a pumping pump, 6 is a pumping pump, 7 is a compressed air supply pipe, 7a is a nozzle section, 9 is an observation pipe, 10 is a filter material (marvel), 31 and 32 are auxiliary screens, and 33 is a screen connection band.
 実施形態2は温泉揚水システムで、図示のように、井戸1、上蓋2、スクリーン3、揚水管5、揚水ポンプ6及び圧縮エアー供給管7により構成されている。
 すなわち、鋼管による井戸1において、図示のように、揚水ポンプ6により揚水管5内に揚水される温泉(源泉)には、コンプレッサー8(図1参照)により圧縮エアー供給管7に圧送された圧縮エアーがノズル部7aから斜め上方に向けて吹き出されて、吸管現象が発生する。その吸管現象によって、揚水管5内にエアーリフトが作用し、そのエアーリフト併用揚水による吐出し量Q2及び揚程を増大して、温泉を地上まで揚水することができる。
Embodiment 2 is a hot spring pumping system, which is composed of a well 1, an upper lid 2, a screen 3, a pumping pipe 5, a pumping pump 6, and a compressed air supply pipe 7, as shown in the figure.
That is, in the well 1 made of steel pipe, as shown in the drawing, the hot spring (source spring) pumped into the pumping pipe 5 by the pumping pump 6 is compressed by the compressor 8 (see FIG. 1) and pumped to the compressed air supply pipe 7. Air is blown obliquely upward from the nozzle portion 7a, and a suction tube phenomenon occurs. Due to the suction pipe phenomenon, an air lift acts in the pumping pipe 5, and the discharge amount Q <b> 2 and the pumping height by the pumping combined with the air lift can be increased to pump the hot spring to the ground.
 このように、揚水管5内に吹き管状となるように圧縮エアー供給管7を取り付けることで、エアーリフトを併用できることによって、結果として、揚水ポンプ6の温泉の吐出し能力が上昇する。
 したがって、温泉の揚水湯量及び揚水速度を格段に上げることができ、これにより、揚水過程での温度損失を極力抑えて、地上に揚水した温泉の温度を上げることができる。
In this way, by attaching the compressed air supply pipe 7 so as to be a blown pipe in the pumping pipe 5, the air lift can be used together, and as a result, the hot spring discharge capacity of the pumping pump 6 is increased.
Therefore, the amount of hot water and the pumping speed of the hot spring can be significantly increased, and thereby the temperature loss during the pumping process can be suppressed as much as possible, and the temperature of the hot spring pumped to the ground can be increased.
 以上、実施形態2の温泉揚水システムによれば、下端に揚水ポンプ6を備える揚水管5内に対し、圧縮エアー供給管7により斜め上方に圧縮エアーを供給する吸管現象によるエアーリフトを併用しているため、揚水量及び揚水速度を格段に向上して、真空ポンプを用いなくても、温泉の揚程をアップして、温泉の揚水量をアップすることができる。 As mentioned above, according to the hot spring pumping system of Embodiment 2, the air lift by the suction pipe phenomenon which supplies compressed air diagonally upward with the compressed air supply pipe 7 is used together with the pumping pipe 5 having the pump 6 at the lower end. Therefore, the pumping amount and the pumping speed can be remarkably improved, and the pumping amount of the hot spring can be increased by increasing the hot spring head without using a vacuum pump.
 また、温泉揚水システムにより温泉をリニューアルした場合にも、吸管現象によるエアーリフト併用によって、温泉の揚水湯量及び揚水速度を格段に上げて、揚水過程での温度損失を極力抑えて、地上に揚水した温泉の温度を以前より上げることができる。 In addition, even when hot springs were renewed with the hot spring pumping system, the amount of hot water and the pumping speed of the hot springs were dramatically increased by using an air lift due to the suction pipe phenomenon, and the temperature loss during the pumping process was suppressed as much as possible to pump the water on the ground. You can raise the temperature of the hot springs.
(実施形態3)
 次に、図7は本発明の水力発電システムを適用した実施形態3の構成を示すもので、101は貯水池、102は水圧管路、103は水車、104は放水管、105は圧縮エアー供給管、105aはノズル部、106はコンプレッサーである。
(Embodiment 3)
Next, FIG. 7 shows the configuration of Embodiment 3 to which the hydroelectric power generation system of the present invention is applied. 101 is a reservoir, 102 is a water pressure line, 103 is a water wheel, 104 is a water discharge pipe, and 105 is a compressed air supply pipe. , 105a is a nozzle portion, and 106 is a compressor.
 図示のように、貯水池101から水頭差を有する水圧管路102に導かれた水で水車103を回転させて図示しない発電機を駆動することにより発電する水力発電システムにおいて、水車103から水を放水する放水管104と、その放水管104の外周に接続されて、当該放水管104内に放水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管105と、その圧縮エアー供給管105に接続されるコンプレッサー106と、を備えている。 As shown in the figure, in a hydroelectric power generation system that generates electricity by rotating a water wheel 103 with water guided from a reservoir 101 to a hydraulic line 102 having a head difference and driving a power generator (not shown), water is discharged from the water wheel 103. A water discharge pipe 104 that is connected to the outer periphery of the water discharge pipe 104, a compressed air supply pipe 105 that supplies compressed air obliquely with respect to the water discharge direction into the water discharge pipe 104, and a compressed air supply pipe 105. Compressor 106.
