WO2019230569A1 - Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board - Google Patents

Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board Download PDF

Info

Publication number
WO2019230569A1
WO2019230569A1 PCT/JP2019/020534 JP2019020534W WO2019230569A1 WO 2019230569 A1 WO2019230569 A1 WO 2019230569A1 JP 2019020534 W JP2019020534 W JP 2019020534W WO 2019230569 A1 WO2019230569 A1 WO 2019230569A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal foil
layer
resin layer
group
Prior art date
Application number
PCT/JP2019/020534
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
達也 寺田
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201980035279.8A priority Critical patent/CN112236302B/en
Priority to JP2020522146A priority patent/JP7196914B2/en
Priority to KR1020207022926A priority patent/KR20210016322A/en
Publication of WO2019230569A1 publication Critical patent/WO2019230569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene

Definitions

  • the present invention relates to a method for producing a resin-coated metal foil, a resin-coated metal foil, a laminate, and a printed board.
  • a resin-coated metal foil having an insulating resin layer on the surface of the metal foil is used as a printed board by processing the metal foil by etching or the like to form a transmission circuit.
  • a printed circuit board used for high-frequency signal transmission is required to have excellent transmission characteristics.
  • Fluoropolymers such as polytetrafluoroethylene (PTFE) are known as resins having a small relative dielectric constant and dielectric loss tangent.
  • the surface treatment may induce a change with time, a shape change, and the like, thereby impairing the original electrical characteristics and mechanical strength of the insulating resin layer.
  • a method for producing a resin-coated metal foil having an insulating resin layer having excellent physical properties, including various properties, including a fluoropolymer, from a powder dispersion containing a fluoropolymer powder It has been.
  • fluoropolymers are inherently low in adhesiveness and high in heat stretchability, so that a printed circuit board formed from a resin-coated metal foil as the insulating resin layer can be used without losing its dimensional stability. It is not easy to make a multilayer by firmly bonding to another substrate.
  • Patent Document 4 it is desirable to use a high melting point fluoropolymer in order to maintain transmission characteristics and mechanical strength after multilayering. In this case, it is necessary to thermocompress the printed circuit board and the prepreg at a high temperature in the multilayering. Therefore, there is a problem that the dimensional stability of the printed circuit board is lowered due to the high temperature in thermocompression bonding.
  • the present invention provides an efficient method for producing a resin-coated metal foil having a resin layer having an excellent adhesive property, including a fluoropolymer, which is excellent in electrical characteristics and mechanical strength and useful for producing a printed circuit board. .
  • the present invention provides a metal foil with a resin having a resin layer having an excellent adhesive property, including a fluoropolymer, which is excellent in electrical characteristics and mechanical strength and useful for producing a printed circuit board.
  • the present invention provides a laminate and a printed circuit board that are excellent in transmission characteristics and mechanical strength, in which each layer is firmly bonded, and there is little warpage.
  • a method for producing a resin-coated metal foil having a resin layer on the surface of the metal foil wherein the mass reduction rate in a temperature region of 80 to 300 ° C. with a powder of tetrafluoroethylene polymer is 1% by mass / min or more.
  • a powder dispersion containing a dispersant and a solvent is applied to the surface of the metal foil, and the metal foil is held at a temperature at which the mass reduction rate in the temperature region is 1% by mass / min or more.
  • a method for producing a resin-coated metal foil comprising firing a tetrafluoroethylene-based polymer at a temperature to form a resin layer containing the tetrafluoroethylene-based polymer on the surface of the metal foil.
  • the laminated body which further has a compatible layer containing the component which has a fluorine atom and an oxygen atom in contact with the said hardened
  • the compatible layer has a thickness of 1 to 500 nm.
  • a cured product layer of a transmission circuit a resin layer containing a tetrafluoroethylene-based polymer, and a prepreg containing a matrix resin in this order, and the resin layer and the cured product between the resin layer and the cured product layer
  • the printed circuit board which further has a compatible layer containing the component which has a fluorine atom and an oxygen atom in contact with a physical layer.
  • a metal foil with a resin having a resin layer excellent in adhesiveness, including a fluoropolymer, which has electrical characteristics and mechanical strength and is useful for producing a printed circuit board is efficiently produced.
  • the resin-coated metal foil of the present invention has a resin layer containing a fluoropolymer, it can not only be bonded to other substrates at low temperature so as not to impair its dimensional stability, but also has heat resistance when used as a printed circuit board. Excellent and less prone to blistering.
  • the laminate of the present invention is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and warpage is small.
  • the printed circuit board of the present invention is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and warpage is small. According to the present invention, it is possible to manufacture a printed circuit board that is excellent in transmission characteristics and mechanical strength, in which each layer is firmly bonded, and is less warped.
  • D50 of powder is a volume-based cumulative 50% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the group of particles as 100%, and the particle diameter is the point where the cumulative volume is 50% on the cumulative curve.
  • D90 of powder is a volume-based cumulative 90% diameter of powder determined by a laser diffraction / scattering method.
  • the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the group of particles as 100%, and the particle diameter is the point where the cumulative volume is 90% on the cumulative curve.
  • Polymer melt viscosity conforms to ASTM D 1238, using a flow tester and a 2 ⁇ -8L die, and a polymer sample (2 g) that has been pre-heated at the measurement temperature for 5 minutes is loaded at 0.7 MPa. It is the value measured by holding at the measurement temperature.
  • Polymer melting point is a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • Dispersant weight loss rate is a percentage value obtained by dividing the weight loss of the dispersant when the temperature of the dispersant is raised from the lower limit to the upper limit of the temperature range divided by the heating time and the sample amount of the dispersant. is there.
  • Warpage rate is a 180 mm square test piece cut from a sample (metal foil with resin, laminate, etc.), and the test piece is measured according to the measurement method specified in JIS C 6471: 1995 (IEC 249-1: 1982). Therefore, it is a measured value.
  • “Dimensional change rate” is a value obtained as follows.
  • Samples metal foil with resin, laminate, etc. are cut out at 150 mm square, holes are drilled at four corners using a 0.3 mm drill, and the positions of the holes are measured with a three-dimensional measuring instrument.
  • the metal foil with resin is removed by etching and dried at 130 ° C. for 30 minutes. Measure the positions of the holes in the four corners with a three-dimensional measuring instrument.
  • the dimensional change rate is calculated from the difference between the positions of the holes before and after etching.
  • “Arithmetic average roughness Ra” and “maximum height Rz” are measured using the atomic force microscope (AFM) manufactured by Oxford Instruments under the following measurement conditions under the following measurement conditions. It is a value when measured on the surface (1 ⁇ m 2 range).
  • “Relative permittivity (20 GHz) and dielectric loss tangent (20 GHz)” is a frequency of 20 GHz in an environment within a range of 23 ° C. ⁇ 2 ° C. and 50 ⁇ 5% RH by SPDR (split post dielectric resonator) method. It is a value measured by.
  • “Heat resistant resin” means a high molecular compound having a melting point of 280 ° C. or higher, or a high molecular compound having a maximum continuous use temperature defined by JIS C 4003: 2010 (IEC 60085: 2007) of 121 ° C. or higher.
  • “(Meth) acrylate” is a general term for acrylate and methacrylate.
  • the “unit” in the polymer may be an atomic group directly formed from a monomer by a polymerization reaction, and an atomic group in which a part of the structure is converted by treating the polymer obtained by the polymerization reaction by a predetermined method. It may be.
  • the unit based on the monomer A contained in the polymer is also simply referred to as “unit A”.
  • the method for producing a resin-coated metal foil of the present invention comprises applying a powder dispersion containing a specific powder, a specific dispersant and a solvent to the surface of the metal foil, heating and holding it stepwise in a specific temperature atmosphere,
  • a resin layer hereinafter also referred to as “F resin layer” containing an ethylene polymer (hereinafter also referred to as “TFE polymer”) is formed on the surface of the metal foil.
  • the powder dispersion in the present invention is a dispersion in which TFE polymer powder is dispersed in the form of particles.
  • the reason why the F resin layer of the resin-coated metal foil obtained by the production method of the present invention is excellent in adhesiveness to other substrates is not necessarily clear, but is considered as follows.
  • the powder dispersion in the present invention contains a dispersant exhibiting a predetermined mass reduction rate (the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more), and the powder and dispersion of the TFE polymer Due to the high level of interaction of the agents, the dispersion stability and the powder packing ability during application are high. That is, when this powder dispersion is applied to the surface of the metal foil and kept at a predetermined temperature (a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C.
  • the F resin layer is formed from the film at a higher temperature (temperature exceeding the temperature range). As a result, the surface of the F resin layer has hydrophilicity and smoothness. It is considered that a resin-attached metal foil having an F resin layer excellent in adhesiveness was obtained.
  • the metal foil with resin in the production method of the present invention has an F resin layer on at least one surface of the metal foil. That is, the metal foil with resin may have an F resin layer only on one side of the metal foil, or may have an F resin layer on both sides of the metal foil.
  • the warp rate of the metal foil with resin is preferably 25% or less, and particularly preferably 7% or less. The lower limit of the warp rate is usually 0%. In this case, the handling property when processing the resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board are excellent.
  • the dimensional change rate of the resin-coated metal foil is preferably ⁇ 1% or less, particularly preferably ⁇ 0.2% or less. In this case, the printed board obtained from the resin-attached metal foil is easily multi-layered.
  • Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
  • Examples of the metal foil include rolled copper foil and electrolytic copper foil.
  • a rust preventive layer oxide film such as chromate
  • a heat-resistant layer or the like may be formed on the surface of the metal foil.
  • the ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 ⁇ m. In this case, the adhesiveness with the F resin layer becomes good, and a printed board having excellent transmission characteristics is easily obtained.
  • the thickness of metal foil should just be the thickness which can exhibit a function in the use of resin-coated metal foil.
  • the thickness of the metal foil is preferably 2 ⁇ m or more, particularly preferably 3 ⁇ m or more. Further, the thickness of the metal foil is preferably 40 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the surface of the metal foil may be treated with a silane coupling agent, the entire surface of the metal foil may be treated with a silane coupling agent, or a part of the surface of the metal foil is treated with a silane coupling agent. May be.
  • the F resin layer in the production method of the present invention is a layer formed from a powder dispersion.
  • the surface of the F resin layer has hydrophilicity due to the dispersant.
  • the water contact angle on the surface of the F resin layer is preferably 70 to 100 °, particularly preferably 70 to 90 °. If the said range is below an upper limit, the adhesiveness of F resin layer and another base material will be more excellent. If the said range is more than a minimum, the electrical property (low dielectric loss and low dielectric constant) of F resin layer will be more excellent.
  • the thickness of the F resin layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • the thickness of the F resin layer is preferably 50 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably less than 10 ⁇ m. In this range, it is easy to balance the transmission characteristics of the printed circuit board and the warpage suppression of the metal foil with resin.
  • the composition and thickness of each F resin layer are preferably the same from the viewpoint of suppressing warpage of the metal foil with resin.
  • Specific examples of the thickness of the F resin layer include 1 to 50 ⁇ m, and examples include 1 to 15 ⁇ m, 1 to less than 10 ⁇ m, and 5 to 15 ⁇ m.
  • the relative dielectric constant of the F resin layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0.
  • the resin-coated metal foil can be suitably used for a printed circuit board or the like that is excellent in both the electrical characteristics and adhesiveness of the F resin layer and requires a low dielectric constant.
  • Ra of the surface of the F resin layer is less than the thickness of the F resin layer, and is preferably 2.2 to 8 ⁇ m. In this range, it is easy to balance the adhesion and workability of other substrates.
  • the powder dispersion in the present invention comprises a powder containing a TFE polymer and having a volume-based cumulative 50% diameter of 0.05 to 6.0 ⁇ m (hereinafter also referred to as “F powder”), in a temperature range of 80 to 300 ° C.
  • a dispersant having a mass reduction rate of 1% by mass / min or more and a solvent are included.
  • the TFE-based polymer in the production method of the present invention is a polymer containing units (TFE units) based on tetrafluoroethylene (TFE).
  • the TFE-based polymer may be a TFE homopolymer or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer).
  • the TFE-based polymer preferably contains 90 to 100 mol% of TFE units with respect to all units contained in the polymer.
  • TFE polymers include polytetrafluoroethylene (PTFE), TFE and ethylene copolymer (ETFE), TFE and propylene copolymer, TFE and perfluoro (alkyl vinyl ether) (PAVE) copolymer (PFA), TFE and hexafluoropropylene. (HFP) copolymer (FEP), TFE and chlorotrifluoroethylene copolymer.
  • Melting temperature of the TFE-based polymer, 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 Pa ⁇ s is preferably at 380 ° C., preferably 1 ⁇ 10 2 ⁇ 1 ⁇ 10 6 Pa ⁇ s at 340 °C, 1 ⁇ 10 at 300 ° C.
  • the powder dispersion when the powder dispersion is applied to the surface of the metal foil and kept at a predetermined temperature (a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1 mass% / min or more), the powder It is easier to form a highly smooth film packed tightly.
  • a predetermined temperature a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1 mass% / min or more
  • a preferred embodiment of the TFE polymer includes low molecular weight PTFE.
  • the low molecular weight PTFE may be PTFE in which only the shell portion satisfies the melt viscosity in a core-shell structure including a core portion and a shell portion.
  • PTFE obtained by irradiating high molecular weight PTFE (melt viscosity is about 1 ⁇ 10 9 to 1 ⁇ 10 10 Pa ⁇ s) (International Publication No. 2018/026012, International Publication) No.
  • the low molecular weight PTFE may be a polymer obtained by polymerizing TFE alone or may be a copolymer obtained by copolymerizing TFE and a comonomer (International Publication No. 2009/20187). (See No. etc.) 99.5 mol% or more is preferable with respect to all the units contained in the polymer, more preferably 99.8 mol% or more, and even more preferably 99.9 mol% or more. When the TFE unit is in the above range, the physical properties of PTFE can be maintained.
  • the comonomer include a fluoromonomer described later, and HFP, PAVE, or FAE is preferable.
  • PTFE having a core-shell structure examples include PTFE described in JP-T-2005-527652 and International Publication No. 2016/170918.
  • a method of lowering the molecular weight of the shell part using a chain transfer agent see JP-A-2015-232082, etc.
  • TFE during the production of the shell part
  • a method of copolymerizing the comonomer see JP-A-09-087334.
  • the amount of comonomer used is preferably 0.001 to 0.05 mol% with respect to TFE.
  • the amount of comonomer used is preferably 0.001 to 0.05 mol% with respect to TFE.
  • the standard specific gravity of low molecular weight PTFE is preferably 2.14 to 2.22, more preferably 2.16 to 2.20.
  • the standard specific gravity can be measured according to ASTM D4895-04.
  • a preferred embodiment of the TFE-based polymer is a copolymer of TFE and a comonomer, and a fluoropolymer (hereinafter referred to as “polymer F”) containing more than 0.5 mol% of a comonomer-based unit with respect to all units contained in the copolymer. Also mentioned).
  • the melting point of the polymer F is preferably 240 ° C. or higher and lower than 330 ° C., more preferably 260 to 320 ° C., and particularly preferably 295 to 310 ° C. In this case, the heat resistance and melt moldability of the polymer are balanced.
  • the polymer F include ETFE, FEP, PFA and the like. As the polymer F, PFA or FEP is more preferable, and PFA is particularly preferable from the viewpoints of electrical characteristics (dielectric constant, dielectric loss tangent) and heat resistance.
  • the TFE-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group from the viewpoint of excellent adhesion between the F resin layer and the metal foil.
  • a TFE polymer having a group (hereinafter also referred to as “functional group”) is preferable.
  • the functional group may be imparted by plasma treatment or the like.
  • the functional group may be contained in a unit in the TFE polymer, or may be contained in a terminal group of the main chain of the polymer. Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
  • the polymer F a polymer containing a unit having a functional group and a TFE unit is preferable. In this case, the polymer F preferably further contains other units (PAVE units, HFP units, etc. described later).
  • a carbonyl group-containing group is preferable from the viewpoint of adhesion between the F resin layer and the metal foil.
  • the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) O (O) C—), a fatty acid residue, and the like. Acid anhydride residues are preferred.
  • the unit having a functional group is preferably a unit based on a monomer having a functional group, and includes a unit based on a monomer having a carbonyl group-containing group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group.
  • the unit based on the monomer which has is more preferable, and the unit based on the monomer which has a carbonyl group containing group is especially preferable.
  • a cyclic monomer having an acid anhydride residue As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
  • a cyclic monomer itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also referred to as “hymic anhydride”, hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
  • an HFP unit As a unit other than the unit having a functional group and the TFE unit, an HFP unit, a PAVE unit and an FAE unit are preferable.
  • the polymer F a polymer including a unit having a functional group, a TFE unit, and a PAVE unit or an HFP unit is preferable.
  • Specific examples of the polymer F include the polymer (X) described in International Publication No. 2018/16644.
  • the proportion of TFE units in the polymer F is preferably 90 to 99 mol% of all units constituting the polymer F.
  • the ratio of PAVE units or HFP units in the polymer F is preferably 0.5 to 9.97 mol% of all units constituting the polymer F.
  • the ratio of the unit having a functional group in the polymer F is preferably 0.01 to 3 mol% of all units constituting the polymer F.
  • the powder (hereinafter also referred to as “F powder”) in the production method of the present invention is a powder containing a TFE polymer.
  • the F powder may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired.
  • the F powder preferably contains the TFE-based polymer as a main component. 80 mass% or more is preferable and, as for content of TFE type polymer in F powder, 100 mass% is especially preferable.
  • the D50 of the F powder is preferably 0.05 to 6.0 ⁇ m, more preferably 0.1 to 3.0 ⁇ m, and particularly preferably 0.2 to 3.0 ⁇ m.
  • D90 of the F powder is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the D90 of the powder is preferably 0.3 ⁇ m or more, particularly preferably 0.8 ⁇ m or more. In this range, the fluidity and dispersibility of the F powder are good, and the electric characteristics (low dielectric constant, etc.) and heat resistance of the F resin layer are most easily developed.
  • the bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.08 to 0.5 g / mL.
  • the densely packed bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.1 to 0.8 g / mL.
  • the method for producing F powder is not particularly limited, and the methods described in [0065] to [0069] of International Publication No. 2016/017801 can be employed. In addition, as long as desired powder is marketed, you may use F powder.
  • the dispersant in the production method of the present invention is a compound that exhibits a mass reduction rate of 1% by mass / min or more in the temperature range of 80 to 300 ° C.
  • the dispersant is a compound having a mass reduction rate of 1% by mass / min or more in a temperature range of 100 to 200 ° C. or a compound having a mass reduction rate of 1% by mass / min or more in a temperature range of 200 to 300 ° C. It is preferable that
  • the mass reduction rate of the dispersant is a thermogravimetric measuring device (at a heating rate of 10 ° C./min, a sample amount of the dispersant of 10 mg, and in a mixed gas atmosphere (90% by volume of helium and 10% by volume of oxygen)).
  • the “mass reduction rate in the temperature range of 200 to 300 ° C. of the dispersant” is 10 mg of the dispersant using a thermogravimetric differential thermal analyzer (TG-DTA) and mixed gas (90% by volume of helium and 10% oxygen). (Volume%) In an atmosphere, the mass decrease when the temperature was raised from 200 ° C. to 300 ° C. at a rate of 10 ° C./min was divided by the temperature raising time (10 minutes) and the sample amount of the dispersant (10 mg). Calculated as a percentage value.
  • the upper limit of the mass reduction rate is preferably 50% by mass / min.
  • the mass reduction rate is preferably 2 to 50% by mass / min, more preferably 4 to 20% by mass / min, and particularly preferably 6 to 15% by mass / min. If the mass reduction rate is 1% by mass / min or more, it is easy to balance the hydrophilicity and smoothness of the surface of the F resin layer. When the mass reduction rate is 50% by mass or less, it is easy to balance the smoothness of the surface of the F resin layer and the suppression of deterioration of the metal foil due to the decomposition component of the dispersant.
  • the dispersant in the production method of the present invention is preferably a compound having a hydrophobic site and a hydrophilic site (surfactant), and particularly preferably a compound having a fluorine-containing site and a hydrophilic site (fluorine surfactant).
  • surfactant preferably a compound having a hydrophobic site and a hydrophilic site
  • fluorine surfactant particularly preferably a compound having a fluorine-containing site and a hydrophilic site (fluorine surfactant).
  • polyol, polyoxyalkylene glycol, polycaprolactam and polymer polyol are preferable, and polymer polyol is more preferable.
  • the polymeric polyol refers to a polymer having a unit based on a monomer having a carbon-carbon unsaturated double bond and two or more hydroxyl groups.
  • the polymer polyol polyvinyl alcohol, polyvinyl butyral and fluoropolyol are particularly preferable, and fluoropolyol is most preferable.
  • the fluoropolyol is a polymer-like polyol having a hydroxyl group and a fluorine atom that is not an F polymer.
  • the polymer polyol may be modified by chemically modifying a part of the hydroxyl group.
  • the fluoropolyol include a polymer polyol having a main chain composed of a carbon chain derived from an ethylenically unsaturated monomer and having a fluorine-containing hydrocarbon group and a hydroxyl group in the side chain.
  • the fluorine-containing hydrocarbon group is preferably a group having a tertiary carbon atom to which a plurality (2 or 3) of monovalent fluorine-containing hydrocarbon groups are bonded.
  • a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or alcoholic hydroxyl group in the side chain (hereinafter also referred to as “surfactant F”) is preferable, and the polyfluoroalkyl group is preferred.
  • a (meth) acrylate having a polyfluoroalkenyl group (hereinafter also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter also referred to as “(meth) acrylate AO”). )) (Hereinafter also referred to as “surfactant F1”).
  • the polyfluoroalkyl group or polyfluoroalkenyl group in the surfactant F is preferably a group having 4 to 12 carbon atoms.
  • Surfactant F may have both a polyoxyalkylene group and an alcoholic hydroxyl group in the side chain, or may have only one group in the side chain, and at least the polyoxyalkylene group is located on the side chain. It is preferable to have in the chain.
  • the inventors of the present invention have found that the decrease in the mass of the surfactant F in the temperature range is due to the removal of the polyfluoroalkyl group or the polyfluoroalkenyl group and the decomposition of the oxyalkylene unit in the polyoxyalkylene group or the presence of an alcoholic hydroxyl group. We know that it will progress. Furthermore, surfactant F forms a highly hydrophilic component, while the polyfluoroalkyl group or polyfluoroalkenyl group is released in the above temperature range, but the polyoxyalkylene group tends to be only partially decomposed of the oxyalkylene unit. I know.
  • the surface of the F resin layer not only becomes hydrophilic, but also suppresses powder falling off in the packing of the powder and improves the smoothness of the F resin layer. It is considered that the adhesiveness of the foil is excellent.
  • (Meth) acrylate F is preferably a compound represented by the formula CH 2 ⁇ CR 1 C (O) O—X 1 —R F.
  • R 1 represents a hydrogen atom or a methyl group.
  • X 1 is — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 2 NHC (O) —, — (CH 2 ) 3 NHC (O) — Or —CH 2 CH (CH 3 ) NHC (O) — is shown.
  • R F represents —OCF (CF 3 ) (C (CF (CF 3 ) 2 ) ( ⁇ C (CF 3 ) 2 ), —OC (CF 3 ) ( ⁇ C (CF (CF 3 ) 2 ) (CF ( CF 3 ) 2 ), —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2, —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , — (CF 2 ) 4 F or -(CF 2 ) 6 F is shown.
  • (Meth) acrylate AO is preferably a compound represented by the formula CH 2 ⁇ CR 2 C (O) O—Q 2 —OH.
  • R 2 represents a hydrogen atom or a methyl group.
  • Q 2 represents — (CH 2 ) m (OCH 2 CH 2 ) n —, — (CH 2 ) m (OCH 2 CH (CH 3 )) n — or — (CH 2 ) m (OCH 2 CH 2 CH 2 CH 2 ) n — (n represents an integer of 1 to 4, n represents an integer of 2 to 100, and n is preferably an integer of 2 to 20).
  • the proportion of units based on (meth) acrylate F relative to the total units contained in surfactant F1 is preferably 20 to 60 mol%, particularly preferably 20 to 40 mol%.
  • the ratio of units based on (meth) acrylate AO to the total units contained in surfactant F1 is preferably 40 to 80 mol%, particularly preferably 60 to 80 mol%.
  • the ratio of the content of units based on (meth) acrylate AO to the content of units based on (meth) acrylate F in surfactant F1 is preferably from 1 to 5, and more preferably from 1 to 2.
  • Surfactant F1 may consist of only a unit based on (meth) acrylate AO and a unit based on (meth) acrylate AO, and may further include other units.
  • the fluorine content of the surfactant F1 is preferably 10 to 45% by mass, particularly preferably 15 to 40% by mass.
  • the surfactant F1 is preferably nonionic.
  • the weight average molecular weight of the surfactant F1 is preferably 2000 to 80000, and particularly preferably 6000 to 20000.
  • the solvent in the production method of the present invention is a dispersion medium, is a solvent (compound) that is liquid inactive and does not react with F powder at 25 ° C., and has a lower boiling point than components other than the solvent contained in the powder dispersion.
  • a solvent that can be volatilized and removed by heating or the like is preferable.
  • the solvent in the coating film formed by applying the powder dispersion on the surface of the metal foil is removed before the firing of the TFE polymer is completed.
  • the solvent may be removed before holding the metal foil at a temperature at which the mass reduction rate in the temperature region is 1 mass% / min or more, or may be removed while being held at the temperature. , May be removed during firing.
  • the solvent includes water, alcohol (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl sulfoxide).
  • Etc. ether
  • diethyl ether, dioxane etc. dioxane etc.
  • ester ethyl lactate, ethyl acetate etc.
  • ketone methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone etc.
  • glycol ether ethylene glycol monoisopropyl ether etc.
  • cellosolve Metal cellosolve, ethyl cellosolve, etc.
  • a solvent compound may be used individually by 1 type, and may use 2 or more types together.
  • a solvent which does not volatilize instantaneously and volatilizes while being held in the temperature range is preferable, a solvent having a boiling point of 80 to 275 ° C. is preferable, and a solvent having a boiling point of 125 to 250 ° C. is particularly preferable.
  • the volatilization of the solvent and the partial decomposition and flow of the dispersant proceed effectively, and the dispersant segregates on the surface. It's easy to do.
  • the solvent is preferably an organic compound, such as cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-methoxy.
  • organic compound such as cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-methoxy.
  • N-methylpyrrolidone (boiling point: 202 ° C), ⁇ -butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) More preferred are N-methylpyrrolidone, ⁇ -butyrolactone, cyclohexanone and cyclopentanone.
  • the powder dispersion in the production method of the present invention may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
  • Such other material may be a non-curable resin or a curable resin.
  • the non-curable resin include a heat-meltable resin and a non-meltable resin.
  • the heat-meltable resin include thermoplastic polyimide.
  • the non-meltable resin include a cured product of a curable resin.
  • the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group.
  • the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
  • curable resin examples include epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin.
  • polyfunctional cyanate resin polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, and melamine-urea cocondensation resin.
  • thermosetting resin is preferably a thermosetting polyimide, a polyimide precursor, an epoxy resin, a thermosetting acrylic resin, a bismaleimide resin, and a thermosetting polyphenylene ether resin.
  • Epoxy resins and thermosetting polyphenylene ether resins are particularly preferred.
  • the epoxy resin examples include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ethers of bisphenol, diglycidyl ethers of naphthalenediol, phenols Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • the bismaleimide resin a resin composition (BT resin) using a bisphenol A type cyanate ester resin and a bismaleimide compound described in JP-A-7-70315, described in International Publication No. 2013/008667. And those described in the background art thereof.
  • the polyamic acid usually has a reactive group capable of reacting with a functional group of the TFE polymer.
  • Examples of the diamine and polycarboxylic dianhydride forming the polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like.
  • aromatic diamines such as 4,4′-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, pyromellitic dianhydride, 3,3 ′, 4,4
  • a polyamic acid comprising a combination with an aromatic polyvalent carboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is preferred.
  • thermoplastic resins such as thermoplastic polyimide and heat-meltable cured products of curable resins.
  • thermoplastic resins polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamide
  • examples include imide, liquid crystalline polyester, polyphenylene ether, and the like, and thermoplastic polyimide, liquid crystalline polyester, and polyphenylene ether are preferable.
  • Such other materials include thixotropic agents, antifoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants, thermal stabilizers, lubricants, antistatic agents, Whitening agents, coloring agents, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and the like are also included.
  • the proportion of F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 45% by mass. In this range, it is easy to control the relative dielectric constant and dielectric loss tangent of the F resin layer low. Moreover, the uniform dispersion of the powder dispersion is high, and the mechanical strength of the F resin layer is excellent.
  • the proportion of the dispersant in the powder dispersion is preferably 0.1 to 30% by mass, and particularly preferably 5 to 10 parts by mass. In this range, it is easy to balance the uniform dispersibility of the F powder with the hydrophilicity and electrical characteristics of the surface of the F resin layer.
  • the proportion of the solvent in the powder dispersion is preferably 15 to 65% by mass, particularly preferably 25 to 50 parts by mass. In this range, the applicability of the powder dispersion is excellent, and poor appearance of the resin layer hardly occurs.
  • the powder dispersion is applied to the surface of the metal foil.
  • a coating method any method can be used as long as a stable wet film made of a powder dispersion is formed on the surface of the metal foil after coating. Method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, slot die coating method and the like.
  • the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range. This preparation is performed to such an extent that the solvent is not completely volatilized, and is usually to an extent that 50% by mass or less of the solvent is volatilized.
  • the temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more (hereinafter referred to as “holding temperature”).
  • the holding temperature indicates the temperature of the atmosphere. Holding may be performed in one stage or in two or more stages at different temperatures. Examples of the holding method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the atmosphere in holding may be in a state of normal pressure or reduced pressure.
  • the holding atmosphere may be any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. It may be.
  • the holding atmosphere is preferably an atmosphere containing oxygen gas from the viewpoint of promoting the decomposition of the dispersant and further improving the adhesiveness of the F resin layer.
  • the oxygen gas concentration (volume basis) at this time is preferably 1 ⁇ 10 2 to 3 ⁇ 10 5 ppm, particularly preferably 0.5 ⁇ 10 3 to 1 ⁇ 10 4 ppm. Within this range, it is easy to balance the promotion of the decomposition of the dispersant and the suppression of oxidation of the metal foil.
  • the holding temperature is a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more, and more preferably 100 to 300 ° C.
  • the holding temperature is more preferably 100 to 200 ° C., and particularly preferably 160 to 200 ° C.
  • the holding temperature when a dispersant having a mass reduction rate of 1% by mass / min or more in a temperature range of 200 to 300 ° C. is preferably 200 to 300 ° C., and particularly preferably 220 to 260 ° C.
  • the holding time at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
  • the FFE layer is formed on the surface of the metal foil by further firing the TFE polymer in a temperature region exceeding the holding temperature (hereinafter also referred to as “calcination temperature”).
  • the firing temperature indicates the temperature of the atmosphere.
  • the F powder is densely packed, and the TFE polymer fusion proceeds with the hydrophilic component derived from the dispersant effectively segregated on the surface.
  • An F resin layer is formed. If the powder dispersion contains a thermomeltable resin, an F resin layer made of a mixture of a TFE polymer and a soluble resin is formed. If the powder dispersion contains a thermosetting resin, the TFE polymer and a thermosetting resin are formed.
  • An F resin layer made of a cured resin is formed.
  • the heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • pressurization may be performed with a heating plate, a heating roll, or the like.
  • a heating method a method of irradiating far infrared rays is preferable because firing can be performed in a short time and the far infrared furnace is relatively compact.
  • the heating method may be a combination of infrared heating and hot air heating.
  • the effective wavelength band of far infrared rays is preferably 2 to 20 ⁇ m, more preferably 3 to 7 ⁇ m from the viewpoint of promoting uniform fusion of the TFE polymer.
  • the firing atmosphere may be in any state under normal pressure or reduced pressure.
  • the atmosphere in the firing is any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere.
  • a reducing gas atmosphere or an inert gas atmosphere is preferable.
  • a gas atmosphere composed of an inert gas and having a low oxygen gas concentration is preferable, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm is preferable.
  • the oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less.
  • the oxygen gas concentration (volume basis) is usually 1 ppm or more. In this range, further oxidative decomposition of the dispersant is suppressed, and the hydrophilicity of the F resin layer is easily improved.
  • the firing temperature is more than 300 ° C, preferably more than 300 ° C and not more than 400 ° C, particularly preferably 330 to 380 ° C.
  • the TFE polymer can more easily form a dense F resin layer.
  • the time for maintaining the firing temperature is preferably 30 seconds to 5 minutes, and more preferably 1 to 2 minutes.
  • the resin layer in the metal foil with resin is a conventional insulating material (cured product of thermosetting resin such as polyimide)
  • heating for a long time is required to cure the thermosetting resin.
  • the resin layer can be formed by heating in a short time by fusing the TFE polymer.
  • the manufacturing method of this invention is a method with a small heat load to the metal foil at the time of forming a resin layer in metal foil with resin, and is a method with little damage to metal foil.
  • the surface treatment is applied to the surface of the F resin layer.
  • the surface treatment include annealing, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and surface roughening treatment.
  • the temperature is preferably 120 to 180 ° C.
  • the pressure is preferably 0.005 to 0.015 MPa
  • the time is preferably 30 to 120 minutes.
  • Examples of the plasma irradiation apparatus in the plasma treatment include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like.
  • Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and the like, and rare gas or nitrogen gas is preferable.
  • Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas.
  • an atmosphere having a volume fraction of a rare gas or nitrogen gas of 70% by volume or more is preferable, and an atmosphere of 100% by volume is particularly preferable.
  • Ra on the surface of the F resin layer is adjusted to 2.0 ⁇ m or less, and fine irregularities are easily formed on the surface of the F resin layer.
  • the surface of the F resin layer of the resin-coated metal foil obtained by the production method of the present invention is highly hydrophilic and excellent in adhesiveness, it can be easily and strongly laminated with other substrates.
  • the other substrate include a heat resistant resin film, a prepreg as a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
  • a prepreg is a sheet-like substrate obtained by impregnating a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) with a thermosetting resin or a thermoplastic resin.
  • the heat resistant resin film is a film including one or more kinds of heat resistant resins, and may be a single layer film or a multilayer film.
  • the heat resistant resin include polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, and liquid crystalline polyester.
  • the press temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C, and particularly preferably 160 to 220 ° C. In this range, the F resin layer and the prepreg can be firmly bonded while suppressing thermal degradation of the prepreg.
  • the pressing temperature is preferably 310 to 400 ° C. In this range, the F resin layer and the heat resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat resistant resin film.
  • the hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less. In this range, air bubbles can be prevented from entering the interfaces of the F resin layer, the substrate, and the metal foil in the laminate, and deterioration due to oxidation can be suppressed. Moreover, it is preferable to raise the temperature after reaching the vacuum degree during hot pressing. If the temperature is raised before reaching the degree of vacuum, the F resin layer is compressed in a softened state, that is, in a state with a certain degree of fluidity and adhesion, which causes bubbles.
  • the pressure in the hot press is preferably 0.2 MPa or more. The upper limit of the pressure is preferably 10 MPa or less. In this range, the F resin layer and the substrate can be firmly adhered while suppressing breakage of the substrate.
  • the metal foil with resin and the laminate obtained by the production method of the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed boards.
  • an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film can also be formed by, for example, the powder dispersion in the present invention.
  • a solder resist may be laminated on the pattern circuit.
  • the solder resist can be formed by the powder dispersion in the present invention.
  • a coverlay film may be laminated on the pattern circuit.
  • the coverlay film can also be formed by the powder dispersion in the present invention.
  • the resin-coated copper foil of the present invention is a metal foil, a resin layer containing a TFE-based polymer (hereinafter, also referred to as “F1 resin layer”), and a resin-coated metal foil having a specific adhesion site in contact with the F1 resin layer.
  • F1 resin layer a resin layer containing a TFE-based polymer
  • resin-coated metal foil of the present invention can be bonded to other substrates at a low temperature so as not to impair its dimensional stability. Is not necessarily clear, but is considered as follows.
  • the specific adhesion site includes a hydrophilic component having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group, and a carboxy group, and the adhesive property depends on the characteristics (polarity, reactivity, etc.) of this hydrophilic component. It is thought to develop.
  • the adhesion site is formed in contact with the F1 resin layer, and hydrophilic components are respectively present at the boundary between the F1 resin layer and the other substrate of the adhesive laminate of the resin-coated metal foil of the present invention and the other substrate. It is also considered that the adhesive layer is formed by being highly compatible.
  • the adhesiveness of the resin-coated metal foil of the present invention is considered to be mainly due to the bonding site, and specifically, does not necessarily depend on the fusion bonding of the TFE polymer by high-temperature heating. Therefore, the metal foil with resin of the present invention is made of non-adhesive and heat-stretchable TFE polymer as an F1 resin layer, and is adhered to another substrate so as not to impair its dimensional stability even at a relatively low temperature. Therefore, it can be processed into a multilayer substrate (multilayer printed circuit board or the like) with less warping.
  • the copper foil with resin of this invention has the adhesion site
  • As a layer structure of the copper foil with resin of the present invention for example, metal foil / F1 resin layer / adhesion site, F1 resin layer / metal foil / F1 resin layer / adhesion site, adhesion site / F1 resin layer / metal foil / F1 Resin layer / adhesion site, metal foil / F1 resin layer / metal foil / F1 resin layer / adhesion site.
  • Metal foil / F1 resin layer / adhesion site indicates that the metal foil, the F1 resin layer, and the adhesion site are laminated in this order, and the other layer configurations are the same.
  • the warpage rate of the metal foil with resin of the present invention is preferably 25% or less, particularly preferably 7% or less. In this case, it is excellent in the handleability at the time of processing a resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board.
  • the dimensional change rate of the resin-coated metal foil of the present invention is preferably ⁇ 1% or less, particularly preferably ⁇ 0.2% or less. In this case, it is easy to process the resin-coated metal foil into a printed circuit board and to further multilayer it.
  • the relative dielectric constant (20 MHz) of the resin portion (F1 resin layer and adhesion site) of the metal foil with resin of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. Within this range, the resin-coated metal foil can be suitably used for a printed circuit board or the like in which both the electrical characteristics (low relative dielectric constant, etc.) and adhesiveness of the F1 resin layer are excellent and excellent transmission characteristics are required.
  • Ra of the surface of the resin part (F1 resin layer and adhesion part) of the metal foil with resin of the present invention is preferably 2 nm to 3 ⁇ m, more preferably 3 nm to 1 ⁇ m, further preferably 4 nm to 500 nm, and particularly preferably 5 nm to 300 nm.
  • the aspect of the metal foil in the metal foil with a resin of the present invention is the same as the aspect of the metal foil in the method for producing a metal foil with a resin of the present invention including a preferable aspect.
  • the F1 resin layer in the present invention contains a TFE polymer.
  • the F1 resin layer may contain an inorganic filler, a resin other than the TFE-based polymer, an additive, or the like as necessary within a range not impairing the effects of the present invention.
  • the thickness of the F1 resin layer is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m. If the thickness of the F1 resin layer is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. If the thickness of F1 resin layer is below the said upper limit, metal foil with resin will not warp easily.
  • the ratio of the thickness of the F1 resin layer to the thickness of the metal foil is preferably 0.1 to 5.0, particularly preferably 0.2 to 2.5. If the ratio of the thickness of the F1 resin layer to the thickness of the metal foil is equal to or higher than the lower limit value, the transmission characteristics as a printed circuit board are further improved. Since the metal foil with resin of the present invention has an adhesion site, even when the ratio is large (for example, when the F1 resin layer is thick), the dimensional stability of the metal foil with resin of the present invention is not impaired. Can be bonded to other substrates at low temperature, and warpage after multilayering can be suppressed.
  • the aspect of the TFE polymer in the metal foil with resin of the present invention is the same as the aspect of the TFE polymer in the method for producing the metal foil with resin of the present invention, including a preferable aspect.
  • the adhesion site part in the metal foil with resin of this invention contains the hydrophilic component which has at least 1 sort (s) chosen from the group which consists of an etheric oxygen atom, a hydroxyl group, and a carboxy group.
  • the adhesion site may consist only of a hydrophilic component, or may consist of a hydrophilic component and a component other than the hydrophilic component (TFE polymer or the like).
  • the hydrophilic component is preferably an organic compound having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group and a carboxy group (excluding a TFE polymer; the same shall apply hereinafter), an etheric oxygen atom, a hydroxy group.
  • organic compounds having at least one selected from the group consisting of a group and a carboxy group and having a water contact angle of 30 ° to 90 °.
  • the said organic compound does not have a silicon atom.
  • the organic compound is preferably a polymer having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group and a carboxy group, more preferably a polymer having an etheric oxygen atom and a hydroxy group or a carboxy group. Particularly preferred are fluoropolymers having an oxygen atom and a hydroxy or carboxy group. In this case, as described above, the compatibility between the TFE-based polymer and the hydrophilic component at the boundary between the F1 resin layer and the adhesion site is improved, and the adhesive strength between the F1 resin layer and the adhesion site is more likely to be improved.
  • hydrophilic component the hydrophilic component derived from the dispersing agent in the manufacturing method of the metal foil with resin of this invention is preferable.
  • the hydrophilic component the surfactant F in the method for producing a metal foil with resin of the present invention is preferable, and the surfactant F1 in the method for producing a metal foil with resin of the present invention is particularly preferable.
  • part in the metal foil with resin of this invention may exist in layer form, may exist in island shape, and it is preferable to exist in island shape.
  • the thickness of the adhesion site existing in a layer form and the height of the adhesion site existing in an island shape is preferably 1 to 1000 nm, more preferably 5 to 500 nm, still more preferably 5 to 300 nm, and particularly preferably 5 to 200 nm. In this case, it is easy to balance the electrical characteristics of the F1 resin layer of the metal foil with resin and the adhesiveness of the adhesion site.
  • a powder dispersion containing a powder containing a TFE-based polymer, a hydrophilic component, and a liquid medium is applied to the surface of a metal foil, and the temperature within a temperature range of 100 to 300 ° C.
  • the F1 resin layer containing the TFE polymer is formed on the surface of the metal foil and at the same time hydrophilic on the surface of the F1 resin layer by holding the metal foil in and firing the TFE polymer in a temperature range above the temperature range.
  • part containing a component is mentioned.
  • the resin-coated metal foil of the present invention is preferably produced by the method for producing the resin-coated metal foil of the present invention.
  • the manufacturing mode in this case is the same as the mode of the manufacturing method of the metal foil with resin of the present invention including the preferable mode.
  • the surface of the adhesion site may be surface-treated in order to further improve the adhesion of the adhesion site.
  • the surface of the F1 resin layer and the adhesion part is surfaced to control the linear expansion coefficient of the F1 resin layer or to further improve the adhesion of the F1 resin layer or the adhesion part. It may be processed.
  • the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and surface roughening treatment.
  • Each aspect of the annealing treatment and the plasma treatment is the same as the aspect in the method for producing the metal foil with resin of the present invention, including a preferred aspect.
  • the metal foil with resin of the present invention has a bonding site on the surface of the F1 resin layer and is excellent in adhesiveness, and therefore can be firmly bonded to other substrates at low temperature.
  • the resin-coated metal foil of the present invention has a dimensional stability without being affected by the thickness of the resin layer and the type or thickness of the metal foil, while using a TFE polymer that is essentially heat stretchable as the resin layer. It can be bonded to other substrates at low temperature without damaging.
  • Other aspects of the substrate, including preferred aspects, are the same as those in the method for producing a resin-coated metal foil of the present invention.
  • the aspect of the hot press method is the same as the aspect in the manufacturing method of the metal foil with resin of this invention including a suitable aspect.
  • the resin-coated metal foil of the present invention uses a TFE polymer having excellent physical properties such as electrical characteristics and chemical resistance (etching resistance) as a resin layer
  • the resin-coated metal foil of the present invention and its laminate are flexible copper. It can be used for the production of a printed circuit board as a stretched laminate or a rigid copper clad laminate.
  • the mode when the resin-coated metal foil of the present invention is used for the production of a printed circuit board is the same as the mode when the resin-coated metal foil obtained by the production method of the present invention is used for the production of a printed circuit board, including a preferred mode. It is.
  • the laminate of the present invention includes a metal foil, a resin layer containing a TFE polymer (hereinafter also referred to as “F2 resin layer”), a metal foil with resin having a specific compatible layer in contact with the F2 resin layer, and a specific foil. It is a laminate obtained by thermocompression bonding with a prepreg.
  • the reason why the laminate of the present invention (including the printed circuit board obtained from the laminate of the present invention, the same applies hereinafter) is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and there is little warpage is necessarily clear. Although not, it can be considered as follows.
  • the specific compatible layer includes a component having a fluorine atom and an oxygen atom, and the adhesiveness with the F2 resin layer is expressed by the characteristics (compatibility, etc.) of the portion having the fluorine atom, and the portion having the oxygen atom It is considered that the adhesiveness with the cured product layer of the prepreg is expressed by the characteristics (polarity, reactivity, etc.). And the adhesiveness by a compatible layer expresses at a comparatively low temperature compared with the temperature which the heat-fusion property of the TFE type polymer contained in F2 resin layer expresses. Therefore, even if the melting point of the TFE polymer is high, the prepreg can be firmly bonded to the resin side of the metal foil with resin at a relatively low temperature.
  • the properties (electrical properties and mechanical strength) of the cured product layer of the prepreg are unlikely to deteriorate.
  • a prepreg containing a matrix resin (matrix resin having no fluorine atom, etc.) that is generally low in heat resistance and excellent in mechanical strength as compared with the TFE-based polymer can be used.
  • the F2 resin layer contains a TFE polymer, it has excellent electrical characteristics.
  • the compatible layer is unlikely to deteriorate the electrical characteristics of the F2 resin layer, like the coating layer of the silane coupling agent.
  • the cured product layer has excellent electrical characteristics and mechanical strength
  • the F2 resin layer has excellent electrical characteristics, and those characteristics are not easily degraded by heat or a compatible layer. Excellent mechanical strength.
  • the resin-coated metal foil and the prepreg are bonded at a relatively low temperature so as not to impair the dimensional stability of the resin-coated metal foil. Thus, a laminate with less warpage can be obtained.
  • the laminate of the present invention has a metal foil, an F2 resin layer, a compatible layer in contact with the F2 resin layer, and a cured product layer in contact with the compatible layer in this order.
  • Examples of the layer structure of the laminate of the present invention include metal foil / F2 resin layer / compatible layer / cured material layer, metal foil / F2 resin layer / compatible layer / cured material layer / compatible layer / F2 resin layer.
  • Metal foil is mentioned. “Metal foil / F2 resin layer / compatible layer / cured product layer” means that the metal foil, F2 resin layer, compatible layer, and cured product layer are laminated in this order, and the other layer configurations are the same. It is.
  • the warpage rate of the laminate of the present invention is preferably 5% or less, and particularly preferably 1% or less. In this case, it is excellent in the handling property at the time of processing a laminated body into a printed circuit board, and the transmission characteristic of the obtained printed circuit board.
  • the relative dielectric constant (20 GHz) of the substrate portion (F2 resin layer, compatible layer and cured product layer) of the laminate of the present invention is preferably 5.5 or less, more preferably 4.7 or less, and preferably 4.0 or less. Further preferred is 3.6 or less.
  • the dielectric loss tangent (20 GHz) of the substrate portion is preferably 0.02 or less, more preferably 0.009 or less, still more preferably 0.005 or less, and particularly preferably 0.003 or less.
  • the laminate can be suitably used for printed circuit boards and the like that are excellent in both electrical properties (low relative dielectric constant, low dielectric loss tangent, etc.) and adhesiveness of the substrate portion and excellent transmission characteristics.
  • the aspect of the metal foil in the laminated body of this invention is the same as the aspect of the metal foil in the manufacturing method of the metal foil with resin of this invention including a suitable aspect.
  • the F2 resin layer in the laminate of the present invention contains a TFE polymer.
  • the F2 resin layer may contain an inorganic filler, a resin other than the TFE-based polymer, an additive, or the like as necessary within a range not impairing the effects of the present invention.
  • the thickness of the F2 resin layer is preferably 1 to 100 ⁇ m, more preferably 3 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m. If the thickness of the F2 resin layer is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. If the thickness of the F2 resin layer is equal to or less than the upper limit value, the laminate is unlikely to warp.
  • the ratio of the thickness of the F2 resin layer to the thickness of the metal foil in the laminate of the present invention is preferably from 0.1 to 5.0, particularly preferably from 0.2 to 2.5. If the ratio of the thickness of the F2 resin layer to the thickness of the metal foil is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. Since the laminate of the present invention has a compatible layer, even when the ratio is large (for example, when the F2 resin layer is thick), the dimensional stability of the resin-coated metal foil is impaired when the laminate is manufactured. Therefore, the resin-attached metal foil and the prepreg can be bonded at low temperature, and the warpage of the laminate can be suppressed.
  • the aspect of the TFE-based polymer in the laminate of the present invention is the same as the aspect of the TFE-based polymer in the method for producing a metal foil with resin of the present invention including preferred aspects.
  • the compatible layer in the laminate of the present invention includes a component having a fluorine atom and an oxygen atom.
  • the compatible layer may be composed of only the above components, or may be composed of the above components and components other than the above components (TFE polymer or the like).
  • the aspect of the said component is the same as the aspect of the hydrophilic component in the metal foil with resin of this invention including a suitable aspect.
  • the compatibility between the TFE polymer and the component at the boundary between the F2 resin layer and the compatible layer is improved, and the adhesive strength between the F2 resin layer and the compatible layer is more likely to be improved.
  • the thickness of the compatible layer is preferably 1 to 500 nm, and particularly preferably 5 to 100 nm. In this case, it is easy to balance the electrical characteristics of the F2 resin layer of the metal foil with resin and the adhesiveness of the compatible layer.
  • the cured product layer in the laminate of the present invention is a cured product of a prepreg containing a matrix resin.
  • the matrix resin is preferably a matrix resin having no fluorine atom.
  • the prepreg include a prepreg in which a reinforcing fiber sheet is impregnated with a matrix resin.
  • the reinforcing fiber sheet includes a reinforcing fiber bundle composed of a plurality of reinforcing fibers, a cloth formed by weaving the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction, and the unidirectional reinforcement.
  • Examples thereof include a unidirectional cloth composed of fiber bundles, a sheet combining these, and a sheet in which a plurality of reinforcing fiber bundles are stacked.
  • the reinforcing fiber a continuous long fiber having a length of 10 mm or more is preferable.
  • the reinforcing fibers do not need to be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
  • Examples of reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
  • Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, and boron fiber.
  • the metal fiber examples include aluminum fiber, brass fiber, and stainless steel fiber.
  • the organic fiber examples include aromatic polyamide fiber, polyaramid fiber, polyparaphenylene benzoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber, and the like.
  • the reinforcing fiber may be subjected to a surface treatment. Reinforcing fibers may be used alone or in combination of two or more. For printed circuit board applications, glass fibers are preferred as reinforcing fibers.
  • the matrix resin may be a thermoplastic resin, may be a thermosetting resin, and is preferably a thermosetting resin.
  • the thermosetting resin include the same resins as the thermosetting resins mentioned in the description of the method for producing the resin-coated metal foil of the present invention.
  • a thermoplastic resin the same resin as the thermoplastic resin mentioned by description of the manufacturing method of metal foil with a resin of this invention is mentioned.
  • a matrix resin may be used individually by 1 type, and may use 2 or more types together.
  • the matrix resin for the prepreg is preferably at least one matrix resin selected from the group consisting of epoxy resins, polyphenylene oxides, polyphenylene ethers, and polybutadienes from the viewpoint of processability.
  • the thickness of the prepreg is preferably 10 ⁇ m to 5 mm, more preferably 30 ⁇ m to 3 mm, and particularly preferably 80 ⁇ m to 1 mm.
  • the thickness of the prepreg can be appropriately set depending on the use of the printed circuit board.
  • prepreg examples include prepregs having the following trade names. Panasonic Megtron MEGRON GX Series R-G520, R-1410W, R-1410A, R-1410E, MEGTRON Series R-1410W, R-1410A, R-1410E, MEGTON Series R-5680, R -5680 (J), R-5680 (NJ), R-5670, R-5670 (N), R-5620S, R-5620, R-5630, R-1570, HIPER series R-1650V, R-1650D , R-1650M, R-1650E, R-5610, CR-5680, CR-5680 (N), CR-5680 (J).
  • GUANDONG Shengyi SCI. TECH SP120N, S1151G, S1151GB, S1170G, S1170GB, S1150G, S1150GB, S1140F, S1140FB, S7045G, SP175M, S1190, S1190B, S1170, S0701, S1141KF, S0401KF, S1000-2M, S1000-2F S1000-2B, S1000, S1000B, S1000H, S1000HB, S7136H, S7439, S7439B.
  • RO4450B, RO4450F, CLTE-P 3001 Bonding Film, 2929 Bondply, CuClad 6700 Bonding Film, ULTRAMAL 3908 Bondply, CuClad 6250 Bonding, manufactured by ROGERS CORPORATION.
  • the laminate of the present invention can be produced by bonding a metal foil, a metal foil with resin having an F2 resin layer and a compatible layer, and a prepreg by a hot press method.
  • the resin-coated metal foil of the present invention is preferably produced by bonding the resin-coated metal foil of the present invention and a prepreg by a hot press method.
  • the compatible layer of the resin-coated copper foil in the laminate of the present invention may be present in a layer form or in an island form. When the compatible layer exists in a layered manner, the resin-attached metal foil is excellent in adhesiveness on the surface of the compatible layer, and thus can be firmly bonded to the prepreg at a low temperature.
  • the metal foil with resin is excellent in the adhesiveness of the surface of the F2 resin layer and the compatible layer when the compatible layer exists in an island shape, it can be firmly bonded to the prepreg at a low temperature.
  • the resin-coated metal foil in the present invention has a dimensional stability without being affected by the thickness of the resin layer and the type or thickness of the metal foil, although the TFE polymer that is essentially heat stretchable is used as the resin layer. Can be bonded to the prepreg at a low temperature without damaging it.
  • a component for forming a compatible layer on the surface of the F2 resin layer of the metal foil with resin and the F2 resin layer having the F2 resin layer (described above, 80 to 300 ° C.) a coating solution containing a TFE polymer and the above components on the surface of the metal foil.
  • coating is mentioned.
  • the method (ii) is because the TFE polymer at the boundary between the F2 resin layer and the compatible layer and the above components are compatible, and the adhesion between the F2 resin layer and the compatible layer of the metal foil with resin is easily improved. preferable.
  • the method (ii) include a powder containing a TFE polymer and the dispersant (having the polyfluoroalkyl group or polyfluoroalkenyl group and the polyoxyalkylene group or alcoholic hydroxyl group described above in the side chain. And a liquid dispersion containing a liquid medium is applied to the surface of the metal foil, the metal foil is held in a temperature range of 80 to 300 ° C., and the TFE polymer is used in a temperature range above the temperature range.
  • a method of forming a compatible layer on the surface of the F2 resin layer at the same time that the F2 resin layer containing the TFE polymer is formed on the surface of the metal foil by firing is mentioned.
  • the method of laminating the prepreg on the surface of the compatible layer of the resin-coated metal foil or the surface of the F2 resin layer and the compatible layer is to hot press the resin-coated metal foil and the prepreg.
  • a method is mentioned.
  • the pressing temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C., and particularly preferably 160 to 220 ° C. In this range, the compatible layer and the prepreg can be firmly bonded while suppressing the thermal deterioration of the prepreg.
  • the hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less.
  • the temperature after reaching the vacuum degree during hot pressing is preferably 0.2 to 10 MPa. In this range, the compatible layer and the prepreg can be firmly bonded while suppressing breakage of the prepreg.
  • the laminate of the present invention uses a TFE polymer having excellent physical properties such as electrical characteristics and chemical resistance (etching resistance) as a resin layer
  • the laminate of the present invention is a flexible copper-clad laminate or a rigid copper-clad laminate.
  • As a board it can be used for manufacture of a printed circuit board.
  • the metal foil of the laminate of the present invention is etched to process a conductor circuit (transmission circuit) of a predetermined pattern, or the metal foil of the laminate of the present invention is electroplated (semi-additive method (SAP method)). ), A modified semi-additive method (MSAP method, etc.) can be used to manufacture a printed circuit board from the laminate of the present invention.
  • the printed circuit board manufactured from the laminate of the present invention has a transmission circuit, an F2 resin layer, and a cured product layer in this order, and is in contact with the F2 resin layer and the cured product layer between the F2 resin layer and the cured product layer. It further has a compatible layer.
  • Examples of the layer structure of the printed circuit board of the present invention include, for example, transmission circuit / F2 resin layer / compatible layer / cured layer, transmission circuit / F2 resin layer / compatible layer / cured layer / compatible layer / F2 resin layer.
  • Transmission circuit In manufacturing a printed circuit board, after forming a transmission circuit, an interlayer insulating film may be formed on the transmission circuit, and a transmission circuit may be further formed on the interlayer insulating film.
  • the interlayer insulating film can also be formed by, for example, the powder dispersion in the present invention.
  • a solder resist may be laminated on the transmission circuit.
  • the solder resist can be formed by the powder dispersion in the present invention.
  • a coverlay film may be laminated on the transmission circuit.
  • the coverlay film can also be formed by the powder dispersion in the present invention.
  • ⁇ Smoothness of resin layer> The resin layer irradiated with light was visually observed from above and evaluated according to the following criteria.
  • ⁇ Water contact angle of resin layer> When pure water (about 2 ⁇ L) was placed on the surface of the resin layer of the metal foil with resin at 25 ° C., the angle formed by the water droplet and the surface of the resin layer was measured using a contact angle meter (CA-X manufactured by Kyowa Interface Science Co., Ltd.). Type) and evaluated according to the following criteria.
  • Ra and Rz on the surface of the resin layer were measured under the following measurement conditions.
  • ⁇ Peel strength of laminate> A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the laminate. The copper foil with resin and the cured product of the prepreg were peeled from one end in the length direction of the test piece to a position of 50 mm.
  • the board part (resin layer, compatible layer and cured layer) of the printed circuit board is used in an environment within the range of 23 ° C. ⁇ 2 ° C. and 50 ⁇ 5% RH by the SPDR (split post dielectric resonator) method.
  • the relative dielectric constant (20 GHz) and dielectric loss tangent (20 GHz) were measured at a frequency of 20 GHz.
  • Powder 1 Powder comprising a copolymer having an acid anhydride group (melting point: 300 ° C.) containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order ( D50: 1.7 ⁇ m, D90: 3.8 ⁇ m)
  • Polymer 2 Powder (D50: 0.3 ⁇ m, D90: 0.6 ⁇ m) substantially composed of a TFE homopolymer (melt viscosity at 380 ° C .: 1.4 ⁇ 10 4 ) containing 99.5 mol% or more of TFE units .
  • Dispersant 1 Copolymer of (meth) acrylate having a perfluoroalkenyl group and (meth) acrylate having a polyoxyethylene group (nonionic surfactant, mass reduction rate at 100 to 200 ° C. is less than 1% by mass / min. The mass reduction rate at 200 to 300 ° C. is 6% by mass / min.).
  • Dispersant 2 Copolymer of methacrylate having a perfluoroalkyl group and hydroxybutyl methacrylate (nonionic surfactant, mass reduction rate at 100 to 200 ° C. and 200 to 300 ° C.
  • Copper foil 1 Ultra-low roughness electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Co., Ltd., CF-T4X-SV, thickness: 18 ⁇ m).
  • Prepreg Prepreg 1: FR-4 (manufactured by Hitachi Chemical Co., Ltd., GEA-67N 0.2t (HAN), reinforcing fiber: glass fiber, matrix resin: epoxy resin, thickness: 0.2 mm).
  • Example 1 Production example of resin-coated copper foil (Example 1-1) Production example of resin-coated copper foil 1 50 parts by mass of powder 1, 5 parts by mass of dispersant 1, and 45 parts by mass of N-methylpyrrolidone were mixed. Thus, a powder dispersion was prepared. A powder dispersion is applied to the surface of the copper foil 1 using a die coater, and the copper foil 1 is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute.
  • a ventilation drying oven atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm
  • Example 1-2 Production examples of resin-coated copper foils 2 to 6
  • the types of powder and dispersant, the atmospheric temperature of the ventilation drying furnace, and the oxygen gas concentration of the atmosphere gas of the ventilation drying furnace were determined.
  • Resin-coated copper foils 2 to 6 were obtained in the same manner as in Example 1 except for changing.
  • the physical properties (water contact angle and smoothness) of each resin-coated copper foil were evaluated. The results are summarized in Table 1 below.
  • Example 2 Production Example of Laminate Example 2-1 Production Example of Laminate 1
  • the surface of the resin layer of the copper foil with resin 1 was vacuum plasma treated.
  • the processing conditions were: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 50 mTorr (6.7 Pa), and processing time: 2 minutes.
  • the prepreg 1 was piled up on the surface of the resin layer of the resin-coated copper foil 1 after the treatment, and the laminate 1 was obtained by vacuum hot pressing for 60 minutes under a pressure condition of 185 ° C. and 3.0 MPa.
  • Example 3 Production Example of Laminate A A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 3, and 45 parts by mass of N-methylpyrrolidone was used on the surface of copper foil 1 using a die coater. And applied.
  • the copper foil 1 coated with the powder dispersion is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute, and a far-infrared furnace (temperature: 340 ° C., gas : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) was further baked for 1 minute.
  • a ventilation drying oven atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm
  • a far-infrared furnace temperature: 340 ° C.
  • gas Nitrogen gas having an oxygen gas concentration of less than 100 ppm
  • Resin-coated copper foil A having an F resin layer (thickness: 5 ⁇ m) of polymer 1 on the surface of copper foil 1 was obtained.
  • the F resin layer of the copper foil A with resin A and the surface of the adhesion site were vacuum plasma treated.
  • the processing conditions were: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 50 mTorr (6.7 Pa), and processing time: 2 minutes.
  • FIG. 1 shows an image obtained by analyzing the surface of the resin-coated copper foil A by the AFM-IR method. 1 are island-shaped convex portions in contact with the F resin layer 10. From the convex portions, infrared absorption spectra caused by etheric oxygen atoms, carboxy groups, and —CF— structures are observed. was detected. That is, the white spots 12 in FIG.
  • the prepreg 1 is stacked on the surface of the F resin layer of the resin-coated copper foil A and the adhesion site after the vacuum plasma treatment, and the laminate A is subjected to vacuum hot pressing for 60 minutes under a pressure condition of 185 ° C. and 3.0 MPa. Got.
  • the warpage rate of the layered product A was 0.3%, and the peel strength was 12 N / cm.
  • Example 4 Production Example of Laminate B A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 3 and 45 parts by mass of N-methylpyrrolidone was used on the surface of copper foil 1 using a die coater. And applied.
  • the copper foil 1 coated with the powder dispersion is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute, and a far-infrared furnace (temperature: 340 ° C., gas : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) was further baked for 1 minute.
  • Resin-coated copper foil B having a resin portion (thickness 5 ⁇ m) on the surface of copper foil 1 was obtained.
  • the surface of the resin part of the copper foil B with resin was plasma-treated.
  • AP-1000 manufactured by NORDSON MARCH was used as the plasma processing apparatus.
  • the plasma treatment conditions were RF output: 300 W, gap between electrodes: 2 inches, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 13 Pa, treatment time: 1 minute.
  • Ra of the surface of the resin part after the plasma treatment was 14.5 nm, and Rz was 195 nm.
  • the surface of the resin portion of the resin-coated copper foil B after the plasma treatment is overlaid with the prepreg 1 and subjected to vacuum hot pressing under the conditions of a press temperature: 185 ° C., a press pressure: 3.0 MPa, a press time: 60 minutes,
  • the laminated body B which has the hardened
  • a compatible layer 12 ′ having a thickness of 60 nm is formed between the F resin layer 10 ′ and the cured product layer 14 ′ as shown in FIG. It was.
  • the compatible layer 12 ′ contained oxygen atoms and fluorine atoms.
  • the warp rate of the laminate B was 0.3%, and the peel strength was 12 N / cm.
  • the relative permittivity (20 GHz) of the printed circuit board obtained by forming the transmission circuit on the laminate B was 4.32, and the dielectric loss tangent (20 GHz) was 0.01568.
  • Example 5 Production example of laminate B 'A laminate B' was obtained in the same manner as in Example 4 except that the dispersant 3 was not included in the powder dispersion.
  • the laminate B ′ did not have a compatible layer, and the F resin layer and the cured product layer were in direct contact with each other, and the peel strength was 6 N / cm.
  • the method for producing a metal foil with resin of the present invention is a method suitable for producing a metal foil with resin having a resin layer excellent in adhesiveness, including a fluoropolymer, and is useful for producing a printed circuit board and the like.
  • the metal foil with a resin and the laminate of the present invention are useful as a material for a printed board.

