WO2019230777A1 - Method for extending harvesting period - Google Patents

Method for extending harvesting period Download PDF

Info

Publication number
WO2019230777A1
WO2019230777A1 PCT/JP2019/021244 JP2019021244W WO2019230777A1 WO 2019230777 A1 WO2019230777 A1 WO 2019230777A1 JP 2019021244 W JP2019021244 W JP 2019021244W WO 2019230777 A1 WO2019230777 A1 WO 2019230777A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
extending
nanobubble
harvesting period
nanobubble water
Prior art date
Application number
PCT/JP2019/021244
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 奥山
Original Assignee
株式会社アクアソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクアソリューション filed Critical 株式会社アクアソリューション
Priority to JP2020522238A priority Critical patent/JPWO2019230777A1/en
Publication of WO2019230777A1 publication Critical patent/WO2019230777A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds

Definitions

  • the present invention relates to a method for extending the harvest period.
  • an object of the present invention is to provide a method for extending the harvesting period that can extend the harvesting period by a simple operation.
  • the present inventor has found that the harvest period can be extended by applying nanobubble water to the plant body, and the present invention has been completed. That is, the present inventor has found that the above problem can be achieved by the following configuration.
  • a method for extending a harvesting period wherein nanobubble water is applied to a plant body.
  • [5] The method for extending a harvest period according to any one of [1] to [4], wherein the nanobubble water has bubbles of 1 ⁇ 10 8 to 1 ⁇ 10 10 cells / mL.
  • [6] The method for extending a harvesting period according to any one of [1] to [5], wherein the plant body is a fruit vegetable.
  • [8] The method for extending a harvesting period according to [7], wherein the plant is a strawberry or a tomato.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the method for extending the harvesting period of the present invention (hereinafter also abbreviated as “the extending method of the present invention”) is a method for extending the harvesting period in which nanobubble water is applied to a plant body.
  • the nanobubble water used by the extension method of this invention and arbitrary components are explained in full detail.
  • the nanobubble water used in the extending method of the present invention is water containing bubbles having a diameter of less than 1 ⁇ m and mixed with the bubbles.
  • the “water mixed with bubbles” is intended to exclude water containing the bubbles inevitably included due to water used for the generation of nanobubble water (for example, well water containing impurities). It is.
  • the diameter (particle diameter) of the bubbles contained in the nanobubble water, the mode particle diameter of the bubbles and the number of bubbles, which will be described later, are determined using the nanoparticle tracking analysis method based on the Brownian movement speed of the bubbles in water.
  • the value measured by the nanoparticle analysis system Nanosite Series is adopted.
  • the diameter can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists.
  • the mode diameter can be confirmed from the particle size distribution of the nanoparticles.
  • the mode particle diameter of bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, for the reason that the effect of extending the harvesting period is further improved. More preferably, it is ⁇ 130 nm.
  • the gas constituting the bubbles contained in the nanobubble water is not particularly limited, but a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
  • a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
  • at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, and ozone is included for the reason that the effect of extending the harvesting period is further improved, and the growth of the plant body is particularly good.
  • oxygen is contained because the bubbles can remain for a longer time.
  • including oxygen means containing at a concentration higher than the oxygen concentration in the air.
  • nitrogen and carbon dioxide is about the density
  • the nanobubble water preferably has 1 ⁇ 10 8 to 1 ⁇ 10 10 bubbles / mL of bubbles for the purpose of further improving the effect of extending the harvesting period. It is more preferable to have more than 1 ⁇ 10 8 cells / mL and less than 1 ⁇ 10 10 cells / mL for the reason that the balance of properties is good. 5 ⁇ 10 8 to 5 ⁇ 10 9 More preferably, it has / mL bubbles.
  • the method for producing nanobubble water examples include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
  • the extending method of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the extension method of the present invention includes, for example, a generation step of taking water from a water source such as a water storage tank, a well, or agricultural water into a nanobubble generation device to generate nanobubble water, and an application step of applying the generated nanobubble water. It may be a control method.
  • a method of taking water from the water source into the nano bubble generating device for example, a method of supplying water pumped up from the water source using a dredger or a pump to the nano bubble generating device, and between the water source and the nano bubble generating device
  • a method may be used in which the laid channel is connected to a nanobubble generator and water is directly sent from the channel to the nanobubble generator.
  • the method for producing the nanobubble water a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
  • the gas mixer includes the liquid ejector and the liquid dispenser.
  • the fine bubble generating device characterized in that gas is pressurized and mixed in the liquid flowing toward the fine bubble generator in a pressurized state between the fine bubble generators.
  • the 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
  • the liquid discharger 30 is comprised with a pump, takes in raw water (for example, well water) of nano bubble water, and discharges it.
  • the gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
  • the nanobubble generating nozzle 50 generates nanobubbles in the gas-containing water according to the principle of pressure dissolution by passing the gas-containing water through the inside, and the structure thereof is disclosed in JP-A-2018-15715.
  • the same structure as the nanobubble generating nozzle described in 1) can be adopted.
  • the nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
  • the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50.
  • Mix gas thereby, it is possible to avoid problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30.
  • the gas since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
  • a flow path of water supplied from a water source such as a well or a water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path.
  • the water pressure (that is, the water pressure on the suction side) may be positive.
  • the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 is a positive pressure, the gas is mixed into the water on the downstream side of the liquid discharger 30.
  • the configuration of the nanobubble generating apparatus 10 that can appropriately mix the gas into water becomes more prominent.
  • generation of the said nano bubble water is not specifically limited, For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used. Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, typically, agricultural water after at least one of precipitation and filtration may be used.
  • the application mode of the nanobubble water to the plant body is not particularly limited because it varies depending on the cultivation method of the plant body.
  • the nanobubble water is sprayed in soil cultivation, and the nanobubble is sprayed in soil cultivation.
  • the culture solution diluted with the nanobubble water in the hydroponic culture hydroponic, spray plowing or solid medium plowing
  • hydroponic soil plowing silictaneous fertilization cultivation
  • the aspect which supplies, the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned.
  • the method of "watering" which is one mode of application is not particularly limited.
  • the cultivation method is soil cultivation, for example, a method of spraying water over the entire plant body, a part of the plant body ( For example, a method of spraying water on stems or leaves) and a method of spraying water on soil in which plants are planted.
  • the cultivation method is hydroponics cultivation, as mentioned above, watering by irrigation may be used.
  • the application time of the nanobubble water to the plant body is not particularly limited because it varies depending on the application mode and the type of the plant body.
  • the whole period may be sufficient, and you may apply only for a fixed period (for example, sowing and raising seedling period).
  • the nanobubble water may further contain other components.
  • the other components include agricultural chemicals, fertilizers, surfactants, antifreezing agents, antifoaming agents, antiseptics, antioxidants, and thickeners.
  • the kind and content of other components are not particularly limited and can be selected according to the purpose.
  • radicals are not substantially contained in the nanobubble water as the other component.
  • substantially free of radicals is intended to exclude the inevitable inclusion of radicals due to water (for example, well water containing impurities) used to generate the nanobubble water. The intention is to exclude the incorporation of radicals generated by some operation.
  • the plant body to which the nanobubble water is applied is not particularly limited as long as it is a plant body that can produce a harvested product (for example, fruits, vegetables, flowers, etc.) that is harvested by human beings for food and ornamental purposes.
  • plant bodies include solanaceous plants (eg, eggplant, pepino, tomato (including cherry tomatoes), tamarillo, capsicum, shrimp, habanero, pepper, paprika, and color pepper) Plants (e.g. Takatsutsume), cucurbitaceae plants (e.g.
  • rosaceae plants eg, strawberries
  • Citrus for example, mandarin oranges
  • Rosaceae for example, apple, peach, plum, bayberry, quince, pear, pear, ume, apricot, cherry, raspberry, raspberry, blackberry, and loquat
  • Ganoderma eg, bananas
  • Grapeaceous eg, grapes
  • Gummy eg, gummy
  • Azalea eg, blueberry
  • Mulberry eg, mulberry
  • oysters eg, oysters
  • echaceae eg, snakes
  • urushi eg, mango
  • camphors eg, avocados
  • buckthorn eg, avocados
  • Jujube etc.
  • fruit vegetables are preferred, rose family plants or solanaceous plants are more preferred, and strawberries or tomatoes are even more preferred because of the increased usefulness of the control method of the present invention.
  • Test Example 1 ⁇ Content of the test> The test was conducted in the field of strawberry (variety: Yayoihime) cultivated in Shibukawa City, Gunma Prefecture from September 2016 to April 2017.
  • Test plot I Nanobubble water generated by the following method was used for watering once a week in soil cultivation in an area (150 m 2 ) containing 1200 strains of strawberries.
  • Test area II Agricultural water was used for watering once a week in soil cultivation in an area (850 m 2 ) containing 7300 strawberries, and nanobubble water was not used. The method, frequency and amount of watering were appropriately changed according to strawberry growth conditions, weather, etc., according to a conventional method, but were adjusted to be substantially the same in both test areas.
  • Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator [Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 200 V, 40 L / min type)] under pressure and dissolution. It was generated by letting.
  • generation of nano bubble water was used for agricultural water, and oxygen (industrial oxygen, density
  • the conditions for generating nanobubbles using the nanobubble generator described above were performed under the condition that the analysis result by the nanoparticle analysis system Nanosite LM10 (manufactured by NanoSight) is as follows. ⁇ Number of bubbles per mL of water: 5 ⁇ 10 8 / mL ⁇ Mode of bubble particle size: 100 nm
  • Test area I As shown in FIG. 2A, even in April 2017, many leaves have fallen (sleeping), so it can be expected to harvest until around July 2017. I understood that.
  • Test Zone II As shown in FIG. 2B, as of April 2017, many leaves are standing and the number of runners is increasing, so it may be the end of the harvest season I understood.
  • Test Example 2 ⁇ Content of the test> The tests were conducted in the following categories in an agricultural house of tomatoes (variety: Frutika) cultivated in Fujisawa City, Kanagawa Prefecture from February to August 2017.
  • Test Zone I Nanobubble water generated by the same method as in Test Example 1 was used for watering in soil cultivation of tomatoes.
  • Test Zone II Well water was used for watering in soil cultivation of tomato, and nanobubble water was not used.
  • Each test area was divided by adjacent agricultural houses, and 6500 tomato plants were cultivated in each agricultural house.
  • the method, frequency, and quantity of watering were changed suitably according to the growth condition of the tomato, the weather, etc. according to the conventional method, it adjusted so that it might become substantially the same in both test sections.
  • Test Zone I As shown in FIG. 3A, it was found that even in June 2017, the leaves were dark and the flower buds were well attached, so that further harvest could be expected. I was able to harvest until the moon.
  • Test Zone II As shown in FIG. 3B, at the time of June 2017, the leaf color was light and the flower buds were poor, indicating that it was the end of the harvest period.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention addresses the issue of extending the harvesting period and is capable of extending the harvesting period by using a simple operation. This method for extending the harvesting period applies nanobubble water to plants.