 このように、水車103からの放水管104内の水には、コンプレッサー106により圧縮エアー供給管105に圧送された圧縮エアーがノズル部105aから斜め下方に向けて吹き出されて、吸管現象が発生する。その吸管現象によって、放水管104内にエアーリフトが作用し、そのエアーリフト併用放水によって、水圧管路102内から水車103へ流れ込む水の速度及び水量を増大して、発電機による発電効率をアップすることができる。 As described above, the water in the water discharge pipe 104 from the water wheel 103 is blown obliquely downward from the nozzle portion 105a by the compressed air that is pressure-fed to the compressed air supply pipe 105 by the compressor 106, and a suction pipe phenomenon occurs. . The suction pipe phenomenon causes an air lift to act in the water discharge pipe 104, and the water discharge combined with the air lift increases the speed and amount of water flowing from the hydraulic pipe line 102 into the water turbine 103, thereby improving the power generation efficiency by the generator. can do.
 以上、実施形態3の水力発電システムによれば、下水車103からの放水管104内に対し、圧縮エアー供給管105により斜め下方に圧縮エアーを供給する吸管現象によるエアーリフトを併用しているため、水圧管路102内から水車103へ流れ込む水の速度及び水量を増大して、発電効率をアップすることができる。 As described above, according to the hydroelectric power generation system of the third embodiment, the air lift by the suction pipe phenomenon that supplies the compressed air obliquely downward by the compressed air supply pipe 105 is used together with the discharge pipe 104 from the sewer wheel 103. The speed and amount of water flowing into the water wheel 103 from the water pressure line 102 can be increased to increase the power generation efficiency.
(実施形態4)
 実施形態3では、水力発電システムに適用したが、単純な送水システムであってもよい。
 すなわち、実施形態4は、図示しないが、送水ポンプ等の送水装置に接続される送水管を備える送水システムにおいて、その送水管の外周に接続されて、当該送水管内に送水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管と、その圧縮エアー供給管に接続されるコンプレッサーと、を備える構成とする。
(Embodiment 4)
In Embodiment 3, although applied to the hydroelectric power generation system, a simple water supply system may be used.
That is, although not shown, Embodiment 4 is connected to the outer periphery of the water supply pipe in a water supply system including a water supply pipe connected to a water supply device such as a water supply pump, and is compressed obliquely with respect to the water supply direction in the water supply pipe. It is set as the structure provided with the compressed air supply pipe | tube which supplies air, and the compressor connected to the compressed air supply pipe | tube.
 このように、送水管内に送水方向に対し斜めに圧縮エアーを供給することで、吸管現象によるエアーリフト併用によって、送水量及び送水速度を格段に向上することができる。 Thus, by supplying compressed air obliquely in the water supply direction into the water supply pipe, the water supply amount and the water supply speed can be remarkably improved by the combined use of the air lift due to the suction pipe phenomenon.
(他の変形例)
 また、以上の各実施形態において、圧縮エアー供給管の形状等も任意であり、その他、具体的な細部構造等についても適宜に変更可能であることは勿論である。
(Other variations)
Further, in each of the above embodiments, the shape of the compressed air supply pipe and the like are arbitrary, and it is needless to say that other specific detailed structures can be appropriately changed.
 本発明は、揚水管の下端に揚水ポンプを備える揚水システムで、真空ポンプを用いなくても、揚程をアップして、揚水量をアップする装置として利用することができる。 The present invention is a pumping system provided with a pumping pump at the lower end of the pumping pipe, and can be used as a device for raising the pumping head and raising the pumping amount without using a vacuum pump.
1 井戸(鋼管)
1a 吸水孔
2 上蓋
21 動力線
22 排水管
23 バルブ
24 吸気管
3 スクリーン
31・32 補助スクリーン
33 スクリーン接続バンド
4 真空設備
41 真空ポンプ
42 排水ホース
43 排気ホース
44 排気消音装置
45 冷却水槽(ノッチタンク)
5 揚水管
6 揚水ポンプ
7 圧縮エアー供給管
7a ノズル部
7b 押し返し状屈曲部
8 コンプレッサー
9 観測管
10 フィルター材(玉砂利)
51 揚水管
71 圧縮エアー供給管
101 貯水池
102 管路
103 水車
104 放水管
105 圧縮エアー供給管
105a ノズル部
106 コンプレッサー
1 well (steel pipe)
1a Water absorption hole 2 Upper lid 21 Power line 22 Drain pipe 23 Valve 24 Intake pipe 3 Screen 31/32 Auxiliary screen 33 Screen connection band 4 Vacuum equipment 41 Vacuum pump 42 Drain hose 43 Exhaust hose 44 Exhaust silencer 45 Cooling water tank (notch tank)
5 Pumping pipe 6 Pumping pump 7 Compressed air supply pipe 7a Nozzle part 7b Push-back bent part 8 Compressor 9 Observation pipe 10 Filter material (Tama gravel)
51 Pumping pipe 71 Compressed air supply pipe 101 Reservoir 102 Pipe line 103 Water wheel 104 Drain pipe 105 Compressed air supply pipe 105a Nozzle section 106 Compressor