Abstract

Provided are: a resin-clad metal foil that has excellent electrical characteristics and mechanical strength, that is useful as a printed circuit board material, that comprises a resin layer having excellent adhesiveness, and that is unlikely to warp; a method for producing the resin-clad metal foil; and a printed circuit board. A method for producing a resin-clad metal foil in which a metal foil has a resin layer on the surface thereof, wherein the surface of the metal foil is coated with a powder dispersion liquid containing a tetrafluoroethylene polymer powder, a dispersant having a mass reduction rate of 1 mass%/minute or more in the temperature range of 80-300°C, and a solvent, the metal foil is held at a temperature in the aforementioned temperature range at which the mass reduction rate becomes 1 mass%/minute or more, the tetrafluoroethylene polymer is fired at a temperature exceeding the aforementioned temperature range, and a resin layer containing the tetrafluoroethylene polymer is formed on the surface of the metal foil.

Description

樹脂付金属箔の製造方法、樹脂付金属箔、積層体及びプリント基板Manufacturing method of metal foil with resin, metal foil with resin, laminate and printed circuit board
 本発明は、樹脂付金属箔の製造方法、樹脂付金属箔、積層体及びプリント基板に関する。 The present invention relates to a method for producing a resin-coated metal foil, a resin-coated metal foil, a laminate, and a printed board.
 金属箔の表面に絶縁樹脂層を有する樹脂付金属箔は、金属箔をエッチング等によって加工して伝送回路を形成してプリント基板として用いられる。
 高周波信号の伝送に用いられるプリント基板には、伝送特性に優れることが要求される。伝送特性を高めるには、プリント基板の絶縁樹脂層として、比誘電率及び誘電正接が低い樹脂を用いる必要がある。比誘電率及び誘電正接が小さい樹脂としては、ポリテトラフルオロエチレン(PTFE)等のフルオロポリマーが知られている。
A resin-coated metal foil having an insulating resin layer on the surface of the metal foil is used as a printed board by processing the metal foil by etching or the like to form a transmission circuit.
A printed circuit board used for high-frequency signal transmission is required to have excellent transmission characteristics. In order to improve the transmission characteristics, it is necessary to use a resin having a low relative dielectric constant and dielectric loss tangent as the insulating resin layer of the printed board. Fluoropolymers such as polytetrafluoroethylene (PTFE) are known as resins having a small relative dielectric constant and dielectric loss tangent.
 フルオロポリマーを含む絶縁樹脂層を有する樹脂付金属箔を形成する材料として、フルオロポリマーのパウダーが溶媒に分散したパウダー分散液が提案されている(特許文献1~3参照。)。このパウダー分散液は、他の絶縁樹脂及びそのワニスを配合すれば、得られる樹脂付金属箔の諸物性を任意に調整できる利点や、金属箔の表面に塗布乾燥するだけで樹脂付金属箔を形成できる利点がある。
 また、電子機器の高密度化に伴い、プリント基板同士をプリプレグ等の他の基板を介して接着させるプリント基板の多層化が検討されている。
 フルオロポリマーを絶縁樹脂層とする樹脂付金属箔から形成されたプリント基板を多層化する検討としては、プリント基板の絶縁樹脂層上にケイ素原子、窒素原子又は硫黄原子を有するシランカップリング剤の被覆層を設け、被覆層と特定のフルオロポリマーを主成分とするプリプレグとを熱圧着により接着させる検討がある(特許文献4参照)。
As a material for forming a resin-coated metal foil having an insulating resin layer containing a fluoropolymer, a powder dispersion in which a fluoropolymer powder is dispersed in a solvent has been proposed (see Patent Documents 1 to 3). This powder dispersion has the advantage that if the other insulating resin and its varnish are blended, the physical properties of the resulting resin-coated metal foil can be adjusted arbitrarily, and the resin-coated metal foil can be obtained simply by applying and drying on the surface of the metal foil. There is an advantage that can be formed.
In addition, with the increase in the density of electronic devices, multilayered printed circuit boards in which printed circuit boards are bonded to each other via other substrates such as prepregs are being studied.
As a study of multilayering a printed circuit board formed from a resin-coated metal foil using a fluoropolymer as an insulating resin layer, a silane coupling agent having a silicon atom, a nitrogen atom or a sulfur atom is coated on the insulating resin layer of the printed circuit board. There is a study in which a layer is provided and a coating layer and a prepreg mainly composed of a specific fluoropolymer are bonded by thermocompression bonding (see Patent Document 4).
国際公開第2017/222027号International Publication No. 2017/222027 国際公開第2016/159102号International Publication No. 2016/159102 特開2017-193655号公報JP 2017-193655 A 特開2018-011033号公報JP 2018-011033 A
 フルオロポリマーを含む絶縁樹脂層の表面に他の基板(プリプレグ等。)を積層して多層化する態様や、前記絶縁樹脂層の表面に他の基板(カバーレイフィルム等。)を積層してパッケージングする態様では、得られるプリント基板の電気特性や生産性の観点から、前記絶縁樹脂層と他の基板は強固に積層される必要がある。
 しかし、フルオロポリマーは本質的に疎水性かつ低粘着性であり、前記絶縁樹脂層と他の基板とを強固に積層するのは容易ではない。表面処理(プラズマ処理、コロナ処理、電子線処理等。)により、前記樹脂層を親水性に改質して接着性を付与する方法が知られている。しかし、表面処理では、経時的変性や形状変化等を誘引し、前記絶縁樹脂層の本来の電気特性や機械的強度を損なう場合がある。
 このように、フルオロポリマーのパウダーを含むパウダー分散液から、フルオロポリマーを含む、各種物性を具備しつつ、接着性に特に優れた絶縁樹脂層を有する樹脂付金属箔を製造するための方法が求められている。
An embodiment in which another substrate (prepreg, etc.) is laminated on the surface of the insulating resin layer containing the fluoropolymer, or a package in which another substrate (coverlay film, etc.) is laminated on the surface of the insulating resin layer. In the embodiment, the insulating resin layer and the other substrate need to be firmly laminated from the viewpoint of the electrical characteristics and productivity of the obtained printed board.
However, the fluoropolymer is essentially hydrophobic and has low adhesiveness, and it is not easy to firmly laminate the insulating resin layer and another substrate. There is known a method of imparting adhesiveness by modifying the resin layer to be hydrophilic by surface treatment (plasma treatment, corona treatment, electron beam treatment, etc.). However, the surface treatment may induce a change with time, a shape change, and the like, thereby impairing the original electrical characteristics and mechanical strength of the insulating resin layer.
Thus, there is a need for a method for producing a resin-coated metal foil having an insulating resin layer having excellent physical properties, including various properties, including a fluoropolymer, from a powder dispersion containing a fluoropolymer powder. It has been.
 また、フルオロポリマーは、本質的に粘着性が低く、熱伸縮性も高いため、前記絶縁樹脂層とする樹脂付金属箔から形成されたプリント基板を、その寸法安定性を損なわずに、プリプレグ等の他の基板と強固に接着させて多層化するのも容易ではない。
 特許文献4における検討においては、多層化後の伝送特性や機械的強度を保持するために、高融点のフルオロポリマーを用いるのが望ましい。この場合、多層化に際して、プリント基板とプリプレグとを高温で熱圧着する必要がある。そのため、熱圧着における高温によって、プリント基板の寸法安定性が低下する課題がある。多層化に際して、プリント基板の寸法安定性が損なわれると、得られる多層プリント基板の反りが問題となり易い。
 また、プリント基板の実装工程において、はんだペーストを載せて加熱する方式(はんだリフロー方式)をとる場合、加熱によって前記絶縁樹脂層と、プリプレグが硬化した硬化物層との界面に膨れが発生するため、はんだリフロー耐性も課題となる。
In addition, fluoropolymers are inherently low in adhesiveness and high in heat stretchability, so that a printed circuit board formed from a resin-coated metal foil as the insulating resin layer can be used without losing its dimensional stability. It is not easy to make a multilayer by firmly bonding to another substrate.
In the study in Patent Document 4, it is desirable to use a high melting point fluoropolymer in order to maintain transmission characteristics and mechanical strength after multilayering. In this case, it is necessary to thermocompress the printed circuit board and the prepreg at a high temperature in the multilayering. Therefore, there is a problem that the dimensional stability of the printed circuit board is lowered due to the high temperature in thermocompression bonding. When the dimensional stability of the printed circuit board is impaired during multilayering, warpage of the obtained multilayer printed circuit board tends to be a problem.
In addition, in the printed circuit board mounting process, when a method of placing and heating a solder paste (solder reflow method) is taken, swelling occurs at the interface between the insulating resin layer and the cured product layer obtained by curing the prepreg. Solder reflow resistance is also an issue.
 このように、フルオロポリマーを絶縁樹脂層とするプリント基板を多層化するに際しては、プリント基板の寸法安定性を損なわないように、プリプレグ等の他の基板と低温接着でき、はんだリフロー方式等の加熱工程における膨れが発生しにくいプリント基板が求められており、かかるプリント基板を形成できる樹脂付金属箔が求められている。
 さらに、特許文献4に記載の多層基板においては、フルオロポリマーを含む絶縁樹脂層上に設けられたシランカップリング剤の被覆層により、絶縁樹脂層の電気特性が低下しやすい。また、前記絶縁樹脂層とプリプレグとを高温で熱圧着する場合には、フルオロポリマーに比較して耐熱性が概して低いマトリックス樹脂(フッ素原子を有さないマトリックス樹脂等。)を含むプリプレグの使用も困難である。
 このように、フルオロポリマーを絶縁樹脂層とし、それぞれの層を形成する材料の特性が損なわずに、それぞれの層が強固に接着され、反りが少ない、金属箔を有する積層体が求められている。
In this way, when a printed circuit board with a fluoropolymer as an insulating resin layer is multilayered, it can be bonded to other substrates such as prepreg at a low temperature so as not to impair the dimensional stability of the printed circuit board. There is a demand for printed circuit boards that are less prone to swelling in the process, and there is a need for resin-coated metal foils that can form such printed circuit boards.
Furthermore, in the multilayer substrate described in Patent Document 4, the electrical characteristics of the insulating resin layer are likely to deteriorate due to the coating layer of the silane coupling agent provided on the insulating resin layer containing the fluoropolymer. In addition, in the case where the insulating resin layer and the prepreg are thermocompression bonded at a high temperature, use of a prepreg containing a matrix resin (such as a matrix resin having no fluorine atom) having generally lower heat resistance than a fluoropolymer is also possible. Have difficulty.
Thus, there is a demand for a laminate having a metal foil in which a fluoropolymer is used as an insulating resin layer and the respective layers are firmly bonded without causing deterioration of the characteristics of the material forming the respective layers and the warp is small. .
 本発明は、電気特性及び機械的強度に優れ、プリント基板を製造するために有用な、フルオロポリマーを含む、接着性に優れた樹脂層を有する樹脂付金属箔の効率的な製造方法を提供する。
 本発明は、電気特性及び機械的強度に優れ、プリント基板を製造するために有用な、フルオロポリマーを含む、接着性に優れた樹脂層を有する樹脂付金属箔を提供する。
 本発明は、伝送特性及び機械的強度に優れ、各層が強固に接着され、反りが少ない積層体及びプリント基板を提供する。
The present invention provides an efficient method for producing a resin-coated metal foil having a resin layer having an excellent adhesive property, including a fluoropolymer, which is excellent in electrical characteristics and mechanical strength and useful for producing a printed circuit board. .
The present invention provides a metal foil with a resin having a resin layer having an excellent adhesive property, including a fluoropolymer, which is excellent in electrical characteristics and mechanical strength and useful for producing a printed circuit board.
The present invention provides a laminate and a printed circuit board that are excellent in transmission characteristics and mechanical strength, in which each layer is firmly bonded, and there is little warpage.
 本発明は、下記の態様を有する。
[1]金属箔の表面に樹脂層を有する樹脂付金属箔の製造方法であり、テトラフルオロエチレン系ポリマーのパウダーと80~300℃の温度領域における質量減少率が1質量%/分以上である分散剤と溶媒とを含むパウダー分散液を金属箔の表面に塗布し、前記温度領域内の質量減少率が1質量%/分以上となる温度にて金属箔を保持し、前記温度領域超の温度にてテトラフルオロエチレン系ポリマーを焼成させて金属箔の表面にテトラフルオロエチレン系ポリマーを含む樹脂層を形成する、樹脂付金属箔の製造方法。
The present invention has the following aspects.
[1] A method for producing a resin-coated metal foil having a resin layer on the surface of the metal foil, wherein the mass reduction rate in a temperature region of 80 to 300 ° C. with a powder of tetrafluoroethylene polymer is 1% by mass / min or more. A powder dispersion containing a dispersant and a solvent is applied to the surface of the metal foil, and the metal foil is held at a temperature at which the mass reduction rate in the temperature region is 1% by mass / min or more. A method for producing a resin-coated metal foil, comprising firing a tetrafluoroethylene-based polymer at a temperature to form a resin layer containing the tetrafluoroethylene-based polymer on the surface of the metal foil.
[2]樹脂層の水接触角が、70~100°である、[1]に記載の製造方法。
[3]分散剤が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーである、[1]又は[2]に記載の製造方法。
[4]前記温度領域に金属箔を保持する際の温度が、100~300℃である、[1]~[3]のいずれかに記載の製造方法。
[5]前記温度領域に金属箔を保持する際の雰囲気が、酸素ガスを含む雰囲気である、[1]~[4]のいずれかに記載の製造方法。
[6]テトラフルオロエチレン系ポリマーを焼成させる際の温度が、330~380℃である、[1]~[5]のいずれかに記載の製造方法。
[2] The production method according to [1], wherein the water contact angle of the resin layer is 70 to 100 °.
[3] The production method according to [1] or [2], wherein the dispersant is a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain.
[4] The manufacturing method according to any one of [1] to [3], wherein the temperature when holding the metal foil in the temperature region is 100 to 300 ° C.
[5] The manufacturing method according to any one of [1] to [4], wherein the atmosphere when holding the metal foil in the temperature region is an atmosphere containing oxygen gas.
[6] The production method according to any one of [1] to [5], wherein the temperature at which the tetrafluoroethylene-based polymer is baked is 330 to 380 ° C.
[7]金属箔、テトラフルオロエチレン系ポリマーを含む樹脂層、及び、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する親水成分を含む接着部位をこの順に有し、前記樹脂層と前記接着部位とが接している、樹脂付金属箔。
[8]前記接着部位が、島状に存在している、[7]に記載の樹脂付金属箔。
[9]前記親水成分が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーに由来する、[7]又は[8]に記載の樹脂付金属箔。
[10]前記[7]~[9]のいずれかに記載の樹脂付金属箔と他の基板とを熱プレス法により接着させて積層体を得る、積層体の製造方法。
[7] A metal foil, a resin layer containing a tetrafluoroethylene-based polymer, and an adhesion site containing a hydrophilic component having at least one selected from the group consisting of etheric oxygen atoms, hydroxy groups and carboxy groups in this order The resin-attached metal foil in which the resin layer and the adhesion site are in contact with each other.
[8] The metal foil with resin according to [7], wherein the adhesion site exists in an island shape.
[9] The metal with resin according to [7] or [8], wherein the hydrophilic component is derived from a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain. Foil.
[10] A method for producing a laminate, wherein the metal foil with resin according to any one of [7] to [9] and another substrate are bonded by a hot press method to obtain a laminate.
[11]金属箔、テトラフルオロエチレン系ポリマーを含む樹脂層、及び、マトリックス樹脂を含むプリプレグの硬化物層をこの順に有し、前記樹脂層と前記硬化物層との間に、前記樹脂層及び前記硬化物層に接する、フッ素原子及び酸素原子を有する成分を含む相溶層をさらに有する、積層体。
[12]前記相溶層の厚さが、1~500nmである、[11]に記載の積層体。
[13]前記相溶層が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーに由来する、[11]又は[2]に記載の積層体。
[14]前記マトリックス樹脂が、エポキシ樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル及びポリブタジエンからなる群から選ばれる少なくとも1種の、フッ素原子を有さないマトリックス樹脂である、[11]~[13]のいずれかに記載の積層体。
[15]伝送回路、テトラフルオロエチレン系ポリマーを含む樹脂層、マトリックス樹脂を含むプリプレグの硬化物層をこの順に有し、前記樹脂層と前記硬化物層との間に、前記樹脂層及び前記硬化物層に接する、フッ素原子及び酸素原子を有する成分を含む相溶層をさらに有する、プリント基板。
[11] A metal foil, a resin layer containing a tetrafluoroethylene-based polymer, and a cured product layer of a prepreg containing a matrix resin in this order, and the resin layer and the cured product layer between the resin layer and the cured product layer The laminated body which further has a compatible layer containing the component which has a fluorine atom and an oxygen atom in contact with the said hardened | cured material layer.
[12] The laminate according to [11], wherein the compatible layer has a thickness of 1 to 500 nm.
[13] The laminate according to [11] or [2], wherein the compatible layer is derived from a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain. .
[14] Any of [11] to [13], wherein the matrix resin is at least one matrix resin having no fluorine atom selected from the group consisting of epoxy resin, polyphenylene oxide, polyphenylene ether and polybutadiene. The laminated body as described in.
[15] A cured product layer of a transmission circuit, a resin layer containing a tetrafluoroethylene-based polymer, and a prepreg containing a matrix resin in this order, and the resin layer and the cured product between the resin layer and the cured product layer The printed circuit board which further has a compatible layer containing the component which has a fluorine atom and an oxygen atom in contact with a physical layer.
 本発明の製造方法によれば、電気特性と機械的強度を具備し、プリント基板を製造するために有用な、フルオロポリマーを含む、接着性に優れた樹脂層を有する樹脂付金属箔を、効率的に製造できる。
 本発明の樹脂付金属箔は、フルオロポリマーを含む樹脂層を有するにもかかわらず、その寸法安定性を損なわないように、他の基板と低温接着できるだけでなく、プリント基板とした場合に耐熱性が優れ、膨れが発生しにくい。
 本発明の積層体は、伝送特性及び機械的強度に優れ、各層が強固に接着され、反りが少ない。
 本発明のプリント基板は、伝送特性及び機械的強度に優れ、各層が強固に接着され、反りが少ない。本発明によれば、伝送特性及び機械的強度に優れ、各層が強固に接着され、反りが少ないプリント基板を製造できる。
According to the production method of the present invention, a metal foil with a resin having a resin layer excellent in adhesiveness, including a fluoropolymer, which has electrical characteristics and mechanical strength and is useful for producing a printed circuit board, is efficiently produced. Can be manufactured.
Although the resin-coated metal foil of the present invention has a resin layer containing a fluoropolymer, it can not only be bonded to other substrates at low temperature so as not to impair its dimensional stability, but also has heat resistance when used as a printed circuit board. Excellent and less prone to blistering.
The laminate of the present invention is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and warpage is small.
The printed circuit board of the present invention is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and warpage is small. According to the present invention, it is possible to manufacture a printed circuit board that is excellent in transmission characteristics and mechanical strength, in which each layer is firmly bonded, and is less warped.
実施例の例3-1における樹脂付銅箔Aの樹脂層の表面をAFM-IR法により分析して得られる画像である。It is an image obtained by analyzing the surface of the resin layer of the resin-coated copper foil A in Example 3-1 of the example by the AFM-IR method. 実施例の例4-1における積層体Bの断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the laminated body B in Example 4-1 of an Example.
 以下の用語は、以下の意味を有する。
 「パウダーのD50」は、レーザー回折・散乱法によって求められる、パウダーの体積基準累積50%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、レーザー回折・散乱法によって求められる、パウダーの体積基準累積90%径である。すなわち、レーザー回折・散乱法によってパウダーの粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 「ポリマーの溶融粘度」は、ASTM D 1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した値である。
 「ポリマーの融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
The following terms have the following meanings:
“D50 of powder” is a volume-based cumulative 50% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the group of particles as 100%, and the particle diameter is the point where the cumulative volume is 50% on the cumulative curve.
“D90 of powder” is a volume-based cumulative 90% diameter of powder determined by a laser diffraction / scattering method. That is, the particle size distribution of the powder is measured by the laser diffraction / scattering method, the cumulative curve is obtained by setting the total volume of the group of particles as 100%, and the particle diameter is the point where the cumulative volume is 90% on the cumulative curve.
“Polymer melt viscosity” conforms to ASTM D 1238, using a flow tester and a 2Φ-8L die, and a polymer sample (2 g) that has been pre-heated at the measurement temperature for 5 minutes is loaded at 0.7 MPa. It is the value measured by holding at the measurement temperature.
“Polymer melting point” is a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
 「分散剤の質量減少率」は、分散剤を温度領域の下限から上限に昇温させた際の分散剤の質量減少量を、昇温時間と分散剤の試料量とで除した%値である。
 「反り率」は、サンプル(樹脂付金属箔、積層体等)から180mm角の四角い試験片を切り出し、試験片についてJIS C 6471:1995(IEC 249-1:1982)に規定される測定方法にしたがって測定される値である。
 「寸法変化率」は、次のようにして求められる値である。サンプル(樹脂付金属箔、積層体等)を150mm角で切り出し、0.3mmのドリルを用いて四隅に穴を空けて三次元測定器で穴の位置を測定する。樹脂付金属箔の金属箔をエッチングで取り除き、130℃で30分間乾燥する。四隅に空けた穴の位置を三次元測定器で測定する。エッチング前後の穴の位置の差から寸法変化率を算出する。
 「算術平均粗さRa」及び「最大高さRz」は、Oxford Instruments社製の原子間力顕微鏡(AFM)を用いて、下記測定条件にて、サンプル(樹脂付金属箔、積層体等)の表面(1μm範囲)について測定した際の値である。
 プローブ:AC160TS-C3(先端R <7nm、バネ定数 26N/m)、測定モード:AC-Air、Scan Rate:1Hz。
“Dispersant weight loss rate” is a percentage value obtained by dividing the weight loss of the dispersant when the temperature of the dispersant is raised from the lower limit to the upper limit of the temperature range divided by the heating time and the sample amount of the dispersant. is there.
“Warpage rate” is a 180 mm square test piece cut from a sample (metal foil with resin, laminate, etc.), and the test piece is measured according to the measurement method specified in JIS C 6471: 1995 (IEC 249-1: 1982). Therefore, it is a measured value.
“Dimensional change rate” is a value obtained as follows. Samples (metal foil with resin, laminate, etc.) are cut out at 150 mm square, holes are drilled at four corners using a 0.3 mm drill, and the positions of the holes are measured with a three-dimensional measuring instrument. The metal foil with resin is removed by etching and dried at 130 ° C. for 30 minutes. Measure the positions of the holes in the four corners with a three-dimensional measuring instrument. The dimensional change rate is calculated from the difference between the positions of the holes before and after etching.
“Arithmetic average roughness Ra” and “maximum height Rz” are measured using the atomic force microscope (AFM) manufactured by Oxford Instruments under the following measurement conditions under the following measurement conditions. It is a value when measured on the surface (1 μm 2 range).
Probe: AC160TS-C3 (tip R <7 nm, spring constant 26 N / m), measurement mode: AC-Air, Scan Rate: 1 Hz.
 「比誘電率(20GHz)及び誘電正接(20GHz)」は、SPDR(スプリットポスト誘電体共振器)法により、23℃±2℃、50±5%RHの範囲内の環境下にて、周波数20GHzで測定される値である。
 「耐熱性樹脂」とは、融点が280℃以上の高分子化合物、又はJIS C 4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物を意味する。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。ポリマーに含まれる、モノマーAに基づく単位を、単に「単位A」とも記す。
“Relative permittivity (20 GHz) and dielectric loss tangent (20 GHz)” is a frequency of 20 GHz in an environment within a range of 23 ° C. ± 2 ° C. and 50 ± 5% RH by SPDR (split post dielectric resonator) method. It is a value measured by.
“Heat resistant resin” means a high molecular compound having a melting point of 280 ° C. or higher, or a high molecular compound having a maximum continuous use temperature defined by JIS C 4003: 2010 (IEC 60085: 2007) of 121 ° C. or higher.
“(Meth) acrylate” is a general term for acrylate and methacrylate.
The “unit” in the polymer may be an atomic group directly formed from a monomer by a polymerization reaction, and an atomic group in which a part of the structure is converted by treating the polymer obtained by the polymerization reaction by a predetermined method. It may be. The unit based on the monomer A contained in the polymer is also simply referred to as “unit A”.
 本発明の樹脂付金属箔の製造方法は、特定パウダーと特定分散剤と溶媒とを含むパウダー分散液を金属箔の表面に塗布し、特定の温度雰囲気で段階的に加熱保持して、テトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)を含む樹脂層(以下、「F樹脂層」とも記す。)を金属箔の表面に形成する方法である。本発明におけるパウダー分散液は、TFE系ポリマーのパウダーが粒子状に分散した分散液である。 The method for producing a resin-coated metal foil of the present invention comprises applying a powder dispersion containing a specific powder, a specific dispersant and a solvent to the surface of the metal foil, heating and holding it stepwise in a specific temperature atmosphere, In this method, a resin layer (hereinafter also referred to as “F resin layer”) containing an ethylene polymer (hereinafter also referred to as “TFE polymer”) is formed on the surface of the metal foil. The powder dispersion in the present invention is a dispersion in which TFE polymer powder is dispersed in the form of particles.
 本発明の製造方法で得られる樹脂付金属箔のF樹脂層が他の基板との接着性に優れている理由は、必ずしも明確ではないが、以下の様に考えられる。
 本発明におけるパウダー分散液は、所定の質量減少率(80~300℃の温度領域における質量減少率が1質量%/分以上である。)を示す分散剤を含み、TFE系ポリマーのパウダー及び分散剤の高度な相互作用により、分散安定性と塗布時のパウダーのパッキング能とが高い。つまり、このパウダー分散液を金属箔の表面に塗布して所定の温度(80~300℃の温度領域内の質量減少率が1質量%/分以上となる温度)に保持すると、溶媒の揮発と分散剤の分解とが進行しながら、特定パウダーが密にパッキングした平滑性の高い被膜が形成される。さらに、この際、分散剤は、親水性になり特定パウダーに弾かれやすくなり、表面に流動しやすくなると考えられる。よって、この保持により、親水性の成分が表面に偏析した状態が形成されるとも考えられる。
 本発明においては、この状態で、さらに高い温度(前記温度領域超の温度。)にて前記被膜からF樹脂層を形成するため、結果として、前記F樹脂層の表面は親水性と平滑性が高まり、接着性に優れたF樹脂層を有する樹脂付金属箔が得られたと考えられる。
The reason why the F resin layer of the resin-coated metal foil obtained by the production method of the present invention is excellent in adhesiveness to other substrates is not necessarily clear, but is considered as follows.
The powder dispersion in the present invention contains a dispersant exhibiting a predetermined mass reduction rate (the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more), and the powder and dispersion of the TFE polymer Due to the high level of interaction of the agents, the dispersion stability and the powder packing ability during application are high. That is, when this powder dispersion is applied to the surface of the metal foil and kept at a predetermined temperature (a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more), While the decomposition of the dispersant proceeds, a highly smooth film in which the specific powder is densely packed is formed. Further, at this time, it is considered that the dispersant becomes hydrophilic and easily repelled by the specific powder and easily flows to the surface. Therefore, it is considered that a state in which hydrophilic components are segregated on the surface is formed by this holding.
In the present invention, in this state, the F resin layer is formed from the film at a higher temperature (temperature exceeding the temperature range). As a result, the surface of the F resin layer has hydrophilicity and smoothness. It is considered that a resin-attached metal foil having an F resin layer excellent in adhesiveness was obtained.
 本発明の製造方法における樹脂付金属箔は、金属箔の少なくとも一方の表面に、F樹脂層を有する。つまり、樹脂付金属箔は、金属箔の片面のみにF樹脂層を有していてもよく、金属箔の両面にF樹脂層を有していてもよい。
 樹脂付金属箔の反り率は、25%以下が好ましく、7%以下が特に好ましい。反り率の下限は、通常、0%である。この場合、樹脂付金属箔をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性が優れる。
 樹脂付金属箔の寸法変化率は、±1%以下が好ましく、±0.2%以下が特に好ましい。この場合、樹脂付金属箔から得られるプリント基板を多層化しやすい。
The metal foil with resin in the production method of the present invention has an F resin layer on at least one surface of the metal foil. That is, the metal foil with resin may have an F resin layer only on one side of the metal foil, or may have an F resin layer on both sides of the metal foil.
The warp rate of the metal foil with resin is preferably 25% or less, and particularly preferably 7% or less. The lower limit of the warp rate is usually 0%. In this case, the handling property when processing the resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board are excellent.
The dimensional change rate of the resin-coated metal foil is preferably ± 1% or less, particularly preferably ± 0.2% or less. In this case, the printed board obtained from the resin-attached metal foil is easily multi-layered.
 本発明における金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔としては、圧延銅箔、電解銅箔等が挙げられる。金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されていてもよい。
Examples of the material of the metal foil in the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, titanium alloy and the like.
Examples of the metal foil include rolled copper foil and electrolytic copper foil. On the surface of the metal foil, a rust preventive layer (oxide film such as chromate), a heat-resistant layer or the like may be formed.
 金属箔の表面の十点平均粗さは、0.2~1.5μmが好ましい。この場合、F樹脂層との接着性が良好となり、伝送特性に優れたプリント基板が得られやすい。
 金属箔の厚さは、樹脂付金属箔の用途において機能が発揮できる厚さであればよい。金属箔の厚さは、2μm以上が好ましく、3μm以上が特に好ましい。また、金属箔の厚さは、40μm以下が好ましく、20μm以下が特に好ましい。
 金属箔の表面はシランカップリング剤により処理されていてもよく、金属箔の表面の全体がシランカップリング剤により処理されていてもよく、金属箔の表面の一部がシランカップリング剤により処理されていてもよい。
The ten-point average roughness of the surface of the metal foil is preferably 0.2 to 1.5 μm. In this case, the adhesiveness with the F resin layer becomes good, and a printed board having excellent transmission characteristics is easily obtained.
The thickness of metal foil should just be the thickness which can exhibit a function in the use of resin-coated metal foil. The thickness of the metal foil is preferably 2 μm or more, particularly preferably 3 μm or more. Further, the thickness of the metal foil is preferably 40 μm or less, and particularly preferably 20 μm or less.
The surface of the metal foil may be treated with a silane coupling agent, the entire surface of the metal foil may be treated with a silane coupling agent, or a part of the surface of the metal foil is treated with a silane coupling agent. May be.
 本発明の製造方法におけるF樹脂層は、パウダー分散液から形成される層である。
 前述したとおり、F樹脂層の表面は分散剤に起因する親水性を有する。F樹脂層の表面の水接触角は、70~100°が好ましく、70~90°が特に好ましい。前記範囲が上限以下であれば、F樹脂層と他の基材との接着性がより優れる。前記範囲が下限以上であれば、F樹脂層の電気特性(低誘電損失と低誘電率)がより優れる。
The F resin layer in the production method of the present invention is a layer formed from a powder dispersion.
As described above, the surface of the F resin layer has hydrophilicity due to the dispersant. The water contact angle on the surface of the F resin layer is preferably 70 to 100 °, particularly preferably 70 to 90 °. If the said range is below an upper limit, the adhesiveness of F resin layer and another base material will be more excellent. If the said range is more than a minimum, the electrical property (low dielectric loss and low dielectric constant) of F resin layer will be more excellent.
 F樹脂層の厚さは、1μm以上が好ましく、2μm以上がより好ましく、5μm以上が特に好ましい。また、F樹脂層の厚さは50μm以下が好ましく、15μm以下がより好ましく、10μm未満が特に好ましい。この範囲において、プリント基板の伝送特性と樹脂付金属箔の反り抑制とをバランスさせやすい。樹脂付金属箔が金属箔の両面にF樹脂層を有する場合、それぞれのF樹脂層の組成及び厚さは、樹脂付金属箔の反りを抑制する点から、それぞれ同じであることが好ましい。
 F樹脂層の厚さの具体的な態様としては、1~50μmが挙げられ、1~15μm、1μm以上10μm未満、5~15μm等の態様が挙げられる。
The thickness of the F resin layer is preferably 1 μm or more, more preferably 2 μm or more, and particularly preferably 5 μm or more. The thickness of the F resin layer is preferably 50 μm or less, more preferably 15 μm or less, and particularly preferably less than 10 μm. In this range, it is easy to balance the transmission characteristics of the printed circuit board and the warpage suppression of the metal foil with resin. When the metal foil with resin has F resin layers on both surfaces of the metal foil, the composition and thickness of each F resin layer are preferably the same from the viewpoint of suppressing warpage of the metal foil with resin.
Specific examples of the thickness of the F resin layer include 1 to 50 μm, and examples include 1 to 15 μm, 1 to less than 10 μm, and 5 to 15 μm.
 F樹脂層の比誘電率は、2.0~3.5が好ましく、2.0~3.0がより好ましい。この場合、F樹脂層の電気特性及び接着性の双方が優れ、低誘電率が求められるプリント基板等に樹脂付金属箔を好適に使用できる。
 F樹脂層の表面のRaは、F樹脂層の厚さ未満であり、2.2~8μmが好ましい。この範囲において、他の基板の接着性と加工性とをバランスさせやすい。
The relative dielectric constant of the F resin layer is preferably 2.0 to 3.5, more preferably 2.0 to 3.0. In this case, the resin-coated metal foil can be suitably used for a printed circuit board or the like that is excellent in both the electrical characteristics and adhesiveness of the F resin layer and requires a low dielectric constant.
Ra of the surface of the F resin layer is less than the thickness of the F resin layer, and is preferably 2.2 to 8 μm. In this range, it is easy to balance the adhesion and workability of other substrates.
 本発明におけるパウダー分散液は、TFE系ポリマーを含む体積基準累積50%径が0.05~6.0μmのパウダー(以下、「Fパウダー」とも記す。)と、80~300℃の温度領域における質量減少率が1質量%/分以上である分散剤と、溶媒とを含む。 The powder dispersion in the present invention comprises a powder containing a TFE polymer and having a volume-based cumulative 50% diameter of 0.05 to 6.0 μm (hereinafter also referred to as “F powder”), in a temperature range of 80 to 300 ° C. A dispersant having a mass reduction rate of 1% by mass / min or more and a solvent are included.
 本発明の製造方法におけるTFE系ポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含むポリマーである。TFE系ポリマーは、TFEのホモポリマーであってもよく、TFEとTFEと共重合可能な他のモノマー(以下、コモノマーとも記す。)とのコポリマーであってもよい。TFE系ポリマーは、ポリマーに含まれる全単位に対して、TFE単位を90~100モル%含むのが好ましい。
 TFE系ポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFEとエチレンのコポリマー(ETFE)、TFEとプロピレンのコポリマー、TFEとペルフルオロ(アルキルビニルエーテル)(PAVE)のコポリマー(PFA)、TFEとヘキサフルオロプロピレン(HFP)のコポリマー(FEP)、TFEとクロロトリフルオロエチレンのコポリマーが挙げられる。
 TFE系ポリマーの溶融温度は、380℃において1×10~1×10Pa・sが好ましく、340℃において1×10~1×10Pa・sが好ましく、300℃において1×10~1×10Pa・sが好ましい。この場合、パウダー分散液を金属箔の表面に塗布して所定の温度(80~300℃の温度領域内の質量減少率が1質量%/分以上となる温度。)に保持した際に、パウダーが密にパッキングした平滑性の高い被膜をより形成しやすい。
The TFE-based polymer in the production method of the present invention is a polymer containing units (TFE units) based on tetrafluoroethylene (TFE). The TFE-based polymer may be a TFE homopolymer or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter also referred to as a comonomer). The TFE-based polymer preferably contains 90 to 100 mol% of TFE units with respect to all units contained in the polymer.
TFE polymers include polytetrafluoroethylene (PTFE), TFE and ethylene copolymer (ETFE), TFE and propylene copolymer, TFE and perfluoro (alkyl vinyl ether) (PAVE) copolymer (PFA), TFE and hexafluoropropylene. (HFP) copolymer (FEP), TFE and chlorotrifluoroethylene copolymer.
Melting temperature of the TFE-based polymer, 1 × 10 2 ~ 1 × 10 6 Pa · s is preferably at 380 ° C., preferably 1 × 10 2 ~ 1 × 10 6 Pa · s at 340 ℃, 1 × 10 at 300 ° C. 2 to 1 × 10 6 Pa · s is preferable. In this case, when the powder dispersion is applied to the surface of the metal foil and kept at a predetermined temperature (a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1 mass% / min or more), the powder It is easier to form a highly smooth film packed tightly.
 TFE系ポリマーの好適な態様としては、低分子量のPTFEが挙げられる。低分子量のPTFEは、コア部分とシェル部分からなるコア-シェル構造においてシェル部分のみが上記溶融粘度を満たすPTFEであってもよい。
 低分子量のPTFEとしては、高分子量のPTFE(溶融粘度が1×10~1×1010Pa・s程度。)に放射線を照射して得られるPTFE(国際公開第2018/026012号、国際公開第2018/026017号等を参照。)であってもよく、TFEを重合してPTFEを製造する際に連鎖移動剤を用い分子量を低減して得られるPTFE(特開2009-1745号公報、国際公開第2010/114033号等を参照。)であってよい。
 なお、低分子量のPTFEは、TFEを単独で重合して得られたポリマーであってもよく、TFEとコモノマーとを共重合して得られたコポリマーであってもよい(国際公開第2009/20187号等を参照。)。ポリマーに含まれる全単位に対して、TFE単位は、99.5モル%以上が好ましく、99.8モル%以上がより好ましく、99.9モル%以上がさらに好ましい。TFE単位が前記範囲であると、PTFE物性を維持できる。コモノマーとしては、後述するフルオロモノマーが挙げられ、HFP、PAVE又はFAEが好ましい。
A preferred embodiment of the TFE polymer includes low molecular weight PTFE. The low molecular weight PTFE may be PTFE in which only the shell portion satisfies the melt viscosity in a core-shell structure including a core portion and a shell portion.
As a low molecular weight PTFE, PTFE obtained by irradiating high molecular weight PTFE (melt viscosity is about 1 × 10 9 to 1 × 10 10 Pa · s) (International Publication No. 2018/026012, International Publication) No. 2018/026017, etc.), and PTFE obtained by reducing the molecular weight using a chain transfer agent when producing PTFE by polymerizing TFE (Japanese Patent Laid-Open No. 2009-1745, International (See Published 2010/114033, etc.).
The low molecular weight PTFE may be a polymer obtained by polymerizing TFE alone or may be a copolymer obtained by copolymerizing TFE and a comonomer (International Publication No. 2009/20187). (See No. etc.) 99.5 mol% or more is preferable with respect to all the units contained in the polymer, more preferably 99.8 mol% or more, and even more preferably 99.9 mol% or more. When the TFE unit is in the above range, the physical properties of PTFE can be maintained. Examples of the comonomer include a fluoromonomer described later, and HFP, PAVE, or FAE is preferable.
 コア-シェル構造を有するPTFEとしては、特表2005-527652号公報、国際公開第2016/170918号等に記載のPTFEが挙げられる。シェル部分の溶融粘度を前記範囲とするためには、連鎖移動剤を用いてシェル部分を低分子量化する方法(特開2015-232082号公報等を参照。)、シェル部分の製造の際にTFEと前記コモノマーとを共重合する方法(特開平09-087334号公報を参照。)等が挙げられる。
 後者の場合、コモノマーの使用量はTFEに対して0.001~0.05モル%が好ましい。また、シェル部分だけでなくコア部分も共重合により製造してもよい。この場合もコモノマーの使用量はTFEに対して0.001~0.05モル%が好ましい。
 低分子量のPTFEの標準比重は、2.14~2.22が好ましく、2.16~2.20がより好ましい。標準比重は、ASTM D4895-04に準拠して測定できる。
Examples of PTFE having a core-shell structure include PTFE described in JP-T-2005-527652 and International Publication No. 2016/170918. In order to make the melt viscosity of the shell part within the above range, a method of lowering the molecular weight of the shell part using a chain transfer agent (see JP-A-2015-232082, etc.), TFE during the production of the shell part And a method of copolymerizing the comonomer (see JP-A-09-087334).
In the latter case, the amount of comonomer used is preferably 0.001 to 0.05 mol% with respect to TFE. Moreover, you may manufacture not only a shell part but a core part by copolymerization. Also in this case, the amount of comonomer used is preferably 0.001 to 0.05 mol% with respect to TFE.
The standard specific gravity of low molecular weight PTFE is preferably 2.14 to 2.22, more preferably 2.16 to 2.20. The standard specific gravity can be measured according to ASTM D4895-04.
 TFE系ポリマーの好適な態様としては、TFEとコモノマーとのコポリマーであり、コポリマーに含まれる全単位に対して、コモノマーに基づく単位を0.5モル%超含むフルオロポリマー(以下、「ポリマーF」とも記す。)も挙げられる。ポリマーFの融点は、240℃以上330℃未満が好ましく、260~320℃がより好ましく、295~310℃が特に好ましい。この場合、ポリマーの耐熱性と溶融成形性がバランスする。ポリマーFとしては、ETFE、FEP、PFA等が挙げられる。ポリマーFとしては、電気特性(比誘電率、誘電正接)及び耐熱性の点から、PFA又はFEPがより好ましく、PFAが特に好ましい。 A preferred embodiment of the TFE-based polymer is a copolymer of TFE and a comonomer, and a fluoropolymer (hereinafter referred to as “polymer F”) containing more than 0.5 mol% of a comonomer-based unit with respect to all units contained in the copolymer. Also mentioned). The melting point of the polymer F is preferably 240 ° C. or higher and lower than 330 ° C., more preferably 260 to 320 ° C., and particularly preferably 295 to 310 ° C. In this case, the heat resistance and melt moldability of the polymer are balanced. Examples of the polymer F include ETFE, FEP, PFA and the like. As the polymer F, PFA or FEP is more preferable, and PFA is particularly preferable from the viewpoints of electrical characteristics (dielectric constant, dielectric loss tangent) and heat resistance.
 TFE系ポリマーとしては、F樹脂層と金属箔の接着性が優れる点から、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「官能基」とも記す。)を有するTFE系ポリマーが好ましい。官能基はプラズマ処理等により付与してもよい。
 官能基は、TFE系ポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者のポリマーとしては、官能基を、重合開始剤、連鎖移動剤等に由来する末端基として有するポリマーが挙げられる。
 ポリマーFとしては、官能基を有する単位とTFE単位とを含むポリマーが好ましい。また、この場合のポリマーFは、さらに他の単位(後述するPAVE単位、HFP単位等)を含むのが好ましい。
The TFE-based polymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group from the viewpoint of excellent adhesion between the F resin layer and the metal foil. A TFE polymer having a group (hereinafter also referred to as “functional group”) is preferable. The functional group may be imparted by plasma treatment or the like.
The functional group may be contained in a unit in the TFE polymer, or may be contained in a terminal group of the main chain of the polymer. Examples of the latter polymer include polymers having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like.
As the polymer F, a polymer containing a unit having a functional group and a TFE unit is preferable. In this case, the polymer F preferably further contains other units (PAVE units, HFP units, etc. described later).
 官能基としては、F樹脂層と金属箔の接着性の観点から、カルボニル基含有基が好ましい。カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基(-C(O)O(O)C-)、脂肪酸残基等が挙げられ、カルボキシ基及び酸無水物残基が好ましい。
 官能基を有する単位は、官能基を有するモノマーに基づく単位が好ましく、カルボニル基含有基を有するモノマーに基づく単位、ヒドロキシ基を有するモノマーに基づく単位、エポキシ基を有するモノマーに基づく単位及びイソシアネート基を有するモノマーに基づく単位がより好ましく、カルボニル基含有基を有するモノマーに基づく単位が特に好ましい。
As the functional group, a carbonyl group-containing group is preferable from the viewpoint of adhesion between the F resin layer and the metal foil. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (—C (O) O (O) C—), a fatty acid residue, and the like. Acid anhydride residues are preferred.
The unit having a functional group is preferably a unit based on a monomer having a functional group, and includes a unit based on a monomer having a carbonyl group-containing group, a unit based on a monomer having a hydroxy group, a unit based on a monomer having an epoxy group, and an isocyanate group. The unit based on the monomer which has is more preferable, and the unit based on the monomer which has a carbonyl group containing group is especially preferable.
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル及び(メタ)アクリレートが好ましく、酸無水物残基を有する環状モノマーが特に好ましい。
 前記環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)及び無水マレイン酸が好ましい。
As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
As the cyclic monomer, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also referred to as “hymic anhydride”, hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
 官能基を有する単位及びTFE単位以外の他の単位としては、HFP単位、PAVE単位及びFAE単位が好ましい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、PPVEが好ましい。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFF、CH=CH(CFFが好ましい。
As a unit other than the unit having a functional group and the TFE unit, an HFP unit, a PAVE unit and an FAE unit are preferable.
The PAVE, CF 2 = CFOCF 3, CF 2 = CFOCF 2 CF 3, CF 2 = CFOCF 2 CF 2 CF 3 (PPVE), CF 2 = CFOCF 2 CF 2 CF 2 CF 3, CF 2 = CFO (CF 2 ) 8 F and the like, and PPVE is preferable.
The FAE, CH 2 = CH (CF 2) 2 F, CH 2 = CH (CF 2) 3 F, CH 2 = CH (CF 2) 4 F, CH 2 = CF (CF 2) 3 H, CH 2 ═CF (CF 2 ) 4 H and the like, and CH 2 ═CH (CF 2 ) 4 F and CH 2 ═CH (CF 2 ) 2 F are preferable.
 ポリマーFとしては、官能基を有する単位と、TFE単位と、PAVE単位又はHFP単位とを含むポリマーが好ましい。かかるポリマーFの具体例としては、国際公開第2018/16644号に記載された重合体(X)が挙げられる。
 ポリマーFにおけるTFE単位の割合は、ポリマーFを構成する全単位のうち、90~99モル%が好ましい。
 ポリマーFにおけるPAVE単位又はHFP単位の割合は、ポリマーFを構成する全単位のうち、0.5~9.97モル%が好ましい。
 ポリマーFにおける官能基を有する単位の割合は、ポリマーFを構成する全単位のうち、0.01~3モル%が好ましい。
As the polymer F, a polymer including a unit having a functional group, a TFE unit, and a PAVE unit or an HFP unit is preferable. Specific examples of the polymer F include the polymer (X) described in International Publication No. 2018/16644.
The proportion of TFE units in the polymer F is preferably 90 to 99 mol% of all units constituting the polymer F.
The ratio of PAVE units or HFP units in the polymer F is preferably 0.5 to 9.97 mol% of all units constituting the polymer F.
The ratio of the unit having a functional group in the polymer F is preferably 0.01 to 3 mol% of all units constituting the polymer F.
 本発明の製造方法におけるパウダー(以下、「Fパウダー」とも記す。)は、TFE系ポリマーを含むパウダーである。Fパウダーは、本発明の効果を損なわない範囲において、TFE系ポリマー以外の成分を含んでいてもよいが、TFE系ポリマーを主成分とするのが好ましい。FパウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%が特に好ましい。
 FパウダーのD50は、0.05~6.0μmが好ましく、0.1~3.0μmがより好ましく、0.2~3.0μmが特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、樹脂付金属箔におけるTFE系ポリマーの電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 FパウダーのD90は、8μm以下が好ましく、6μm以下がより好ましく、5μm以下が特に好ましい。パウダーのD90は、0.3μm以上が好ましく、0.8μm以上が特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、F樹脂層の電気特性(低誘電率等)や耐熱性が最も発現しやすい。
 Fパウダーの疎充填嵩密度は、0.05g/mL以上が好ましく、0.08~0.5g/mLが特に好ましい。
 Fパウダーの密充填嵩密度は、0.05g/mL以上が好ましく、0.1~0.8g/mLが特に好ましい。
 Fパウダーの製造方法としては、特に限定されず、国際公開第2016/017801号の[0065]~[0069]に記載の方法を採用できる。なお、Fパウダーは、所望のパウダーが市販されていればそれを用いてもよい。
The powder (hereinafter also referred to as “F powder”) in the production method of the present invention is a powder containing a TFE polymer. The F powder may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired. However, the F powder preferably contains the TFE-based polymer as a main component. 80 mass% or more is preferable and, as for content of TFE type polymer in F powder, 100 mass% is especially preferable.
The D50 of the F powder is preferably 0.05 to 6.0 μm, more preferably 0.1 to 3.0 μm, and particularly preferably 0.2 to 3.0 μm. In this range, the fluidity and dispersibility of the F powder are improved, and the electrical characteristics (low dielectric constant, etc.) and heat resistance of the TFE polymer in the resin-coated metal foil are most easily developed.
D90 of the F powder is preferably 8 μm or less, more preferably 6 μm or less, and particularly preferably 5 μm or less. The D90 of the powder is preferably 0.3 μm or more, particularly preferably 0.8 μm or more. In this range, the fluidity and dispersibility of the F powder are good, and the electric characteristics (low dielectric constant, etc.) and heat resistance of the F resin layer are most easily developed.
The bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.08 to 0.5 g / mL.
The densely packed bulk density of the F powder is preferably 0.05 g / mL or more, particularly preferably 0.1 to 0.8 g / mL.
The method for producing F powder is not particularly limited, and the methods described in [0065] to [0069] of International Publication No. 2016/017801 can be employed. In addition, as long as desired powder is marketed, you may use F powder.
 本発明の製造方法における分散剤は、80~300℃の温度領域において1質量%/分以上の質量減少率を示す化合物である。分散剤は、100~200℃の温度領域における質量減少率が1質量%/分以上である化合物であるか、200~300℃の温度領域における質量減少率が1質量%/分以上である化合物であることが好ましい。
 分散剤の質量減少率は、昇温ペースを10℃/分とし、分散剤の試料量は10mgとし、混合ガス(ヘリウム90体積%と酸素10体積%)雰囲気下にて、熱重量測定装置(TG)、熱重量示差熱分析装置(TG-DTA)を使用して測定できる。
 例えば、「分散剤の200~300℃の温度領域における質量減少率」は、分散剤の10mgを、熱重量示差熱分析装置(TG-DTA)を用い、混合ガス(ヘリウム90体積%と酸素10体積%)雰囲気下、10℃/分のペースで200℃から300℃に昇温させた際の質量減少量を、昇温時間(10分)と分散剤の試料量(10mg)とで除した値のパーセンテージ値として求められる。
 質量減少率の上限は、50質量%/分が好ましい。
 質量減少率は、2~50質量%/分が好ましく、4~20質量%/分がより好ましく、6~15質量%/分が特に好ましい。
 質量減少率が1質量%/分以上であれば、F樹脂層の表面の親水性と平滑性をバランスさせやすい。質量減少率が50質量%/分以下であれば、F樹脂層の表面の平滑性と分散剤の分解成分による金属箔の劣化抑制とをバランスさせやすい。
The dispersant in the production method of the present invention is a compound that exhibits a mass reduction rate of 1% by mass / min or more in the temperature range of 80 to 300 ° C. The dispersant is a compound having a mass reduction rate of 1% by mass / min or more in a temperature range of 100 to 200 ° C. or a compound having a mass reduction rate of 1% by mass / min or more in a temperature range of 200 to 300 ° C. It is preferable that
The mass reduction rate of the dispersant is a thermogravimetric measuring device (at a heating rate of 10 ° C./min, a sample amount of the dispersant of 10 mg, and in a mixed gas atmosphere (90% by volume of helium and 10% by volume of oxygen)). TG), and a thermogravimetric differential thermal analyzer (TG-DTA).
For example, the “mass reduction rate in the temperature range of 200 to 300 ° C. of the dispersant” is 10 mg of the dispersant using a thermogravimetric differential thermal analyzer (TG-DTA) and mixed gas (90% by volume of helium and 10% oxygen). (Volume%) In an atmosphere, the mass decrease when the temperature was raised from 200 ° C. to 300 ° C. at a rate of 10 ° C./min was divided by the temperature raising time (10 minutes) and the sample amount of the dispersant (10 mg). Calculated as a percentage value.
The upper limit of the mass reduction rate is preferably 50% by mass / min.
The mass reduction rate is preferably 2 to 50% by mass / min, more preferably 4 to 20% by mass / min, and particularly preferably 6 to 15% by mass / min.
If the mass reduction rate is 1% by mass / min or more, it is easy to balance the hydrophilicity and smoothness of the surface of the F resin layer. When the mass reduction rate is 50% by mass or less, it is easy to balance the smoothness of the surface of the F resin layer and the suppression of deterioration of the metal foil due to the decomposition component of the dispersant.
 本発明の製造方法における分散剤は、疎水部位と親水部位を有する化合物(界面活性剤)が好ましく、含フッ素部位と親水部位を有する化合物(フッ素系界面活性剤)が特に好ましい。
 分散剤としては、ポリオール、ポリオキシアルキレングリコール、ポリカプロラクタム及びポリマー状ポリオールが好ましく、ポリマー状ポリオールがより好ましい。
 ポリマー状ポリオールとは、炭素-炭素不飽和二重結合を有するモノマーに基づく単位と2以上の水酸基を有するポリマーをいう。ポリマー状ポリオールとしては、ポリビニルアルコール、ポリビニルブチラール及びフルオロポリオールが特に好ましく、フルオロポリオールが最も好ましい。ただし、フルオロポリオールとは、Fポリマーではない、水酸基とフッ素原子とを有するポリマー状ポリオールである。また、ポリマー状ポリオールは、水酸基の一部が化学修飾され、変性されていてもよい。
 フルオロポリオールとしては、主鎖がエチレン性不飽和モノマーに由来する炭素鎖からなり、側鎖に含フッ素炭化水素基と水酸基とを有するポリマー状ポリオールが挙げられる。前記含フッ素炭化水素基は、複数(2又は3)の1価含フッ素炭化水素基が結合した3級炭素原子を有する基であるのが好ましい。
The dispersant in the production method of the present invention is preferably a compound having a hydrophobic site and a hydrophilic site (surfactant), and particularly preferably a compound having a fluorine-containing site and a hydrophilic site (fluorine surfactant).
As the dispersant, polyol, polyoxyalkylene glycol, polycaprolactam and polymer polyol are preferable, and polymer polyol is more preferable.
The polymeric polyol refers to a polymer having a unit based on a monomer having a carbon-carbon unsaturated double bond and two or more hydroxyl groups. As the polymer polyol, polyvinyl alcohol, polyvinyl butyral and fluoropolyol are particularly preferable, and fluoropolyol is most preferable. However, the fluoropolyol is a polymer-like polyol having a hydroxyl group and a fluorine atom that is not an F polymer. The polymer polyol may be modified by chemically modifying a part of the hydroxyl group.
Examples of the fluoropolyol include a polymer polyol having a main chain composed of a carbon chain derived from an ethylenically unsaturated monomer and having a fluorine-containing hydrocarbon group and a hydroxyl group in the side chain. The fluorine-containing hydrocarbon group is preferably a group having a tertiary carbon atom to which a plurality (2 or 3) of monovalent fluorine-containing hydrocarbon groups are bonded.
 分散剤としては、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマー(以下、「界面活性剤F」とも記す。)が好ましく、ポリフルオロアルキル基又はポリフルオロアルケニル基を有する(メタ)アクリレート(以下、「(メタ)アクリレートF」とも記す。)とポリオキシアルキレンモノオール基を有する(メタ)アクリレート(以下、「(メタ)アクリレートAO」とも記す。)とのコポリマー(以下、「界面活性剤F1」とも記す。)が特に好ましい。
 界面活性剤Fにおけるポリフルオロアルキル基又はポリフルオロアルケニル基は、それぞれ炭素数4~12の基が好ましい。
 界面活性剤Fは、ポリオキシアルキレン基とアルコール性水酸基の両方を側鎖に有していてもよく、片方の基のみを側鎖に有してもいてもよく、少なくともポリオキシアルキレン基を側鎖に有しているのが好ましい。
As the dispersant, a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or alcoholic hydroxyl group in the side chain (hereinafter also referred to as “surfactant F”) is preferable, and the polyfluoroalkyl group is preferred. Alternatively, a (meth) acrylate having a polyfluoroalkenyl group (hereinafter also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter also referred to as “(meth) acrylate AO”). )) (Hereinafter also referred to as “surfactant F1”).
The polyfluoroalkyl group or polyfluoroalkenyl group in the surfactant F is preferably a group having 4 to 12 carbon atoms.
Surfactant F may have both a polyoxyalkylene group and an alcoholic hydroxyl group in the side chain, or may have only one group in the side chain, and at least the polyoxyalkylene group is located on the side chain. It is preferable to have in the chain.
 本発明者らは、前記温度領域における界面活性剤Fの質量減少は、ポリフルオロアルキル基又はポリフルオロアルケニル基の離脱とポリオキシアルキレン基中のオキシアルキレン単位の分解又はアルコール性水酸基の存在とによって進行することを知見している。さらに、界面活性剤Fは、前記温度領域において、ポリフルオロアルキル基又はポリフルオロアルケニル基が離脱する反面、ポリオキシアルキレン基はオキシアルキレン単位の部分分解にとどまりやすく、親水の高い成分を形成することを知見している。この親水成分が、効果的に表面偏析するため、F樹脂層の表面は親水性となるだけでなく、パウダーのパッキングにおける粉落ちを抑制してF樹脂層の平滑性を高めるため、樹脂付金属箔の接着性が優れると考えられる。 The inventors of the present invention have found that the decrease in the mass of the surfactant F in the temperature range is due to the removal of the polyfluoroalkyl group or the polyfluoroalkenyl group and the decomposition of the oxyalkylene unit in the polyoxyalkylene group or the presence of an alcoholic hydroxyl group. We know that it will progress. Furthermore, surfactant F forms a highly hydrophilic component, while the polyfluoroalkyl group or polyfluoroalkenyl group is released in the above temperature range, but the polyoxyalkylene group tends to be only partially decomposed of the oxyalkylene unit. I know. Since this hydrophilic component effectively segregates on the surface, the surface of the F resin layer not only becomes hydrophilic, but also suppresses powder falling off in the packing of the powder and improves the smoothness of the F resin layer. It is considered that the adhesiveness of the foil is excellent.
 (メタ)アクリレートFは、式CH=CRC(O)O-X-Rで表される化合物が好ましい。
 Rは、水素原子又はメチル基を示す。
 Xは、-(CH-、-(CH-、-(CH-、-(CHNHC(O)-、-(CHNHC(O)-又は-CHCH(CH)NHC(O)-を示す。
 Rは、-OCF(CF)(C(CF(CF)(=C(CF)、-OC(CF)(=C(CF(CF)(CF(CF)、-OCH(CHOCHCH(CFF)2、-OCH(CHOCHCH(CFF)、-(CFF又は-(CFFを示す。
 (メタ)アクリレートAOは、式CH=CRC(O)O-Q-OHで表される化合物が好ましい。
 Rは、水素原子又はメチル基を示す。
 Qは、-(CH(OCHCH-、-(CH(OCHCH(CH))-又は-(CH(OCHCHCHCH-を示す(nは1~4の整数を、nは2~100の整数を示し、nとしては2~20の整数が好ましい。)。
 (メタ)アクリレートFの具体例としては、CH=CHCOO(CHOCF(CF)(C(CF(CF)(=C(CF)、CH=CHCOO(CHOC(CF)(=C(CF(CF)(CF(CF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCHCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)、CH=C(CH)COO(CHNHCOOCH(CHOCH(CFF)が挙げられる。
 (メタ)アクリレートAOの具体例としては、CH=CHCOO(CHCHO)OH、CH=CHCOO(CHCHO)10OH、CH=CHCOO(CHCHO)12OH、CH=C(CH)COO(CHCH(CH)O)OH、CH=C(CH)COO(CHCH(CH)O)12OH、CH=C(CH)COO(CHCH(CH)O)16OHが挙げられる。
(Meth) acrylate F is preferably a compound represented by the formula CH 2 ═CR 1 C (O) O—X 1 —R F.
R 1 represents a hydrogen atom or a methyl group.
X 1 is — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 2 NHC (O) —, — (CH 2 ) 3 NHC (O) — Or —CH 2 CH (CH 3 ) NHC (O) — is shown.
R F represents —OCF (CF 3 ) (C (CF (CF 3 ) 2 ) (═C (CF 3 ) 2 ), —OC (CF 3 ) (═C (CF (CF 3 ) 2 ) (CF ( CF 3 ) 2 ), —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2, —OCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , — (CF 2 ) 4 F or -(CF 2 ) 6 F is shown.
(Meth) acrylate AO is preferably a compound represented by the formula CH 2 ═CR 2 C (O) O—Q 2 —OH.
R 2 represents a hydrogen atom or a methyl group.
Q 2 represents — (CH 2 ) m (OCH 2 CH 2 ) n —, — (CH 2 ) m (OCH 2 CH (CH 3 )) n — or — (CH 2 ) m (OCH 2 CH 2 CH 2 CH 2 ) n — (n represents an integer of 1 to 4, n represents an integer of 2 to 100, and n is preferably an integer of 2 to 20).
Specific examples of (meth) acrylate F include CH 2 ═CHCOO (CH 2 ) 4 OCF (CF 3 ) (C (CF (CF 3 ) 2 ) (= C (CF 3 ) 2 ), CH 2 ═CHCOO ( CH 2) 4 OC (CF 3 ) (= C (CF (CF 3) 2) (CF (CF 3) 2), CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 CH 2 (CF 2) 4 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 2 NHCOOCH (CH 2 OCH 2 (CF 2) 4 F) 2, CH 2 = C (CH 3) COO ( CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2) 6 F) 2, CH 2 = C (CH 3) COO (CH 2) 3 NHCOOCH (CH 2 OCH 2 (CF 2 ) 4 F) 2
As specific examples of (meth) acrylate AO, CH 2 ═CHCOO (CH 2 CH 2 O) 8 OH, CH 2 ═CHCOO (CH 2 CH 2 O) 10 OH, CH 2 ═CHCOO (CH 2 CH 2 O) 12 OH, CH 2 = C (CH 3 ) COO (CH 2 CH (CH 3 ) O) 8 OH, CH 2 = C (CH 3 ) COO (CH 2 CH (CH 3 ) O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 16 OH and the like.
 界面活性剤F1に含まれる全単位に対する(メタ)アクリレートFに基づく単位の割合は、20~60モル%が好ましく、20~40モル%が特に好ましい。
 界面活性剤F1に含まれる全単位に対する(メタ)アクリレートAOに基づく単位の割合は、40~80モル%が好ましく、60~80モル%が特に好ましい。
 界面活性剤F1における(メタ)アクリレートFに基づく単位の含有量に対する(メタ)アクリレートAOに基づく単位の含有量の比率は、1~5が好ましく、1~2が特に好ましい。
 界面活性剤F1は、(メタ)アクリレートAOに基づく単位と(メタ)アクリレートAOに基づく単位のみからなっていてもよく、さらに他の単位をさらに含んでいてもよい。
 界面活性剤F1のフッ素含有量は、10~45質量%が好ましく、15~40質量%が特に好ましい。
 界面活性剤F1は、ノニオン性であるのが好ましい。
 界面活性剤F1の質量平均分子量は、2000~80000が好ましく、6000~20000が特に好ましい。
The proportion of units based on (meth) acrylate F relative to the total units contained in surfactant F1 is preferably 20 to 60 mol%, particularly preferably 20 to 40 mol%.
The ratio of units based on (meth) acrylate AO to the total units contained in surfactant F1 is preferably 40 to 80 mol%, particularly preferably 60 to 80 mol%.
The ratio of the content of units based on (meth) acrylate AO to the content of units based on (meth) acrylate F in surfactant F1 is preferably from 1 to 5, and more preferably from 1 to 2.
Surfactant F1 may consist of only a unit based on (meth) acrylate AO and a unit based on (meth) acrylate AO, and may further include other units.
The fluorine content of the surfactant F1 is preferably 10 to 45% by mass, particularly preferably 15 to 40% by mass.
The surfactant F1 is preferably nonionic.
The weight average molecular weight of the surfactant F1 is preferably 2000 to 80000, and particularly preferably 6000 to 20000.
 本発明の製造方法における溶媒は、分散媒であり、25℃で液状の不活性かつFパウダーと反応しない溶媒(化合物)であり、パウダー分散液に含まれる溶媒の以外の成分よりも低沸点であり、加熱等によって揮発し除去できる溶媒が好ましい。
 パウダー分散液を金属箔の表面に塗布して形成される塗膜中の溶媒は、TFE系ポリマーの焼成が終了するまでに除去される。溶媒は、前記温度領域内の質量減少率が1質量%/分以上となる温度にて金属箔を保持する前に除去されてもよく、前記温度で保持されている間に除去されてもよく、焼成中に除去されてもよい。溶媒は、少なくとも前記温度で保持されている間に少なくとも一部が除去されることが好ましい。
 溶媒としては、水、アルコール(メタノール、エタノール、イソプロパノール等)、含窒素化合物(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)、エーテル(ジエチルエーテル、ジオキサン等)、エステル(乳酸エチル、酢酸エチル等)、ケトン(メチルエチルケトン、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノン等)、グリコールエーテル(エチレングリコールモノイソプロピルエーテル等)、セロソルブ(メチルセロソルブ、エチルセロソルブ等)等が挙げられる。溶媒化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
The solvent in the production method of the present invention is a dispersion medium, is a solvent (compound) that is liquid inactive and does not react with F powder at 25 ° C., and has a lower boiling point than components other than the solvent contained in the powder dispersion. A solvent that can be volatilized and removed by heating or the like is preferable.
The solvent in the coating film formed by applying the powder dispersion on the surface of the metal foil is removed before the firing of the TFE polymer is completed. The solvent may be removed before holding the metal foil at a temperature at which the mass reduction rate in the temperature region is 1 mass% / min or more, or may be removed while being held at the temperature. , May be removed during firing. It is preferable that at least a part of the solvent is removed while being held at least at the temperature.
Examples of the solvent include water, alcohol (methanol, ethanol, isopropanol, etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.), sulfur-containing compounds (dimethyl sulfoxide). Etc.), ether (diethyl ether, dioxane etc.), ester (ethyl lactate, ethyl acetate etc.), ketone (methyl ethyl ketone, methyl isopropyl ketone, cyclopentanone, cyclohexanone etc.), glycol ether (ethylene glycol monoisopropyl ether etc.), cellosolve (Methyl cellosolve, ethyl cellosolve, etc.). A solvent compound may be used individually by 1 type, and may use 2 or more types together.
 溶媒としては、瞬間的に揮発せずに、前記温度領域に保持中に揮発する溶媒が好ましく、沸点80~275℃の溶媒が好ましく、沸点125~250℃の溶媒が特に好ましい。この範囲において、金属箔の表面に塗布したパウダー分散液を所定の温度に保持した際に、溶媒の揮発と分散剤の部分的な分解及び流動とが効果的に進行し、分散剤が表面偏析しやすい。
 溶媒としては、有機化合物が好ましく、シクロヘキサン(沸点:81℃)、2-プロパノール(沸点:82℃)、1-プロパノール(沸点:97℃)、1-ブタノール(沸点:117℃)、1-メトキシ-2-プロパノール(沸点:119℃)、N-メチルピロリドン(沸点:202℃)、γ-ブチロラクトン(沸点:204℃)、シクロヘキサノン(沸点:156℃)及びシクロペンタノン(沸点:131℃)がより好ましく、N-メチルピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが特に好ましい。
As the solvent, a solvent which does not volatilize instantaneously and volatilizes while being held in the temperature range is preferable, a solvent having a boiling point of 80 to 275 ° C. is preferable, and a solvent having a boiling point of 125 to 250 ° C. is particularly preferable. In this range, when the powder dispersion applied to the surface of the metal foil is kept at a predetermined temperature, the volatilization of the solvent and the partial decomposition and flow of the dispersant proceed effectively, and the dispersant segregates on the surface. It's easy to do.
The solvent is preferably an organic compound, such as cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-methoxy. -2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), γ-butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) More preferred are N-methylpyrrolidone, γ-butyrolactone, cyclohexanone and cyclopentanone.
 本発明の製造方法におけるパウダー分散液は、本発明の効果を損なわない範囲で、他の材料を含んでいてもよい。他の材料は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 かかる他の材料は、非硬化性樹脂であってもよく、硬化性樹脂であってもよい。
 非硬化性樹脂としては、熱溶融性樹脂、非溶融性樹脂が挙げられる。熱溶融性樹脂としては、熱可塑性ポリイミド等が挙げられる。非溶融性樹脂としては、硬化性樹脂の硬化物等が挙げられる。
 硬化性樹脂としては、反応性基を有するポリマー、反応性基を有するオリゴマー、低分子化合物、反応性基を有する低分子化合物等が挙げられる。反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。
The powder dispersion in the production method of the present invention may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not dissolve in the powder dispersion.
Such other material may be a non-curable resin or a curable resin.
Examples of the non-curable resin include a heat-meltable resin and a non-meltable resin. Examples of the heat-meltable resin include thermoplastic polyimide. Examples of the non-meltable resin include a cured product of a curable resin.
Examples of the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group. Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
 硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、熱硬化性アクリル樹脂、フェノール樹脂、熱硬化性ポリエステル樹脂、熱硬化性ポリオレフィン樹脂、熱硬化性変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。なかでも、プリント基板用途に有用な点から、熱硬化性樹脂としては、熱硬化性ポリイミド、ポリイミド前駆体、エポキシ樹脂、熱硬化性アクリル樹脂、ビスマレイミド樹脂及び熱硬化性ポリフェニレンエーテル樹脂が好ましく、エポキシ樹脂及び熱硬化性ポリフェニレンエーテル樹脂が特に好ましい。 Examples of the curable resin include epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, thermosetting acrylic resin, phenol resin, thermosetting polyester resin, thermosetting polyolefin resin, thermosetting modified polyphenylene ether resin. And polyfunctional cyanate resin, polyfunctional maleimide-cyanate resin, polyfunctional maleimide resin, vinyl ester resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, and melamine-urea cocondensation resin. Among these, from the point useful for printed circuit board applications, the thermosetting resin is preferably a thermosetting polyimide, a polyimide precursor, an epoxy resin, a thermosetting acrylic resin, a bismaleimide resin, and a thermosetting polyphenylene ether resin. Epoxy resins and thermosetting polyphenylene ether resins are particularly preferred.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノールとフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノールのグリシジルエーテル化物、アルコールのジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)、国際公開第2013/008667号に記載の発明、その背景技術に記載のものが挙げられる。
 ポリアミック酸は、通常、TFE系ポリマーの官能基と反応しうる反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せからなるポリアミック酸が好ましい。
Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolac epoxy resin, phenol novolac epoxy resin, alkylphenol novolac epoxy resin, aralkyl epoxy resin, biphenol epoxy resin, dicyclopentadiene epoxy resin, trishydroxyphenylmethane epoxy compound, phenol and phenolic hydroxyl group Epoxides of condensates with aromatic aldehydes, diglycidyl ethers of bisphenol, diglycidyl ethers of naphthalenediol, phenols Glycidyl etherified product, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
As the bismaleimide resin, a resin composition (BT resin) using a bisphenol A type cyanate ester resin and a bismaleimide compound described in JP-A-7-70315, described in International Publication No. 2013/008667. And those described in the background art thereof.
The polyamic acid usually has a reactive group capable of reacting with a functional group of the TFE polymer.
Examples of the diamine and polycarboxylic dianhydride forming the polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like. Among them, aromatic diamines such as 4,4′-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, pyromellitic dianhydride, 3,3 ′, 4,4 A polyamic acid comprising a combination with an aromatic polyvalent carboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride is preferred.
 熱溶融性樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性の樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等が挙げられ、熱可塑性ポリイミド、液晶性ポリエステル及びポリフェニレンエーテルが好ましい。
Examples of the heat-meltable resin include thermoplastic resins such as thermoplastic polyimide and heat-meltable cured products of curable resins.
As thermoplastic resins, polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamide Examples include imide, liquid crystalline polyester, polyphenylene ether, and the like, and thermoplastic polyimide, liquid crystalline polyester, and polyphenylene ether are preferable.
 また、かかる他の材料としては、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤等も挙げられる。 Such other materials include thixotropic agents, antifoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants, thermal stabilizers, lubricants, antistatic agents, Whitening agents, coloring agents, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, flame retardants, and the like are also included.
 パウダー分散液中のFパウダーの割合は、5~60質量%が好ましく、35~45質量%が特に好ましい。この範囲において、F樹脂層の比誘電率及び誘電正接を低く制御しやすい。また、パウダー分散液の均一分散性が高く、F樹脂層の機械的強度に優れる。
 パウダー分散液中の分散剤の割合は、0.1~30質量%が好ましく、5~10質量部が特に好ましい。この範囲において、Fパウダーの均一分散性と、F樹脂層の表面の親水性及び電気特性とをバランスさせやすい。
 パウダー分散液中の溶媒の割合は、15~65質量%が好ましく、25~50質量部が特に好ましい。この範囲において、パウダー分散液の塗布性が優れ、かつ樹脂層の外観不良が起こりにくい。
The proportion of F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 45% by mass. In this range, it is easy to control the relative dielectric constant and dielectric loss tangent of the F resin layer low. Moreover, the uniform dispersion of the powder dispersion is high, and the mechanical strength of the F resin layer is excellent.
The proportion of the dispersant in the powder dispersion is preferably 0.1 to 30% by mass, and particularly preferably 5 to 10 parts by mass. In this range, it is easy to balance the uniform dispersibility of the F powder with the hydrophilicity and electrical characteristics of the surface of the F resin layer.
The proportion of the solvent in the powder dispersion is preferably 15 to 65% by mass, particularly preferably 25 to 50 parts by mass. In this range, the applicability of the powder dispersion is excellent, and poor appearance of the resin layer hardly occurs.
 本発明の製造方法においては、パウダー分散液を金属箔の表面に塗布する。
 塗布方法としては、塗布後の金属箔の表面にパウダー分散液からなる安定したウェット膜が形成される方法であればよく、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等が挙げられる。
 また、80~300℃の温度領域に金属箔を供する前に、前記温度領域未満の温度にて金属箔を加熱して、ウェット膜の状態を調整してもよい。この調製は、溶媒が完全に揮発しない程度にされ、通常、50質量%以下の溶媒を揮発させる程度にされる。
In the production method of the present invention, the powder dispersion is applied to the surface of the metal foil.
As a coating method, any method can be used as long as a stable wet film made of a powder dispersion is formed on the surface of the metal foil after coating. Method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain Mayer bar method, slot die coating method and the like.
Further, before the metal foil is provided in the temperature range of 80 to 300 ° C., the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range. This preparation is performed to such an extent that the solvent is not completely volatilized, and is usually to an extent that 50% by mass or less of the solvent is volatilized.
 本発明の製造方法においては、パウダー分散液を金属箔の表面に塗布した後に、80~300℃の温度領域内の質量減少率が1質量%/分以上となる温度(以下、「保持温度」とも示す。)にて金属箔を保持する。保持温度は、雰囲気の温度を示す。
 保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
 保持の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
 保持における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記保持における雰囲気は、酸化性ガス(酸素ガス等。)雰囲気、還元性ガス(水素ガス等。)雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)雰囲気のいずれであってもよい。
 保持雰囲気は、分散剤の分解が促され、F樹脂層の接着性がより向上する観点から、酸素ガスを含む雰囲気が好ましい。この際の酸素ガス濃度(体積基準)は、1×10~3×10ppmが好ましく、0.5×10~1×10ppmが特に好ましい。この範囲において、分散剤の分解促進と、金属箔の酸化抑制とをバランスさせやすい。
In the production method of the present invention, after the powder dispersion is applied to the surface of the metal foil, the temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more (hereinafter referred to as “holding temperature”). In this case, the metal foil is held. The holding temperature indicates the temperature of the atmosphere.
Holding may be performed in one stage or in two or more stages at different temperatures.
Examples of the holding method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
The atmosphere in holding may be in a state of normal pressure or reduced pressure. The holding atmosphere may be any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. It may be.
The holding atmosphere is preferably an atmosphere containing oxygen gas from the viewpoint of promoting the decomposition of the dispersant and further improving the adhesiveness of the F resin layer. The oxygen gas concentration (volume basis) at this time is preferably 1 × 10 2 to 3 × 10 5 ppm, particularly preferably 0.5 × 10 3 to 1 × 10 4 ppm. Within this range, it is easy to balance the promotion of the decomposition of the dispersant and the suppression of oxidation of the metal foil.
 保持温度は、80~300℃の温度領域内の質量減少率が1質量%/分以上となる温度であり、100~300℃がより好ましい。100~200℃の温度領域における質量減少率が1質量%/分以上である分散剤を使用した場合の保持温度は、100~200℃がより好ましく、160~200℃が特に好ましい。また、200~300℃の温度領域における質量減少率が1質量%/分以上である分散剤を使用した場合の保持温度は、200~300℃が好ましく、220~260℃が特に好ましい。
 上記温度範囲において、分散剤の部分的な分解及び流動が効果的に進行し、分散剤をより表面偏析させやすい。
 保持温度に保持する時間は、0.1~10分間が好ましく、0.5~5分間が特に好ましい。
The holding temperature is a temperature at which the mass reduction rate in the temperature range of 80 to 300 ° C. is 1% by mass / min or more, and more preferably 100 to 300 ° C. When a dispersant having a mass reduction rate of 1% by mass / min or more in the temperature range of 100 to 200 ° C. is used, the holding temperature is more preferably 100 to 200 ° C., and particularly preferably 160 to 200 ° C. Further, the holding temperature when a dispersant having a mass reduction rate of 1% by mass / min or more in a temperature range of 200 to 300 ° C. is preferably 200 to 300 ° C., and particularly preferably 220 to 260 ° C.
In the above temperature range, the partial decomposition and flow of the dispersing agent proceed effectively, and the dispersing agent is more easily segregated on the surface.
The holding time at the holding temperature is preferably 0.1 to 10 minutes, and particularly preferably 0.5 to 5 minutes.
 本発明の製造方法においては、さらに、保持温度超の温度領域(以下、「焼成温度」とも記す。)にてTFE系ポリマーを焼成させて金属箔の表面にF樹脂層を形成する。焼成温度は、雰囲気の温度を示す。本発明の製造方法においては、Fパウダーが密にパッキングし、分散剤に由来する親水成分が効果的に表面偏析した状態でTFE系ポリマーの融着が進行するため、平滑性と親水性に優れたF樹脂層が形成される。なお、パウダー分散液が熱溶融性樹脂を含めばTFE系ポリマーと溶解性樹脂との混合物からなるF樹脂層が形成され、パウダー分散液が熱硬化性樹脂を含めばTFE系ポリマーと熱硬化性樹脂の硬化物とからなるF樹脂層が形成される。
 加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。F樹脂層の表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。加熱の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。加熱の方法は、赤外線加熱と熱風加熱とを組み合わせてもよい。
 遠赤外線の有効波長帯は、TFE系ポリマーの均質な融着を促す点から、2~20μmが好ましく、3~7μmがより好ましい。
In the production method of the present invention, the FFE layer is formed on the surface of the metal foil by further firing the TFE polymer in a temperature region exceeding the holding temperature (hereinafter also referred to as “calcination temperature”). The firing temperature indicates the temperature of the atmosphere. In the production method of the present invention, the F powder is densely packed, and the TFE polymer fusion proceeds with the hydrophilic component derived from the dispersant effectively segregated on the surface. An F resin layer is formed. If the powder dispersion contains a thermomeltable resin, an F resin layer made of a mixture of a TFE polymer and a soluble resin is formed. If the powder dispersion contains a thermosetting resin, the TFE polymer and a thermosetting resin are formed. An F resin layer made of a cured resin is formed.
Examples of the heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays. In order to improve the smoothness of the surface of the F resin layer, pressurization may be performed with a heating plate, a heating roll, or the like. As a heating method, a method of irradiating far infrared rays is preferable because firing can be performed in a short time and the far infrared furnace is relatively compact. The heating method may be a combination of infrared heating and hot air heating.
The effective wavelength band of far infrared rays is preferably 2 to 20 μm, more preferably 3 to 7 μm from the viewpoint of promoting uniform fusion of the TFE polymer.
 焼成雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記焼成における雰囲気は、酸化性ガス(酸素ガス等。)雰囲気、還元性ガス(水素ガス等。)雰囲気、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)雰囲気のいずれであってもよく、金属箔、形成されるF樹脂層それぞれの酸化劣化を抑制する観点から、還元性ガス雰囲気又は不活性ガス雰囲気であることが好ましい。
 焼成雰囲気としては、不活性ガスから構成され酸素ガス濃度が低いガス雰囲気が好ましく、窒素ガスから構成され酸素ガス濃度(体積基準)が500ppm未満のガス雰囲気が好ましい。酸素ガス濃度(体積基準)は、300ppm以下が特に好ましい。また、酸素ガス濃度(体積基準)は、通常、1ppm以上である。この範囲において、分散剤のさらなる酸化分解が抑制され、F樹脂層の親水性を向上させやすい。
The firing atmosphere may be in any state under normal pressure or reduced pressure. The atmosphere in the firing is any of an oxidizing gas (oxygen gas, etc.) atmosphere, a reducing gas (hydrogen gas, etc.) atmosphere, and an inert gas (helium gas, neon gas, argon gas, nitrogen gas, etc.) atmosphere. From the viewpoint of suppressing oxidative deterioration of the metal foil and the F resin layer to be formed, a reducing gas atmosphere or an inert gas atmosphere is preferable.
As the firing atmosphere, a gas atmosphere composed of an inert gas and having a low oxygen gas concentration is preferable, and a gas atmosphere composed of nitrogen gas and having an oxygen gas concentration (volume basis) of less than 500 ppm is preferable. The oxygen gas concentration (volume basis) is particularly preferably 300 ppm or less. The oxygen gas concentration (volume basis) is usually 1 ppm or more. In this range, further oxidative decomposition of the dispersant is suppressed, and the hydrophilicity of the F resin layer is easily improved.
 焼成温度は、300℃超であり、300℃超400℃以下が好ましく、330~380℃が特に好ましい。この場合、TFE系ポリマーが、緻密なF樹脂層をより形成しやすい。
 焼成温度に保持する時間は、30秒~5分間が好ましく、1~2分間が特に好ましい。
 樹脂付金属箔における樹脂層が従来の絶縁材料(ポリイミド等の熱硬化性樹脂の硬化物。)の場合、熱硬化性樹脂を硬化させるために長時間の加熱が必要である。一方、本発明においては、TFE系ポリマーの融着により短時間の加熱で樹脂層を形成できる。また、パウダー分散液が熱硬化性樹脂を含む場合、焼成温度を低くできる。このように、本発明の製造方法は、樹脂付金属箔に樹脂層を形成する際の金属箔への熱負荷が小さい方法であり、金属箔へのダメージが小さい方法である。
The firing temperature is more than 300 ° C, preferably more than 300 ° C and not more than 400 ° C, particularly preferably 330 to 380 ° C. In this case, the TFE polymer can more easily form a dense F resin layer.
The time for maintaining the firing temperature is preferably 30 seconds to 5 minutes, and more preferably 1 to 2 minutes.
When the resin layer in the metal foil with resin is a conventional insulating material (cured product of thermosetting resin such as polyimide), heating for a long time is required to cure the thermosetting resin. On the other hand, in the present invention, the resin layer can be formed by heating in a short time by fusing the TFE polymer. Moreover, when a powder dispersion liquid contains a thermosetting resin, a calcination temperature can be made low. Thus, the manufacturing method of this invention is a method with a small heat load to the metal foil at the time of forming a resin layer in metal foil with resin, and is a method with little damage to metal foil.
 本発明の製造方法で得られる樹脂付金属箔には、F樹脂層の線膨張係数を制御したり、F樹脂層の接着性をさらに改善したりするために、F樹脂層の表面に表面処理をしてもよい。表面処理の方法としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。
 アニール処理において、温度は120~180℃が、圧力は0.005~0.015MPaが、時間は30~120分間が、それぞれ好ましい。
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス等が挙げられ、希ガス又は窒素ガスが好ましい。プラズマ処理に用いるガスの具体例としては、アルゴンガス、水素ガスと窒素ガスの混合ガス、水素ガスと窒素ガスとアルゴンガスの混合ガスが挙げられる。
 プラズマ処理における雰囲気としては、希ガス又は窒素ガスの体積分率が70体積%以上の雰囲気が好ましく、100体積%の雰囲気が特に好ましい。この範囲において、F樹脂層の表面のRaを2.0μm以下に調整して、F樹脂層の表面に微細凹凸を形成しやすい。
In the metal foil with resin obtained by the production method of the present invention, in order to control the linear expansion coefficient of the F resin layer or to further improve the adhesion of the F resin layer, the surface treatment is applied to the surface of the F resin layer. You may do. Examples of the surface treatment include annealing, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and surface roughening treatment.
In the annealing treatment, the temperature is preferably 120 to 180 ° C., the pressure is preferably 0.005 to 0.015 MPa, and the time is preferably 30 to 120 minutes.
Examples of the plasma irradiation apparatus in the plasma treatment include a high frequency induction method, a capacitively coupled electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like. .
Examples of the gas used for the plasma treatment include oxygen gas, nitrogen gas, rare gas (such as argon), hydrogen gas, ammonia gas, and the like, and rare gas or nitrogen gas is preferable. Specific examples of the gas used for the plasma treatment include argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas and argon gas.
As an atmosphere in the plasma treatment, an atmosphere having a volume fraction of a rare gas or nitrogen gas of 70% by volume or more is preferable, and an atmosphere of 100% by volume is particularly preferable. Within this range, Ra on the surface of the F resin layer is adjusted to 2.0 μm or less, and fine irregularities are easily formed on the surface of the F resin layer.
 本発明の製造方法で得られる樹脂付金属箔のF樹脂層の表面は、親水性が高く接着性に優れるため、他の基板と容易に強固に積層できる。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体等が挙げられる。
 プリプレグは、強化繊維(ガラス繊維、炭素繊維等。)の基材(トウ、織布等。)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、耐熱性樹脂の1種以上を含むフィルムであり、単層フィルムであっても多層フィルムであってもよい。
 耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル等が挙げられる。
Since the surface of the F resin layer of the resin-coated metal foil obtained by the production method of the present invention is highly hydrophilic and excellent in adhesiveness, it can be easily and strongly laminated with other substrates.
Examples of the other substrate include a heat resistant resin film, a prepreg as a precursor of a fiber reinforced resin plate, a laminate having a heat resistant resin film layer, and a laminate having a prepreg layer.
A prepreg is a sheet-like substrate obtained by impregnating a base material (tow, woven fabric, etc.) of a reinforcing fiber (glass fiber, carbon fiber, etc.) with a thermosetting resin or a thermoplastic resin.
The heat resistant resin film is a film including one or more kinds of heat resistant resins, and may be a single layer film or a multilayer film.
Examples of the heat resistant resin include polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, and liquid crystalline polyester.
 樹脂付金属箔のF樹脂層の表面に他の基材を積層する方法としては、樹脂付金属箔と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグの場合のプレス温度は、TFE系ポリマーの融点以下が好ましく、120~300℃がより好ましく、160~220℃が特に好ましい。この範囲において、プリプレグの熱劣化を抑制しつつ、F樹脂層とプリプレグを強固に接着できる。
 基板が耐熱性樹脂フィルムの場合のプレス温度は、310~400℃が好ましい。この範囲において、耐熱性樹脂フィルムの熱劣化を抑制しつつ、F樹脂層と耐熱性樹脂フィルムを強固に接着できる。
 熱プレスは、減圧雰囲気下で行うことが好ましく、20kPa以下の真空度で行うのが特に好ましい。この範囲において、積層体におけるF樹脂層、基板、金属箔それぞれの界面への気泡混入が抑制でき、酸化による劣化を抑制できる。
 また、熱プレス時は前記真空度に到達した後に昇温することが好ましい。前記真空度に到達する前に昇温すると、F樹脂層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる。
 熱プレスにおける圧力は、0.2MPa以上が好ましい。また、圧力の上限は、10MPa以下が好ましい。この範囲において、基板の破損を抑制しつつ、F樹脂層と基板とを強固に密着できる。
As a method of laminating another base material on the surface of the F resin layer of the metal foil with resin, a method of hot pressing the metal foil with resin and another substrate can be mentioned.
When the other substrate is a prepreg, the press temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C, and particularly preferably 160 to 220 ° C. In this range, the F resin layer and the prepreg can be firmly bonded while suppressing thermal degradation of the prepreg.
When the substrate is a heat resistant resin film, the pressing temperature is preferably 310 to 400 ° C. In this range, the F resin layer and the heat resistant resin film can be firmly bonded while suppressing the thermal deterioration of the heat resistant resin film.
The hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less. In this range, air bubbles can be prevented from entering the interfaces of the F resin layer, the substrate, and the metal foil in the laminate, and deterioration due to oxidation can be suppressed.
Moreover, it is preferable to raise the temperature after reaching the vacuum degree during hot pressing. If the temperature is raised before reaching the degree of vacuum, the F resin layer is compressed in a softened state, that is, in a state with a certain degree of fluidity and adhesion, which causes bubbles.
The pressure in the hot press is preferably 0.2 MPa or more. The upper limit of the pressure is preferably 10 MPa or less. In this range, the F resin layer and the substrate can be firmly adhered while suppressing breakage of the substrate.
 本発明の製造方法で得られる樹脂付金属箔やその積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に使用できる。
 例えば、本発明における樹脂付金属箔の金属箔をエッチング等によって所定のパターンの導体回路(パターン回路)に加工する方法や、本発明における樹脂付金属箔を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等。)によってパターン回路に加工する方法を使用すれば、本発明における樹脂付金属箔からプリント基板を製造できる。
 プリント基板の製造においては、パターン回路を形成した後に、パターン回路上に層間絶縁膜を形成し、層間絶縁膜上にさらにパターン回路を形成してもよい。層間絶縁膜は、例えば、本発明におけるパウダー分散液によっても形成できる。
 プリント基板の製造においては、パターン回路上にソルダーレジストを積層してもよい。ソルダーレジストは、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、パターン回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、本発明におけるパウダー分散液によっても形成できる。
The metal foil with resin and the laminate obtained by the production method of the present invention can be used as a flexible copper-clad laminate or a rigid copper-clad laminate for the production of printed boards.
For example, a method for processing a metal foil of a resin-coated metal foil in the present invention into a conductor circuit (pattern circuit) having a predetermined pattern by etching or the like, or an electroplating method (semi-additive method (SAP method) for resin-coated metal foil in the present invention. ), A modified semi-additive method (MSAP method, etc.)), a printed circuit board can be produced from the resin-coated metal foil in the present invention.
In manufacturing a printed circuit board, after forming a pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film. The interlayer insulating film can also be formed by, for example, the powder dispersion in the present invention.
In the production of a printed circuit board, a solder resist may be laminated on the pattern circuit. The solder resist can be formed by the powder dispersion in the present invention.
In manufacturing a printed circuit board, a coverlay film may be laminated on the pattern circuit. The coverlay film can also be formed by the powder dispersion in the present invention.
 本発明の樹脂付銅箔は、金属箔、TFE系ポリマーを含む樹脂層(以下、「F1樹脂層」とも記す。)、F1樹脂層と接する特定の接着部位を有する樹脂付金属箔である。本発明の樹脂付金属箔(本発明の樹脂付銅箔から得られる、積層体やプリント基板も含む。以下同様。)が、その寸法安定性を損なわないように他の基板と低温接着できる理由は、必ずしも明確ではないが、以下の様に考えられる。
 特定の接着部位は、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する親水成分を含んでおり、この親水成分の特性(極性、反応性等)により接着性が発現すると考えられる。接着部位はF1樹脂層に接して形成されており、本発明の樹脂付金属箔と他の基材との接着積層物のF1樹脂層と他の基材の境界には、親水成分がそれぞれと高度に相溶して接着層を形成しているとも考えられる。つまり、本発明の樹脂付金属箔の接着性は、主として接着部位によるとも考えられ、具体的には、高温加熱によるTFE系ポリマーの融着接着に必ずしもよらない。そのため、本発明の樹脂付金属箔は、非粘着性かつ熱伸縮性のTFE系ポリマーをF1樹脂層としながらも、比較的低温でも、その寸法安定性を損なわないように他の基板と接着させて、反りが少ない多層基板(多層プリント基板等)に加工できる。
The resin-coated copper foil of the present invention is a metal foil, a resin layer containing a TFE-based polymer (hereinafter, also referred to as “F1 resin layer”), and a resin-coated metal foil having a specific adhesion site in contact with the F1 resin layer. Reason why the resin-coated metal foil of the present invention (including the laminate and printed board obtained from the resin-coated copper foil of the present invention; the same shall apply hereinafter) can be bonded to other substrates at a low temperature so as not to impair its dimensional stability. Is not necessarily clear, but is considered as follows.
The specific adhesion site includes a hydrophilic component having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group, and a carboxy group, and the adhesive property depends on the characteristics (polarity, reactivity, etc.) of this hydrophilic component. It is thought to develop. The adhesion site is formed in contact with the F1 resin layer, and hydrophilic components are respectively present at the boundary between the F1 resin layer and the other substrate of the adhesive laminate of the resin-coated metal foil of the present invention and the other substrate. It is also considered that the adhesive layer is formed by being highly compatible. That is, the adhesiveness of the resin-coated metal foil of the present invention is considered to be mainly due to the bonding site, and specifically, does not necessarily depend on the fusion bonding of the TFE polymer by high-temperature heating. Therefore, the metal foil with resin of the present invention is made of non-adhesive and heat-stretchable TFE polymer as an F1 resin layer, and is adhered to another substrate so as not to impair its dimensional stability even at a relatively low temperature. Therefore, it can be processed into a multilayer substrate (multilayer printed circuit board or the like) with less warping.
 本発明の樹脂付銅箔は、金属箔、F1樹脂層、F1樹脂層に接した接着部位をこの順に有する。本発明の樹脂付銅箔の層構成としては、例えば、金属箔/F1樹脂層/接着部位、F1樹脂層/金属箔/F1樹脂層/接着部位、接着部位/F1樹脂層/金属箔/F1樹脂層/接着部位、金属箔/F1樹脂層/金属箔/F1樹脂層/接着部位が挙げられる。「金属箔/F1樹脂層/接着部位」とは、金属箔、F1樹脂層、接着部位がこの順に積層されていることを示し、他の層構成も同様である。
 本発明の樹脂付金属箔の反り率は、25%以下が好ましく、7%以下が特に好ましい。この場合、樹脂付金属箔をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性に優れる。
 本発明の樹脂付金属箔の寸法変化率は、±1%以下が好ましく、±0.2%以下が特に好ましい。この場合、樹脂付金属箔をプリント基板に加工し、さらにそれを多層化しやすい。
The copper foil with resin of this invention has the adhesion site | part which contact | connected the metal foil, F1 resin layer, and F1 resin layer in this order. As a layer structure of the copper foil with resin of the present invention, for example, metal foil / F1 resin layer / adhesion site, F1 resin layer / metal foil / F1 resin layer / adhesion site, adhesion site / F1 resin layer / metal foil / F1 Resin layer / adhesion site, metal foil / F1 resin layer / metal foil / F1 resin layer / adhesion site. “Metal foil / F1 resin layer / adhesion site” indicates that the metal foil, the F1 resin layer, and the adhesion site are laminated in this order, and the other layer configurations are the same.
The warpage rate of the metal foil with resin of the present invention is preferably 25% or less, particularly preferably 7% or less. In this case, it is excellent in the handleability at the time of processing a resin-coated metal foil into a printed board and the transmission characteristics of the obtained printed board.
The dimensional change rate of the resin-coated metal foil of the present invention is preferably ± 1% or less, particularly preferably ± 0.2% or less. In this case, it is easy to process the resin-coated metal foil into a printed circuit board and to further multilayer it.
 本発明の樹脂付金属箔の樹脂部分(F1樹脂層及び接着部位)の比誘電率(20MHz)は、2.0~3.5が好ましく、2.0~3.0が特に好ましい。この範囲において、F1樹脂層の電気特性(低比誘電率等)及び接着性の双方が優れ、優れた伝送特性が求められるプリント基板等に樹脂付金属箔を好適に用いることができる。
 本発明の樹脂付金属箔の樹脂部分(F1樹脂層及び接着部位)の表面のRaは、2nm~3μmが好ましく、3nm~1μmがより好ましく、4nm~500nmがさらに好ましく、5nm~300nmが特に好ましい。この範囲において、他の基板との接着性と、樹脂部分の表面の加工のしやすさとをバランスさせやすい。
 本発明の樹脂付金属箔における金属箔の態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法における金属箔の態様と同様である。
The relative dielectric constant (20 MHz) of the resin portion (F1 resin layer and adhesion site) of the metal foil with resin of the present invention is preferably 2.0 to 3.5, and particularly preferably 2.0 to 3.0. Within this range, the resin-coated metal foil can be suitably used for a printed circuit board or the like in which both the electrical characteristics (low relative dielectric constant, etc.) and adhesiveness of the F1 resin layer are excellent and excellent transmission characteristics are required.
Ra of the surface of the resin part (F1 resin layer and adhesion part) of the metal foil with resin of the present invention is preferably 2 nm to 3 μm, more preferably 3 nm to 1 μm, further preferably 4 nm to 500 nm, and particularly preferably 5 nm to 300 nm. . Within this range, it is easy to balance the adhesion to other substrates and the ease of processing the surface of the resin portion.
The aspect of the metal foil in the metal foil with a resin of the present invention is the same as the aspect of the metal foil in the method for producing a metal foil with a resin of the present invention including a preferable aspect.
 本発明におけるF1樹脂層は、TFE系ポリマーを含む。
 F1樹脂層は、本発明の効果を損なわない範囲において、必要に応じて無機フィラー、TFE系ポリマー以外の樹脂、添加剤等を含んでいてもよい。
 F1樹脂層の厚さは、1~100μmが好ましく、3~75μmがより好ましく、5~50μmが特に好ましい。F1樹脂層の厚さが前記下限値以上であれば、プリント基板としての伝送特性がさらに優れる。F1樹脂層の厚さが前記上限値以下であれば、樹脂付金属箔が反りにくい。
 本発明の樹脂付金属箔において、金属箔の厚さに対するF1樹脂層の厚さの比は、0.1~5.0が好ましく、0.2~2.5が特に好ましい。金属箔の厚さに対するF1樹脂層の厚さの比が前記下限値以上であれば、プリント基板としての伝送特性がさらに優れる。本発明の樹脂付金属箔は、接着部位を有するため、前記比が大きい場合(例えば、F1樹脂層が厚い場合。)においても、本発明の樹脂付金属箔の寸法安定性を損なわないように他の基板と低温接着でき、多層化後の反りが抑えられる。
 本発明の樹脂付金属箔におけるTFE系ポリマーの態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法におけるTFE系ポリマーの態様と同様である。
The F1 resin layer in the present invention contains a TFE polymer.
The F1 resin layer may contain an inorganic filler, a resin other than the TFE-based polymer, an additive, or the like as necessary within a range not impairing the effects of the present invention.
The thickness of the F1 resin layer is preferably 1 to 100 μm, more preferably 3 to 75 μm, and particularly preferably 5 to 50 μm. If the thickness of the F1 resin layer is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. If the thickness of F1 resin layer is below the said upper limit, metal foil with resin will not warp easily.
In the metal foil with resin of the present invention, the ratio of the thickness of the F1 resin layer to the thickness of the metal foil is preferably 0.1 to 5.0, particularly preferably 0.2 to 2.5. If the ratio of the thickness of the F1 resin layer to the thickness of the metal foil is equal to or higher than the lower limit value, the transmission characteristics as a printed circuit board are further improved. Since the metal foil with resin of the present invention has an adhesion site, even when the ratio is large (for example, when the F1 resin layer is thick), the dimensional stability of the metal foil with resin of the present invention is not impaired. Can be bonded to other substrates at low temperature, and warpage after multilayering can be suppressed.
The aspect of the TFE polymer in the metal foil with resin of the present invention is the same as the aspect of the TFE polymer in the method for producing the metal foil with resin of the present invention, including a preferable aspect.
 本発明の樹脂付金属箔における接着部位は、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する親水成分を含む。
 接着部位は、親水成分のみからなっていてもよく、親水成分と親水成分以外の成分(TFE系ポリマー等。)とからなってもよい。
The adhesion site | part in the metal foil with resin of this invention contains the hydrophilic component which has at least 1 sort (s) chosen from the group which consists of an etheric oxygen atom, a hydroxyl group, and a carboxy group.
The adhesion site may consist only of a hydrophilic component, or may consist of a hydrophilic component and a component other than the hydrophilic component (TFE polymer or the like).
 親水成分としては、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する有機化合物(ただし、TFE系ポリマーを除く。以下同様。)が好ましく、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する水接触角が30°~90°の有機化合物が特に好ましい。なお、前記有機化合物は、ケイ素原子を有さないのが好ましい。
 有機化合物としては、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有するポリマーが好ましく、エーテル性酸素原子とヒドロキシ基又はカルボキシ基とを有するポリマーがより好ましく、エーテル性酸素原子とヒドロキシ基又はカルボキシ基とを有するフルオロポリマーが特に好ましい。この場合、前述した様に、F1樹脂層と接着部位との境界におけるTFE系ポリマーと親水成分との相溶性が向上し、F1樹脂層と接着部位との接着強度がより向上しやすい。
 親水成分としては、本発明の樹脂付金属箔の製造方法における分散剤に由来する親水成分が好ましい。前記親水成分としては、本発明の樹脂付金属箔の製造方法における界面活性剤Fが好ましく、本発明の樹脂付金属箔の製造方法における界面活性剤F1が特に好ましい。
The hydrophilic component is preferably an organic compound having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group and a carboxy group (excluding a TFE polymer; the same shall apply hereinafter), an etheric oxygen atom, a hydroxy group. Particularly preferred are organic compounds having at least one selected from the group consisting of a group and a carboxy group and having a water contact angle of 30 ° to 90 °. In addition, it is preferable that the said organic compound does not have a silicon atom.
The organic compound is preferably a polymer having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group and a carboxy group, more preferably a polymer having an etheric oxygen atom and a hydroxy group or a carboxy group. Particularly preferred are fluoropolymers having an oxygen atom and a hydroxy or carboxy group. In this case, as described above, the compatibility between the TFE-based polymer and the hydrophilic component at the boundary between the F1 resin layer and the adhesion site is improved, and the adhesive strength between the F1 resin layer and the adhesion site is more likely to be improved.
As a hydrophilic component, the hydrophilic component derived from the dispersing agent in the manufacturing method of the metal foil with resin of this invention is preferable. As the hydrophilic component, the surfactant F in the method for producing a metal foil with resin of the present invention is preferable, and the surfactant F1 in the method for producing a metal foil with resin of the present invention is particularly preferable.
 本発明の樹脂付金属箔における接着部位は、層状に存在していてもよく、島状に存在していてもよく、島状に存在しているのが好ましい。この場合、樹脂付金属箔のF1樹脂層の電気特性(低比誘電率、低誘電正接等)と、接着部位を形成する親水成分による接着性とをバランスさせやすい。つまり、親水成分の存在による電気特性の低下を抑えつつ、接着性を発現しやすい。
 層状に存在する接着部位の厚さ及び島状に存在する接着部位の高さは、1~1000nmが好ましく、5~500nmがより好ましく、5~300nmがさらに好ましく、5~200nm特に好ましい。この場合、樹脂付金属箔のF1樹脂層の電気特性と接着部位の接着性とをバランスさせやすい。
The adhesion site | part in the metal foil with resin of this invention may exist in layer form, may exist in island shape, and it is preferable to exist in island shape. In this case, it is easy to balance the electrical characteristics (low relative dielectric constant, low dielectric loss tangent, etc.) of the F1 resin layer of the metal foil with resin and the adhesiveness due to the hydrophilic component forming the adhesion site. That is, it is easy to develop adhesiveness while suppressing a decrease in electrical characteristics due to the presence of the hydrophilic component.
The thickness of the adhesion site existing in a layer form and the height of the adhesion site existing in an island shape is preferably 1 to 1000 nm, more preferably 5 to 500 nm, still more preferably 5 to 300 nm, and particularly preferably 5 to 200 nm. In this case, it is easy to balance the electrical characteristics of the F1 resin layer of the metal foil with resin and the adhesiveness of the adhesion site.
 本発明の樹脂付金属箔の製造方法としては、(i)金属箔及びF1樹脂層を有する樹脂付金属箔のF1樹脂層の表面に、親水成分を含む塗工液を塗布する方法、(ii)金属箔の表面に、TFE系ポリマー及び親水成分を含む塗工液を塗布する方法が挙げられる。F1樹脂層と接着部位の境界におけるTFE系ポリマーと親水成分が相溶して、樹脂付金属箔のF1樹脂層と接着部位の接着性が向上しやすい点から、(ii)の方法が好ましい。
 (ii)の方法の具体例としては、TFE系ポリマーを含むパウダーと、親水成分と、液状媒体とを含むパウダー分散液を金属箔の表面に塗布し、100~300℃の温度領域内の温度にて金属箔を保持し、前記温度領域超の温度領域にてTFE系ポリマーを焼成させることにより、金属箔の表面にTFE系ポリマーを含むF1樹脂層を形成すると同時にF1樹脂層の表面に親水成分を含む接着部位を形成する方法が挙げられる。
 具体的には、本発明の樹脂付金属箔は、本発明の樹脂付金属箔の製造方法により、製造するのが好ましい。この場合の製造態様は、好ましい態様も含めて、本発明の樹脂付金属箔の製造方法の態様と同様である。
As a manufacturing method of metal foil with resin of this invention, (i) The method of apply | coating the coating liquid containing a hydrophilic component to the surface of F1 resin layer of metal foil with resin which has metal foil and F1 resin layer, (ii) The method of apply | coating the coating liquid containing a TFE type polymer and a hydrophilic component to the surface of metal foil is mentioned. The method (ii) is preferred because the TFE polymer and the hydrophilic component at the boundary between the F1 resin layer and the adhesion site are compatible and the adhesion between the F1 resin layer of the resin-coated metal foil and the adhesion site is easily improved.
As a specific example of the method (ii), a powder dispersion containing a powder containing a TFE-based polymer, a hydrophilic component, and a liquid medium is applied to the surface of a metal foil, and the temperature within a temperature range of 100 to 300 ° C. The F1 resin layer containing the TFE polymer is formed on the surface of the metal foil and at the same time hydrophilic on the surface of the F1 resin layer by holding the metal foil in and firing the TFE polymer in a temperature range above the temperature range. The method of forming the adhesion site | part containing a component is mentioned.
Specifically, the resin-coated metal foil of the present invention is preferably produced by the method for producing the resin-coated metal foil of the present invention. The manufacturing mode in this case is the same as the mode of the manufacturing method of the metal foil with resin of the present invention including the preferable mode.
 本発明の樹脂付金属箔においては、接着部位が層状に存在する場合、接着部位の接着性をさらに改善するために、接着部位の表面を表面処理してもよい。接着部位が島状に存在する場合、F1樹脂層の線膨張係数を制御したり、F1樹脂層や接着部位の接着性をさらに改善したりするために、F1樹脂層及び接着部位の表面を表面処理してもよい。
 表面処理としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。アニール処理及びプラズマ処理のそれぞれの態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法における態様と同様である。
In the metal foil with resin of the present invention, when the adhesion site is present in a layered manner, the surface of the adhesion site may be surface-treated in order to further improve the adhesion of the adhesion site. When the adhesion part exists in the shape of an island, the surface of the F1 resin layer and the adhesion part is surfaced to control the linear expansion coefficient of the F1 resin layer or to further improve the adhesion of the F1 resin layer or the adhesion part. It may be processed.
Examples of the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and surface roughening treatment. Each aspect of the annealing treatment and the plasma treatment is the same as the aspect in the method for producing the metal foil with resin of the present invention, including a preferred aspect.
 本発明の樹脂付金属箔は、F1樹脂層の表面に接着部位が存在し接着性に優れるため、他の基板と強固に低温接着できる。つまり、本発明の樹脂付金属箔は、本質的に熱伸縮性であるTFE系ポリマーを樹脂層としながらも、樹脂層の厚さと金属箔の種類又は厚さとに影響されずに、寸法安定性を損なうことなく、他の基板と低温接着できる。
 本発明の樹脂付金属箔と他の基板とを熱プレス法により接着させて、積層体を製造するのが好ましい。
 他の基材の態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法における態様と同様である。
 また、熱プレス法の態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法における態様と同様である。
The metal foil with resin of the present invention has a bonding site on the surface of the F1 resin layer and is excellent in adhesiveness, and therefore can be firmly bonded to other substrates at low temperature. In other words, the resin-coated metal foil of the present invention has a dimensional stability without being affected by the thickness of the resin layer and the type or thickness of the metal foil, while using a TFE polymer that is essentially heat stretchable as the resin layer. It can be bonded to other substrates at low temperature without damaging.
It is preferable to produce a laminate by bonding the resin-coated metal foil of the present invention and another substrate by a hot press method.
Other aspects of the substrate, including preferred aspects, are the same as those in the method for producing a resin-coated metal foil of the present invention.
Moreover, the aspect of the hot press method is the same as the aspect in the manufacturing method of the metal foil with resin of this invention including a suitable aspect.
 本発明の樹脂付金属箔は、電気特性、耐薬品性(エッチング耐性)等の物性に優れたTFE系ポリマーを樹脂層とするため、本発明の樹脂付金属箔やその積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に用いることができる。
 本発明の樹脂付金属箔をプリント基板の製造に用いる場合の態様は、好適な態様も含めて、本発明の製造方法で得られる樹脂付金属箔をプリント基板の製造に用いる場合の態様と同様である。
Since the resin-coated metal foil of the present invention uses a TFE polymer having excellent physical properties such as electrical characteristics and chemical resistance (etching resistance) as a resin layer, the resin-coated metal foil of the present invention and its laminate are flexible copper. It can be used for the production of a printed circuit board as a stretched laminate or a rigid copper clad laminate.
The mode when the resin-coated metal foil of the present invention is used for the production of a printed circuit board is the same as the mode when the resin-coated metal foil obtained by the production method of the present invention is used for the production of a printed circuit board, including a preferred mode. It is.
 本発明の積層体は、金属箔、TFE系ポリマーを含む樹脂層(以下、「F2樹脂層」とも記す。)、F2樹脂層と接する特定の相溶層を有する樹脂付金属箔と、特定のプリプレグとを熱圧着した積層体である。本発明の積層体(本発明の積層体から得られるプリント基板も含む。以下同様。)が、伝送特性及び機械的強度に優れ、各層が強固に接着され、反りが少ない理由は、必ずしも明確ではないが、以下の様に考えられる。
 特定の相溶層は、フッ素原子及び酸素原子を有する成分を含んでおり、フッ素原子を有する部位の特性(相溶性等)によりF2樹脂層との接着性が発現し、酸素原子を有する部位の特性(極性、反応性等)によりプリプレグの硬化物層との接着性が発現すると考えられる。そして、F2樹脂層に含まれるTFE系ポリマーの熱融着性が発現する温度に比べ、相溶層による接着性は、比較的低温で発現する。そのため、TFE系ポリマーの融点が高くても、樹脂付金属箔の樹脂側にプリプレグを比較的低温で強固に接着できる。
 樹脂付金属箔とプリプレグとを比較的低温で接着できるため、プリプレグの硬化物層の特性(電気特性及び機械的強度)が低下しにくい。また、プリプレグとして、TFE系ポリマーに比較して耐熱性が概して低い電気特性、機械的強度等に優れる、マトリックス樹脂(フッ素原子を有さないマトリックス樹脂等。)を含むプリプレグを使用できる。また、F2樹脂層は、TFE系ポリマーを含むため、電気特性に優れる。また、相溶層は、シランカップリング剤の被覆層のように、F2樹脂層の電気特性を低下させにくい。このように、硬化物層が電気特性及び機械的強度が優れ、F2樹脂層が電気特性に優れ、かつ熱や相溶層によってそれらの特性が低下しにくいため、積層体全体として伝送特性及び機械的強度に優れる。
 また、非粘着性かつ熱伸縮性のTFE系ポリマーをF2樹脂層としながらも、比較的低温で、樹脂付金属箔の寸法安定性を損なわないように樹脂付金属箔とプリプレグとを接着させることによって、反りが少ない積層体が得られる。
The laminate of the present invention includes a metal foil, a resin layer containing a TFE polymer (hereinafter also referred to as “F2 resin layer”), a metal foil with resin having a specific compatible layer in contact with the F2 resin layer, and a specific foil. It is a laminate obtained by thermocompression bonding with a prepreg. The reason why the laminate of the present invention (including the printed circuit board obtained from the laminate of the present invention, the same applies hereinafter) is excellent in transmission characteristics and mechanical strength, each layer is firmly bonded, and there is little warpage is necessarily clear. Although not, it can be considered as follows.
The specific compatible layer includes a component having a fluorine atom and an oxygen atom, and the adhesiveness with the F2 resin layer is expressed by the characteristics (compatibility, etc.) of the portion having the fluorine atom, and the portion having the oxygen atom It is considered that the adhesiveness with the cured product layer of the prepreg is expressed by the characteristics (polarity, reactivity, etc.). And the adhesiveness by a compatible layer expresses at a comparatively low temperature compared with the temperature which the heat-fusion property of the TFE type polymer contained in F2 resin layer expresses. Therefore, even if the melting point of the TFE polymer is high, the prepreg can be firmly bonded to the resin side of the metal foil with resin at a relatively low temperature.
Since the resin-coated metal foil and the prepreg can be bonded at a relatively low temperature, the properties (electrical properties and mechanical strength) of the cured product layer of the prepreg are unlikely to deteriorate. Further, as the prepreg, a prepreg containing a matrix resin (matrix resin having no fluorine atom, etc.) that is generally low in heat resistance and excellent in mechanical strength as compared with the TFE-based polymer can be used. Moreover, since the F2 resin layer contains a TFE polymer, it has excellent electrical characteristics. In addition, the compatible layer is unlikely to deteriorate the electrical characteristics of the F2 resin layer, like the coating layer of the silane coupling agent. In this way, the cured product layer has excellent electrical characteristics and mechanical strength, the F2 resin layer has excellent electrical characteristics, and those characteristics are not easily degraded by heat or a compatible layer. Excellent mechanical strength.
In addition, while the non-adhesive and heat-stretchable TFE polymer is used as the F2 resin layer, the resin-coated metal foil and the prepreg are bonded at a relatively low temperature so as not to impair the dimensional stability of the resin-coated metal foil. Thus, a laminate with less warpage can be obtained.
 本発明の積層体は、金属箔、F2樹脂層、F2樹脂層に接した相溶層、相溶層に接した硬化物層をこの順に有する。本発明の積層体の層構成としては、例えば、金属箔/F2樹脂層/相溶層/硬化物層、金属箔/F2樹脂層/相溶層/硬化物層/相溶層/F2樹脂層/金属箔が挙げられる。「金属箔/F2樹脂層/相溶層/硬化物層」とは、金属箔、F2樹脂層、相溶層、硬化物層がこの順に積層されていることを示し、他の層構成も同様である。
 本発明の積層体の反り率は、5%以下が好ましく、1%以下が特に好ましい。この場合、積層体をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性に優れる。
 本発明の積層体の基板部分(F2樹脂層、相溶層及び硬化物層)の比誘電率(20GHz)は、5.5以下が好ましく、4.7以下がより好ましく、4.0以下がさらに好ましく、3.6以下が特に好ましい。基板部分の誘電正接(20GHz)は、0.02以下が好ましく、0.009以下がより好ましく、0.005以下がさらに好ましく、0.003以下が特に好ましい。この範囲において、基板部分の電気特性(低比誘電率、低誘電正接等)及び接着性の双方が優れ、優れた伝送特性が求められるプリント基板等に積層体を好適に用いることができる。
 本発明の積層体における金属箔の態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法における金属箔の態様と同様である。
The laminate of the present invention has a metal foil, an F2 resin layer, a compatible layer in contact with the F2 resin layer, and a cured product layer in contact with the compatible layer in this order. Examples of the layer structure of the laminate of the present invention include metal foil / F2 resin layer / compatible layer / cured material layer, metal foil / F2 resin layer / compatible layer / cured material layer / compatible layer / F2 resin layer. / Metal foil is mentioned. “Metal foil / F2 resin layer / compatible layer / cured product layer” means that the metal foil, F2 resin layer, compatible layer, and cured product layer are laminated in this order, and the other layer configurations are the same. It is.
The warpage rate of the laminate of the present invention is preferably 5% or less, and particularly preferably 1% or less. In this case, it is excellent in the handling property at the time of processing a laminated body into a printed circuit board, and the transmission characteristic of the obtained printed circuit board.
The relative dielectric constant (20 GHz) of the substrate portion (F2 resin layer, compatible layer and cured product layer) of the laminate of the present invention is preferably 5.5 or less, more preferably 4.7 or less, and preferably 4.0 or less. Further preferred is 3.6 or less. The dielectric loss tangent (20 GHz) of the substrate portion is preferably 0.02 or less, more preferably 0.009 or less, still more preferably 0.005 or less, and particularly preferably 0.003 or less. Within this range, the laminate can be suitably used for printed circuit boards and the like that are excellent in both electrical properties (low relative dielectric constant, low dielectric loss tangent, etc.) and adhesiveness of the substrate portion and excellent transmission characteristics.
The aspect of the metal foil in the laminated body of this invention is the same as the aspect of the metal foil in the manufacturing method of the metal foil with resin of this invention including a suitable aspect.
 本発明の積層体におけるF2樹脂層は、TFE系ポリマーを含む。
 F2樹脂層は、本発明の効果を損なわない範囲において、必要に応じて無機フィラー、TFE系ポリマー以外の樹脂、添加剤等を含んでいてもよい。
 F2樹脂層の厚さは、1~100μmが好ましく、3~75μmがより好ましく、5~50μmが特に好ましい。F2樹脂層の厚さが前記下限値以上であれば、プリント基板としての伝送特性がさらに優れる。F2樹脂層の厚さが前記上限値以下であれば、積層体が反りにくい。
 本発明の積層体における金属箔の厚さに対するF2樹脂層の厚さの比は、0.1~5.0が好ましく、0.2~2.5が特に好ましい。金属箔の厚さに対するF2樹脂層の厚さの比が前記下限値以上であれば、プリント基板としての伝送特性がさらに優れる。本発明の積層体は、相溶層を有するため、前記比が大きい場合(例えば、F2樹脂層が厚い場合。)においても、積層体を製造する際に樹脂付金属箔の寸法安定性を損なわずに樹脂付金属箔とプリプレグとを低温接着でき、積層体の反りが抑えられる。
 本発明の積層体におけるTFE系ポリマーの態様は、好適な態様も含めて、本発明の樹脂付金属箔の製造方法におけるTFE系ポリマーの態様と同様である。
The F2 resin layer in the laminate of the present invention contains a TFE polymer.
The F2 resin layer may contain an inorganic filler, a resin other than the TFE-based polymer, an additive, or the like as necessary within a range not impairing the effects of the present invention.
The thickness of the F2 resin layer is preferably 1 to 100 μm, more preferably 3 to 75 μm, and particularly preferably 5 to 50 μm. If the thickness of the F2 resin layer is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. If the thickness of the F2 resin layer is equal to or less than the upper limit value, the laminate is unlikely to warp.
The ratio of the thickness of the F2 resin layer to the thickness of the metal foil in the laminate of the present invention is preferably from 0.1 to 5.0, particularly preferably from 0.2 to 2.5. If the ratio of the thickness of the F2 resin layer to the thickness of the metal foil is equal to or greater than the lower limit, the transmission characteristics as a printed circuit board are further improved. Since the laminate of the present invention has a compatible layer, even when the ratio is large (for example, when the F2 resin layer is thick), the dimensional stability of the resin-coated metal foil is impaired when the laminate is manufactured. Therefore, the resin-attached metal foil and the prepreg can be bonded at low temperature, and the warpage of the laminate can be suppressed.
The aspect of the TFE-based polymer in the laminate of the present invention is the same as the aspect of the TFE-based polymer in the method for producing a metal foil with resin of the present invention including preferred aspects.
 本発明の積層体における相溶層は、フッ素原子及び酸素原子を有する成分を含む。
 相溶層は、前記成分のみからなっていてもよく、前記成分と前記成分以外の成分(TFE系ポリマー等)とからなってもよい。
 前記成分の態様は、好適な態様も含めて、本発明の樹脂付金属箔における親水成分の態様と同様である。特に好適な態様においては、F2樹脂層と相溶層との境界におけるTFE系ポリマーと前記成分との相溶性が向上し、F2樹脂層と相溶層との接着強度がより向上しやすい。また、相溶層とプリプレグの硬化物層との境界における前記成分とプリプレグのマトリックス樹脂との相溶性や反応性が向上し、相溶層とプリプレグの硬化物層との接着強度がより向上しやすい。
 相溶層の厚さは、1~500nmが好ましく、5~100nmが特に好ましい。この場合、樹脂付金属箔のF2樹脂層の電気特性と相溶層の接着性とをバランスさせやすい。
The compatible layer in the laminate of the present invention includes a component having a fluorine atom and an oxygen atom.
The compatible layer may be composed of only the above components, or may be composed of the above components and components other than the above components (TFE polymer or the like).
The aspect of the said component is the same as the aspect of the hydrophilic component in the metal foil with resin of this invention including a suitable aspect. In a particularly preferred aspect, the compatibility between the TFE polymer and the component at the boundary between the F2 resin layer and the compatible layer is improved, and the adhesive strength between the F2 resin layer and the compatible layer is more likely to be improved. In addition, the compatibility and reactivity between the component and the prepreg matrix resin at the boundary between the compatible layer and the cured prepreg layer are improved, and the adhesive strength between the compatible layer and the cured prepreg layer is further improved. Cheap.
The thickness of the compatible layer is preferably 1 to 500 nm, and particularly preferably 5 to 100 nm. In this case, it is easy to balance the electrical characteristics of the F2 resin layer of the metal foil with resin and the adhesiveness of the compatible layer.
 本発明の積層体における硬化物層は、マトリックス樹脂を含むプリプレグの硬化物である。マトリックス樹脂は、フッ素原子を有さないマトリックス樹脂が好ましい。
 プリプレグとしては、強化繊維シートにマトリックス樹脂が含浸されたプリプレグが挙げられる。
 強化繊維シートとしては、複数の強化繊維からなる強化繊維束、該強化繊維束を織成してなるクロス、複数の強化繊維が一方向に引き揃えられた一方向性強化繊維束、該一方向性強化繊維束から構成された一方向性クロス、これらを組み合わせたシート、複数の強化繊維束を積み重ねたシート等が挙げられる。
 強化繊維としては、長さが10mm以上の連続した長繊維が好ましい。強化繊維は、強化繊維シートの長さ方向の全長または幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
 強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
 無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。
 金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。
 有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
 強化繊維は、表面処理が施されているものであってもよい。
 強化繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。
 プリント基板用途では、強化繊維としては、ガラス繊維が好ましい。
The cured product layer in the laminate of the present invention is a cured product of a prepreg containing a matrix resin. The matrix resin is preferably a matrix resin having no fluorine atom.
Examples of the prepreg include a prepreg in which a reinforcing fiber sheet is impregnated with a matrix resin.
The reinforcing fiber sheet includes a reinforcing fiber bundle composed of a plurality of reinforcing fibers, a cloth formed by weaving the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction, and the unidirectional reinforcement. Examples thereof include a unidirectional cloth composed of fiber bundles, a sheet combining these, and a sheet in which a plurality of reinforcing fiber bundles are stacked.
As the reinforcing fiber, a continuous long fiber having a length of 10 mm or more is preferable. The reinforcing fibers do not need to be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
Examples of reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, and boron fiber.
Examples of the metal fiber include aluminum fiber, brass fiber, and stainless steel fiber.
Examples of the organic fiber include aromatic polyamide fiber, polyaramid fiber, polyparaphenylene benzoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber, and the like.
The reinforcing fiber may be subjected to a surface treatment.
Reinforcing fibers may be used alone or in combination of two or more.
For printed circuit board applications, glass fibers are preferred as reinforcing fibers.
 マトリックス樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、熱硬化性樹脂が好ましい。
 熱硬化性樹脂としては、本発明の樹脂付金属箔の製造方法の説明で挙げられた熱硬化性樹脂と同じ樹脂が挙げられる。
 熱可塑性樹脂としては、本発明の樹脂付金属箔の製造方法の説明で挙げられた熱可塑性樹脂と同じ樹脂が挙げられる。
 マトリックス樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 プリプレグのマトリックス樹脂としては、加工性の点から、エポキシ樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル及びポリブタジエンからなる群から選ばれる少なくとも1種のマトリックス樹脂が好ましい。
 プリプレグの厚さは、10μm以上5mmが好ましく、30μm以上3mm以下がより好ましく、80μm以上1mm以下が特に好ましい。ただし、プリプレグの厚さはプリント基板の用途により適宜設定できる。
The matrix resin may be a thermoplastic resin, may be a thermosetting resin, and is preferably a thermosetting resin.
Examples of the thermosetting resin include the same resins as the thermosetting resins mentioned in the description of the method for producing the resin-coated metal foil of the present invention.
As a thermoplastic resin, the same resin as the thermoplastic resin mentioned by description of the manufacturing method of metal foil with a resin of this invention is mentioned.
A matrix resin may be used individually by 1 type, and may use 2 or more types together.
The matrix resin for the prepreg is preferably at least one matrix resin selected from the group consisting of epoxy resins, polyphenylene oxides, polyphenylene ethers, and polybutadienes from the viewpoint of processability.
The thickness of the prepreg is preferably 10 μm to 5 mm, more preferably 30 μm to 3 mm, and particularly preferably 80 μm to 1 mm. However, the thickness of the prepreg can be appropriately set depending on the use of the printed circuit board.
 プリプレグとしては、以下の商品名のプリプレグが挙げられる。
 パナソニック社製のメグトロン(MEGTRON) GXシリーズのR-G520、R-1410W、R-1410A、R-1410E、MEGTRONシリーズのR-1410W、R-1410A、R-1410E、MEGTRONシリーズのR-5680、R-5680(J)、R-5680(NJ)、R-5670、R-5670(N)、R-5620S、R-5620、R-5630、R-1570、HIPERシリーズノR-1650V、R-1650D、R-1650M、R-1650E、R-5610、CR-5680、CR-5680(N)、CR-5680(J)。
 日立化成工業社製のGEA-770G、GEA-705G、GEA-700G、GEA-679FG、GEA-679F(R)、GEA-78G、TD-002、GEA-75G、GEA-67、GEA-67G。
 住友ベークライト社製のEI-6765、panasonic社製のR-5785。
 三菱ガス化学社製のGEPL-190T、GEPL-230T、GHPL-830X TypeA、GHPL-830NS、GHPL-830NSR、GHPL-830NSF。
 DOOSAN CORPORATION社製のGEPL-190T、GEPL-230T、GHPL-830X TypeA、GHPL-830NS、GHPL-830NSR、GHPL-830NSF。
Examples of the prepreg include prepregs having the following trade names.
Panasonic Megtron MEGRON GX Series R-G520, R-1410W, R-1410A, R-1410E, MEGTRON Series R-1410W, R-1410A, R-1410E, MEGTON Series R-5680, R -5680 (J), R-5680 (NJ), R-5670, R-5670 (N), R-5620S, R-5620, R-5630, R-1570, HIPER series R-1650V, R-1650D , R-1650M, R-1650E, R-5610, CR-5680, CR-5680 (N), CR-5680 (J).
GEA-770G, GEA-705G, GEA-700G, GEA-679FG, GEA-679F (R), GEA-78G, TD-002, GEA-75G, GEA-67, GEA-67G manufactured by Hitachi Chemical Co., Ltd.
EI-6765 manufactured by Sumitomo Bakelite, and R-5785 manufactured by panasonic.
GEPL-190T, GEPL-230T, GHPL-830X Type A, GHPL-830NS, GHPL-830NSR, GHPL-830NSF manufactured by Mitsubishi Gas Chemical Company, Inc.
GEPL-190T, GEPL-230T, GHPL-830X Type A, GHPL-830NS, GHPL-830NSR, GHPL-830NSF manufactured by DOOSAN CORPORATION.
 GUANDONG Shengyi SCI. TECH社製のSP120N、S1151G、S1151GB、S1170G、S1170GB、S1150G、S1150GB、S1140F、S1140FB、S7045G、SP175M、S1190、S1190B、S1170、S0701、S1141KF、S0401KF、S1000-2M、S1000-2MB、S1000-2、S1000-2B、S1000、S1000B、S1000H、S1000HB、S7136H、S7439、S7439B。
 SHANGHAI NANYA社製のNY1135、NY1140、NY1150、NY1170、NY2150、NY2170、NY9135、NY9140、NY9600、NY9250、NY9140HF、NY6200、NY6150、NY3170LK、NY6300、NY3170M、NY6200、NY3150HF CTI600、NY3170HF、NY3150D、NY3150HF、NY2170H、NY2170、NY2150、NY2140、NY1600、NY1140、NY9815HF、NY9810HF、NY9815、NY9810。
 ITEQ CORPORATION社製のIT-180GN、IT-180I、IT-180A、IT-189、IT-180、IT-258GA3、IT-158、IT-150GN、IT-140、IT-150GS、IT-150G、IT-168G1、IT-168G2、IT-170G、IT-170GRA1、IT-958G、IT-200LK、IT-200D、IT-150DA、IT-170GLE、IT-968G、IT-968G SE、IT-968、IT-968 SE。
GUANDONG Shengyi SCI. TECH SP120N, S1151G, S1151GB, S1170G, S1170GB, S1150G, S1150GB, S1140F, S1140FB, S7045G, SP175M, S1190, S1190B, S1170, S0701, S1141KF, S0401KF, S1000-2M, S1000-2F S1000-2B, S1000, S1000B, S1000H, S1000HB, S7136H, S7439, S7439B.
NY1135, NY1140, NY1150, NY1170, NY2150, NY2170, NY9135, NY9140, NY9600, NY9250, NY3140, NY3150, NY3150, NY3170LK, NY6170, NY3170LK, NY3170LK, NY3170LK, NY3170LK, NY3170LK, NY6170 NY2170, NY2150, NY2140, NY1600, NY1140, NY9815HF, NY9810HF, NY9815, NY9810.
IT-180GN, IT-180I, IT-180A, IT-189, IT-180, IT-258GA3, IT-158, IT-150GN, IT-140, IT-150GS, IT-150G, IT manufactured by ITEQ CORPORATION -168G1, IT-168G2, IT-170G, IT-170GRA1, IT-958G, IT-200LK, IT-200D, IT-150DA, IT-170GLE, IT-968G, IT-968G SE, IT-968, IT- 968 SE.
 NANYA PLASTICS社製のUV BLOCK FR-4-86、NP-140 TL/B、NP-140M TL/B、NP-150 R/TL/B、NP-170
 R/TL/B、NP-180 R/TL/B、NPG R/TL/B、NPG-151、NPG-150N、NPG-150LKHD、NPG-170N、NPG-170 R/TL/B、NPG-171、NPG-170D R/TL/B、NPG-180ID/B、NPG-180IF/B、NPG-180IN/B、NPG-180INBK/B(BP)、NPG-186、NPG-200R/TL、NPG-200WT、FR-4-86 PY、FR-140TL PY、NPG-PY R/TL、CEM-3-92、CEM-3-92PY、CEM-3-98、CEM-3-01PY、CEM-3-01HC、CEM-3-09、CEM-3-09HT、CEM-3-10、NP-LDII、NP-LDIII、NP-175R/TL/B、NP-155F R/TL/B、NP-175F R/TL/B、NP-175F BH、NP-175FM BH。
 TAIWAN UNION TECHNOLOGY社製のULVP series、LDP series。
 ISOLA GROUP社製のA11、R406N、P25N、TerraGreen、I-Tera MT40、IS680 AG、IS680、Astra MT77、G200、DE104、FR408、ED130UV、FR406、IS410、FR402、FR406N、IS420、IS620i、370TURBO、254、I-Speed、FR-408HR、IS415、370HR。
UV BLOCK FR-4-86, NP-140 TL / B, NP-140M TL / B, NP-150 R / TL / B, NP-170 manufactured by NANYA PLASTICS
R / TL / B, NP-180 R / TL / B, NPG R / TL / B, NPG-151, NPG-150N, NPG-150LKHD, NPG-170N, NPG-170 R / TL / B, NPG-171 , NPG-170D R / TL / B, NPG-180ID / B, NPG-180IF / B, NPG-180IN / B, NPG-180INBK / B (BP), NPG-186, NPG-200R / TL, NPG-200WT FR-4-86 PY, FR-140TL PY, NPG-PY R / TL, CEM-3-92, CEM-3-92PY, CEM-3-98, CEM-3-01PY, CEM-3-01HC, CEM-3-09, CEM-3-09HT, CEM-3-10, NP-LDII, NP-LDIII, NP-175R / TL / B, NP-155F R / TL / B, NP-175F R / TL / B, NP-175F BH, NP-175FM BH.
ULVP series and LDP series manufactured by TAIWAN UNION TECHNOLOGY.
ISOLA GROUP A11, R406N, P25N, Terra Green, I-Tera MT40, IS680 AG, IS680, Astra MT77, G200, DE104, FR408, ED130UV, FR406, IS410, FR402, FR406N, IS420, IS620i, 370TU, IS620i, 370TU I-Speed, FR-408HR, IS415, 370HR.
 PARK ELECTROCHEMICAL社製のNY9000、NX9000、NL9000、NH9000、N9000-13 RF、N8000Q、N8000、N7000-1、N7000-2 HTスラッシュ-3、N7000-3、N5000、N5000-30、N-5000-32、N4000-12、N4000-12SI、N4000-13、N4000-13SI、N4000-13SI、N4000-13EP、N4000-13EP SI、N4350-13RF、N4380-13RF、N4800-20、N4800-20SI、Meteorwave1000、Meteorwave2000、Meteorwave3000、Meteorwave4000、Mercurywave9350、N4000-6、N4000-6FC、N4000-7、N4000-7SI、N4000-11、N4000-29。 NY9000, NX9000, NL9000, NH9000, N9000-13 RF, N8000Q, N8000, N7000-1, N7000-2 HT Slash-3, N7000-3, N5000, N5000-30, N-5000-32, manufactured by PARK ELECTROCHEMICAL N4000-12, N4000-12SI, N4000-13, N4000-13SI, N4000-13SI, N4000-13EP, N4000-13EP SI, N4350-13RF, N4380-13RF, N4800-20, N4800-20SI, Merewave1000, Meteorweve2000M , Meteorwave 4000, Mercurywave 9350, N40 0-6, N4000-6FC, N4000-7, N4000-7SI, N4000-11, N4000-29.
 ROGERS CORPORATION社製のRO4450B、RO4450F、CLTE-P、3001 Bonding Film、2929 Bondply、CuClad 6700 Bonding Film、ULTRALAM 3908 Bondply、CuClad 6250 Bonding Film。
 利昌工業社製のES-3329、ES-3317B、ES-3346、ES-3308S、ES-3310A、ES-3306S、ES-3350、ES-3352、ES-3660、ES-3351S、ES-3551S、ES-3382S、ES-3940、ES-3960V、ES-3960C、ES-3753、ES-3305、ES-3615、ES-3306S、ES-3506S、ES-3308S、ES-3317B、ES-3615。
RO4450B, RO4450F, CLTE-P, 3001 Bonding Film, 2929 Bondply, CuClad 6700 Bonding Film, ULTRAMAL 3908 Bondply, CuClad 6250 Bonding, manufactured by ROGERS CORPORATION.
ES-3329, ES-3317B, ES-3346, ES-3308S, ES-3310A, ES-3306S, ES-3350, ES-3352, ES-3660, ES-3351S, ES-3551S, ES -3382S, ES-3940V, ES-3960V, ES-3960C, ES-3753, ES-3305, ES-3315, ES-3306S, ES-3506S, ES-3308S, ES-3317B, ES-3615.
 本発明の積層体は、金属箔、F2樹脂層及び相溶層を有する樹脂付金属箔と、プリプレグとを熱プレス法により接着させて製造できる。具体的には、本発明の樹脂付金属箔は、本発明の樹脂付金属箔とプリプレグとを熱プレス法により接着させて製造するのが好ましい。
 本発明の積層体における樹脂付銅箔の相溶層は、層状に存在していてもよく、島状に存在していてもよい。樹脂付金属箔は、相溶層が層状に存在する場合、相溶層の表面の接着性に優れるため、プリプレグと強固に低温接着できる。また、樹脂付金属箔は、相溶層が島状に存在する場合、F2樹脂層及び相溶層の表面の接着性に優れるため、プリプレグと強固に低温接着できる。つまり、本発明における樹脂付金属箔は、本質的に熱伸縮性であるTFE系ポリマーを樹脂層としながらも、樹脂層の厚さと金属箔の種類又は厚さとに影響されずに、寸法安定性を損なうことなく、プリプレグと低温接着できる。
 かかる樹脂付金属箔を製造する方法としては、(i)金属箔及びF2樹脂層を有する樹脂付金属箔のF2樹脂層の表面に、相溶層を形成する成分(前述した、80~300℃にける重量減少率が1質量%/分以上である分散剤等。)を含む塗工液を塗布する方法、(ii)金属箔の表面に、TFE系ポリマー及び前記成分を含む塗工液を塗布する方法が挙げられる。F2樹脂層と相溶層の境界におけるTFE系ポリマーと前記成分が相溶して、樹脂付金属箔のF2樹脂層と相溶層の接着性が向上しやすい点から、(ii)の方法が好ましい。
 (ii)の方法の具体例としては、TFE系ポリマーを含むパウダーと、前記分散剤(前述した、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマー等。)と、液状媒体とを含むパウダー分散液を金属箔の表面に塗布し、80~300℃の温度領域にて金属箔を保持し、前記温度領域超の温度領域にてTFE系ポリマーを焼成させることにより、金属箔の表面にTFE系ポリマーを含むF2樹脂層を形成すると同時にF2樹脂層の表面に相溶層を形成する方法が挙げられる。
The laminate of the present invention can be produced by bonding a metal foil, a metal foil with resin having an F2 resin layer and a compatible layer, and a prepreg by a hot press method. Specifically, the resin-coated metal foil of the present invention is preferably produced by bonding the resin-coated metal foil of the present invention and a prepreg by a hot press method.
The compatible layer of the resin-coated copper foil in the laminate of the present invention may be present in a layer form or in an island form. When the compatible layer exists in a layered manner, the resin-attached metal foil is excellent in adhesiveness on the surface of the compatible layer, and thus can be firmly bonded to the prepreg at a low temperature. Moreover, since the metal foil with resin is excellent in the adhesiveness of the surface of the F2 resin layer and the compatible layer when the compatible layer exists in an island shape, it can be firmly bonded to the prepreg at a low temperature. In other words, the resin-coated metal foil in the present invention has a dimensional stability without being affected by the thickness of the resin layer and the type or thickness of the metal foil, although the TFE polymer that is essentially heat stretchable is used as the resin layer. Can be bonded to the prepreg at a low temperature without damaging it.
As a method for producing such a metal foil with resin, (i) a component for forming a compatible layer on the surface of the F2 resin layer of the metal foil with resin and the F2 resin layer having the F2 resin layer (described above, 80 to 300 ° C. (Ii) a coating solution containing a TFE polymer and the above components on the surface of the metal foil. The method of apply | coating is mentioned. The method (ii) is because the TFE polymer at the boundary between the F2 resin layer and the compatible layer and the above components are compatible, and the adhesion between the F2 resin layer and the compatible layer of the metal foil with resin is easily improved. preferable.
Specific examples of the method (ii) include a powder containing a TFE polymer and the dispersant (having the polyfluoroalkyl group or polyfluoroalkenyl group and the polyoxyalkylene group or alcoholic hydroxyl group described above in the side chain. And a liquid dispersion containing a liquid medium is applied to the surface of the metal foil, the metal foil is held in a temperature range of 80 to 300 ° C., and the TFE polymer is used in a temperature range above the temperature range. A method of forming a compatible layer on the surface of the F2 resin layer at the same time that the F2 resin layer containing the TFE polymer is formed on the surface of the metal foil by firing is mentioned.
 本発明の積層体を製造する際、樹脂付金属箔の相溶層の表面又はF2樹脂層及び相溶層の表面にプリプレグを積層する方法としては、樹脂付金属箔とプリプレグとを熱プレスする方法が挙げられる。
 プレス温度は、TFE系ポリマーの融点以下が好ましく、120~300℃がより好ましく、160~220℃が特に好ましい。この範囲において、プリプレグの熱劣化を抑えつつ、相溶層とプリプレグとを強固に接着できる。
 熱プレスは、減圧雰囲気下で行うことが好ましく、20kPa以下の真空度で行うのが特に好ましい。この範囲において、積層体における金属箔、F2樹脂層、相溶層、硬化物層のそれぞれの界面への気泡混入を抑え、酸化による劣化を抑えることができる。
 また、熱プレス時は前記真空度に到達した後に昇温することが好ましい。前記真空度に到達する前に昇温すると、F2樹脂層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる。
 熱プレスにおける圧力は、0.2~10MPaが好ましい。この範囲において、プリプレグの破損を抑えつつ、相溶層とプリプレグとを強固に接着できる。
When producing the laminate of the present invention, the method of laminating the prepreg on the surface of the compatible layer of the resin-coated metal foil or the surface of the F2 resin layer and the compatible layer is to hot press the resin-coated metal foil and the prepreg. A method is mentioned.
The pressing temperature is preferably not higher than the melting point of the TFE polymer, more preferably 120 to 300 ° C., and particularly preferably 160 to 220 ° C. In this range, the compatible layer and the prepreg can be firmly bonded while suppressing the thermal deterioration of the prepreg.
The hot pressing is preferably performed under a reduced pressure atmosphere, and particularly preferably performed at a vacuum degree of 20 kPa or less. In this range, it is possible to suppress air bubbles from entering the interfaces of the metal foil, F2 resin layer, compatible layer, and cured product layer in the laminate, and to suppress deterioration due to oxidation.
Moreover, it is preferable to raise the temperature after reaching the vacuum degree during hot pressing. When the temperature is raised before reaching the degree of vacuum, the F2 resin layer is compressed in a softened state, that is, with a certain degree of fluidity and adhesion, which causes bubbles.
The pressure in the hot press is preferably 0.2 to 10 MPa. In this range, the compatible layer and the prepreg can be firmly bonded while suppressing breakage of the prepreg.
 本発明の積層体は、電気特性、耐薬品性(エッチング耐性)等の物性に優れたTFE系ポリマーを樹脂層とするため、本発明の積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に用いることができる。
 例えば、本発明の積層体の金属箔をエッチング処理して所定のパターンの導体回路(伝送回路)に加工する方法や、本発明の積層体の金属箔を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によって伝送回路に加工する方法によって、本発明の積層体からプリント基板を製造できる。
 本発明の積層体から製造されたプリント基板は、伝送回路、F2樹脂層、硬化物層をこの順に有し、F2樹脂層と硬化物層との間に、F2樹脂層及び硬化物層に接する相溶層をさらに有する。本発明のプリント基板の層構成としては、例えば、伝送回路/F2樹脂層/相溶層/硬化物層、伝送回路/F2樹脂層/相溶層/硬化物層/相溶層/F2樹脂層/伝送回路が挙げられる。
 プリント基板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに伝送回路を形成してもよい。層間絶縁膜は、例えば、本発明におけるパウダー分散液によっても形成できる。
 プリント基板の製造においては、伝送回路上にソルダーレジストを積層してもよい。ソルダーレジストは、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、伝送回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、本発明におけるパウダー分散液によっても形成できる。
Since the laminate of the present invention uses a TFE polymer having excellent physical properties such as electrical characteristics and chemical resistance (etching resistance) as a resin layer, the laminate of the present invention is a flexible copper-clad laminate or a rigid copper-clad laminate. As a board, it can be used for manufacture of a printed circuit board.
For example, the metal foil of the laminate of the present invention is etched to process a conductor circuit (transmission circuit) of a predetermined pattern, or the metal foil of the laminate of the present invention is electroplated (semi-additive method (SAP method)). ), A modified semi-additive method (MSAP method, etc.) can be used to manufacture a printed circuit board from the laminate of the present invention.
The printed circuit board manufactured from the laminate of the present invention has a transmission circuit, an F2 resin layer, and a cured product layer in this order, and is in contact with the F2 resin layer and the cured product layer between the F2 resin layer and the cured product layer. It further has a compatible layer. Examples of the layer structure of the printed circuit board of the present invention include, for example, transmission circuit / F2 resin layer / compatible layer / cured layer, transmission circuit / F2 resin layer / compatible layer / cured layer / compatible layer / F2 resin layer. / Transmission circuit.
In manufacturing a printed circuit board, after forming a transmission circuit, an interlayer insulating film may be formed on the transmission circuit, and a transmission circuit may be further formed on the interlayer insulating film. The interlayer insulating film can also be formed by, for example, the powder dispersion in the present invention.
In manufacturing a printed circuit board, a solder resist may be laminated on the transmission circuit. The solder resist can be formed by the powder dispersion in the present invention.
In manufacturing a printed circuit board, a coverlay film may be laminated on the transmission circuit. The coverlay film can also be formed by the powder dispersion in the present invention.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
 <ポリマーの溶融粘度>
 ASTM D 1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した。
 <ポリマーの融点>
 示差走査熱量計(セイコーインスツル社製、DSC-7020)を用い、TFE系ポリマーを10℃/分の速度で昇温させて測定した。
 <パウダーのD50及びD90>
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、パウダーを水中に分散させて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Various measurement methods are shown below.
<Polymer melt viscosity>
In accordance with ASTM D 1238, using a flow tester and a 2Φ-8L die, a polymer sample (2 g) previously heated at the measurement temperature for 5 minutes is held at the measurement temperature with a load of 0.7 MPa. It was measured.
<Melting point of polymer>
Using a differential scanning calorimeter (Seiko Instruments, DSC-7020), the TFE polymer was heated at a rate of 10 ° C./min and measured.
<D50 and D90 of powder>
Using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring instrument, manufactured by Horiba, Ltd.), the powder was dispersed in water and measured.
 <樹脂層の平滑性>
 光照射した樹脂層を斜め上方から目視し、下記基準で評価した。
 A:模様が確認されない。
 B:縞模様は確認されないが、ゆず肌模様が確認される。
 C:縞模様が確認される。
 <樹脂層の水接触角>
 25℃にて樹脂付金属箔の樹脂層の表面に純水(約2μL)を置いた際の、水滴と樹脂層の表面とのなす角度を、接触角計(協和界面科学社製CA-X型)を用いて測定し、下記基準で評価した。
 A:水接触角が70°以上90°以下である。
 B:水接触角が90°超100°以下である。
 C:水接触角が100°超である。
 <樹脂層の反り率>
 積層体から180mm角の四角い試験片を切り出した。この試験片について、JIS C 6471:1995に規定される測定方法にしたがって反り率を測定した。
<Smoothness of resin layer>
The resin layer irradiated with light was visually observed from above and evaluated according to the following criteria.
A: A pattern is not confirmed.
B: A striped pattern is not confirmed, but a yuzu skin pattern is confirmed.
C: A striped pattern is confirmed.
<Water contact angle of resin layer>
When pure water (about 2 μL) was placed on the surface of the resin layer of the metal foil with resin at 25 ° C., the angle formed by the water droplet and the surface of the resin layer was measured using a contact angle meter (CA-X manufactured by Kyowa Interface Science Co., Ltd.). Type) and evaluated according to the following criteria.
A: The water contact angle is 70 ° or more and 90 ° or less.
B: Water contact angle is more than 90 ° and 100 ° or less.
C: Water contact angle is more than 100 °.
<War rate of resin layer>
A 180 mm square test piece was cut out from the laminate. About this test piece, the curvature rate was measured according to the measuring method prescribed | regulated to JISC6471: 1995.
 <樹脂層の表面のRa及びRz>
 Oxford Instruments社製のAFMを用いて、樹脂層の1μm範囲の表面のRa及びRzを下記測定条件にて測定した。
 プローブ:AC160TS-C3(先端R <7nm、バネ定数 26N/m)、測定モード:AC-Air、Scan Rate:1Hz。
 <積層体の剥離強度>
 積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出した。試験片の長さ方向の一端から50mmの位置まで、樹脂付銅箔とプリプレグの硬化物とを剥離した。次いで、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、最大荷重を剥離強度(N/cm)とした。
 <比誘電率及び誘電正接>
 プリント基板の基板部分(樹脂層、相溶層及び硬化物層)について、SPDR(スプリットポスト誘電体共振器)法により、23℃±2℃、50±5%RHの範囲内の環境下にて、周波数20GHzで比誘電率(20GHz)及び誘電正接(20GHz)を測定した。
<Ra and Rz on the surface of the resin layer>
Using an AFM manufactured by Oxford Instruments, Ra and Rz of the surface of the resin layer in the 1 μm 2 range were measured under the following measurement conditions.
Probe: AC160TS-C3 (tip R <7 nm, spring constant 26 N / m), measurement mode: AC-Air, Scan Rate: 1 Hz.
<Peel strength of laminate>
A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from the laminate. The copper foil with resin and the cured product of the prepreg were peeled from one end in the length direction of the test piece to a position of 50 mm. Next, using a tensile tester (Orientec Co., Ltd.) with a position of 50 mm from one end in the length direction of the test piece as the center, the test piece is peeled 90 degrees at a pulling speed of 50 mm / min, and the maximum load is peel strength (N / Cm).
<Relative permittivity and dissipation factor>
The board part (resin layer, compatible layer and cured layer) of the printed circuit board is used in an environment within the range of 23 ° C. ± 2 ° C. and 50 ± 5% RH by the SPDR (split post dielectric resonator) method. The relative dielectric constant (20 GHz) and dielectric loss tangent (20 GHz) were measured at a frequency of 20 GHz.
 使用した材料を以下に示す。
 [パウダー]
 パウダー1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含む酸無水物基を有するコポリマー(融点:300℃)からなるパウダー(D50:1.7μm、D90:3.8μm)
 ポリマー2:TFE単位を99.5モル%以上含む実質的にTFEのホモポリマー(380℃における溶融粘度:1.4×10)からなるパウダー(D50:0.3μm、D90:0.6μm)。
 [分散剤]
 分散剤1:ペルフルオロアルケニル基を有する(メタ)アクリレートとポリオキシエチレン基を有する(メタ)アクリレートのコポリマー(ノニオン性界面活性剤、100~200℃における質量減少率が1質量%/分未満であり200~300℃における質量減少率が6質量%/分である。)。
 分散剤2:ペルフルオロアルキル基を有するメタクリレートとヒドロキシブチルメタクリレートのコポリマー(ノニオン性界面活性剤、100~200℃及び200~300℃における質量減少率がそれぞれ1質量%/分未満である。)
 分散剤3:CH=CHC(O)O(CHOCF(CF)C(CF(CF)(=C(CF)とCH=CHC(O)O(CHCHO)10Hとのコポリマー(100~200℃における質量減少率が1質量%/分未満であり200~300℃における質量減少率が6質量%/分である。)。
 [金属箔]
 銅箔1:超低粗度電解銅箔(福田金属箔粉工業社製、CF-T4X-SV、厚さ:18μm)。
 [プリプレグ]
 プリプレグ1:FR-4(日立化成社製、GEA-67N 0.2t(HAN)、強化繊維:ガラス繊維、マトリックス樹脂:エポキシ樹脂、厚さ:0.2mm)。
The materials used are shown below.
[powder]
Powder 1: Powder comprising a copolymer having an acid anhydride group (melting point: 300 ° C.) containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order ( D50: 1.7 μm, D90: 3.8 μm)
Polymer 2: Powder (D50: 0.3 μm, D90: 0.6 μm) substantially composed of a TFE homopolymer (melt viscosity at 380 ° C .: 1.4 × 10 4 ) containing 99.5 mol% or more of TFE units .
[Dispersant]
Dispersant 1: Copolymer of (meth) acrylate having a perfluoroalkenyl group and (meth) acrylate having a polyoxyethylene group (nonionic surfactant, mass reduction rate at 100 to 200 ° C. is less than 1% by mass / min. The mass reduction rate at 200 to 300 ° C. is 6% by mass / min.).
Dispersant 2: Copolymer of methacrylate having a perfluoroalkyl group and hydroxybutyl methacrylate (nonionic surfactant, mass reduction rate at 100 to 200 ° C. and 200 to 300 ° C. is less than 1% by mass / min.)
Dispersant 3: CH 2 = CHC (O ) O (CH 2) 4 OCF (CF 3) C (CF (CF 3) 2) (= C (CF 3) 2) and CH 2 = CHC (O) O ( Copolymer with CH 2 CH 2 O) 10 H (mass reduction rate at 100 to 200 ° C. is less than 1% by mass / min and mass reduction rate at 200 to 300 ° C. is 6% by mass / min).
[Metal foil]
Copper foil 1: Ultra-low roughness electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Co., Ltd., CF-T4X-SV, thickness: 18 μm).
[Prepreg]
Prepreg 1: FR-4 (manufactured by Hitachi Chemical Co., Ltd., GEA-67N 0.2t (HAN), reinforcing fiber: glass fiber, matrix resin: epoxy resin, thickness: 0.2 mm).
 (例1)樹脂付銅箔の製造例
 (例1-1)樹脂付銅箔1の製造例
 パウダー1の50質量部、分散剤1の5質量部、N-メチルピロリドンの45質量部を混合してパウダー分散液を調製した。
 銅箔1の表面にダイコーターを用いてパウダー分散液を塗布し、銅箔1を通風乾燥炉(雰囲気温度:230℃、雰囲気ガス:酸素ガス濃度8000ppmの窒素ガス。)に通して1分間保持し、遠赤外線炉(温度:340℃、ガス:酸素ガス濃度100ppm未満の窒素ガス。)にさらに通して1分間保持し、銅箔1の表面にポリマー1の樹脂層(厚さ5μm)を有する樹脂付銅箔1を得た。
(Example 1) Production example of resin-coated copper foil (Example 1-1) Production example of resin-coated copper foil 1 50 parts by mass of powder 1, 5 parts by mass of dispersant 1, and 45 parts by mass of N-methylpyrrolidone were mixed. Thus, a powder dispersion was prepared.
A powder dispersion is applied to the surface of the copper foil 1 using a die coater, and the copper foil 1 is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute. Then, it is further passed through a far-infrared furnace (temperature: 340 ° C., gas: nitrogen gas having an oxygen gas concentration of less than 100 ppm) and held for 1 minute, and has a resin layer (thickness 5 μm) of polymer 1 on the surface of the copper foil 1 A copper foil 1 with resin was obtained.
 (例1-2)~(例1-6)樹脂付銅箔2~6の製造例
 パウダー及び分散剤の種類と、通風乾燥炉の雰囲気温度及び通風乾燥炉の雰囲気ガスの酸素ガス濃度とを変更する以外は、例1と同様にして樹脂付銅箔2~6を得た。
 それぞれの樹脂付銅箔の樹脂層の物性(水接触角と平滑性)を評価した。結果をまとめて下表1に示す。
Figure JPOXMLDOC01-appb-T000001
(Example 1-2) to (Example 1-6) Production examples of resin-coated copper foils 2 to 6 The types of powder and dispersant, the atmospheric temperature of the ventilation drying furnace, and the oxygen gas concentration of the atmosphere gas of the ventilation drying furnace were determined. Resin-coated copper foils 2 to 6 were obtained in the same manner as in Example 1 except for changing.
The physical properties (water contact angle and smoothness) of each resin-coated copper foil were evaluated. The results are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 (例2)積層体の製造例
 (例2-1)積層体1の製造例
 樹脂付銅箔1の樹脂層の表面を真空プラズマ処理した。処理条件は、出力:4.5kW、導入ガス:アルゴンガス、導入ガス流量:50cm/分間、圧力:50mTorr(6.7Pa)、処理時間:2分間とした。
 処理後の樹脂付銅箔1の樹脂層の表面にプリプレグ1を重ね、185℃、3.0MPaの加圧条件にて、60分間、真空熱プレスして積層体1を得た。
Example 2 Production Example of Laminate Example 2-1 Production Example of Laminate 1 The surface of the resin layer of the copper foil with resin 1 was vacuum plasma treated. The processing conditions were: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 50 mTorr (6.7 Pa), and processing time: 2 minutes.
The prepreg 1 was piled up on the surface of the resin layer of the resin-coated copper foil 1 after the treatment, and the laminate 1 was obtained by vacuum hot pressing for 60 minutes under a pressure condition of 185 ° C. and 3.0 MPa.
 (例2-2)~(例2-4)積層体2~4の製造例
 樹脂付銅箔を変更する以外は例2-1と同様にして積層体2~4を製造した。
 それぞれの積層体の剥離強度を測定した。結果をまとめて下表2に示す。
Figure JPOXMLDOC01-appb-T000002
(Example 2-2) to (Example 2-4) Production Examples of Laminates 2 to 4 Laminates 2 to 4 were produced in the same manner as in Example 2-1, except that the copper foil with resin was changed.
The peel strength of each laminate was measured. The results are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 (例3)積層体Aの製造例
 パウダー1の50質量部、分散剤3の5質量部及びN-メチルピロリドンの45質量部を含むパウダー分散液を、銅箔1の表面にダイコーターを用いて塗布した。パウダー分散液が塗布された銅箔1を通風乾燥炉(雰囲気温度:230℃、雰囲気ガス:酸素ガス濃度8000ppmの窒素ガス)に通して1分間保持し、遠赤外線炉(温度:340℃、ガス:酸素ガス濃度100ppm未満の窒素ガス)にさらに通して1分間焼成した。銅箔1の表面にポリマー1のF樹脂層(厚さ5μm)を有する樹脂付銅箔Aを得た。
 樹脂付銅箔AのF樹脂層及び接着部位の表面を真空プラズマ処理した。処理条件は、出力:4.5kW、導入ガス:アルゴンガス、導入ガス流量:50cm/分間、圧力:50mTorr(6.7Pa)、処理時間:2分間とした。
Example 3 Production Example of Laminate A A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 3, and 45 parts by mass of N-methylpyrrolidone was used on the surface of copper foil 1 using a die coater. And applied. The copper foil 1 coated with the powder dispersion is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute, and a far-infrared furnace (temperature: 340 ° C., gas : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) was further baked for 1 minute. Resin-coated copper foil A having an F resin layer (thickness: 5 μm) of polymer 1 on the surface of copper foil 1 was obtained.
The F resin layer of the copper foil A with resin A and the surface of the adhesion site were vacuum plasma treated. The processing conditions were: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 50 mTorr (6.7 Pa), and processing time: 2 minutes.
 樹脂付銅箔AのF樹脂層の表面を全反射-赤外吸収スペクトル法(ATR-IR分析法)により分析した結果、カルボキシ基の吸収ピークが確認された。また、樹脂付銅箔AのF樹脂層の表面をAFM-IR法により分析した。樹脂付銅箔Aの表面をAFM-IR法で分析して得られる画像を図1に示す。図1中の白点部12は、F樹脂層10に接した島状の凸部であり、凸部からはエーテル性酸素原子とカルボキシ基と-CF-構造とに起因する赤外吸収スペクトルが検出された。すなわち、図1中の白点部12は、F樹脂層10の表面に点在する島状の接着部位であり、接着部位は、分散剤3に由来する、エーテル性酸素原子及びカルボキシ基を有する親水成分を含む。
 真空プラズマ処理後の樹脂付銅箔AのF樹脂層及び接着部位の表面に、プリプレグ1を重ね、185℃、3.0MPaの加圧条件にて、60分間、真空熱プレスして積層体Aを得た。積層体Aの反り率は0.3%であり、剥離強度は12N/cmであった。
 また、積層体Aをはんだ浴に浮かべるはんだ耐熱性試験に供した結果、積層体Aの場合には288℃のはんだに5秒間、5回浮かべても、膨れが発生しなかった。一方、島状の凸部を有さない積層体の場合には、288℃のはんだに5秒間、2回浮かべた段階で、膨れが発生した。
As a result of analyzing the surface of the F resin layer of the copper foil A with resin by a total reflection-infrared absorption spectrum method (ATR-IR analysis method), an absorption peak of a carboxy group was confirmed. Further, the surface of the F resin layer of the resin-coated copper foil A was analyzed by the AFM-IR method. FIG. 1 shows an image obtained by analyzing the surface of the resin-coated copper foil A by the AFM-IR method. 1 are island-shaped convex portions in contact with the F resin layer 10. From the convex portions, infrared absorption spectra caused by etheric oxygen atoms, carboxy groups, and —CF— structures are observed. was detected. That is, the white spots 12 in FIG. 1 are island-shaped adhesion sites scattered on the surface of the F resin layer 10, and the adhesion sites have etheric oxygen atoms and carboxy groups derived from the dispersant 3. Contains a hydrophilic component.
The prepreg 1 is stacked on the surface of the F resin layer of the resin-coated copper foil A and the adhesion site after the vacuum plasma treatment, and the laminate A is subjected to vacuum hot pressing for 60 minutes under a pressure condition of 185 ° C. and 3.0 MPa. Got. The warpage rate of the layered product A was 0.3%, and the peel strength was 12 N / cm.
In addition, as a result of subjecting the laminate A to a solder heat resistance test in which the laminate A was floated in a solder bath, in the case of the laminate A, no blistering occurred even if it was floated 5 times for 5 seconds on a 288 ° C. solder. On the other hand, in the case of the laminated body having no island-shaped protrusions, swelling occurred when it floated twice at 288 ° C. for 5 seconds.
 (例4)積層体Bの製造例
 パウダー1の50質量部、分散剤3の5質量部及びN-メチルピロリドンの45質量部を含むパウダー分散液を、銅箔1の表面にダイコーターを用いて塗布した。パウダー分散液が塗布された銅箔1を通風乾燥炉(雰囲気温度:230℃、雰囲気ガス:酸素ガス濃度8000ppmの窒素ガス)に通して1分間保持し、遠赤外線炉(温度:340℃、ガス:酸素ガス濃度100ppm未満の窒素ガス)にさらに通して1分間焼成した。銅箔1の表面に樹脂部分(厚さ5μm)を有する樹脂付銅箔Bを得た。
 樹脂付銅箔Bの樹脂部分の表面をプラズマ処理した。プラズマ処理装置としては、NORDSON MARCH社のAP-1000を用いた。プラズマ処理条件は、RF出力:300W、電極間ギャップ:2インチ、導入ガス:アルゴンガス、導入ガス流量:50cm/分、圧力:13Pa、処理時間:1分間とした。プラズマ処理後の樹脂部分の表面のRaは14.5nmであり、Rzは195nmであった。
 プラズマ処理後の樹脂付銅箔Bの樹脂部分の表面に、プリプレグ1を重ね、プレス温度:185℃、プレス圧力:3.0MPa、プレス時間:60分間の条件にて、真空熱プレスして、銅箔1、樹脂部分、プリプレグの硬化物層をこの順に有する、積層体Bを得た。
 積層体Bの断面を走査型透過電子顕微鏡により観察した結果、図2に示すように、F樹脂層10’と硬化物層14’との間に厚さ60nmの相溶層12’が形成されていた。エネルギー分散型X線分析により分析した結果、相溶層12’は酸素原子とフッ素原子を含むことを確認した。積層体Bの反り率は0.3%であり、剥離強度は12N/cmであった。
 積層体Bに伝送回路を形成して得られるプリント基板の比誘電率(20GHz)は4.32であり誘電正接(20GHz)は0.01568であった。
(Example 4) Production Example of Laminate B A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 3 and 45 parts by mass of N-methylpyrrolidone was used on the surface of copper foil 1 using a die coater. And applied. The copper foil 1 coated with the powder dispersion is passed through a ventilation drying oven (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute, and a far-infrared furnace (temperature: 340 ° C., gas : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) was further baked for 1 minute. Resin-coated copper foil B having a resin portion (thickness 5 μm) on the surface of copper foil 1 was obtained.
The surface of the resin part of the copper foil B with resin was plasma-treated. AP-1000 manufactured by NORDSON MARCH was used as the plasma processing apparatus. The plasma treatment conditions were RF output: 300 W, gap between electrodes: 2 inches, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 13 Pa, treatment time: 1 minute. Ra of the surface of the resin part after the plasma treatment was 14.5 nm, and Rz was 195 nm.
The surface of the resin portion of the resin-coated copper foil B after the plasma treatment is overlaid with the prepreg 1 and subjected to vacuum hot pressing under the conditions of a press temperature: 185 ° C., a press pressure: 3.0 MPa, a press time: 60 minutes, The laminated body B which has the hardened | cured material layer of the copper foil 1, the resin part, and a prepreg in this order was obtained.
As a result of observing the cross section of the laminate B with a scanning transmission electron microscope, a compatible layer 12 ′ having a thickness of 60 nm is formed between the F resin layer 10 ′ and the cured product layer 14 ′ as shown in FIG. It was. As a result of analysis by energy dispersive X-ray analysis, it was confirmed that the compatible layer 12 ′ contained oxygen atoms and fluorine atoms. The warp rate of the laminate B was 0.3%, and the peel strength was 12 N / cm.
The relative permittivity (20 GHz) of the printed circuit board obtained by forming the transmission circuit on the laminate B was 4.32, and the dielectric loss tangent (20 GHz) was 0.01568.
 (例5)積層体B’の製造例
 パウダー分散液に分散剤3を含ませない以外は、例4と同様にして積層体B’を得た。積層体B’は相溶層を有さずF樹脂層と硬化物層とが直接接しており、その剥離強度は6N/cmであった。
(Example 5) Production example of laminate B 'A laminate B' was obtained in the same manner as in Example 4 except that the dispersant 3 was not included in the powder dispersion. The laminate B ′ did not have a compatible layer, and the F resin layer and the cured product layer were in direct contact with each other, and the peel strength was 6 N / cm.
 本発明の樹脂付金属箔の製造方法は、フルオロポリマーを含む、接着性に優れた樹脂層を有する樹脂付金属箔の製造に適した方法であり、プリント基板等の製造に有用である。
 本発明の樹脂付金属箔及び積層体は、プリント基板の材料として有用である。
 なお、2018年05月30日に出願された日本特許出願2018-104011号、2018年07月18日に出願された日本特許出願2018-134926号及び2018年07月18日に出願された日本特許出願2018-134927号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The method for producing a metal foil with resin of the present invention is a method suitable for producing a metal foil with resin having a resin layer excellent in adhesiveness, including a fluoropolymer, and is useful for producing a printed circuit board and the like.
The metal foil with a resin and the laminate of the present invention are useful as a material for a printed board.
Japanese Patent Application No. 2018-104011 filed on May 30, 2018, Japanese Patent Application No. 2018-134926 filed on July 18, 2018, and Japanese Patent Application filed on July 18, 2018. The entire contents of the specification, claims, abstract and drawings of application 2018-134927 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.
 10 F樹脂層、
 12 白点部、
 10’ F樹脂層、
 12’ 相溶層、
 14’ 硬化物層。
10 F resin layer,
12 White spots,
10 'F resin layer,
12 'compatible layer,
14 'hardened | cured material layer.