Description

収穫期の延長方法How to extend harvest time
 本発明は、収穫期の延長方法に関する。 The present invention relates to a method for extending the harvest period.
 野菜類の露地栽培およびハウス栽培等による促進栽培は、近年の生鮮青果物の消費量の増加に伴って全国的に盛んに行われている。
 しかしながら、1つの栽培地域での収穫期間には限りがあるため、収穫野菜類の高品質化への品種改良に加えて、収穫期間の延長、鮮度保持方法の改良等による消費者への周年安定供給への努力が払われている。
Accelerated cultivation of vegetables by open field cultivation and house cultivation has been actively performed nationwide with the recent increase in consumption of fresh fruits and vegetables.
However, since there is a limited harvest period in one cultivation area, in addition to improving the quality of harvested vegetables, it is possible to stabilize the year for consumers by extending the harvest period and improving the freshness preservation method. Efforts to supply are made.
 このような観点から、例えば、特許文献1では、「籾殻を120~600℃、圧力100kg/cm~100Ton/cmで熱間加圧擂潰処理した籾殻微粉末を0.1~70容量%含有させた野菜類栽培用土壌を用いることを特徴とする、野菜類の栽培方法。」が提案されている([請求項3])。 From this point of view, for example, in Patent Document 1, “the rice husk is heated at 120 to 600 ° C. and the pressure is 100 kg / cm 2 to 100 Ton / cm 2 , and the rice husk fine powder is 0.1 to 70 vol. A vegetable cultivation method characterized by using a soil for vegetable cultivation containing 1% "has been proposed ([Claim 3]).
特開平07-059460号公報JP 07-059460 A
 本発明者は、特許文献1に記載された栽培方法について検討したところ、作製する籾殻微粉末の品質管理、および、土壌に含ませる籾殻微粉末の含有量の管理が難しいなどの問題があることを明らかとした。 When this inventor examined the cultivation method described in patent document 1, there exist problems, such as the quality control of the rice husk fine powder to produce, and the management of content of the rice husk fine powder contained in soil being difficult. It was made clear.
 そこで、本発明は、簡便な操作によって収穫期の延長を図ることができる収穫期の延長方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for extending the harvesting period that can extend the harvesting period by a simple operation.
 本発明者は、上記課題を達成すべく鋭意検討した結果、植物体にナノバブル水を施用することにより、収穫期の延長を図ることができることを見出し、本発明を完成させた。
 すなわち、本発明者は、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that the harvest period can be extended by applying nanobubble water to the plant body, and the present invention has been completed.
That is, the present inventor has found that the above problem can be achieved by the following configuration.
 [1] ナノバブル水を植物体に施用する、収穫期の延長方法。
 [2] 上記ナノバブル水を用いた散水、および、上記ナノバブル水を用いて希釈した培養液の供給のうち、少なくとも一方を実施する、[1]に記載の収穫期の延長方法。
 [3] 上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、[1]または[2]に記載の収穫期の延長方法。
 [4] 上記ナノバブル水に含まれる気泡が、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含む、[1]~[3]のいずれかに記載の収穫期の延長方法。
 [5] 上記ナノバブル水が、1×10~1×1010個/mLの気泡を有する、[1]~[4]のいずれかに記載の収穫期の延長方法。
 [6] 上記植物体が、果菜類である、[1]~[5]のいずれかに記載の収穫期の延長方法。
 [7] 上記植物体が、バラ科植物またはナス科植物である、[6]に記載の収穫期の延長方法。
 [8] 上記植物体が、イチゴまたはトマトである、[7]に記載の収穫期の延長方法。
[1] A method for extending a harvesting period, wherein nanobubble water is applied to a plant body.
[2] The method for extending the harvest period according to [1], wherein at least one of watering using the nanobubble water and supply of a culture solution diluted using the nanobubble water is performed.
[3] The method for extending the harvesting period according to [1] or [2], wherein the mode particle diameter of bubbles contained in the nanobubble water is 10 to 500 nm.
[4] The harvest period according to any one of [1] to [3], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, and ozone. Extension method.
[5] The method for extending a harvest period according to any one of [1] to [4], wherein the nanobubble water has bubbles of 1 × 10 8 to 1 × 10 10 cells / mL.
[6] The method for extending a harvesting period according to any one of [1] to [5], wherein the plant body is a fruit vegetable.
[7] The method for extending a harvesting period according to [6], wherein the plant body is a rose family plant or a solanaceous plant.
[8] The method for extending a harvesting period according to [7], wherein the plant is a strawberry or a tomato.
 本発明によれば、簡便な操作によって収穫期の延長を図ることができる収穫期の延長方法を提供することができる。 According to the present invention, it is possible to provide a method for extending the harvesting period that can extend the harvesting period by a simple operation.
ナノバブル生成装置の一例を示す模式図である。It is a schematic diagram which shows an example of a nano bubble production | generation apparatus. イチゴの試験区Iの圃場を表す画像である。It is an image showing the field of the test area I of a strawberry. イチゴの試験区IIの圃場を表す画像である。It is an image showing the field of the test area II of a strawberry. トマトの試験区Iの農業ハウスの内部を表す画像である。It is an image showing the inside of the agricultural house of the test area I of a tomato. トマトの試験区IIの農業ハウスの内部を表す画像である。It is an image showing the inside of the agricultural house of the tomato test area II.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本発明の収穫期の延長方法(以下、「本発明の延長方法」とも略す。)は、ナノバブル水を植物体に施用する、収穫期の延長方法である。
 以下に、本発明の延長方法で用いるナノバブル水および任意の成分について詳述する。
The method for extending the harvesting period of the present invention (hereinafter also abbreviated as “the extending method of the present invention”) is a method for extending the harvesting period in which nanobubble water is applied to a plant body.
Below, the nanobubble water used by the extension method of this invention and arbitrary components are explained in full detail.
 〔ナノバブル水〕