Claims (7)

  1.  地中に埋設される揚水管の下端に揚水ポンプを備える揚水システムにおいて、
     前記揚水管の外周に接続されて、当該揚水管内に対し斜め上方に圧縮エアーを供給する圧縮エアー供給管と、
     前記圧縮エアー供給管に接続されるコンプレッサーと、
    を備えることを特徴とする揚水システム。
    In a pumping system comprising a pump at the lower end of a pumping pipe buried in the ground,
    A compressed air supply pipe connected to the outer periphery of the pumping pipe and supplying compressed air obliquely upward with respect to the pumping pipe;
    A compressor connected to the compressed air supply pipe;
    A pumping system characterized by comprising:
  2.  前記コンプレッサーは地上に設置されていることを特徴とする請求項1に記載の揚水システム。 The pumping system according to claim 1, wherein the compressor is installed on the ground.
  3.  前記揚水管は井戸内に配置されていることを特徴とする請求項1に記載の揚水システム。 The pumping system according to claim 1, wherein the pumping pipe is disposed in a well.
  4.  前記井戸は、地上側端部が密閉されて、当該井戸内が負圧状態に維持されていることを特徴とする請求項3に記載の揚水システム。 The pumping system according to claim 3, wherein the well has a ground-side end sealed so that the inside of the well is maintained in a negative pressure state.
  5.  地中に埋設されて下端に揚水ポンプが接続される揚水管において、
     当該揚水管の外周に接続されて、当該揚水管内に対し斜め上方に圧縮エアーを供給する圧縮エアー供給管を備えることを特徴とする揚水管。
    In a pumping pipe buried in the ground and connected to a pump at the lower end,
    A pumping pipe comprising a compressed air supply pipe that is connected to the outer periphery of the pumping pipe and supplies compressed air obliquely upward to the pumping pipe.
  6.  水頭差を有する管路に導かれた水で水車を回転させて発電機を駆動することにより発電する水力発電システムにおいて、
     前記水車から水を放水する放水管と、
     前記放水管の外周に接続されて、当該放水管内に放水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管と、
     前記圧縮エアー供給管に接続されるコンプレッサーと、
    を備えることを特徴とする水力発電システム。
    In a hydroelectric power generation system that generates electricity by driving a generator by rotating a water turbine with water guided to a pipe having a hydraulic head difference,
    A water discharge pipe for discharging water from the water wheel;
    A compressed air supply pipe connected to the outer periphery of the water discharge pipe and supplying compressed air obliquely to the water discharge direction in the water discharge pipe;
    A compressor connected to the compressed air supply pipe;
    A hydroelectric power generation system comprising:
  7.  送水装置に接続される送水管を備える送水システムにおいて、
     前記送水管の外周に接続されて、当該送水管内に送水方向に対し斜めに圧縮エアーを供給する圧縮エアー供給管と、
     前記圧縮エアー供給管に接続されるコンプレッサーと、
    を備えることを特徴とする送水システム。
    In a water supply system comprising a water supply pipe connected to a water supply device,
    A compressed air supply pipe connected to the outer periphery of the water supply pipe and supplying compressed air obliquely with respect to the water supply direction into the water supply pipe;
    A compressor connected to the compressed air supply pipe;
    A water supply system comprising:
PCT/JP2018/021483 2018-06-05 2018-06-05 Water pump system, water pump pipe, hydroelectric power generation system, and water feed system WO2019234808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021483 WO2019234808A1 (en) 2018-06-05 2018-06-05 Water pump system, water pump pipe, hydroelectric power generation system, and water feed system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021483 WO2019234808A1 (en) 2018-06-05 2018-06-05 Water pump system, water pump pipe, hydroelectric power generation system, and water feed system

