WO2019230453A1 - Discharge control device - Google Patents

Discharge control device Download PDF

Info

Publication number
WO2019230453A1
WO2019230453A1 PCT/JP2019/019749 JP2019019749W WO2019230453A1 WO 2019230453 A1 WO2019230453 A1 WO 2019230453A1 JP 2019019749 W JP2019019749 W JP 2019019749W WO 2019230453 A1 WO2019230453 A1 WO 2019230453A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
driving circuit
connector
discharge resistor
control device
Prior art date
Application number
PCT/JP2019/019749
Other languages
French (fr)
Japanese (ja)
Inventor
雅文 唐鎌
高木 亮
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to DE112019002710.7T priority Critical patent/DE112019002710T5/en
Publication of WO2019230453A1 publication Critical patent/WO2019230453A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions

Definitions

  • the present invention relates to a discharge control device.
  • a smoothing capacitor is provided in a driving circuit in an electric compressor, and a discharge resistor is always connected in order to immediately discharge the smoothing capacitor when the power is turned off. .
  • An object of the present invention is to suppress unnecessary power consumption due to a discharge resistor.
  • a discharge control device includes: A connector state detection unit that detects whether or not a connector that connects the driving circuit of the electric compressor and the external power source is connected; A smoothing capacitor connected to the drive circuit and capable of charging and discharging; A discharge resistor for discharging the smoothing capacitor; A switching control unit that switches whether or not to connect a discharge resistor to the driving circuit, When the connector state detection unit detects that the connector is connected, the switching control unit cuts off the discharge resistance from the drive circuit, and the connector state detection unit detects that the connector is cut off. Sometimes a discharge resistor is connected to the drive circuit.
  • the discharge resistor is connected in consideration of safety only when the connector is shut off, for example, due to maintenance, etc., unnecessary power consumption due to the discharge resistor can be avoided in the normal time when the connector is connected. Can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a discharge control device.
  • the discharge control device 11 is included in the electric compressor 12.
  • the electric compressor 12 is mounted on an electric vehicle as a refrigerant circuit of a car air conditioner, and when driven by a built-in electric motor, the electric compressor 12 sucks, compresses and discharges the refrigerant.
  • the discharge control device 11 includes a power connector switch 13 (connector state detection unit), a controller 14 (switching control unit), and a drive circuit 15.
  • the power connector switch 13 detects whether or not a connector that connects the driving circuit 15 and the battery (external power source) is connected.
  • the battery is an ultra-high voltage battery of, for example, 800 V that drives an electric vehicle.
  • the controller 14 is composed of a CPU, for example, and executes a discharge control process to be described later on the driving circuit 15.
  • the driving circuit 15 is a DC circuit, and is a circuit on the power supply side with respect to an inverter circuit (not shown).
  • the drive circuit 15 and the controller 14 are accommodated in an inverter accommodating chamber of the electric compressor 12 together with an inverter circuit (not shown).
  • FIG. 2 is a configuration diagram of the driving circuit.
  • the drive circuit 15 includes a smoothing capacitor 21, a discharge resistor 22, a limiting resistor 23, a capacitor 24, a switch circuit 25, a voltage detection circuit 26, and a bleeder resistor 27.
  • the smoothing capacitor 21 includes a plurality of capacitors connected in series, and stabilizes the voltage of the driving circuit 15.
  • the discharge resistor 22 is composed of, for example, a plurality of resistors of 6 to 10, and is connected to the smoothing capacitor 21 in parallel via a MOSFET 33 described later.
  • the limiting resistor 23 includes a plurality of resistors connected in series, and is connected in parallel to the smoothing capacitor 21.
  • the capacitor 24 is provided for driving the switch circuit 25.
  • the switch circuit 25 is a circuit that switches between connecting and disconnecting the discharge resistor 22 to the driving circuit 15, and is controlled by the controller 14.
  • the voltage detection circuit 26 is connected in parallel to the smoothing capacitor 21, and two systems are provided for redundancy.
  • the switch circuit 25 includes a transistor 31, a transistor 32, a MOSFET 33, and a transistor 34.
  • the transistor 31 is turned on / off by the controller 14.
  • the transistor 32 is turned on / off in accordance with the turning on / off of the transistor 31. That is, the transistor 32 is turned on when the transistor 31 is on, and the transistor 32 is turned off when the transistor 31 is off.
  • the MOSFET 33 is connected in series with the discharge resistor 22 and is turned ON / OFF according to ON / OFF of the transistor 31. That is, when the transistor 31 is ON, the MOSFET 33 is ON, and the discharge resistor 22 is connected to the driving circuit 15. On the other hand, when the transistor 31 is OFF, the MOSFET 33 is turned OFF, and the discharge resistor 22 is cut off from the driving circuit 15.