 本発明の延長方法で用いるナノバブル水は、直径が1μm未満の気泡を含む水であって、上記気泡を混入させた水である。なお、「上記気泡を混入させた水」とは、ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的に含まれる上記気泡を含む水を除外する意図である。
 ここで、ナノバブル水に含まれる気泡の直径(粒子径)、ならびに、後述する気泡の最頻粒子径および気泡の個数は、水中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した値であり、本明細書においては、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を採用する。
 なお、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)では、直径(粒子径)は、粒子のブラウン運動の速度を計測し、その速度から算出することができ、最頻粒子径は、存在するナノ粒子の粒子径分布から、モード径として確認することができる。
[Nano bubble water]
The nanobubble water used in the extending method of the present invention is water containing bubbles having a diameter of less than 1 μm and mixed with the bubbles. The “water mixed with bubbles” is intended to exclude water containing the bubbles inevitably included due to water used for the generation of nanobubble water (for example, well water containing impurities). It is.
Here, the diameter (particle diameter) of the bubbles contained in the nanobubble water, the mode particle diameter of the bubbles and the number of bubbles, which will be described later, are determined using the nanoparticle tracking analysis method based on the Brownian movement speed of the bubbles in water. In this specification, the value measured by the nanoparticle analysis system Nanosite Series (manufactured by NanoSight) is adopted.
In the nanoparticle analysis system Nanosite Series (manufactured by NanoSight), the diameter (particle diameter) can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists. The mode diameter can be confirmed from the particle size distribution of the nanoparticles.
 本発明においては、収穫期の延長効果がより向上する理由から、上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmであることが好ましく、30~300nmであることがより好ましく、70~130nmであることが更に好ましい。 In the present invention, the mode particle diameter of bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, for the reason that the effect of extending the harvesting period is further improved. More preferably, it is ˜130 nm.
 上記ナノバブル水に含まれる気泡を構成する気体は特に限定されないが、水中に長時間残存させる観点から、水素以外の気体が好ましく、具体的には、例えば、空気、酸素、窒素、フッ素、二酸化炭素、および、オゾンなどが挙げられる。
 これらのうち、収穫期の延長効果がより向上する理由から、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含むことが好ましく、特に、植物体の生育が良好となり、また、気泡がより長時間残存することができる理由から、酸素を含むことがより好ましい。
 ここで、酸素を含むこととは、空気中の酸素濃度よりも高い濃度で含むことをいう。窒素、および、二酸化炭素も同様である。なお、酸素の濃度については、気泡中の30体積%以上であることが好ましく、50体積%超100体積%以下であることが好ましい。
The gas constituting the bubbles contained in the nanobubble water is not particularly limited, but a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, and specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide And ozone.
Among these, it is preferable that at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, and ozone is included for the reason that the effect of extending the harvesting period is further improved, and the growth of the plant body is particularly good. In addition, it is more preferable that oxygen is contained because the bubbles can remain for a longer time.
Here, including oxygen means containing at a concentration higher than the oxygen concentration in the air. The same applies to nitrogen and carbon dioxide. In addition, about the density | concentration of oxygen, it is preferable that it is 30 volume% or more in a bubble, and it is preferable that it is more than 50 volume% and 100 volume% or less.
 上記ナノバブル水は、収穫期の延長効果がより向上する理由から、1×10~1×1010個/mLの気泡を有していることが好ましく、特に、気泡の生成時間と気泡の残存性のバランスが良好となる理由から、1×10個/mLより多く、1×1010個/mLより少ない気泡を有していることがより好ましく、5×10~5×10個/mLの気泡を有していることが更に好ましい。 The nanobubble water preferably has 1 × 10 8 to 1 × 10 10 bubbles / mL of bubbles for the purpose of further improving the effect of extending the harvesting period. It is more preferable to have more than 1 × 10 8 cells / mL and less than 1 × 10 10 cells / mL for the reason that the balance of properties is good. 5 × 10 8 to 5 × 10 9 More preferably, it has / mL bubbles.
 上記ナノバブル水の生成方法としては、例えば、スタティックミキサー法、ベンチュリ法、キャビテーション法、蒸気凝集法、超音波法、旋回流法、加圧溶解法、および、微細孔法等が挙げられる。
 ここで、本発明の延長方法は、上記ナノバブル水を施用する前に、上記ナノバブル水を生成させる生成工程を有していてもよい。すなわち、本発明の延長方法は、例えば、貯水タンク、井戸または農業用水などの水源から水をナノバブル生成装置に取り込み、ナノバブル水を生成させる生成工程と、生成したナノバブル水を施用する施用工程とを有する防除方法であってもよい。なお、水源からの水をナノバブル生成装置に取り込む手法としては、例えば、桶またはポンプ等を用いて水源から汲み上げた水をナノバブル生成装置に供給する手法、および、水源とナノバブル生成装置との間に敷設された流路をナノバブル生成装置に繋いで流路からナノバブル生成装置へ水を直接送り込む手法などが挙げられる。
Examples of the method for producing nanobubble water include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
Here, the extending method of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the extension method of the present invention includes, for example, a generation step of taking water from a water source such as a water storage tank, a well, or agricultural water into a nanobubble generation device to generate nanobubble water, and an application step of applying the generated nanobubble water. It may be a control method. In addition, as a method of taking water from the water source into the nano bubble generating device, for example, a method of supplying water pumped up from the water source using a dredger or a pump to the nano bubble generating device, and between the water source and the nano bubble generating device For example, a method may be used in which the laid channel is connected to a nanobubble generator and water is directly sent from the channel to the nanobubble generator.
 また、上記ナノバブル水の生成方法としては、意図的にラジカルを発生させることがない装置を用いた生成方法が好ましく、具体的には、例えば、特開2018-15715号公報の[0080]~[0100]段落に記載されたナノバブル生成装置を用いて生成する方法が挙げられる。なお、上記の内容は本明細書に組み込まれる。 Further, as the method for producing the nanobubble water, a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
 意図的にラジカルを発生させることがない他のナノバブル生成装置としては、例えば、水を吐出する液体吐出機と、上記液体吐出機から吐出された水に、気体を加圧して混入させる気体混入機と、気体を混入させた水を内部に通すことにより、水中に微細気泡を生成する微細気泡生成器と、を有する微細気泡生成装置であって、上記気体混入機が、上記液体吐出機と上記微細気泡生成器の間において、加圧された状態で上記微細気泡生成器に向かって流れる液体に、気体を加圧して混入させることを特徴とする微細気泡生成装置が挙げられる。具体的には、図1に示すナノバブル生成装置を用いて生成する方法が挙げられる。
 ここで、図1に示すナノバブル生成装置10は、その内部に液体吐出機30、気体混入機40、および、ナノバブル生成ノズル50を備える。
 また、液体吐出機30は、ポンプによって構成され、ナノバブル水の原水(例えば、井戸水)を取り込んで吐出する。気体混入機40は、圧縮ガスが封入された容器41と、略筒状の気体混入機本体42とを有し、液体吐出機30から吐出された水を気体混入機本体42内に流しつつ、気体混入機本体42内に容器41内の圧縮ガスを導入する。これにより、気体混入機本体42内で気体混入水が生成されることになる。
 また、ナノバブル生成ノズル50は、その内部に気体混入水が通過することにより、加圧溶解の原理に従って気体混入水中にナノバブルを発生させるものであり、その構造としては、特開2018-15715号公報に記載されたナノバブル生成ノズルと同じ構造が採用できる。ナノバブル生成ノズル50内に生成されたナノバブル水は、ナノバブル生成ノズル50の先端から噴出した後、ナノバブル生成装置10から流出し、不図示の流路内を通じて所定の利用先に向けて送水される。
 以上のようにナノバブル生成装置10では、気体混入機40が、液体吐出機30とナノバブル生成ノズル50の間において、加圧された状態でナノバブル生成ノズル50に向かって流れる水(原水)に、圧縮ガスを混入させる。これにより、液体吐出機30の吸込み側(サクション側)で気体を水に混入させるときに生じるキャビテーション等の不具合を回避することができる。また、ガスが加圧(圧縮)された状態で水に混入されるので、ガス混入箇所での水の圧力に抗してガスを混入させることができる。このため、ガス混入箇所において特に負圧を発生させなくとも、ガスを適切に水に混入させることが可能となる。
 さらに、液体吐出機30のサクション側に、井戸または水道等の水源から供給される水の流路が繋ぎ込まれており、その流路において液体吐出機30の上流側から液体吐出機30に流れ込む水の圧力(すなわち、サクション側の水圧)が正圧であるとよい。この場合には、上記の構成がより有意義なものとなる。すなわち、液体吐出機30の上流側の水圧(サクション圧)が正圧となる場合には、液体吐出機30の下流側でガスを水に混入させることになるため、液体吐出機30の下流側でもガスを適切に水に混入させることができるナノバブル生成装置10の構成がより際立つことになる。
Examples of other nanobubble generation devices that do not intentionally generate radicals include, for example, a liquid discharger that discharges water and a gas mixing device that pressurizes and mixes gas into water discharged from the liquid discharger. And a fine bubble generator for generating fine bubbles in water by passing water mixed with gas inside, wherein the gas mixer includes the liquid ejector and the liquid dispenser. There is a fine bubble generating device characterized in that gas is pressurized and mixed in the liquid flowing toward the fine bubble generator in a pressurized state between the fine bubble generators. Specifically, a method of generating using the nanobubble generating device shown in FIG.
Here, the nanobubble generating device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
Moreover, the liquid discharger 30 is comprised with a pump, takes in raw water (for example, well water) of nano bubble water, and discharges it. The gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
Further, the nanobubble generating nozzle 50 generates nanobubbles in the gas-containing water according to the principle of pressure dissolution by passing the gas-containing water through the inside, and the structure thereof is disclosed in JP-A-2018-15715. The same structure as the nanobubble generating nozzle described in 1) can be adopted. The nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
As described above, in the nanobubble generating device 10, the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50. Mix gas. Thereby, it is possible to avoid problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30. Further, since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
Further, a flow path of water supplied from a water source such as a well or a water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path. The water pressure (that is, the water pressure on the suction side) may be positive. In this case, the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 is a positive pressure, the gas is mixed into the water on the downstream side of the liquid discharger 30. However, the configuration of the nanobubble generating apparatus 10 that can appropriately mix the gas into water becomes more prominent.
 また、上記ナノバブル水の生成に使用する水は特に限定されず、例えば、雨水、水道水、井水、農業用水、および、蒸留水等を使用することができる。
 このような水は、ナノバブル水の発生に供される前に他の処理を施されたものであってもよい。他の処理としては、例えば、pH調整、沈殿、ろ過、および、滅菌(殺菌)等が挙げられる。具体的には、例えば、農業用水を使用する場合、典型的には、沈殿、および、ろ過のうちの少なくとも一方を施した後の農業用水を使用してもよい。
Moreover, the water used for the production | generation of the said nano bubble water is not specifically limited, For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used.
Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, typically, agricultural water after at least one of precipitation and filtration may be used.
 本発明においては、上記ナノバブル水の植物体への施用態様は、植物体の栽培方法により異なるため特に限定されないが、例えば、土耕栽培において上記ナノバブル水を散水する態様、土耕栽培において上記ナノバブル水によって希釈された農薬を散布する態様、養液栽培(水耕、噴霧耕もしくは固形培地耕)または養液土耕栽培(灌水同時施肥栽培)において上記ナノバブル水によって希釈された培養液を培地に供給する態様、および、養液土耕栽培において上記ナノバブル水をそれ単独で散水(灌水)する態様などが挙げられる。
 これらのうち、より簡便な操作によって延長効果を図ることができる理由から、上記ナノバブル水を用いた散水、および、上記ナノバブル水を用いて希釈した培養液の供給のうち、少なくとも一方を実施する態様が好ましい。
 なお、施用の一態様である「散水」の方法は特に限定されず、栽培方法が土耕栽培である場合には、例えば、植物体の全体に水を散布する方法、植物体の一部(例えば、茎または葉など)に水を散布する方法、および、植物体が植えられた土壌に水を散布する方法などが挙げられる。また、栽培方法が養液土耕栽培である場合は、上述したように、灌水による散水であってもよい。
In the present invention, the application mode of the nanobubble water to the plant body is not particularly limited because it varies depending on the cultivation method of the plant body. For example, the nanobubble water is sprayed in soil cultivation, and the nanobubble is sprayed in soil cultivation. In the aspect of spraying the pesticide diluted with water, the culture solution diluted with the nanobubble water in the hydroponic culture (hydroponic, spray plowing or solid medium plowing) or hydroponic soil plowing (simultaneous fertilization cultivation) The aspect which supplies, the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned.
Among these, for the reason that the extension effect can be achieved by a simpler operation, at least one of the watering using the nanobubble water and the supply of the culture solution diluted using the nanobubble water is performed. Is preferred.
In addition, the method of "watering" which is one mode of application is not particularly limited. When the cultivation method is soil cultivation, for example, a method of spraying water over the entire plant body, a part of the plant body ( For example, a method of spraying water on stems or leaves) and a method of spraying water on soil in which plants are planted. Moreover, when the cultivation method is hydroponics cultivation, as mentioned above, watering by irrigation may be used.
 また、本発明においては、上記ナノバブル水の植物体への施用時期は、施用態様および、植物体の種類により異なるため特に限定されないが、例えば、果菜類を土耕栽培する場合は、播種から収穫までの全期間であってもよく、一定期間(例えば、播種および育苗期)のみに施用してもよい。 Further, in the present invention, the application time of the nanobubble water to the plant body is not particularly limited because it varies depending on the application mode and the type of the plant body. The whole period may be sufficient, and you may apply only for a fixed period (for example, sowing and raising seedling period).
 <他の成分>
 上記ナノバブル水は、更に他の成分を含んでいてもよい。
 上記他の成分としては、例えば、農薬、肥料、界面活性剤、凍結防止剤、消泡剤、防腐剤、酸化防止剤、および、増粘剤等が挙げられる。他の成分の種類、および、含有量は特に限定されず、目的に応じて選択可能である。
 ただし、本発明においては、上記他の成分として、上記ナノバブル水中においてラジカルを実質的に含まないことが好ましい。なお、「ラジカルを実質的に含まない」とは、上記ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的にラジカルが含まれることを除外する意図ではなく、何らかの操作で生成させたラジカルを混入させることを除外する意図である。
<Other ingredients>
The nanobubble water may further contain other components.
Examples of the other components include agricultural chemicals, fertilizers, surfactants, antifreezing agents, antifoaming agents, antiseptics, antioxidants, and thickeners. The kind and content of other components are not particularly limited and can be selected according to the purpose.
However, in the present invention, it is preferable that radicals are not substantially contained in the nanobubble water as the other component. Note that “substantially free of radicals” is intended to exclude the inevitable inclusion of radicals due to water (for example, well water containing impurities) used to generate the nanobubble water. The intention is to exclude the incorporation of radicals generated by some operation.
 〔植物体〕
 本発明においては、上記ナノバブル水を施用する植物体は、人間が食用、観賞用などの意図をもって収穫する収穫物(例えば、果物、野菜および花など)を実らせる植物体であれば特に限定されない。
 このような植物体としては、例えば、ナス科植物(例えば、ナス、ペピーノ、トマト(ミニトマトを含む)、タマリロ、トウガラシ、シシトウガラシ、ハバネロ、ピーマン、パプリカ、および、カラーピーマンなど)、ウコギ科植物(例えば、タカノツメなど)、ウリ科植物(例えば、カボチャ、ズッキーニ、キュウリ、ツノニガウリ、シロウリ、ゴーヤ、トウガン、ハヤトウリ、ヘチマ、ユウガオ、スイカ、メロン、および、マクワウリなど)、アオイ科植物(例えば、オクラなど)、ならびに、バラ科植物(例えば、イチゴなど)等の果菜類;
 ミカン科植物(例えば、ミカンなど)、バラ科植物(例えば、リンゴ、モモ、スモモ、ヤマモモ、カリン、ナシ、西洋ナシ、ウメ、アンズ、サクランボ、キイチゴ、ラズベリー、ブラックベリー、および、ビワなど)、バショウ科植物(例えば、バナナなど)、ブドウ科植物(例えば、ブドウなど)、グミ科植物(例えば、グミなど)、ツツジ科植物(例えば、ブルーベリーなど)、クワ科植物(例えば、クワ、および、イチジクなど)、カキノキ科植物(例えば、カキなど)、アケビ科植物(例えば、アケビなど)、ウルシ科植物(例えば、マンゴーなど)、クスノキ科植物(例えば、アボカドなど)、クロウメモドキ科植物(例えば、ナツメなど)、ミソハギ科植物(例えば、ザクロなど)、トケイソウ科植物(例えば、パッションフルーツなど)、パイナップル科植物(例えば、パイナップルなど)、パパイア科植物(例えば、パパイアなど)、マタタビ科植物(例えば、キウイフルーツなど)、ブナ科植物(例えば、クリなど)、アカテツ科植物(例えば、ミラクルフルーツなど)、フトモモ科植物(例えば、グァバなど)、カタバミ科植物(例えば、スターフルーツなど)、ならびに、キントラノオ科(例えば、アセロラなど)等の果樹類;
 などが挙げられる。
[Plant]
In the present invention, the plant body to which the nanobubble water is applied is not particularly limited as long as it is a plant body that can produce a harvested product (for example, fruits, vegetables, flowers, etc.) that is harvested by human beings for food and ornamental purposes. .
Examples of such plant bodies include solanaceous plants (eg, eggplant, pepino, tomato (including cherry tomatoes), tamarillo, capsicum, shrimp, habanero, pepper, paprika, and color pepper) Plants (e.g. Takatsutsume), cucurbitaceae plants (e.g. pumpkin, zucchini, cucumber, horned cucumber, gizzards, bitter gourd, gangan, chayote, loofah, scallop, watermelon, melon, and macauri), mallow Fruits and vegetables such as rosaceae plants (eg, strawberries);
Citrus (for example, mandarin oranges), Rosaceae (for example, apple, peach, plum, bayberry, quince, pear, pear, ume, apricot, cherry, raspberry, raspberry, blackberry, and loquat), Ganoderma (eg, bananas), Grapeaceous (eg, grapes), Gummy (eg, gummy), Azalea (eg, blueberry), Mulberry (eg, mulberry), and Figs), oysters (eg, oysters), echaceae (eg, snakes), urushi (eg, mango), camphors (eg, avocados), buckthorn (eg, avocados) Jujube, etc.), Lamiaceae (for example, pomegranate), Passifloraceae (for example, passionful) Pineapple plants (eg, pineapple), papaya plants (eg, papaya), matabidae plants (eg, kiwi fruit), beech plants (eg, chestnuts), acetaceae plants (eg, , Miracle fruits, etc.), myrtaceae plants (eg, guava), oxalis plants (eg, star fruit), and fruit trees such as quintranoaceae (eg, acerola);
Etc.
 これらのうち、本発明の防除方法の有用性が高くなる理由から、果菜類が好ましく、バラ科植物またはナス科植物がより好ましく、イチゴまたはトマトが更に好ましい。 Of these, fruit vegetables are preferred, rose family plants or solanaceous plants are more preferred, and strawberries or tomatoes are even more preferred because of the increased usefulness of the control method of the present invention.