Publications (1)

Publication Number Publication Date
WO2019234808A1 true WO2019234808A1 (en) 2019-12-12

Family

ID=68770881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021483 WO2019234808A1 (en) 2018-06-05 2018-06-05 Water pump system, water pump pipe, hydroelectric power generation system, and water feed system

Country Status (1)

Country Link
WO (1) WO2019234808A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149094A (en) * 1984-08-17 1986-03-10 出光地熱開発株式会社 Automatic jet guiding apparatus of geothermal well
JPH06264676A (en) * 1993-03-10 1994-09-20 Fujita Corp Underwater excavator and method of underwater excavation construction
JP2001107343A (en) * 1999-10-05 2001-04-17 Koken Boring Mach Co Ltd Small-scale power generation system
JP2003262083A (en) * 2002-03-08 2003-09-19 Mitsubishi Heavy Ind Ltd Gas-hydrate recovering system
JP2006348814A (en) * 2005-06-15 2006-12-28 Mhi Solution Technologies Co Ltd High depth groundwater pumping apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149094A (en) * 1984-08-17 1986-03-10 出光地熱開発株式会社 Automatic jet guiding apparatus of geothermal well
JPH06264676A (en) * 1993-03-10 1994-09-20 Fujita Corp Underwater excavator and method of underwater excavation construction
JP2001107343A (en) * 1999-10-05 2001-04-17 Koken Boring Mach Co Ltd Small-scale power generation system
JP2003262083A (en) * 2002-03-08 2003-09-19 Mitsubishi Heavy Ind Ltd Gas-hydrate recovering system
JP2006348814A (en) * 2005-06-15 2006-12-28 Mhi Solution Technologies Co Ltd High depth groundwater pumping apparatus

Similar Documents

Publication Publication Date Title
WO2012108369A1 (en) Soil improvement method
CN105332384B (en) Super pressure inhales joint pumping system and its method of work
JP6158555B2 (en) Ground improvement method
CN106192981B (en) A kind of Dewatering dynamic compaction integrated device and its application method
CN208009459U (en) A kind of well-points dewatering system
CN208533550U (en) Deep-well precipitation device
WO2019234808A1 (en) Water pump system, water pump pipe, hydroelectric power generation system, and water feed system
JP5336616B2 (en) Ground improvement method
JP5142348B2 (en) How to prevent ground liquefaction
CN105696611A (en) Foundation pit dewatering device for sand layer with high water permeability
WO2020240779A1 (en) Ground improvement method
JP6090831B2 (en) Ground improvement method
JP6189631B2 (en) Ground improvement method
JP5808008B2 (en) Suction force generator and vacuum consolidation ground improvement method
JP2007162298A (en) Pumping apparatus
JP2017031598A (en) Groundwater level lowering device for water bottom ground, volume reduction method for mud and sludge at water bottom, and recovery device and method for methane hydrate in seabed
JP5658177B2 (en) Ground improvement method
JP2015217351A (en) Groundwater purification system and groundwater purification method
CN203834494U (en) Water-collecting well type deep well bottom plate penetrating device
JP2017110456A (en) Ground improvement device and ground improvement method
CN219732050U (en) Precipitation device of foundation pit local shallow layer self-priming pump
CN219568927U (en) River levee reinforcement construction foundation pit drainage device
CN212866286U (en) Dredging device for drainage pipeline of sewage well lift pump
CN219773072U (en) Well washer
JP2014129690A (en) Hydraulic pressure suppression method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921690

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP