WO2019233103A1 - 衍射光学元件、光电模组、输入输出组件及电子设备 - Google Patents

衍射光学元件、光电模组、输入输出组件及电子设备 Download PDF

Info

Publication number
WO2019233103A1
WO2019233103A1 PCT/CN2019/070764 CN2019070764W WO2019233103A1 WO 2019233103 A1 WO2019233103 A1 WO 2019233103A1 CN 2019070764 W CN2019070764 W CN 2019070764W WO 2019233103 A1 WO2019233103 A1 WO 2019233103A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive
module
optical element
input
region
Prior art date
Application number
PCT/CN2019/070764
Other languages
English (en)
French (fr)
Inventor
张学勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019233103A1 publication Critical patent/WO2019233103A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings

Definitions

  • the present application relates to the field of consumer electronics technology, and more particularly, to a diffractive optical element, a photoelectric module, an input-output component, and an electronic device.
  • the mobile phone can be equipped with a laser generator and an infrared camera.
  • the laser generator is used to emit laser light outward
  • the infrared camera is used to collect the laser pattern modulated by the target object.
  • Embodiments of the present application provide a diffractive optical element, a photoelectric module, an input-output component, and an electronic device.
  • a diffractive optical element includes a diffractive body and a plurality of diffractive structures.
  • the plurality of diffractive structures are formed on the diffractive body and used to diffract laser light, so that The density is greater than the density of the laser light projected from the edge region of the diffractive optical element.
  • An optoelectronic module includes a light source, a collimating element, and the diffractive optical element according to the foregoing embodiment.
  • the collimating element and the diffractive optical element are sequentially disposed on an optical path of the light source.
  • the input-output module includes the photoelectric module and the infrared imaging module according to the foregoing embodiment.
  • the photoelectric module is configured to project a laser light onto a target object; the infrared imaging module is configured to receive the target by the target. Laser pattern after object modulation.
  • the electronic device includes a casing and the input-output component according to the foregoing embodiment, and the input-output component is disposed on the casing.
  • FIG. 1 is a schematic structural diagram of a photovoltaic module according to some embodiments of the present application.
  • FIGS. 2 to 4 are partial structural schematic diagrams of a photovoltaic module according to some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of a light source of a photovoltaic module according to some embodiments of the present application.
  • 6 to 12 are schematic structural diagrams of a diffractive optical element of a photovoltaic module according to some embodiments of the present application.
  • FIG. 13 to 14 are schematic structural diagrams of input-output components of some embodiments of the present application.
  • 15 is a schematic structural diagram of an electronic device in a first state according to some embodiments of the present application.
  • 16 is a schematic structural diagram of an electronic device in a second state according to some embodiments of the present application.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or it only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • the diffractive optical element 60 includes a diffractive body 62 and a plurality of diffractive structures 64.
  • the plurality of diffractive structures 64 are formed on the diffractive body 62 and used to diffract laser light, so that the density of the laser light projected from the central region of the diffractive optical element 60 is greater than that of the self-diffractive optical element. The density of the laser light projected by the edge region of the element 60.
  • the diffractive body 62 includes a first region 623 and a second region 624 in order along the center to the edge.
  • the density of the diffractive structures 64 in the first region 623 is greater than that of the second region 624. Density.
  • the diffractive body 62 includes a diffractive incident surface 621 and a diffractive emitting surface 622 opposite to each other.
  • the diffractive structure 64 is formed on the diffractive incident surface 621 or / and the diffractive emitting surface 622.
  • the density of the diffractive structure 64 gradually decreases from the first region 623 to the second region 624.
  • the diffractive structure 64 of the second region 624 is located on at least two sides of the diffractive structure 64 of the first region 623; or, FIG. 12, the diffraction of the second region 624
  • the structure 64 is disposed around the diffractive structure 64 of the first region 623.
  • an embodiment of the present application provides a photovoltaic module 100.
  • the optoelectronic module 100 includes a light source 40, a collimating element 50, and a diffractive optical element 60.
  • the collimating element 50 and the diffractive optical element 60 are sequentially disposed on an optical path of the light source 40.
  • the light source 40 is a vertical cavity surface emitting laser, and the light source 40 includes a substrate 43 and a light emitting element array 44 disposed on the substrate 43; or the light source 40 is an edge emitting laser and the light source 40 It includes a light emitting surface 41 that faces the collimating element 50.
  • the photovoltaic module 100 further includes a substrate assembly 10 and a lens barrel 20.
  • the lens barrel 20 is disposed on the substrate assembly 10 and forms a receiving cavity 21 together with the substrate assembly 10. Both the straight element 50 and the diffractive optical element 60 are housed in the receiving cavity 21.
  • the substrate assembly 10 includes a substrate 11 and a circuit board 12 carried on the substrate 11.
  • the circuit board 12 is provided with a via hole 121.
  • the light source 40 is carried on the substrate 11 and received in the via hole. Within 121.
  • the substrate 11 is provided with a heat dissipation hole 111.
  • the lens barrel 20 includes opposite top portions 22 and a bottom portion 23.
  • the lens barrel 20 is formed with a through hole 24 penetrating the top portion 22 and the bottom portion 23.
  • the bottom portion 23 is carried on the substrate assembly 10.
  • the inner wall of the lens barrel 20 extends to the center of the through hole 24 with an annular bearing platform 25, and the diffractive optical element 60 is carried on the bearing platform 25.
  • the optoelectronic module 100 further includes a protective cover 30, which is disposed on the top 22.
  • the protective cover 30 includes an abutment surface 31.
  • the opposite sides of the diffractive optical element 60 are respectively opposite to The protective cover 30 and the supporting platform 25 are in conflict.
  • the input / output component 1000 includes a photoelectric module 100 and an infrared imaging module 200.
  • the photoelectric module 100 is configured to project a laser onto a target object; the infrared imaging module 200 is configured to receive a laser pattern modulated by the target object.
  • the input / output module 1000 further includes a rear imaging module 300 and a visible light imaging module 400.
  • the rear imaging module 300 is located between the photoelectric module 100 and the infrared imaging module 200.
  • the visible light imaging module 400 is located between the photoelectric module 100 and the rear imaging module 300.
  • the photoelectric module 100, the visible light imaging module 400, the rear imaging module 300, and the infrared imaging module 200 are located on the same straight line.
  • the input / output module 1000 further includes a first bracket 600 and a second bracket 700.
  • the first bracket 600 is used for fixed installation of the photoelectric module 100, the visible light imaging module 400, and infrared imaging. Module 200; the second bracket 700 is used to fixedly install the rear imaging module 300.
  • the input / output module 1000 further includes a fixing bracket 800.
  • the fixing bracket 800 is used for fixedly mounting the photoelectric module 100, the visible light imaging module 400, the infrared imaging module 200, and the rear imaging. Module 300.
  • an embodiment of the present application provides an electronic device 3000.
  • the electronic device 3000 includes a casing 2000 and an input-output component 1000.
  • the input-output component 1000 is disposed on the casing 2000.
  • the input-output assembly 1000 is slidably disposed on the casing 2000.
  • the housing 2000 includes two side walls 2100 opposite to each other.
  • the input / output assembly 1000 is located between the two side walls 2100 and can slide out along the side wall 2100.
  • the width of the output assembly 1000 is equal to the distance between the two side walls 2100.
  • a photovoltaic module 100 includes a substrate assembly 10, a lens barrel 20, a protective cover 30, a light source 40, a collimating element 50, and a diffractive optical element 60.
  • the substrate assembly 10 includes a substrate 11 and a circuit board 12 carried on the substrate 11.
  • the material of the substrate 11 may be plastic, for example, polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polycarbonate (PC), or polymethyl methacrylate. Any one or more of polyimide (PI).
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PI polymethyl methacrylate
  • the substrate 11 is lightweight and has sufficient support strength.
  • the circuit board 12 may be a rigid board, a flexible board, or a rigid-flex board.
  • a through hole 121 is defined in the circuit board 12.
  • the light source 40 is fixed on the substrate 11 through the via hole 121 and is electrically connected to the circuit board 12.
  • the substrate 11 may be provided with a heat dissipation hole 111.
  • the heat generated by the light source 40 or the circuit board 12 may be dissipated through the heat dissipation hole 111, and the heat dissipation glue may be filled in the heat dissipation hole 111 to further improve the heat dissipation performance of the substrate assembly 10.
  • the lens barrel 20 is disposed on the substrate assembly 10 and forms a receiving cavity 21 together with the substrate assembly 10.
  • the light source 40, the collimating element 50, and the diffractive optical element 60 are all contained in the receiving cavity 21.
  • the collimating element 50 and the diffractive optical element 60 are sequentially disposed on a light-emitting optical path of the light source 40.
  • the lens barrel 20 includes a top 22 and a bottom 23 opposite to each other.
  • the lens barrel 20 is formed with a through hole 24 penetrating the top 22 and the bottom 23.
  • the bottom 23 is carried on the substrate assembly 10 and can be fixed on the circuit board 12 by using glue.
  • the inner wall of the lens barrel 20 extends to the center of the through hole 24 with an annular bearing platform 25, and the diffractive optical element 60 is carried on the bearing platform 25.
  • the protective cover 30 is disposed on the top 22, and can be specifically attached to the top 22 by glue.
  • the protective cover 30 includes a contact surface 31 opposite to the substrate 11.
  • the protective cover 30 and the stage 25 abut against the diffractive optical element 60 from opposite sides of the diffractive optical element 60, respectively.
  • the abutting surface 31 is a surface of the protective cover 30 that abuts the diffractive optical element 60.
  • the optoelectronic module 100 uses the protective cover 30 to abut the diffractive optical element 60 so that the diffractive optical element 60 is housed in the accommodating cavity 21 and prevents the diffractive optical element 60 from falling off in the light emitting direction.
  • the protective cover 30 may be made of a metal material, such as nano-silver wire, metallic silver wire, copper sheet, and the like.
  • the protective cover 30 is provided with a light transmitting hole 32.
  • the light transmitting holes 32 are aligned with the through holes 24.
  • the light transmitting hole 32 is used for emitting a laser pattern projected by the diffractive optical element 60.
  • the aperture size of the light transmitting hole 32 is smaller than at least one of the width or the length of the diffractive optical element 60 to restrict the diffractive optical element 60 within the receiving cavity 21.
  • the protective cover 30 may be made of a light-transmitting material, such as glass, Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Polyimide (PI )Wait. Since the light-transmitting materials such as glass, PMMA, PC, and PI all have excellent light-transmitting properties, the protective cover 30 may not need to be provided with light-transmitting holes 32. In this way, the protective cover 30 can prevent the diffractive optical element 60 from falling off, and at the same time prevent the diffractive optical element 60 from being exposed outside the lens barrel 20, and protect the diffractive optical element 60 from water and dust.
  • a light-transmitting material such as glass, Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Polyimide (PI )Wait. Since the light-transmitting materials such as glass, PMMA, PC, and PI all have excellent light-transmitting properties, the protective cover 30 may not need to be provided with light-transmitting holes 32. In this way, the protective cover 30 can prevent the
  • the light source 40 is used to emit laser light.
  • the light source 40 is carried on the substrate 11 and received in the via hole 121.
  • the size of the via hole 121 corresponds to the size of the light source 40, that is, the size of the via hole 121 is larger than the size of the light source 40, or the size of the via hole 121 is equivalent to the size of the light source 40.
  • the light source 40 may be a vertical cavity surface emitting laser (VCSEL) or an edge-emitting laser (VCEL) or an edge-emitting laser (EEL).
  • VCSEL vertical cavity surface emitting laser
  • VCEL edge-emitting laser
  • EEL edge-emitting laser
  • the light source 40 is an edge emitting laser.
  • the light source 40 may be a distributed feedback laser (Distributed Feedback Laser (DFB)).
  • the light source 40 is configured to emit laser light into the receiving cavity 21.
  • the light source 40 is in a column shape as a whole.
  • One end surface of the light source 40 away from the substrate assembly 10 forms a light emitting surface 41.
  • the laser light is emitted from the light emitting surface 41.
  • the light emitting surface 41 faces the collimating element 50 and the light emitting surface 41
  • the collimated optical axis is perpendicular, and the collimated optical axis passes through the center of the light emitting surface 51.
  • the light source 40 is fixed on the substrate assembly 10.
  • the light source 40 may be adhered to the substrate assembly 10 through a sealant 70.
  • a side of the light source 40 opposite to the light emitting surface 41 is adhered to the substrate assembly 10.
  • the side surface 42 of the light source 40 can also be adhered to the substrate assembly 10
  • the sealant 70 can surround the surrounding side surfaces 42, or only one of the side surfaces 42 can be adhered to the substrate assembly 10 or adhesively.
  • a certain number of faces are connected to the substrate assembly 10.
  • the sealant 70 may be a thermally conductive adhesive to conduct heat generated by the light source 40 to the substrate assembly 10.
  • the light source 40 of the above-mentioned photoelectric module 100 uses an edge-emitting laser.
  • the edge-emitting laser has a lower temperature drift than the VCSEL array.
  • the edge-emitting laser is a single-point light-emitting structure, there is no need to design an array structure, and the production is simple.
  • the cost of the light source 40 of the photoelectric module 100 is relatively low.
  • the gain of the power is obtained through the feedback of the grating structure.
  • the sealant 70 can fix the side-emitting laser and prevent the side-emitting laser from being dropped, displaced, or shaken.
  • the light source 40 may also be fixed on the substrate assembly 10 by a fixing method as shown in FIG. 4.
  • the photovoltaic module 100 includes a plurality of support blocks 80.
  • the support blocks 80 may be fixed on the substrate assembly 10.
  • the plurality of support blocks 80 collectively surround the light source 40.
  • the light source 40 may be directly mounted on the plurality of support blocks 80 during installation. between.
  • the light source 40 is clamped by a plurality of supporting blocks 80 to further prevent the light source 40 from shaking.
  • the light source 40 when the light source 40 is a vertical cavity surface emitting laser, the light source 40 includes a semiconductor substrate 43 and a light emitting element array 44 disposed on the substrate 43.
  • the light emitting element array 44 is fixed on the substrate assembly 10 through the substrate 43. .
  • the collimating element 50 is used to collimate the laser light emitted by the light source 40.
  • the collimating element 50 is fixed on the lens barrel 20, and the stage 25 is located between the collimating element 50 and the diffractive optical element 60.
  • the collimating element 50 may include one or more lenses, and the one or more lenses are coaxially disposed in sequence on the light emitting light path of the light source 40.
  • the surface type of each lens may be any one of an aspheric surface, a spherical surface, a Fresnel surface, and a binary optical surface.
  • the lenses can be made of glass materials to solve the problem of temperature drift of the lenses when the ambient temperature changes; or the lenses are made of plastic materials to make the cost lower and facilitate mass production.
  • the diffractive optical element 60 is used to diffract the collimated laser light of the collimating element 50 to form a laser pattern.
  • the two sides of the diffractive optical element 60 are in contact with the abutting surface 31 and the supporting platform 25 respectively, so that the diffractive optical element 60 does not fall off from the receiving cavity 21 in the light emitting direction.
  • the diffractive optical element 60 may be made of a glass material, or may be made of a composite plastic (such as PET).
  • the diffractive optical element 60 includes a diffractive body 62 and a plurality of diffractive structures 64 formed on the diffractive body 62.
  • the number of the diffractive structures 64 may be two, three, four, six or more.
  • the diffractive body 62 includes a diffractive incidence surface 621 and a diffractive emission surface 622 opposite to each other.
  • the diffractive structure 64 may be formed on the diffractive incident surface 621 (as shown in FIGS. 6 and 7); or the diffractive structure 64 is formed on the diffractive exit surface 622 (as shown in FIGS.
  • the diffractive structure 64 is formed on The diffraction incident surface 621 and the diffraction exit surface 622 are on the diffraction incident surface 621.
  • the diffractive structure 64 may be formed on the diffractive incident surface 621 and / or the diffractive output surface 622 by etching. At this time, the diffractive structure 64 is a diffractive groove on the diffractive incident surface 621 and / or the diffractive output surface 622 (see FIG. 7). And shown in FIG. 9); the diffractive structure 64 can also be fabricated separately on the diffractive incident surface 621 and / or the diffractive output surface 622. At this time, the diffractive structure 64 is a diffractive projection on the diffractive incident surface 621 and / or the diffractive output surface 622. (As shown in Figures 6 and 8).
  • the diffractive optical element 60 uses the principle of diffraction to prepare a step (grating) with a certain depth on the surface of the diffractive body 62, that is, the diffractive structure 64.
  • a step grating
  • the diffractive structure 64 uses the principle of diffraction to prepare a step (grating) with a certain depth on the surface of the diffractive body 62, that is, the diffractive structure 64.
  • the diffractive structure 64 uses the principle of diffraction to prepare a step (grating) with a certain depth on the surface of the diffractive body 62, that is, the diffractive structure 64.
  • the diffractive structure 64 Through the different designs of the diffractive structure 64, the divergence angle of the diffracted light beam and the appearance of the formation of a light spot can be controlled to achieve the function of forming a specific laser pattern.
  • the mobile phone can be equipped with a laser generator and an infrared camera.
  • the laser generator is used to emit laser light outward
  • the infrared camera is used to collect the laser pattern modulated by the target object.
  • other electronic components need to be set between the laser generator and the infrared camera, which increases the distance between the laser generator and the infrared camera, resulting in the coincidence of the field angles of the laser generator and the infrared camera. low.
  • the diffractive optical element 60 may disperse the incident light beam into an infinite number of light beams and then emit the light beam. Since the total energy of the incident light beam is constant, when the number of the light beams divided by the incident light beam is larger, the energy of each light beam is smaller.
  • the diffractive optical element 60 projects the laser light.
  • the density of the laser light projected by the photoelectric module 100 on the central region needs to be ensured, so as to ensure the accuracy of the depth image of the central region acquired by the infrared imaging module 200.
  • the density of the laser light projected from the central region of the diffractive optical element 60 is greater than the density of the laser light projected from the edge region of the diffractive optical element 60.
  • the diffractive body 62 includes a first region 623 and a second region 624 in order from the center to the edge.
  • the first region 623 and the second region 624 may be contiguous or spaced from each other.
  • the density of the diffractive structure 64 in the first region 623 is greater than the density of the diffractive structure 64 in the second region 624 (including the case where the density of the diffractive structure 64 in the second region 624 is zero or almost zero); or, the first region 623
  • the number of the diffractive structures 64 per unit area is larger than the number of the diffractive structures 64 per unit area of the second region 624. In this way, the density of the laser light projected from the central region of the diffractive optical element 60 can be made higher than the density of the laser light projected from the edge region of the diffractive optical element 60.
  • the density of the diffractive structure 64 may gradually decrease from the first region 623 to the second region 624. That is, in the direction from the first region 623 to the second region 624, the distance between adjacent diffractive structures 64 gradually decreases.
  • the diffractive structures 64 in the first region 623 and the diffractive structures 64 in the second region 624 are each uniformly distributed.
  • the distances between adjacent diffractive structures 64 in the first region 623 are equal, and the distances between adjacent diffractive structures 64 in the second region 624 are also equal.
  • the distance between adjacent diffractive structures 64 in the region 623 is greater than the distance between adjacent diffractive structures 64 in the second region 624.
  • the plurality of diffractive structures 64 formed on the diffractive body 62 may also be implemented, for example, the depth or inclination angle of the diffractive groove, the height or inclination angle of the diffractive protrusion,
  • the diffractive structures 64 have steps and the like designed such that the density of the laser light projected from the central region of the diffractive optical element 60 is greater than the density of the laser light projected from the edge region of the diffractive optical element 60.
  • the diffractive structure 64 of the second region 624 is located on at least two sides of the diffractive structure 64 of the first region 623.
  • the diffractive structures 64 may be distributed in a matrix, and the diffractive structures 64 of the second region 624 are located on either side of the diffractive structures 64 of the first region 623; Any of the three sides of the diffractive structure 64 of the second region 624;
  • the diffractive structure 64 of the second region 624 is disposed around the diffractive structure 64 of the first region 623.
  • the diffractive structure 64 may be distributed in a ring shape, and specifically may be in a circular ring shape or a square ring shape.
  • the input / output module 1000 includes the photoelectric module 100 and the infrared imaging module 200 of any of the above embodiments.
  • the photoelectric module 100 is configured to project a laser light onto a target object
  • the infrared imaging module 200 is configured to receive a laser pattern modulated by the target object to obtain a depth image.
  • the angles of view of the photoelectric module 100 and the infrared imaging module 200 have a high degree of coincidence, and the density of the laser light projected by the photoelectric module 100 to the center region can be ensured, thereby ensuring The accuracy of the depth image of the central region acquired by the infrared imaging module 200.
  • the input / output component 1000 can send signals to or receive signals from the outside, or have both functions of sending signals to and receiving signals from the outside.
  • the signals can be light signals, sound signals, touch signals, and the like. It can be understood that according to different functional requirements, the specific type of the input-output component 1000 and the number of modules included may vary.
  • the input-output module 1000 further includes a rear imaging module 300 and a visible light imaging module 400.
  • the rear imaging module 300 is located between the photoelectric module 100 and the infrared imaging module 200.
  • the visible light imaging module 400 is located between the photoelectric module 100 and the rear imaging module 300.
  • the visible light imaging module 400 can receive external visible light signals to generate a color image.
  • the rear imaging module 300 may include one camera, two cameras, or more cameras. When the rear imaging module 300 includes two cameras, the two cameras are arranged in parallel.
  • One camera can be a black and white camera and the other camera is an RGB camera; or one camera is an IR camera and the other camera is an RGB camera; or one camera is an RGB camera and the other camera is an RGB camera; or one camera is a wide-angle camera.
  • the other camera is a telephoto camera.
  • the photoelectric module 100, the visible light imaging module 400, the rear imaging module 300, and the infrared imaging module 200 may be located on the same straight line. Taking FIG. 14 as an example, from one end of the straight line to the other end are: a photoelectric module 100, a visible light imaging module 400, a rear imaging module 300, and an infrared imaging module 200.
  • the input-output assembly 1000 further includes a first bracket 600 and a second bracket 700.
  • the first bracket 600 is used for fixed installation of the photoelectric module 100, the visible light imaging module 400, and the infrared imaging module 200.
  • the second bracket 700 is used for fixedly mounting the rear imaging module 300. In this way, the relative positions between the photoelectric module 100, the visible light imaging module 400, and the infrared imaging module 200, and the relative positions between one or more cameras in the rear imaging module 300 will not change, so that Able to work better together.
  • first bracket 600 and second bracket 700 may be replaced with a fixed bracket 800.
  • the fixed bracket 800 is used for fixed installation of the photovoltaic module 100, the visible light imaging module 400, and the infrared imaging module. Group 200 and rear imaging module 300.
  • the fixed bracket 800 may be an integrally formed structure.
  • the photoelectric module 100, the visible light imaging module 400, the infrared imaging module 200, and the rear imaging module 300 are installed on the fixed bracket 800, between the modules The relative position will not change to work better together.
  • there is no need to set multiple brackets for multiple modules which simplifies the structure of the input-output module 1000 and saves installation space.
  • the input-output assembly 1000 further includes an infrared fill light 500.
  • the infrared supplementary light 500 is configured to emit infrared light to achieve infrared supplementary light.
  • the infrared imaging module 200 is located between the rear imaging module 300 and the infrared fill light 500.
  • the photoelectric module 100, the visible light imaging module 400, the rear imaging module 300, the infrared imaging module 200, and the infrared fill light 500 may be located on the same straight line.
  • the infrared fill light 500 can also be mounted on the first bracket 600 together with the photoelectric module 100, the visible light imaging module 400, and the infrared imaging module 200, and the rear imaging module 300 is mounted on the second bracket 700 (as shown in FIG. 14); or the infrared fill light 500 is installed on the fixed bracket 800 together with the photoelectric module 100, the visible light imaging module 400, the infrared imaging module 200, and the rear imaging module 300 (as shown in FIG. 15) .
  • the electronic device 3000 includes a casing 2000 and the input / output component 1000 of any of the foregoing embodiments.
  • the input / output component 1000 is disposed on the casing 2000.
  • the electronic device 3000 includes, but is not limited to, a mobile phone, a tablet computer, a laptop computer, a game console, a headset device, an access control system, a teller machine, and the like.
  • the housing 2000 can provide protection to the input / output component 1000 from dust, water, and drops.
  • the input-output component 1000 is disposed on the casing 2000. Specifically, the input-output component 1000 is fixedly disposed on the casing 2000; or the input-output component 1000 is slidably disposed on the casing 2000.
  • the electronic device 3000 may further include a driving component (not shown).
  • a driving component (not shown).
  • the driving component drives the input-output component 1000 to slide out from the casing 2000 (as shown in FIG. 16), and after the input-output component 1000 is used, the input-output component 1000 is driven to slide into the casing 2000 to hide in the casing 2000.
  • the housing 2000 includes two side walls 2100 opposite to each other.
  • the input / output component 1000 is located between the two side walls 2100 and can slide out along the side wall 2100.
  • the width of the input / output component 1000 is equal to two The distance between the side walls 2100 is equal.
  • the density of the laser light projected from the central region of the diffractive optical element 60 is greater than the edge region of the self-diffractive optical element 60.
  • the density of the projected laser light can increase the field angle of the laser light projected by the diffractive optical element 60 to increase the coincidence of the field angles of the photoelectric module 100 and the infrared imaging module 200, and ensure that the photoelectric module 100 faces the central area.
  • the density of the projected laser light thereby ensuring the accuracy of the depth image of the central area acquired by the infrared imaging module 200.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality" is at least two, for example, two, three, unless it is specifically and specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种衍射光学元件(60)、光电模组(100)、输入输出组件(1000)及电子设备(3000)。衍射光学元件(60)包括衍射本体(62)及多个衍射结构(64)。多个衍射结构(64)形成在衍射本体(62)上并用于衍射激光,以使得自衍射光学元件(60)的中心区域投射的激光的密度大于自衍射光学元件(60)的边缘区域投射的激光的密度。

Description

衍射光学元件、光电模组、输入输出组件及电子设备
优先权信息
本申请请求2018年6月6日向中国国家知识产权局提交的、专利申请号为201810575113.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及消费性电子技术领域,更具体而言,涉及一种衍射光学元件、光电模组、输入输出组件及电子设备。
背景技术
手机上可以配置有激光发生器和红外摄像头。激光发生器用于向外发射激光,红外摄像头用于采集由目标物体调制的激光图案。
发明内容
本申请实施方式提供一种衍射光学元件、光电模组、输入输出组件及电子设备。
本申请实施方式的衍射光学元件包括衍射本体及多个衍射结构,多个所述衍射结构形成在所述衍射本体上并用于衍射激光,以使得自所述衍射光学元件的中心区域投射的激光的密度大于自所述衍射光学元件的边缘区域投射的激光的密度。
本申请实施方式的光电模组包括光源、准直元件及上述实施方式所述的衍射光学元件,所述准直元件及所述衍射光学元件依次设置在所述光源的光路上。
本申请实施方式的输入输出组件包括上述实施方式所述的光电模组及红外成像模组,所述光电模组用于向目标物体投射激光;所述红外成像模组用于接收由所述目标物体调制后的激光图案。
本申请实施方式的电子设备包括壳体及上述实施方式所述的输入输出组件,所述输入输出组件设置在所述壳体上。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的光电模组的结构示意图;
图2至图4是本申请某些实施方式的光电模组的部分结构示意图;
图5是本申请某些实施方式的光电模组的光源的结构示意图;
图6至图12是本申请某些实施方式的光电模组的衍射光学元件的结构示意图;
图13至图14是本申请某些实施方式的输入输出组件的结构示意图;
图15是本申请某些实施方式的电子设备处于第一状态的结构示意图;
图16是本申请某些实施方式的电子设备处于第二状态的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图6,本申请实施方式提供一种衍射光学元件60。衍射光学元件60包括衍射本体62及多个衍射结构64,多个衍射结构64形成在衍射本体62上并用于衍射激光,以使得自衍射光学元件60的中心区域投射的激光的密度大于自衍射光学元件60的边缘区域投射的激光的密度。
请参阅图10,在某些实施方式中,衍射本体62沿中心至边缘依次包括第一区域623和第二区域624,第一区域623的衍射结构64的密度大于第二区域624的衍射结构64的密度。
请参阅图6,在某些实施方式中,衍射本体62包括相背的衍射入射面621与衍射出射面622,衍射结构64形成在衍射入射面621或/和衍射出射面622上。
请参阅图10和图11,在某些实施方式中,衍射结构64的密度由第一区域623向第二区域624逐渐减小。
请参阅图10和图11,在某些实施方式中,第二区域624的衍射结构64位于第一区域623的衍射结构64的至少两侧;或者,请参阅图12,第二区域624的衍射结构 64环绕第一区域623的衍射结构64设置。
请参阅图1,本申请实施方式提供一种光电模组100。光电模组100包括光源40、准直元件50及衍射光学元件60,准直元件50及衍射光学元件60依次设置在光源40的光路上。
请参阅图5,在某些实施方式中,光源40为垂直腔面发射激光器,光源40包括衬底43及设置在衬底43上的发光元件阵列44;或者光源40为边发射激光器,光源40包括发光面41,发光面41朝向准直元件50。
请参阅图1,在某些实施方式中,光电模组100还包括基板组件10和镜筒20,镜筒20设置在基板组件10上并与基板组件10共同形成收容腔21,光源40、准直元件50及衍射光学元件60均收容在收容腔21内。
请参阅图1,在某些实施方式中,基板组件10包括基板11及承载在基板11上的电路板12,电路板12开设有过孔121,光源40承载在基板11上并收容在过孔121内。
请参阅图1,在某些实施方式中,基板11开设有散热孔111。
请参阅图1,在某些实施方式中,镜筒20包括相背的顶部22及底部23,镜筒20形成有贯穿顶部22及底部23的通孔24,底部23承载在基板组件10上,镜筒20的内壁向通孔24的中心延伸有环形承载台25,衍射光学元件60承载在承载台25上。
请参阅图1,在某些实施方式中,光电模组100还包括保护罩30,保护罩30设置在顶部22上,保护罩30包括抵触面31,衍射光学元件60的相背两侧分别与保护罩30及承载台25抵触。
请参阅图13,本申请实施方式提供一种输入输出组件1000。输入输出组件1000包括光电模组100及红外成像模组200,光电模组100用于向目标物体投射激光;红外成像模组200用于接收由目标物体调制后的激光图案。
请参阅图14,在某些实施方式中,输入输出组件1000还包括后置成像模组300及可见光成像模组400,后置成像模组300位于光电模组100与红外成像模组200之间;可见光成像模组400位于光电模组100与后置成像模组300之间。
请参阅图14,在某些实施方式中,光电模组100、可见光成像模组400、后置成像模组300、及红外成像模组200位于同一直线上。
请参阅图14,在某些实施方式中,输入输出组件1000还包括第一支架600和第二支架700,第一支架600用于固定安装光电模组100、可见光成像模组400、及红外成像模组200;第二支架700用于固定安装后置成像模组300。
请参阅图15,在某些实施方式中,输入输出组件1000还包括固定支架800,固 定支架800用于固定安装光电模组100、可见光成像模组400、红外成像模组200、及后置成像模组300。
请参阅图15,本申请实施方式提供一种电子设备3000。电子设备3000包括壳体2000及输入输出组件1000,输入输出组件1000设置在壳体2000上。
请参阅图15和图16,在某些实施方式中,输入输出组件1000能够滑动的设置在壳体2000上。
请参阅图15和图16,在某些实施方式中,壳体2000包括相对设置的两个侧壁2100,输入输出组件1000位于两个侧壁2100之间并能够沿侧壁2100滑出,输入输出组件1000的宽度与两个侧壁2100之间的距离相等。
请参阅图1,本申请实施方式的光电模组100包括基板组件10、镜筒20、保护罩30、光源40、准直元件50、及衍射光学元件60。
基板组件10包括基板11及承载在基板11上的电路板12。基板11的材料可以为塑料,例如,聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)中的任意一种或多种。如此,基板11的质量较轻且具有足够的支撑强度。电路板12可以是硬板、软板或软硬结合板。电路板12上开设有过孔121。光源40通过过孔121固定在基板11上并与电路板12电连接。基板11上可以开设有散热孔111,光源40或电路板12工作产生的热量可以由散热孔111散出,散热孔111内还可以填充导热胶,以进一步提高基板组件10的散热性能。