 以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 〔試験例1〕
 <試験の内容>
 試験は、2016年9月~2017年4月にかけて群馬県渋川市で栽培したイチゴ(品種:やよいひめ)の圃場において、以下の区分により実施した。
 試験区I:イチゴを1200株含む領域(150m)の土耕栽培における、週1回の散水に、下記の方法で生成したナノバブル水を用いた。
 試験区II:イチゴを7300株含む領域(850m)の土耕栽培における、週1回の散水に、農業用水を使用し、ナノバブル水を用いなかった。
 なお、散水の手法、頻度および量は、常法に従い、イチゴの生育状況、および、天候等に応じて適宜変更したが、両試験区で概ね同様となるように調整した。
[Test Example 1]
<Content of the test>
The test was conducted in the field of strawberry (variety: Yayoihime) cultivated in Shibukawa City, Gunma Prefecture from September 2016 to April 2017.
Test plot I: Nanobubble water generated by the following method was used for watering once a week in soil cultivation in an area (150 m 2 ) containing 1200 strains of strawberries.
Test area II: Agricultural water was used for watering once a week in soil cultivation in an area (850 m 2 ) containing 7300 strawberries, and nanobubble water was not used.
The method, frequency and amount of watering were appropriately changed according to strawberry growth conditions, weather, etc., according to a conventional method, but were adjusted to be substantially the same in both test areas.
 <ナノバブル水の生成方法>
 ナノバブル水は、ナノバブル生成装置〔株式会社カクイチ製作所 アクアソリューション事業部(現:株式会社アクアソリューション)製、200V,40L/minタイプ〕を用いて加圧溶解方式にて水中に気泡(ナノバブル)を発生させることで生成した。
 なお、ナノバブル水の生成用に使用した水には、農業用水を用い、気泡を構成する気体には、酸素(工業用酸素、濃度:99.5体積%)を用いた。
 また、上記のナノバブル生成装置を用いてナノバブルを発生させる条件は、ナノ粒子解析システム ナノサイトLM10(NanoSight社製)による解析結果が以下となる条件で行った。
 ・水1mL当たりの気泡の数:5×10個/mL
 ・気泡の最頻粒子径:100nm
<Nano bubble water generation method>
Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator [Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 200 V, 40 L / min type)] under pressure and dissolution. It was generated by letting.
In addition, the water used for production | generation of nano bubble water was used for agricultural water, and oxygen (industrial oxygen, density | concentration: 99.5 volume%) was used for the gas which comprises a bubble.
Moreover, the conditions for generating nanobubbles using the nanobubble generator described above were performed under the condition that the analysis result by the nanoparticle analysis system Nanosite LM10 (manufactured by NanoSight) is as follows.
・ Number of bubbles per mL of water: 5 × 10 8 / mL
・ Mode of bubble particle size: 100 nm
 <収穫期延長の評価>
 各試験区において、葉の状態を目視で確認した。結果を以下に示す。
 試験区I:図2Aに示す通り、2017年4月の時点においても、多くの葉が倒れている(寝ている)状態を維持しているため、2017年7月頃まで収穫が見込める状態であることが分かった。
 試験区II:図2Bに示す通り、2017年4月の時点において、多くの葉が立った状態となっており、また、ランナーの数も多くなっているため、収穫期の末期であることが分かった。
<Evaluation of harvest period extension>
In each test group, the state of the leaves was confirmed visually. The results are shown below.
Test area I: As shown in FIG. 2A, even in April 2017, many leaves have fallen (sleeping), so it can be expected to harvest until around July 2017. I understood that.
Test Zone II: As shown in FIG. 2B, as of April 2017, many leaves are standing and the number of runners is increasing, so it may be the end of the harvest season I understood.
〔試験例2〕
 <試験の内容>
 試験は、2017年2月~8月にかけて神奈川県藤沢市で栽培したトマト(品種:フルティカ)の農業ハウスにおいて、以下の区分により実施した。
 試験区I:トマトの土耕栽培における散水に、上記試験例1と同様の方法で生成したナノバブル水を用いた。
 試験区II:トマトの土耕栽培における散水に、井戸水を使用し、ナノバブル水を用いなかった。
 各試験区は、隣り合う農業ハウスで区画し、各農業ハウスにおいて6500株のトマトを栽培した。
 なお、散水の手法、頻度および量は、常法に従い、トマトの生育状況、および、天候等に応じて適宜変更したが、両試験区で概ね同様となるように調整した。
[Test Example 2]
<Content of the test>
The tests were conducted in the following categories in an agricultural house of tomatoes (variety: Frutika) cultivated in Fujisawa City, Kanagawa Prefecture from February to August 2017.
Test Zone I: Nanobubble water generated by the same method as in Test Example 1 was used for watering in soil cultivation of tomatoes.
Test Zone II: Well water was used for watering in soil cultivation of tomato, and nanobubble water was not used.
Each test area was divided by adjacent agricultural houses, and 6500 tomato plants were cultivated in each agricultural house.
In addition, although the method, frequency, and quantity of watering were changed suitably according to the growth condition of the tomato, the weather, etc. according to the conventional method, it adjusted so that it might become substantially the same in both test sections.
 <収穫期延長の評価>
 各試験区において、葉および茎の状態を目視で確認した。結果を以下に示す。
 試験区I:図3Aに示す通り、2017年6月の時点においても、葉の色が濃く、花芽の付きが良いため、更なる収穫が見込める状態であることが分かり、実際に、2017年8月まで収穫することができた。
 試験区II:図3Bに示す通り、2017年6月の時点において、葉の色が薄く、花芽の付きが悪いため、収穫期の末期であることが分かった。
<Evaluation of harvest period extension>
In each test section, the state of leaves and stems was visually confirmed. The results are shown below.
Test Zone I: As shown in FIG. 3A, it was found that even in June 2017, the leaves were dark and the flower buds were well attached, so that further harvest could be expected. I was able to harvest until the moon.
Test Zone II: As shown in FIG. 3B, at the time of June 2017, the leaf color was light and the flower buds were poor, indicating that it was the end of the harvest period.
10 ナノバブル生成装置
30 液体吐出機
40 気体混入機
41 容器
42 気体混入機本体
50 ナノバブル生成ノズル
DESCRIPTION OF SYMBOLS 10 Nano bubble production | generation apparatus 30 Liquid discharge machine 40 Gas mixing machine 41 Container 42 Gas mixing machine main body 50 Nano bubble production | generation nozzle