Claims (15)

  1.  金属箔の表面に樹脂層を有する樹脂付金属箔の製造方法であり、テトラフルオロエチレン系ポリマーのパウダーと80~300℃の温度領域における質量減少率が1質量%/分以上である分散剤と溶媒とを含むパウダー分散液を金属箔の表面に塗布し、前記温度領域内の質量減少率が1質量%/分以上となる温度にて金属箔を保持し、前記温度領域超の温度にてテトラフルオロエチレン系ポリマーを焼成させて金属箔の表面にテトラフルオロエチレン系ポリマーを含む樹脂層を形成する、樹脂付金属箔の製造方法。 A method for producing a resin-coated metal foil having a resin layer on the surface of the metal foil, comprising a tetrafluoroethylene-based polymer powder and a dispersant having a mass reduction rate of 1% by mass / min or more in a temperature range of 80 to 300 ° C. A powder dispersion containing a solvent is applied to the surface of the metal foil, the metal foil is held at a temperature at which the mass reduction rate in the temperature region is 1% by mass / min or more, and at a temperature above the temperature region. A method for producing a resin-coated metal foil, comprising firing a tetrafluoroethylene-based polymer to form a resin layer containing the tetrafluoroethylene-based polymer on the surface of the metal foil.
  2.  樹脂層の水接触角が、70~100°である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the water contact angle of the resin layer is 70 to 100 °.
  3.  分散剤が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーである、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the dispersant is a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain.
  4.  前記温度領域に金属箔を保持する際の温度が、100~300℃である、請求項1~3のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 3, wherein a temperature at which the metal foil is held in the temperature region is 100 to 300 ° C.
  5.  前記温度領域に金属箔を保持する際の雰囲気が、酸素ガスを含む雰囲気である、請求項1~4のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the atmosphere when holding the metal foil in the temperature region is an atmosphere containing oxygen gas.
  6.  テトラフルオロエチレン系ポリマーを焼成させる際の温度が、330~380℃である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein a temperature at which the tetrafluoroethylene-based polymer is calcined is 330 to 380 ° C.
  7.  金属箔、テトラフルオロエチレン系ポリマーを含む樹脂層、及び、エーテル性酸素原子、ヒドロキシ基及びカルボキシ基からなる群から選ばれる少なくとも1種を有する親水成分を含む接着部位をこの順に有し、前記樹脂層と前記接着部位とが接している、樹脂付金属箔。 A metal foil, a resin layer containing a tetrafluoroethylene-based polymer, and an adhesive site containing a hydrophilic component having at least one selected from the group consisting of an etheric oxygen atom, a hydroxy group and a carboxy group in this order, and the resin Resin-coated metal foil in which the layer and the bonding site are in contact.
  8.  前記接着部位が、島状に存在している、請求項7に記載の樹脂付金属箔。 The metal foil with resin according to claim 7, wherein the adhesion site exists in an island shape.
  9.  前記親水成分が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーに由来する、請求項7又は8に記載の樹脂付金属箔。 The resin-coated metal foil according to claim 7 or 8, wherein the hydrophilic component is derived from a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain.
  10.  請求項7~9のいずれか1項に記載の樹脂付金属箔と他の基板とを熱プレス法により接着させて積層体を得る、積層体の製造方法。 A method for producing a laminate, wherein the resin-coated metal foil according to any one of claims 7 to 9 and another substrate are adhered by a hot press method to obtain a laminate.
  11.  金属箔、テトラフルオロエチレン系ポリマーを含む樹脂層、及び、マトリックス樹脂を含むプリプレグの硬化物層をこの順に有し、前記樹脂層と前記硬化物層との間に、前記樹脂層及び前記硬化物層に接する、フッ素原子及び酸素原子を有する成分を含む相溶層をさらに有する、積層体。 It has a metal foil, a resin layer containing a tetrafluoroethylene-based polymer, and a cured product layer of a prepreg containing a matrix resin in this order, and the resin layer and the cured product between the resin layer and the cured product layer. The laminated body which further has a compatible layer containing the component which has a fluorine atom and an oxygen atom in contact with a layer.
  12.  前記相溶層の厚さが、1~500nmである、請求項11に記載の積層体。 The laminate according to claim 11, wherein the compatible layer has a thickness of 1 to 500 nm.
  13.  前記相溶層が、ポリフルオロアルキル基又はポリフルオロアルケニル基とポリオキシアルキレン基又はアルコール性水酸基とを側鎖に有するポリマーに由来する、請求項11又は12に記載の積層体。 The laminate according to claim 11 or 12, wherein the compatible layer is derived from a polymer having a polyfluoroalkyl group or polyfluoroalkenyl group and a polyoxyalkylene group or an alcoholic hydroxyl group in the side chain.
  14.  前記マトリックス樹脂が、エポキシ樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル及びポリブタジエンからなる群から選ばれる少なくとも1種の、フッ素原子を有さないマトリックス樹脂である、請求項11~13のいずれか1項に記載の積層体。 The matrix resin according to any one of claims 11 to 13, wherein the matrix resin is at least one matrix resin having no fluorine atom selected from the group consisting of epoxy resin, polyphenylene oxide, polyphenylene ether, and polybutadiene. Laminated body.
  15.  伝送回路、テトラフルオロエチレン系ポリマーを含む樹脂層、マトリックス樹脂を含むプリプレグの硬化物層をこの順に有し、前記樹脂層と前記硬化物層との間に、前記樹脂層及び前記硬化物層に接する、フッ素原子及び酸素原子を有する成分を含む相溶層をさらに有する、プリント基板。 A transmission circuit, a resin layer containing a tetrafluoroethylene-based polymer, and a cured product layer of a prepreg containing a matrix resin are arranged in this order, and the resin layer and the cured product layer are disposed between the resin layer and the cured product layer. A printed circuit board further comprising a compatible layer containing a component having a fluorine atom and an oxygen atom in contact therewith.
PCT/JP2019/020534 2018-05-30 2019-05-23 Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board WO2019230569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980035279.8A CN112236302B (en) 2018-05-30 2019-05-23 Method for producing resin-coated metal foil, laminate, and printed board
JP2020522146A JP7196914B2 (en) 2018-05-30 2019-05-23 METAL FOIL WITH RESIN, METHOD FOR MANUFACTURING LAMINATED BOARD, LAMINATED BOARD AND PRINTED BOARD
KR1020207022926A KR20210016322A (en) 2018-05-30 2019-05-23 Manufacturing method of resin-attached metal foil, resin-attached metal foil, laminate and printed circuit board