镜筒20设置在基板组件10上并与基板组件10共同形成收容腔21。光源40、准直元件50、及衍射光学元件60均收容在收容腔21内。准直元件50与衍射光学元件60依次设置在光源40的发光光路上。镜筒20包括相背的顶部22及底部23。镜筒20形成有贯穿顶部22及底部23的通孔24。底部23承载在基板组件10上,具体可通过胶水固定在电路板12上。镜筒20的内壁向通孔24的中心延伸有环形承载台25,衍射光学元件60承载在承载台25上。
保护罩30设置在顶部22上,具体可以通过胶水粘贴在顶部22上。保护罩30包括与基板11相对的抵触面31。保护罩30及承载台25分别从衍射光学元件60的相背两侧抵触衍射光学元件60。抵触面31为保护罩30的与衍射光学元件60相抵触的表面。光电模组100利用保护罩30抵触衍射光学元件60以使衍射光学元件60收容在收容腔21内,并防止衍射光学元件60沿出光方向脱落。
在某些实施方式中,保护罩30可由金属材料制成,例如纳米银丝、金属银线、铜片等。保护罩30开设有透光孔32。透光孔32与通孔24对准。透光孔32用于出射 衍射光学元件60投射的激光图案。透光孔32的孔径大小小于衍射光学元件60的宽度或长度中的至少一个以将衍射光学元件60限制在收容腔21内。
在某些实施方式中,保护罩30可由透光材料制成,例如玻璃、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)等。由于玻璃、PMMA、PC、及PI等透光材料均具有优异的透光性能,保护罩30可以不用开设透光孔32。如此,保护罩30能够在防止衍射光学元件60脱落的同时,避免衍射光学元件60裸露在镜筒20的外面,对衍射光学元件60起到防水、防尘的作用。
光源40用于发射激光。光源40承载在基板11上并收容在过孔121内。过孔121的大小与光源40的大小对应,即过孔121的大小大于光源40的大小,或者过孔121的大小与光源40的大小相当。
光源40可以是垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)或者边发射激光器(edge-emitting laser,EEL)。
在如图1所示的实施例中,光源40为边发射激光器,具体地,光源40可以为分布反馈式激光器(Distributed Feedback Laser,DFB)。光源40用于向收容腔21内发射激光。请结合图2,光源40整体呈柱状,光源40远离基板组件10的一个端面形成发光面41,激光从发光面41发出,发光面41朝向准直元件50且发光面41与准直元件50的准直光轴垂直,准直光轴穿过发光面51的中心。光源40固定在基板组件10上,具体地,光源40可以通过封胶70粘结在基板组件10上,例如光源40的与发光面41相背的一面粘接在基板组件10上。请结合图1和图3,光源40的侧面42也可以粘接在基板组件10上,封胶70包裹住四周的侧面42,也可以仅粘结侧面42的某一个面与基板组件10或粘结某几个面与基板组件10。此时封胶70可以为导热胶,以将光源40工作产生的热量传导至基板组件10中。
上述的光电模组100的光源40采用边发射激光器,一方面边发射激光器较VCSEL阵列的温漂较小,另一方面,由于边发射激光器为单点发光结构,无需设计阵列结构,制作简单,光电模组100的光源40成本较低。
分布反馈式激光器的激光在传播时,经过光栅结构的反馈获得功率的增益。要提高分布反馈式激光器的功率,需要通过增大注入电流和/或增加分布反馈式激光器的长度,由于增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,为了保证分布反馈式激光器能够正常工作,需要增加分布反馈式激光器的长度,导致分布反馈式激光器一般呈细长条结构。当边发射激光器的发光面41朝向准直元件50时,边发射激光器呈竖直放置,由于边发射激光器呈细长条结构,边发射激光 器容易出现跌落、移位或晃动等意外,因此通过设置封胶70能够将边发射激光器固定住,防止边发射激光器发生跌落、位移或晃动等意外。
在某些实施方式中,光源40也可以采用如图4所示的固定方式固定在基板组件10上。具体地,光电模组100包括多个支撑块80,支撑块80可以固定在基板组件10上,多个支撑块80共同包围光源40,在安装时可以将光源40直接安装在多个支撑块80之间。在一个例子中,多个支撑块80共同夹持光源40,以进一步防止光源40发生晃动。
请结合图5,当光源40为垂直腔面发射激光器时,光源40包括半导体衬底43及设置在衬底43上的发光元件阵列44,发光元件阵列44通过衬底43固定在基板组件10上。
请再次参阅图1,准直元件50用于准直光源40发射的激光。准直元件50固定在镜筒20上,承载台25位于准直元件50与衍射光学元件60之间。准直元件50可包括一个或多个透镜,一个或多个透镜共轴依次设置在光源40的发光光路上。每个透镜的面型可以为非球面、球面、菲涅尔面、二元光学面中的任意一种。透镜可均由玻璃材质制成,以解决环境温度变化时透镜会产生温漂现象的问题;或者透镜均由塑料材质制成,以使得成本较低、便于量产。
衍射光学元件60用于衍射准直元件50准直后的激光以形成激光图案。衍射光学元件60的两侧分别与抵触面31和承载台25抵触,从而衍射光学元件60不会沿出光方向从收容腔21脱落。衍射光学元件60可以由玻璃材质制成,也可以由复合塑料(如PET)制成。
请参阅图6至图9,衍射光学元件60包括透光的衍射本体62及形成在衍射本体62上的多个衍射结构64。例如,衍射结构64的数量可以为两个、三个、四个、六个或更多个。衍射本体62包括相背的衍射入射面621与衍射出射面622。衍射结构64可以形成在衍射入射面621上(如图6和图7所示);或者衍射结构64形成在衍射出射面622上(如图8和图9所示);或者衍射结构64形成在衍射入射面621和衍射出射面622上。衍射结构64可通过蚀刻的方式形成在衍射入射面621和/或衍射出射面622上,此时,衍射结构64为衍射入射面621和/或衍射出射面622上的衍射凹槽(如图7和图9所示);衍射结构64也可以单独制作在衍射入射面621和/或衍射出射面622上,此时,衍射结构64为衍射入射面621和/或衍射出射面622上的衍射凸起(如图6和图8所示)。
衍射光学元件60利用衍射原理在衍射本体62表面制备一定深度的台阶(光栅),即衍射结构64,光束通过时会产生不同的光程差,满足布拉格衍射条件。通过衍射结 构64的不同设计可以控制衍射后的光束的发散角和形成光斑的样貌,实现形成特定的激光图案的功能。
手机上可以配置有激光发生器和红外摄像头。激光发生器用于向外发射激光,红外摄像头用于采集由目标物体调制的激光图案。通常情况下,激光发生器与红外摄像头之间还需要设置其他的电子元器件,因而增大了激光发生器与红外摄像头之间的距离,导致激光发生器与红外摄像头的视场角的重合度低。本申请实施方式中,衍射光学元件60可以将入射光束分散成无数个光束再射出。由于入射光束的总能量是一定的,当入射光束所分成的光束的数量越多时,每个光束所具有的能量越小。因此,在为了提高光电模组100与红外成像模组200的视场角的重合度(如图13所示,视场角的重合度由α提高到β)而增大衍射光学元件60投射激光的视场角时,需要确保光电模组100对中心区域投射的激光的密度,从而保证红外成像模组200获取的中心区域的深度图像的精度。本申请实施方式可以通过对形成在衍射本体62上的多个衍射结构64的设计,使得自衍射光学元件60的中心区域投射的激光的密度大于自衍射光学元件60的边缘区域投射的激光的密度,以确保光电模组100对中心区域投射的激光的密度,而且衍射结构64的总数量不会发生改变,也不需要增大光电模组100的工作电流或功率等,因而不会增大光电模组100的功耗。
请参阅图10,在某些实施方式中,衍射本体62沿中心至边缘依次包括第一区域623和第二区域624。第一区域623和第二区域624可以是相接的或者是相互间隔的。第一区域623的衍射结构64的密度大于第二区域624的衍射结构64的密度(包括第二区域624的衍射结构64的密度为零或几乎为零的情况);或者说,第一区域623的单位面积内衍射结构64的数量大于第二区域624的单位面积内衍射结构64的数量。如此,可以使得自衍射光学元件60的中心区域投射的激光的密度大于自衍射光学元件60的边缘区域投射的激光的密度。
具体地,衍射结构64的密度可由第一区域623向第二区域624逐渐减小。也即是说,沿第一区域623向第二区域624的方向,相邻的衍射结构64之间的距离逐渐减小。
或者,请参阅图11,第一区域623内的衍射结构64和第二区域624内的衍射结构64各自为均匀分布。沿第一区域623向第二区域624的方向,第一区域623内相邻的衍射结构64之间的距离相等,第二区域624内相邻的衍射结构64之间的距离也相等,第一区域623内相邻的衍射结构64之间的距离大于第二区域624内相邻的衍射结构64之间的距离。
当然,在其他实施方式中,也可以通过对形成在衍射本体62上的多个衍射结构 64的其他设计,例如,对衍射凹槽的深度或倾斜角度、衍射凸起的高度或倾斜角度、每个衍射结构64具有的台阶的级数等设计,使得自衍射光学元件60的中心区域投射的激光的密度大于自衍射光学元件60的边缘区域投射的激光的密度。
请参阅图10和图11,在某些实施方式中,第二区域624的衍射结构64位于第一区域623的衍射结构64的至少两侧。例如,衍射结构64可呈矩阵分布,第二区域624的衍射结构64位于第一区域623的衍射结构64的任意两侧;或者第二区域624的衍射结构64位于第一区域623的衍射结构64的任意三侧;或者第二区域624的衍射结构64位于第一区域623的衍射结构64的四侧。
请参阅图12,在某些实施方式中,第二区域624的衍射结构64环绕第一区域623的衍射结构64设置。此时,衍射结构64可呈环形分布,具体可以呈圆环形、或方环形。
请参阅图13,本申请实施方式的输入输出组件1000包括上述任一实施方式的光电模组100和红外成像模组200。光电模组100用于向目标物体投射激光,红外成像模组200用于接收由目标物体调制后的激光图案以获得深度图像。
本申请实施方式的输入输出组件1000中,光电模组100与红外成像模组200的视场角具有较高的重合度,且可以确保光电模组100对中心区域投射的激光的密度,从而保证红外成像模组200获取的中心区域的深度图像的精度。
输入输出组件1000可以向外界发出信号或者接收外界的信号,或者同时具备向外界发出信号和接收外界的信号的功能,其中信号可以是光线信号、声音信号、触摸信号等。可以理解,依据不同功能需求,输入输出组件1000的具体种类和包含的模组的数量可以有所变化。
请参阅图14,在某些实施方式中,输入输出组件1000还包括后置成像模组300及可见光成像模组400。后置成像模组300位于光电模组100与红外成像模组200之间。可见光成像模组400位于光电模组100与后置成像模组300之间。
可见光成像模组400可接收外界的可见光信号以生成彩色图像。后置成像模组300可以包括一个摄像头、两个摄像头或更多个摄像头。当后置成像模组300包括两个摄像头时,两个摄像头并列设置。一个摄像头可以为黑白摄像头,另外一个摄像头为RGB摄像头;或者一个摄像头为IR摄像头,另外一个摄像头为RGB摄像头;或者一个摄像头为RGB摄像头,另外一个摄像头也为RGB摄像头;或者一个摄像头为广角摄像头,另外一个摄像头为长焦摄像头等。
进一步地,光电模组100、可见光成像模组400、后置成像模组300、及红外成像模组200可位于同一直线上。以图14为例,从直线的一端至另一端依次为:光电模 组100、可见光成像模组400、后置成像模组300、及红外成像模组200。
在某些实施方式中,输入输出组件1000还包括第一支架600和第二支架700,第一支架600用于固定安装光电模组100、可见光成像模组400、及红外成像模组200。第二支架700用于固定安装后置成像模组300。如此,光电模组100、可见光成像模组400、及红外成像模组200之间的相对位置、后置成像模组300中的一个或多个摄像头之间的相对位置,均不会发生变化从而能够更好的配合工作。
请参阅图15,在某些实施方式中,上述第一支架600和第二支架700可替换成固定支架800,固定支架800用于固定安装光电模组100、可见光成像模组400、红外成像模组200、及后置成像模组300。
具体地,固定支架800可以为一体成型结构,当光电模组100、可见光成像模组400、红外成像模组200、及后置成像模组300安装在固定支架800上时,各模组之间的相对位置不会发生变化从而能够更好的配合工作。同时,由于多个模组同时安装在一个固定支架800上,不需要为多个模组设置多个支架,简化了输入输出组件1000的结构,节省了安装空间。
在某些实施方式中,输入输出组件1000还包括红外补光灯500。红外补光灯500用于向外发射红外光以实现红外补光。红外成像模组200位于后置成像模组300与红外补光灯500之间。光电模组100、可见光成像模组400、后置成像模组300、红外成像模组200、及红外补光灯500可位于同一直线上。红外补光灯500还可以与光电模组100、可见光成像模组400、及红外成像模组200一同安装在第一支架600上,而后置成像模组300安装在第二支架700上(如图14所示);或者红外补光灯500与光电模组100、可见光成像模组400、红外成像模组200、及后置成像模组300一同安装在固定支架800上(如图15所示)。
请继续参阅图15,本申请实施方式的电子设备3000包括壳体2000及上述任一实施方式的输入输出组件1000,输入输出组件1000设置在壳体2000上。电子设备3000包括但不限于为手机、平板电脑、手提电脑、游戏机、头显设备、门禁***、柜员机等。壳体2000可以给输入输出组件1000提供防尘、防水、防摔等保护。
其中,输入输出组件1000设置在壳体2000上,具体可以是,输入输出组件1000固定设置在壳体2000上;或者是输入输出组件1000能够滑动的设置在壳体2000上。
当输入输出组件1000能够滑动的设置在壳体2000上时,电子设备3000的屏占比可以达到100%。电子设备3000还可以包括驱动组件(图未示),当无需使用输入输出组件1000时,输入输出组件1000隐藏在壳体2000内(如图15所示);当需要使用输入输出组件1000时,驱动组件驱动输入输出组件1000自壳体2000滑出(如 图16所示),并在输入输出组件1000使用完成后驱动输入输出组件1000滑入壳体2000以隐藏在壳体2000内。
在某些实施方式中,壳体2000包括相对设置的两个侧壁2100,输入输出组件1000位于两个侧壁2100之间并能够沿侧壁2100滑出,输入输出组件1000的宽度与两个侧壁2100之间的距离相等。当输入输出组件1000自壳体2000滑出时,电子设备3000的长度在整体上发生延伸,电子设备3000的外形较为美观。
综上,本申请实施方式的衍射光学元件60、光电模组100、输入输出组件1000及电子设备3000中,自衍射光学元件60的中心区域投射的激光的密度大于自衍射光学元件60的边缘区域投射的激光的密度,从而可以增大衍射光学元件60投射激光的视场角,以提高光电模组100与红外成像模组200的视场角的重合度,并确保光电模组100对中心区域投射的激光的密度,从而保证红外成像模组200获取的中心区域的深度图像的精度。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种衍射光学元件,其特征在于,包括:
    衍射本体;及
    多个衍射结构,多个所述衍射结构形成在所述衍射本体上并用于衍射激光,以使得自所述衍射光学元件的中心区域投射的激光的密度大于自所述衍射光学元件的边缘区域投射的激光的密度。
  2. 根据权利要求1所述的衍射光学元件,其特征在于,所述衍射本体沿中心至边缘依次包括第一区域和第二区域,所述第一区域的所述衍射结构的密度大于所述第二区域的所述衍射结构的密度。
  3. 根据权利要求1所述的衍射光学元件,其特征在于,所述衍射本体包括相背的衍射入射面与衍射出射面,所述衍射结构形成在所述衍射入射面或/和所述衍射出射面上。
  4. 根据权利要求2所述的衍射光学元件,其特征在于,所述衍射结构的密度由所述第一区域向所述第二区域逐渐减小。
  5. 根据权利要求2所述的衍射光学元件,其特征在于,所述第二区域的所述衍射结构位于所述第一区域的所述衍射结构的至少两侧;或者
    所述第二区域的所述衍射结构环绕所述第一区域的所述衍射结构设置。
  6. 一种光电模组,其特征在于,包括:
    光源;
    准直元件;及
    权利要求1-5任意一项所述的衍射光学元件,所述准直元件及所述衍射光学元件依次设置在所述光源的光路上。
  7. 根据权利要求6所述的光电模组,其特征在于,所述光源为垂直腔面发射激光器,所述光源包括衬底及设置在所述衬底上的发光元件阵列;或者
    所述光源为边发射激光器,所述光源包括发光面,所述发光面朝向所述准直元件。
  8. 根据权利要求6所述的光电模组,其特征在于,所述光电模组还包括基板组件和镜筒,所述镜筒设置在所述基板组件上并与所述基板组件共同形成收容腔,所述光源、所述准直元件及所述衍射光学元件均收容在所述收容腔内。
  9. 根据权利要求8所述的光电模组,其特征在于,所述基板组件包括基板及承载在所述基板上的电路板,所述电路板开设有过孔,所述光源承载在所述基板上并收容在所述过孔内。
  10. 根据权利要求9所述的光电模组,其特征在于,所述基板开设有散热孔。
  11. 根据权利要求8所述的光电模组,其特征在于,所述镜筒包括相背的顶部及底部,所述镜筒形成有贯穿所述顶部及所述底部的通孔,所述底部承载在所述基板组件上,所述镜筒的内壁向所述通孔的中心延伸有环形承载台,所述衍射光学元件承载在所述承载台上。
  12. 根据权利要求11所述的光电模组,其特征在于,所述光电模组还包括保护罩,所述保护罩设置在所述顶部上,所述保护罩包括抵触面,所述衍射光学元件的相背两侧分别与所述保护罩及所述承载台抵触。
  13. 一种输入输出组件,其特征在于,包括:
    权利要求6-12任意一项所述的光电模组,所述光电模组用于向目标物体投射激光;及
    红外成像模组,所述红外成像模组用于接收由所述目标物体调制后的激光图案。
  14. 根据权利要求13所述的输入输出组件,其特征在于,所述输入输出组件还包括:
    后置成像模组,所述后置成像模组位于所述光电模组与所述红外成像模组之间;及
    可见光成像模组,所述可见光成像模组位于所述光电模组与所述后置成像模组之间。
  15. 根据权利要求14所述的输入输出组件,其特征在于,所述光电模组、所述可见光成像模组、所述后置成像模组、及所述红外成像模组位于同一直线上。
  16. 根据权利要求14所述的输入输出组件,其特征在于,所述输入输出组件还包括第一支架和第二支架,所述第一支架用于固定安装所述光电模组、所述可见光成像模组、及所述红外成像模组;
    所述第二支架用于固定安装所述后置成像模组。
  17. 根据权利要求14所述的输入输出组件,其特征在于,所述输入输出组件还包括固定支架,所述固定支架用于固定安装所述光电模组、所述可见光成像模组、所述红外成像模组、及所述后置成像模组。
  18. 一种电子设备,其特征在于,包括:
    壳体;及
    权利要求13-17任意一项所述的输入输出组件,所述输入输出组件设置在所述壳体上。
  19. 根据权利要求18所述的电子设备,其特征在于,所述输入输出组件能够滑动 的设置在所述壳体上。
  20. 根据权利要求19所述的电子设备,其特征在于,所述壳体包括相对设置的两个侧壁,所述输入输出组件位于两个所述侧壁之间并能够沿所述侧壁滑出,所述输入输出组件的宽度与两个所述侧壁之间的距离相等。
PCT/CN2019/070764 2018-06-06 2019-01-08 衍射光学元件、光电模组、输入输出组件及电子设备 WO2019233103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810575113.2 2018-06-06
CN201810575113.2A CN108828702A (zh) 2018-06-06 2018-06-06 衍射光学元件、光电模组、输入输出组件及电子设备

Publications (1)

Publication Number Publication Date
WO2019233103A1 true WO2019233103A1 (zh) 2019-12-12

Family

ID=64144073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070764 WO2019233103A1 (zh) 2018-06-06 2019-01-08 衍射光学元件、光电模组、输入输出组件及电子设备

Country Status (2)

Country Link
CN (1) CN108828702A (zh)
WO (1) WO2019233103A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828702A (zh) * 2018-06-06 2018-11-16 Oppo广东移动通信有限公司 衍射光学元件、光电模组、输入输出组件及电子设备
CN111352181A (zh) * 2018-12-21 2020-06-30 余姚舜宇智能光学技术有限公司 一种二元光学元件及其制造方法和投射模组
CN111246073B (zh) * 2020-03-23 2022-03-25 维沃移动通信有限公司 成像装置、方法及电子设备
CN112034665B (zh) * 2020-09-15 2022-05-17 Oppo(重庆)智能科技有限公司 闪光灯组件及电子设备
CN114706093A (zh) * 2022-03-15 2022-07-05 Oppo广东移动通信有限公司 光学组件、光发射模组、深度相机及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078503A (ja) * 1996-09-03 1998-03-24 Ricoh Co Ltd 回折格子の作製方法
EP2833168A1 (en) * 2013-07-30 2015-02-04 Canon Kabushiki Kaisha Transmission diffractive optical element and measuring device
CN107968862A (zh) * 2017-12-26 2018-04-27 广东欧珀移动通信有限公司 输出模组和电子装置
CN207456385U (zh) * 2017-11-30 2018-06-05 深圳奥比中光科技有限公司 具有光束监测单元的投影模组
CN108828702A (zh) * 2018-06-06 2018-11-16 Oppo广东移动通信有限公司 衍射光学元件、光电模组、输入输出组件及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0990927A3 (en) * 1998-09-28 2000-12-13 Sharp Kabushiki Kaisha Diffraction grating having multiple gratings with different cycles for generating multiple beams and optical pickup using such diffraction grating
CN204271437U (zh) * 2014-10-31 2015-04-15 高准精密工业股份有限公司 表面固定型衍射光学激光模组
JP2019510998A (ja) * 2016-01-30 2019-04-18 レイア、インコーポレイテッドLeia Inc. プライバシーディスプレイおよびデュアルモードプライバシーディスプレイシステム
CN108124032B (zh) * 2017-12-26 2020-08-07 Oppo广东移动通信有限公司 电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078503A (ja) * 1996-09-03 1998-03-24 Ricoh Co Ltd 回折格子の作製方法
EP2833168A1 (en) * 2013-07-30 2015-02-04 Canon Kabushiki Kaisha Transmission diffractive optical element and measuring device
CN207456385U (zh) * 2017-11-30 2018-06-05 深圳奥比中光科技有限公司 具有光束监测单元的投影模组
CN107968862A (zh) * 2017-12-26 2018-04-27 广东欧珀移动通信有限公司 输出模组和电子装置
CN108828702A (zh) * 2018-06-06 2018-11-16 Oppo广东移动通信有限公司 衍射光学元件、光电模组、输入输出组件及电子设备

Also Published As

Publication number Publication date
CN108828702A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019233103A1 (zh) 衍射光学元件、光电模组、输入输出组件及电子设备
US11048155B2 (en) Diffractive optical assembly, laser projection unit, and depth camera
TWI677714B (zh) 鐳射投射結構和電子裝置
US10823852B2 (en) Laser projector, camera unit and electronic device
TWI771569B (zh) 鐳射投射模組、深度相機及電子裝置
CN108490631B (zh) 结构光投射器、图像获取结构和电子装置
CN108303757B (zh) 激光投射模组、深度相机和电子装置
TWI697729B (zh) 鐳射投射模組、深度相機和電子裝置
CN108490628B (zh) 结构光投射器、深度相机和电子设备
WO2019192240A1 (zh) 激光发射器、光电设备、深度相机和电子装置
CN108415209B (zh) 结构光投射模组、摄像组件和电子装置
CN108388065B (zh) 结构光投射器、光电设备和电子装置
CN108303756B (zh) 激光投射模组、深度相机和电子装置
CN108563032A (zh) 结构光投射器、摄像组件和电子设备
TWI683138B (zh) 鐳射投射模組、深度相機和電子裝置
WO2020253686A1 (zh) 激光投射模组、深度相机和电子装置
CN108594449B (zh) 激光投射模组、深度相机和电子装置
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
CN108508619B (zh) 激光投射模组、深度相机和电子装置
CN108508618B (zh) 激光投射模组、深度相机和电子装置
CN108508623B (zh) 激光投射模组、深度相机和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815061

Country of ref document: EP

Kind code of ref document: A1