  • the transistor 34 is turned on / off by the controller 14 and can forcibly turn off the MOSFET 33. That is, when the transistor 34 is OFF, the MOSFET 33 is turned ON when the transistor 32 is turned ON. On the other hand, when the transistor 34 is ON, the MOSFET 33 is turned OFF even if the transistor 32 is ON.
  • FIG. 3 is a flowchart illustrating an example of the discharge control process.
  • step S101 the state of the power connector switch 13 is detected to determine whether or not the connector is connected.
  • step S102 the discharge resistor 22 is disconnected from the driving circuit 15 and then the process returns to a predetermined main program.
  • the transistor 31 is turned off and the transistor 34 is turned off.
  • the process proceeds to step S104.
  • the smoothing capacitor 21 is discharged by connecting the discharge resistor 22 to the driving circuit 15. Specifically, the transistor 31 is turned on and the transistor 34 is turned off.
  • a succeeding step S105 it is determined whether or not the discharge of the smoothing capacitor 21 is abnormal.
  • the voltage of the driving circuit 15 is set to a predetermined voltage V1 (for example, 60 V) until a predetermined time T1 (for example, 4 to 5 seconds) elapses after the discharge resistor 22 of the driving circuit 15 is connected. It is determined whether or not it has decreased to If the voltage has decreased to the voltage V1 before the time T1 elapses, it is determined that there is no abnormality and the process proceeds to step S106. On the other hand, if the voltage has not dropped to the voltage V1 until the time T1 elapses, it is determined that there is an abnormality and the process proceeds to step S107.
  • V1 for example, 60 V
  • T1 for example, 4 to 5 seconds
  • step 105 corresponds to the abnormality detection unit.
  • step S101 the discharge resistor 22 is cut off from the driving circuit 15 via the switch circuit 25 (step S102).
  • step S104 the discharge resistor 22 is connected to the driving circuit 15 via the switch circuit 25 (step S104).
  • the relay circuit for turning on / off the power supply from the battery is generally not provided in the electric compressor 12 but only on the vehicle side. Therefore, the connection state of the connector is detected by the power connector switch 13.
  • the discharge resistor 22 is connected in consideration of safety only when the connector is cut off due to maintenance or the like.
  • the discharge resistor 22 can be cut off at the normal time when the connector is connected. . Thereby, unnecessary power consumption by the discharge resistor 22 can be suppressed. Further, since no current flows through the discharge resistor 22, heat generation can be reduced to zero.
  • a high voltage is constantly applied. Therefore, in order to discharge quickly, each resistor must be reduced, and the number of resistors is reduced accordingly. It must be increased. For example, at a high voltage such as 800 V, a resistance of more than a few tens is required, which increases the number of parts and increases the size.
  • the power connector switch 13 may erroneously detect the disconnection of the connector in a state where the connector is not disconnected. Therefore, when the voltage of the driving circuit 15 does not decrease to the predetermined voltage V1 (the determination in step S105 is “No”), it is determined that the smoothing capacitor 21 is abnormally discharged, and the driving circuit 15 is connected via the switch circuit 25. The discharge resistor 22 is cut off from the circuit 15 (step S102). Thereby, unnecessary power consumption by the discharge resistor 22 can be suppressed.
  • the power connector switch 13 detects whether or not the driving circuit 15 and the external power source are connected.
  • the present invention is not limited to this, and a signal from the vehicle side system is input. It may be detected.
  • the controller 14 determines whether or not the discharge resistor 22 is connected.
  • the controller 14 is not limited to this and may be configured by a circuit having an equivalent function.
  • the circuit may be configured to discharge by the limiting resistor 23 and connect the discharge resistor 22 when the voltage falls below a predetermined value.
  • SYMBOLS 11 Discharge control apparatus, 12 ... Electric compressor, 13 ... Power supply connector switch, 14 ... Controller, 15 ... Drive circuit, 21 ... Smoothing capacitor, 22 ... Discharge resistance, 23 ... Limit resistance, 24 ... Capacitor, 25 ... Switch Circuit, 26 ... Voltage detection circuit, 27 ... Bleeder resistance, 31 ... Transistor, 32 ... Transistor, 33 ... MOSFET, 34 ... Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

[Problem] To suppress unnecessary power consumption due to discharge resistance. [Solution] In the present invention, when detecting that a connector has been connected, a controller 14 disconnects a discharge resistor 22 from a driving circuit 15, and connects the discharge resistor 22 to the driving circuit 15 when detecting that the connector has been disconnected.

Description

放電制御装置Discharge control device
 本発明は、放電制御装置に関するものである。 The present invention relates to a discharge control device.
 特許文献1に示されるように、電動圧縮機では駆動用回路に平滑コンデンサが設けられており、電源を落とした際に、平滑コンデンサを即座に放電するために、放電抵抗が常時接続されている。 As shown in Patent Document 1, a smoothing capacitor is provided in a driving circuit in an electric compressor, and a discharge resistor is always connected in order to immediately discharge the smoothing capacitor when the power is turned off. .
特開平11-178101号公報Japanese Patent Laid-Open No. 11-178101
 放電抵抗が常時接続されていることは、不必要な電力消費であり、電気自動車のように高電圧であるほど損失も大きくなる。
 本発明の課題は、放電抵抗による不必要な電力消費を抑制することである。
The constant connection of the discharge resistor is unnecessary power consumption, and the higher the voltage, the greater the loss as in an electric vehicle.
An object of the present invention is to suppress unnecessary power consumption due to a discharge resistor.
 本発明の一態様に係る放電制御装置は、
 電動圧縮機の駆動用回路と外部電源とをつなぐコネクタが接続されているか否かを検出するコネクタ状態検出部と、
 駆動用回路に接続され、充放電が可能な平滑コンデンサと、
 平滑コンデンサを放電させるための放電抵抗と、
 駆動用回路に対して放電抵抗を接続するか否かを切り替える切替制御部と、を備え、
 切替制御部は、コネクタ状態検出部でコネクタが接続されていることを検出しているときには駆動用回路から放電抵抗を遮断し、コネクタ状態検出部でコネクタが遮断されていることを検出しているときには駆動用回路に放電抵抗を接続する。
A discharge control device according to an aspect of the present invention includes:
A connector state detection unit that detects whether or not a connector that connects the driving circuit of the electric compressor and the external power source is connected;
A smoothing capacitor connected to the drive circuit and capable of charging and discharging;
A discharge resistor for discharging the smoothing capacitor;
A switching control unit that switches whether or not to connect a discharge resistor to the driving circuit,
When the connector state detection unit detects that the connector is connected, the switching control unit cuts off the discharge resistance from the drive circuit, and the connector state detection unit detects that the connector is cut off. Sometimes a discharge resistor is connected to the drive circuit.
 本発明によれば、例えばメンテナンス等でコネクタが遮断されたときだけ、安全性を考慮して放電抵抗が接続されるため、コネクタが接続されている通常時には、放電抵抗による不必要な電力消費を抑制することができる。 According to the present invention, since the discharge resistor is connected in consideration of safety only when the connector is shut off, for example, due to maintenance, etc., unnecessary power consumption due to the discharge resistor can be avoided in the normal time when the connector is connected. Can be suppressed.
放電制御装置の概略構成図である。It is a schematic block diagram of a discharge control apparatus. 駆動用回路の構成図である。It is a block diagram of the circuit for a drive. 放電制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of a discharge control process.
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing is schematic and may differ from an actual one. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the configurations are not specified as follows. That is, the technical idea of the present invention can be variously modified within the technical scope described in the claims.
《一実施形態》
 《構成》
 図1は、放電制御装置の概略構成図である。
 放電制御装置11は、電動圧縮機12に含まれる。電動圧縮機12は、カーエアコンの冷媒回路として電気自動車に搭載され、内蔵した電動モータによって駆動されるときに、冷媒を吸入し、圧縮してから排出する。
 放電制御装置11は、電源コネクタスイッチ13(コネクタ状態検出部)と、コントローラ14(切替制御部)と、駆動用回路15と、を備える。
<< One Embodiment >>
"Constitution"
FIG. 1 is a schematic configuration diagram of a discharge control device.
The discharge control device 11 is included in the electric compressor 12. The electric compressor 12 is mounted on an electric vehicle as a refrigerant circuit of a car air conditioner, and when driven by a built-in electric motor, the electric compressor 12 sucks, compresses and discharges the refrigerant.
The discharge control device 11 includes a power connector switch 13 (connector state detection unit), a controller 14 (switching control unit), and a drive circuit 15.
 電源コネクタスイッチ13は、駆動用回路15とバッテリ(外部電源)とをつなぐコネクタが接続されているか否かを検出する。バッテリは、電気自動車を駆動する例えば800Vの超高電圧バッテリである。
 コントローラ14は、例えばCPUからなり、駆動用回路15に対して後述する放電制御処理を実行する。
 駆動用回路15は、直流回路であり、図示しないインバータ回路よりも電源側の回路である。駆動用回路15及びコントローラ14は、図示しないインバータ回路と共に、電動圧縮機12のインバータ収容室に収容されている。
The power connector switch 13 detects whether or not a connector that connects the driving circuit 15 and the battery (external power source) is connected. The battery is an ultra-high voltage battery of, for example, 800 V that drives an electric vehicle.
The controller 14 is composed of a CPU, for example, and executes a discharge control process to be described later on the driving circuit 15.
The driving circuit 15 is a DC circuit, and is a circuit on the power supply side with respect to an inverter circuit (not shown). The drive circuit 15 and the controller 14 are accommodated in an inverter accommodating chamber of the electric compressor 12 together with an inverter circuit (not shown).
 図2は、駆動用回路の構成図である。
 駆動用回路15は、平滑コンデンサ21と、放電抵抗22と、制限抵抗23と、コンデンサ24と、スイッチ回路25と、電圧検出回路26と、ブリーダ抵抗27と、を備える。
 平滑コンデンサ21は、直列に接続された複数のコンデンサからなり、駆動用回路15の電圧を安定化させる。
 放電抵抗22は、例えば6~10個の複数の抵抗からなり、平滑コンデンサ21に対し後述するMOSFET33を介し、並列に接続されている。
FIG. 2 is a configuration diagram of the driving circuit.
The drive circuit 15 includes a smoothing capacitor 21, a discharge resistor 22, a limiting resistor 23, a capacitor 24, a switch circuit 25, a voltage detection circuit 26, and a bleeder resistor 27.
The smoothing capacitor 21 includes a plurality of capacitors connected in series, and stabilizes the voltage of the driving circuit 15.
The discharge resistor 22 is composed of, for example, a plurality of resistors of 6 to 10, and is connected to the smoothing capacitor 21 in parallel via a MOSFET 33 described later.
 制限抵抗23は、直列に接続された複数の抵抗からなり、平滑コンデンサ21に対して並列に接続されている。
 コンデンサ24は、スイッチ回路25を駆動するために設けられている。
 スイッチ回路25は、駆動用回路15に対して放電抵抗22を接続するか又は遮断するかを切り替える回路であり、コントローラ14によって制御される。
 電圧検出回路26は、平滑コンデンサ21に対して並列に接続されており、冗長化のために二系統が設けられている。
 スイッチ回路25は、トランジスタ31、トランジスタ32、MOSFET33、及びトランジスタ34を備える。
 トランジスタ31は、コントローラ14によってオン/オフされる。
 トランジスタ32は、トランジスタ31のON/OFFに従ってON/OFFされる。すなわち、トランジスタ31がONのときにトランジスタ32がONになり、トランジスタ31がOFFのときにトランジスタ32がOFFになる。
The limiting resistor 23 includes a plurality of resistors connected in series, and is connected in parallel to the smoothing capacitor 21.
The capacitor 24 is provided for driving the switch circuit 25.
The switch circuit 25 is a circuit that switches between connecting and disconnecting the discharge resistor 22 to the driving circuit 15, and is controlled by the controller 14.
The voltage detection circuit 26 is connected in parallel to the smoothing capacitor 21, and two systems are provided for redundancy.
The switch circuit 25 includes a transistor 31, a transistor 32, a MOSFET 33, and a transistor 34.
The transistor 31 is turned on / off by the controller 14.
The transistor 32 is turned on / off in accordance with the turning on / off of the transistor 31. That is, the transistor 32 is turned on when the transistor 31 is on, and the transistor 32 is turned off when the transistor 31 is off.
 MOSFET33は、放電抵抗22に対して直列に接続されており、トランジスタ31のON/OFFに従ってON/OFFされる。すなわち、トランジスタ31がONのときにMOSFET33がONになり、駆動用回路15に対して放電抵抗22を接続する。一方、トランジスタ31がOFFのときにMOSFET33がOFFになり、駆動用回路15に対して放電抵抗22を遮断する。
 トランジスタ34は、コントローラ14によってON/OFFされ、MOSFET33を強制的にOFFさせることができる。すなわち、トランジスタ34がOFFである場合には、トランジスタ32のONによってMOSFET33がONになる。一方、トランジスタ34がONである場合には、トランジスタ32がONであってもMOSFET33がOFFになる。
The MOSFET 33 is connected in series with the discharge resistor 22 and is turned ON / OFF according to ON / OFF of the transistor 31. That is, when the transistor 31 is ON, the MOSFET 33 is ON, and the discharge resistor 22 is connected to the driving circuit 15. On the other hand, when the transistor 31 is OFF, the MOSFET 33 is turned OFF, and the discharge resistor 22 is cut off from the driving circuit 15.
The transistor 34 is turned on / off by the controller 14 and can forcibly turn off the MOSFET 33. That is, when the transistor 34 is OFF, the MOSFET 33 is turned ON when the transistor 32 is turned ON. On the other hand, when the transistor 34 is ON, the MOSFET 33 is turned OFF even if the transistor 32 is ON.
 次に、コントローラ14で実行する放電制御処理について説明する。
 図3は、放電制御処理の一例を示すフローチャートである。
 ステップS101では、電源コネクタスイッチ13の状態を検出し、コネクタが接続されているか否かを判定する。コネクタが接続されているときにはステップS102に移行する。一方、コネクタが遮断されているときにはステップS103に移行する。
 ステップS102では、駆動用回路15から放電抵抗22を遮断してから所定のメインプログラムに復帰する。具体的には、異常フラグがfa=0にリセットされているときには、トランジスタ31をOFFにし、且つトランジスタ34をOFFにする。一方、異常フラグがfa=1にセットされているときには、トランジスタ31がONにされている状態でトランジスタ34をONにする。なお、初期設定では異常フラグはfa=0にリセットされている。
Next, the discharge control process executed by the controller 14 will be described.
FIG. 3 is a flowchart illustrating an example of the discharge control process.
In step S101, the state of the power connector switch 13 is detected to determine whether or not the connector is connected. When the connector is connected, the process proceeds to step S102. On the other hand, when the connector is disconnected, the process proceeds to step S103.
In step S102, the discharge resistor 22 is disconnected from the driving circuit 15 and then the process returns to a predetermined main program. Specifically, when the abnormality flag is reset to fa = 0, the transistor 31 is turned off and the transistor 34 is turned off. On the other hand, when the abnormality flag is set to fa = 1, the transistor 34 is turned on while the transistor 31 is turned on. In the initial setting, the abnormality flag is reset to fa = 0.
 ステップS103では、異常フラグがfa=0にリセットされているか否かを判定する。異常フラグがfa=0にリセットされているときにはステップS104に移行する。一方、異常フラグがfa=1にセットされているときにはステップS102に移行する。
 ステップS104では、駆動用回路15に放電抵抗22を接続することにより、平滑コンデンサ21の放電を行なう。具体的には、トランジスタ31をONにし、且つトランジスタ34をOFFにする。
In step S103, it is determined whether or not the abnormality flag is reset to fa = 0. When the abnormality flag is reset to fa = 0, the process proceeds to step S104. On the other hand, when the abnormality flag is set to fa = 1, the process proceeds to step S102.
In step S104, the smoothing capacitor 21 is discharged by connecting the discharge resistor 22 to the driving circuit 15. Specifically, the transistor 31 is turned on and the transistor 34 is turned off.
 続くステップS105では、平滑コンデンサ21の放電に異常があるか否かを判定する。ここでは、駆動用回路15の放電抵抗22を接続した時点から予め定めた時間T1(例えば4~5秒)が経過するまでに、駆動用回路15の電圧が予め定めた電圧V1(例えば60V)まで低下したか否かを判断する。時間T1が経過するまでに電圧V1まで低下しているときには、異常がないと判断してステップS106に移行する。一方、時間T1が経過するまでに電圧V1まで低下していないときには、異常があると判断してステップS107に移行する。ステップ105の処理が異常検出部に対応する。
 ステップS106では、異常フラグをfa=0にリセットしてから所定のメインプログラムに復帰する。
 ステップS107では、異常フラグをfa=1にセットしてからステップS102に移行する。
In a succeeding step S105, it is determined whether or not the discharge of the smoothing capacitor 21 is abnormal. Here, the voltage of the driving circuit 15 is set to a predetermined voltage V1 (for example, 60 V) until a predetermined time T1 (for example, 4 to 5 seconds) elapses after the discharge resistor 22 of the driving circuit 15 is connected. It is determined whether or not it has decreased to If the voltage has decreased to the voltage V1 before the time T1 elapses, it is determined that there is no abnormality and the process proceeds to step S106. On the other hand, if the voltage has not dropped to the voltage V1 until the time T1 elapses, it is determined that there is an abnormality and the process proceeds to step S107. The process of step 105 corresponds to the abnormality detection unit.
In step S106, the abnormality flag is reset to fa = 0, and then the process returns to the predetermined main program.
In step S107, the abnormality flag is set to fa = 1, and then the process proceeds to step S102.
 《作用》
 次に、一実施形態の主要な作用効果について説明する。
 駆動用回路15に放電抵抗が常に接続されていると、不必要な電力消費となり、電気自動車のように高電圧であるほど損失も大きくなる。電気自動車の場合、不必要な電力消費は、バッテリ単位容量当たりの走行距離(電費)の低下にもつながる。
 そこで本実施形態では、駆動用回路15に対して放電抵抗22を接続するか否かを切り替え可能にしている。そして、コネクタが接続されているときには(ステップS101の判定が“Yes”)、スイッチ回路25を介して駆動用回路15から放電抵抗22を遮断する(ステップS102)。一方、コネクタが遮断されているときには(ステップS101の判定が“No”)、スイッチ回路25を介して駆動用回路15に放電抵抗22を接続する(ステップS104)。バッテリからの電源供給をON/OFFするリレー回路は、一般に電動圧縮機12にはなく、車両側にしかない。そのため、電源コネクタスイッチ13によって、コネクタの接続状態を検出している。
<Action>
Next, main effects of the embodiment will be described.
If the discharge resistor is always connected to the driving circuit 15, unnecessary power consumption occurs, and the loss increases as the voltage increases as in an electric vehicle. In the case of an electric vehicle, unnecessary power consumption leads to a decrease in travel distance (electricity cost) per unit battery capacity.
Therefore, in this embodiment, it is possible to switch whether or not the discharge resistor 22 is connected to the driving circuit 15. When the connector is connected ("Yes" in step S101), the discharge resistor 22 is cut off from the driving circuit 15 via the switch circuit 25 (step S102). On the other hand, when the connector is disconnected (the determination in step S101 is “No”), the discharge resistor 22 is connected to the driving circuit 15 via the switch circuit 25 (step S104). The relay circuit for turning on / off the power supply from the battery is generally not provided in the electric compressor 12 but only on the vehicle side. Therefore, the connection state of the connector is detected by the power connector switch 13.
 このように、メンテナンス等でコネクタが遮断されたときだけ、安全性を考慮して放電抵抗22が接続されるが、コネクタが接続されている通常時には、放電抵抗22を遮断しておくことができる。これにより、放電抵抗22による不必要な電力消費を抑制することができる。また、放電抵抗22に電流は流れないため、発熱をゼロにできる。
 また、放電抵抗22を常に接続している場合、絶えず高電圧が印加されていることになるため、速やかに放電させるためには各抵抗を小さくしなければならず、その分、抵抗の数量を増やさなければならない。例えば800Vのような高電圧では、百数十個以上の抵抗が必要になるため、部品点数が増加し、大型化してしまうという問題があった。これに対して、必要なときだけ放電抵抗22を接続する場合は、絶えず高電圧が印加されている訳ではないため、例えば6~10個ほどの少ない抵抗を設けるだけでよい。したがって、部品点数の増加や大型化を抑制できる。
As described above, the discharge resistor 22 is connected in consideration of safety only when the connector is cut off due to maintenance or the like. However, the discharge resistor 22 can be cut off at the normal time when the connector is connected. . Thereby, unnecessary power consumption by the discharge resistor 22 can be suppressed. Further, since no current flows through the discharge resistor 22, heat generation can be reduced to zero.
In addition, when the discharge resistor 22 is always connected, a high voltage is constantly applied. Therefore, in order to discharge quickly, each resistor must be reduced, and the number of resistors is reduced accordingly. It must be increased. For example, at a high voltage such as 800 V, a resistance of more than a few tens is required, which increases the number of parts and increases the size. On the other hand, when the discharge resistor 22 is connected only when necessary, a high voltage is not constantly applied, so it is only necessary to provide as few as 6 to 10 resistors, for example. Therefore, an increase in the number of parts and an increase in size can be suppressed.
 また、これまではブリーダ抵抗27と放電抵抗22とのバランスを取って設計する必要があった。しかしながら、駆動用回路15に対して放電抵抗22を接続するか遮断するかを切り替える構成にしたことで、ブリーダ抵抗27と放電抵抗22とを個別に設計することが可能になった。そのため、設計が簡易化され、設計スピードも向上する。
 また、例えばコネクタが遮断されていない状態で、電源コネクタスイッチ13がコネクタの遮断を誤検知する可能性がある。そこで、駆動用回路15の電圧が予め定めた電圧V1まで低下しないときには(ステップS105の判定が“No”)、平滑コンデンサ21の放電の異常であると判断し、スイッチ回路25を介して駆動用回路15から放電抵抗22を遮断する(ステップS102)。これにより、放電抵抗22による不必要な電力消費を抑制することができる。
In the past, it was necessary to design the bleeder resistor 27 and the discharge resistor 22 in balance. However, by switching between connecting or disconnecting the discharge resistor 22 to the driving circuit 15, the bleeder resistor 27 and the discharge resistor 22 can be individually designed. Therefore, the design is simplified and the design speed is improved.
For example, the power connector switch 13 may erroneously detect the disconnection of the connector in a state where the connector is not disconnected. Therefore, when the voltage of the driving circuit 15 does not decrease to the predetermined voltage V1 (the determination in step S105 is “No”), it is determined that the smoothing capacitor 21 is abnormally discharged, and the driving circuit 15 is connected via the switch circuit 25. The discharge resistor 22 is cut off from the circuit 15 (step S102). Thereby, unnecessary power consumption by the discharge resistor 22 can be suppressed.
 《変形例》
 一実施形態では、駆動用回路15と外部電源とが接続されているか否かを電源コネクタスイッチ13で検出しているが、これに限定されるものではなく、車両側システムからの信号を入力することで検出してもよい。
 一実施形態では、放電抵抗22を接続するか否かをコントローラ14が判断して実行しているが、これに限定されるものではなく、同等の機能を有する回路によって構成してもよい。例えば、制限抵抗23によって放電させておき、電圧が予め定めた値を下回るときに、放電抵抗22を接続する回路を構成してもよい。
<Modification>
In the embodiment, the power connector switch 13 detects whether or not the driving circuit 15 and the external power source are connected. However, the present invention is not limited to this, and a signal from the vehicle side system is input. It may be detected.
In one embodiment, the controller 14 determines whether or not the discharge resistor 22 is connected. However, the controller 14 is not limited to this and may be configured by a circuit having an equivalent function. For example, the circuit may be configured to discharge by the limiting resistor 23 and connect the discharge resistor 22 when the voltage falls below a predetermined value.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 The above description has been made with reference to a limited number of embodiments. However, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.
 11…放電制御装置、12…電動圧縮機、13…電源コネクタスイッチ、14…コントローラ、15…駆動用回路、21…平滑コンデンサ、22…放電抵抗、23…制限抵抗、24…コンデンサ、25…スイッチ回路、26…電圧検出回路、27…ブリーダ抵抗、31…トランジスタ、32…トランジスタ、33…MOSFET、34…トランジスタ DESCRIPTION OF SYMBOLS 11 ... Discharge control apparatus, 12 ... Electric compressor, 13 ... Power supply connector switch, 14 ... Controller, 15 ... Drive circuit, 21 ... Smoothing capacitor, 22 ... Discharge resistance, 23 ... Limit resistance, 24 ... Capacitor, 25 ... Switch Circuit, 26 ... Voltage detection circuit, 27 ... Bleeder resistance, 31 ... Transistor, 32 ... Transistor, 33 ... MOSFET, 34 ... Transistor