Claims (8)

  1.  ナノバブル水を植物体に施用する、収穫期の延長方法。 】 A method for extending the harvesting period by applying nanobubble water to plants.
  2.  前記ナノバブル水を用いた散水、および、前記ナノバブル水を用いて希釈した培養液の供給のうち、少なくとも一方を実施する、請求項1に記載の収穫期の延長方法。 The method for extending a harvesting period according to claim 1, wherein at least one of watering using the nanobubble water and supply of a culture solution diluted using the nanobubble water is performed.
  3.  前記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、請求項1または2に記載の収穫期の延長方法。 The method for extending a harvest period according to claim 1 or 2, wherein the mode particle diameter of the bubbles contained in the nanobubble water is 10 to 500 nm.
  4.  前記ナノバブル水に含まれる気泡が、酸素、窒素、二酸化炭素およびオゾンからなる群から選択される少なくとも1種の気体を含む、請求項1~3のいずれかに記載の収穫期の延長方法。 The method for extending a harvesting period according to any one of claims 1 to 3, wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide and ozone.
  5.  前記ナノバブル水が、1×10~1×1010個/mLの気泡を有する、請求項1~4のいずれかに記載の収穫期の延長方法。 The method for extending a harvesting period according to any one of claims 1 to 4, wherein the nanobubble water has bubbles of 1 × 10 8 to 1 × 10 10 cells / mL.
  6.  前記植物体が、果菜類である、請求項1~5のいずれかに記載の収穫期の延長方法。 The method for extending a harvesting period according to any one of claims 1 to 5, wherein the plant is a fruit vegetable.
  7.  前記植物体が、バラ科植物またはナス科植物である、請求項6に記載の収穫期の延長方法。 The method for extending a harvest period according to claim 6, wherein the plant body is a rose family plant or a solanaceous plant.
  8.  前記植物体が、イチゴまたはトマトである、請求項7に記載の収穫期の延長方法。 The method for extending a harvesting period according to claim 7, wherein the plant is a strawberry or a tomato.
PCT/JP2019/021244 2018-05-30 2019-05-29 Method for extending harvesting period WO2019230777A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522238A JPWO2019230777A1 (en) 2018-05-30 2019-05-29 How to extend the harvest season