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-104011 2018-05-30
JP2018104011 2018-05-30
JP2018-134926 2018-07-18
JP2018134927 2018-07-18
JP2018-134927 2018-07-18
JP2018134926 2018-07-18

Publications (1)

Publication Number Publication Date
WO2019230569A1 true WO2019230569A1 (en) 2019-12-05

Family

ID=68697346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020534 WO2019230569A1 (en) 2018-05-30 2019-05-23 Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board

Country Status (5)

Country Link
JP (1) JP7196914B2 (en)
KR (1) KR20210016322A (en)
CN (1) CN112236302B (en)
TW (1) TWI826452B (en)
WO (1) WO2019230569A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157507A1 (en) * 2020-02-05 2021-08-12 Agc株式会社 Method for producing multilayer body and liquid composition
CN114199806A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting micro-nano rough copper foil surface organic matter distribution by AFM-IR
CN114200164A (en) * 2021-12-10 2022-03-18 深圳职业技术学院 Method for removing trace impurities on surface of copper foil by using dichloromethane/methanol mixed solvent under AFM-IR monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169770A (en) 2022-06-09 2023-12-18 와이엠티 주식회사 Metal foil, carrier with metal layer comprising the same and printed circuit board comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252447A (en) * 1994-03-14 1995-10-03 Sumitomo Electric Ind Ltd Fluororesin coating compound composition
JP2003041126A (en) * 2001-07-30 2003-02-13 Daikin Ind Ltd Resin aqueous dispersion composition
WO2003106556A1 (en) * 2002-05-20 2003-12-24 ダイキン工業株式会社 Fluorinated resin water dispersion composition and fluorinated water base coating composition
JP2006348261A (en) * 2005-05-16 2006-12-28 Du Pont Mitsui Fluorochem Co Ltd Polytetrafluoroethylene aqueous dispersion
JP2007098692A (en) * 2005-09-30 2007-04-19 Nippon Pillar Packing Co Ltd Copper-clad laminate, printed-wiring board, multi-layer printed-wiring board and methods for manufacturing these components
JP2007191709A (en) * 2005-12-21 2007-08-02 Ist Corp Aqueous dispersion composition for fluororesin coating and laminated product
WO2009022579A1 (en) * 2007-08-10 2009-02-19 Daikin Industries, Ltd. Coating composition
JP2015103480A (en) * 2013-11-27 2015-06-04 住友電工プリントサーキット株式会社 Conductive transparent base material, circuit module, light emission panel, touch panel and solar panel having the conductive transparent base material, and method for producing transparent wiring board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942725B2 (en) * 2012-09-18 2016-06-29 デクセリアルズ株式会社 Conductive sheet
JP5719014B1 (en) * 2013-12-06 2015-05-13 共栄社化学株式会社 Dispersant for fluoropolymer
CN107429028B (en) 2015-04-01 2020-06-23 三菱铅笔株式会社 Non-aqueous dispersion of fluorine-containing resin, product containing the same, and method for producing the same
JP6438370B2 (en) * 2015-08-03 2018-12-12 Jx金属株式会社 Printed wiring board manufacturing method, surface-treated copper foil, laminate, printed wiring board, semiconductor package, and electronic device
JP6674136B2 (en) 2016-04-21 2020-04-01 Dic株式会社 Fluororesin particle dispersion, resin composition, metal-clad laminate, prepreg, and method for producing metal-clad laminate
CN109415571B (en) 2016-06-23 2021-08-03 Agc株式会社 Method for producing fluororesin powder-containing liquid composition
JP6728529B2 (en) 2016-07-15 2020-07-22 住友電工ファインポリマー株式会社 Prepreg and multilayer board
TWI752062B (en) * 2016-07-22 2022-01-11 日商Agc股份有限公司 Liquid composition, and method for producing thin film and layered product using the liquid composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252447A (en) * 1994-03-14 1995-10-03 Sumitomo Electric Ind Ltd Fluororesin coating compound composition
JP2003041126A (en) * 2001-07-30 2003-02-13 Daikin Ind Ltd Resin aqueous dispersion composition
WO2003106556A1 (en) * 2002-05-20 2003-12-24 ダイキン工業株式会社 Fluorinated resin water dispersion composition and fluorinated water base coating composition
JP2006348261A (en) * 2005-05-16 2006-12-28 Du Pont Mitsui Fluorochem Co Ltd Polytetrafluoroethylene aqueous dispersion
JP2007098692A (en) * 2005-09-30 2007-04-19 Nippon Pillar Packing Co Ltd Copper-clad laminate, printed-wiring board, multi-layer printed-wiring board and methods for manufacturing these components
JP2007191709A (en) * 2005-12-21 2007-08-02 Ist Corp Aqueous dispersion composition for fluororesin coating and laminated product
WO2009022579A1 (en) * 2007-08-10 2009-02-19 Daikin Industries, Ltd. Coating composition
JP2015103480A (en) * 2013-11-27 2015-06-04 住友電工プリントサーキット株式会社 Conductive transparent base material, circuit module, light emission panel, touch panel and solar panel having the conductive transparent base material, and method for producing transparent wiring board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Teflon coating (fluoroplastics coating)", DAITOH CHEMICAL, 27 September 2010 (2010-09-27), Retrieved from the Internet <URL:https://www.daitohchemical.jp/products.html> [retrieved on 20190712] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157507A1 (en) * 2020-02-05 2021-08-12 Agc株式会社 Method for producing multilayer body and liquid composition
CN114199806A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting micro-nano rough copper foil surface organic matter distribution by AFM-IR
CN114200164A (en) * 2021-12-10 2022-03-18 深圳职业技术学院 Method for removing trace impurities on surface of copper foil by using dichloromethane/methanol mixed solvent under AFM-IR monitoring
CN114199806B (en) * 2021-12-10 2024-04-09 南京大学 Method for detecting organic matter distribution on micro-nano roughened copper foil surface by AFM-IR

Also Published As

Publication number Publication date
TW202003235A (en) 2020-01-16
TWI826452B (en) 2023-12-21
JP7196914B2 (en) 2022-12-27
CN112236302B (en) 2023-05-02
CN112236302A (en) 2021-01-15
KR20210016322A (en) 2021-02-15
JPWO2019230569A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP7396403B2 (en) Liquid composition and method for producing films and laminates using the liquid composition
WO2019230569A1 (en) Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board
CN113227232B (en) Powder dispersion, laminate, and printed board
TWI824049B (en) Dispersions
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
JP7400722B2 (en) Laminate, printed circuit board and manufacturing method thereof
CN112203844B (en) Method for producing resin-coated metal foil and resin-coated metal foil
JP7243724B2 (en) metal foil with resin
JP2020070401A (en) Dispersion liquid
JP2020083990A (en) Manufacturing method of composite, and composite
JP7452534B2 (en) Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
WO2020171024A1 (en) Laminate, and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812361

Country of ref document: EP

Kind code of ref document: A1