Claims (4)

  1.  電動圧縮機の駆動用回路と外部電源とをつなぐコネクタが接続されているか否かを検出するコネクタ状態検出部と、
     前記駆動用回路に接続され、充放電が可能な平滑コンデンサと、
     前記平滑コンデンサを放電させるための放電抵抗と、
     前記駆動用回路に対して前記放電抵抗を接続するか否かを切り替える切替制御部と、を備え、
     前記切替制御部は、前記コネクタ状態検出部で前記コネクタが接続されていることを検出しているときには前記駆動用回路から前記放電抵抗を遮断し、前記コネクタ状態検出部で前記コネクタが遮断されていることを検出しているときには前記駆動用回路に前記放電抵抗を接続することを特徴とする放電制御装置。
    A connector state detection unit that detects whether or not a connector that connects the driving circuit of the electric compressor and the external power source is connected;
    A smoothing capacitor connected to the driving circuit and capable of charging and discharging;
    A discharge resistor for discharging the smoothing capacitor;
    A switching control unit that switches whether to connect the discharge resistor to the driving circuit,
    The switching control unit shuts off the discharge resistance from the driving circuit when the connector state detecting unit detects that the connector is connected, and the connector state detecting unit shuts off the connector. The discharge control device is characterized in that the discharge resistor is connected to the driving circuit when it is detected.
  2.  前記平滑コンデンサにおける放電の異常を検出する異常検出部を備え、
     前記切替制御部は、前記異常検出部が放電の異常を検出したときに、前記駆動用回路から前記放電抵抗を遮断することを特徴とする請求項1に記載の放電制御装置。
    An abnormality detection unit for detecting an abnormality of discharge in the smoothing capacitor,
    2. The discharge control device according to claim 1, wherein the switching control unit cuts off the discharge resistance from the driving circuit when the abnormality detection unit detects a discharge abnormality.
  3.  前記異常検出部は、前記駆動用回路に前記放電抵抗を接続した時点から予め定めた時間が経過するまでに、前記駆動用回路の電圧が予め定めた電圧まで低下しないときに、前記平滑コンデンサにおける放電の異常として検出することを特徴とする請求項2に記載の放電制御装置。 When the voltage of the driving circuit does not drop to a predetermined voltage before a predetermined time elapses after the discharge resistor is connected to the driving circuit, the abnormality detection unit The discharge control device according to claim 2, wherein the discharge control device is detected as a discharge abnormality.
  4.  前記電動圧縮機は、電気自動車に搭載され、
     前記外部電源は、前記電気自動車を駆動するためのバッテリであることを特徴とする請求項1~3の何れか一項に記載の放電制御装置。
     
    The electric compressor is mounted on an electric vehicle,
    The discharge control device according to any one of claims 1 to 3, wherein the external power source is a battery for driving the electric vehicle.
PCT/JP2019/019749 2018-05-31 2019-05-17 Discharge control device WO2019230453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019002710.7T DE112019002710T5 (en) 2018-05-31 2019-05-17 Discharge control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104797A JP2019213271A (en) 2018-05-31 2018-05-31 Discharge control device
JP2018-104797 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019230453A1 true WO2019230453A1 (en) 2019-12-05

Family

ID=68696666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019749 WO2019230453A1 (en) 2018-05-31 2019-05-17 Discharge control device

Country Status (3)

Country Link
JP (1) JP2019213271A (en)
DE (1) DE112019002710T5 (en)
WO (1) WO2019230453A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178101A (en) * 1997-12-10 1999-07-02 Sanden Corp Power supply input circuit of electric vehicle air conditioner
JP2017060225A (en) * 2015-09-14 2017-03-23 アイシン・エィ・ダブリュ株式会社 Inverter device
JP2018026979A (en) * 2016-08-12 2018-02-15 株式会社Subaru vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252682A (en) * 1991-01-29 1992-09-08 Sharp Corp Overcurrent protecting circuit for television receiver
JP5094797B2 (en) * 2009-08-07 2012-12-12 日立オートモティブシステムズ株式会社 DC power supply smoothing capacitor discharge circuit
JP2013110836A (en) * 2011-11-21 2013-06-06 Samsung Yokohama Research Institute Co Ltd Power supply device
JP6471656B2 (en) * 2015-09-15 2019-02-20 アイシン・エィ・ダブリュ株式会社 Inverter control board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178101A (en) * 1997-12-10 1999-07-02 Sanden Corp Power supply input circuit of electric vehicle air conditioner
JP2017060225A (en) * 2015-09-14 2017-03-23 アイシン・エィ・ダブリュ株式会社 Inverter device
JP2018026979A (en) * 2016-08-12 2018-02-15 株式会社Subaru vehicle

Also Published As

Publication number Publication date
DE112019002710T5 (en) 2021-02-18
JP2019213271A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5286456B1 (en) Power control device
US8502409B2 (en) Power supply control apparatus
CN108604516B (en) Relay device
US20140188359A1 (en) Electric brake assist system for vehicle use
CN109661766B (en) Power supply system
US9472941B2 (en) Battery module
JP6682477B2 (en) Power supply with soft start and protection
WO2011136004A1 (en) Motor device and power tool
JP2007141572A (en) Battery pack
JP2008245497A (en) Power supply unit for vehicle
KR102103594B1 (en) Power supply apparatus with soft―start and protection
WO2019230453A1 (en) Discharge control device
WO2020071079A1 (en) High-voltage apparatus control device
JP6344334B2 (en) Power control unit
US10072666B2 (en) Hermetic compressor driving device
US11133666B2 (en) System and method for managing power consumption during a fault condition
WO2018211889A1 (en) Motor drive device
CN111712983A (en) Monitoring system and power grid monitoring circuit
JP2017093008A (en) Contactor failure determination device and contactor failure determination method
CN117296224A (en) Discharge apparatus
CN115378110A (en) Power supply control apparatus and power supply control method
CN108027159B (en) Air conditioner and control method for air conditioner
JP7475036B2 (en) Water supply equipment
JP2013143818A (en) Semiconductor fuse device
CN111525494B (en) Drive control circuit, control method, device, compressor, air conditioner and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810746

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19810746

Country of ref document: EP

Kind code of ref document: A1