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-103191 2018-05-30
JP2018103191 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230777A1 true WO2019230777A1 (en) 2019-12-05

Family

ID=68698267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021244 WO2019230777A1 (en) 2018-05-30 2019-05-29 Method for extending harvesting period

Country Status (3)

Country Link
JP (1) JPWO2019230777A1 (en)
TW (1) TW202002766A (en)
WO (1) WO2019230777A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042785A (en) * 2004-08-07 2006-02-16 Nanoplanet Kenkyusho:Kk Plant activation apparatus, plant activation method and water purification apparatus using the same
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2010179266A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation
JP2013078761A (en) * 2012-11-14 2013-05-02 National Institute Of Advanced Industrial Science & Technology Ultrafine air bubble-containing water or aqueous solution, method for producing them, and their use
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles
JP2018007646A (en) * 2016-07-15 2018-01-18 株式会社アースプロジェクト Nutrient circulation system, soil conditioner, and nutrient circulation method
JP2018069193A (en) * 2016-11-01 2018-05-10 株式会社スイッチ・オン・ライフ Method for producing mineral water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042785A (en) * 2004-08-07 2006-02-16 Nanoplanet Kenkyusho:Kk Plant activation apparatus, plant activation method and water purification apparatus using the same
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2010179266A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Fine bubbles-containing liquid producing apparatus, plant cultivation apparatus using the apparatus and liquid for plant cultivation
JP2013078761A (en) * 2012-11-14 2013-05-02 National Institute Of Advanced Industrial Science & Technology Ultrafine air bubble-containing water or aqueous solution, method for producing them, and their use
JP2015097509A (en) * 2013-11-19 2015-05-28 サンスター技研株式会社 Plant cultivation method using superfine particles
JP2018007646A (en) * 2016-07-15 2018-01-18 株式会社アースプロジェクト Nutrient circulation system, soil conditioner, and nutrient circulation method
JP2018069193A (en) * 2016-11-01 2018-05-10 株式会社スイッチ・オン・ライフ Method for producing mineral water

Also Published As

Publication number Publication date
TW202002766A (en) 2020-01-16
JPWO2019230777A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2019230788A1 (en) Fertilizer absorption improvement method
JP7210570B2 (en) How to improve soil
WO2019230777A1 (en) Method for extending harvesting period
WO2019230753A1 (en) Whitefly eradication method
WO2019230754A1 (en) Magnesium deficiency prevention method
JP7324747B2 (en) Method for controlling bacterial spot
WO2019230776A1 (en) Method of suppressing clubroot
WO2019230789A1 (en) Method of controlling powdery mildew
WO2019230766A1 (en) Tomato fruit shape control method
WO2019230780A1 (en) Spider mite control method
WO2019230764A1 (en) Antifungal method for fruit and antifungal composition for fruit
WO2019230779A1 (en) Cabbage moth eradication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812022

Country of ref document: EP

Kind code of ref document: A1