WO2019230277A1 - Method for manufacturing glass article - Google Patents

Method for manufacturing glass article Download PDF

Info

Publication number
WO2019230277A1
WO2019230277A1 PCT/JP2019/017394 JP2019017394W WO2019230277A1 WO 2019230277 A1 WO2019230277 A1 WO 2019230277A1 JP 2019017394 W JP2019017394 W JP 2019017394W WO 2019230277 A1 WO2019230277 A1 WO 2019230277A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting furnace
glass
molten glass
melting
transfer
Prior art date
Application number
PCT/JP2019/017394
Other languages
French (fr)
Japanese (ja)
Inventor
達 櫻林
洋司 門谷
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980029226.5A priority Critical patent/CN112074488A/en
Priority to KR1020207029398A priority patent/KR20210018195A/en
Publication of WO2019230277A1 publication Critical patent/WO2019230277A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls

Definitions

  • the present invention relates to a method for manufacturing a glass article.
  • molten glass flowing out from an outlet provided on the downstream side of the melting furnace is formed by a transfer channel (also called a feeder). While transferring to an apparatus, the transferred molten glass is shape
  • a glass raw material and / or molten glass may be heated by energization heating with an electrode (see, for example, Patent Document 1).
  • This invention makes it a subject to leave the melting furnace as it is, and to exchange a transfer channel safely.
  • the present invention which was created to solve the above problems, is a melting process in which a glass raw material is melted in a melting furnace to continuously form the molten glass, and the molten glass flowing out from the outlet of the melting furnace is transferred in a transfer channel.
  • the blocking member is disposed so as to close the outlet. It further comprises an exchange process for exchanging the transfer flow path. According to such a configuration, since the outlet of the melting furnace is blocked by the blocking member, it is possible to prevent the molten glass in the melting furnace from flowing out of the outlet when the transfer channel is replaced. . Therefore, it is possible to safely exchange the transfer channel while leaving the melting furnace as it is.
  • the replacement step it is preferable to cool the molten glass at least in the transfer channel of the most upstream part before closing the outlet with the blocking member. If it does in this way, in the transfer channel of the most upstream part, in connection with temperature fall of a molten glass, the molten glass of the outflow port vicinity of a melting furnace will become high viscosity, and the fluidity
  • the blocking member has a cooling structure. In this way, the molten glass around the outlet of the melting furnace is cooled by the blocking member, and the molten glass around the outlet is maintained at a high viscosity. For this reason, it can prevent reliably that a molten glass leaks from the outflow port of the melting furnace which has arrange
  • the melting furnace may include an electrode for energizing and heating the molten glass.
  • energization heating using electrodes and heating by other heating means such as a burner (combustion of gas fuel) may be used in combination.
  • the blocking member has an insulating structure. If it does in this way, even if it continues with the energization heating by an electrode in a melting furnace during an exchange process, the electric leakage to the transfer channel side can be prevented. For this reason, the exchange work of a transfer channel can be performed safely.
  • the electrode is preferably a bottom electrode provided on the bottom wall of the melting furnace.
  • the erosion of the melting furnace is improved, and the life of the melting furnace can be extended. For this reason, the life of the melting furnace can be made significantly longer than the life of the transfer channel, and the effect of exchanging the transfer channel leaving the melting furnace becomes more remarkable.
  • the melting step it is preferable to melt the glass raw material only by energization heating using an electrode. In this way, there is no increase in the amount of water vapor caused by the combustion of the gas fuel in the melting furnace, so that the amount of water in the molten glass is likely to be reduced. Therefore, there is an advantage that the moisture content of the glass article is inevitably low, and its thermal dimensional stability is improved.
  • the melting furnace preferably contains a zirconia refractory. By doing so, the erosion of the melting furnace is improved and the life of the melting furnace can be further increased, so that the effect of exchanging the transfer channel leaving the melting furnace becomes more remarkable.
  • the number of transfer flow paths connected to the melting furnace may be one.
  • the melting space for melting the glass raw material in the melting furnace may be a single space.
  • the manufacturing apparatus used for the manufacturing method of the glass article which concerns on 1st embodiment is equipped with the melting furnace 1, the transfer flow path 2, and the shaping
  • the melting furnace 1 is for carrying out a melting step for continuously forming the molten glass Gm.
  • the molten glass Gm is made of alkali-free glass.
  • the alkali-free glass has a glass composition of, for example, 50% by mass, SiO 2 50 to 70%, Al 2 O 3 12 to 25%, B 2 O 3 0 to 12%, Li 2 O + Na 2 O + K 2 O (Li 2). O, Na 2 O and K 2 O combined) 0 to less than 1%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 12%, BaO 0 to 15%.
  • the electrical resistivity of the molten glass Gm made of alkali-free glass is generally high, for example, 100 ⁇ ⁇ cm or more at the heating temperature 1500 ° C. of the melting furnace 1.
  • the molten glass Gm is not limited to alkali-free glass, and may be, for example, soda glass, borosilicate glass, aluminosilicate glass, or the like.
  • the transfer flow path 2 is for carrying out a transfer process of transferring the molten glass Gm from the melting furnace 1 to the molding apparatus 3.
  • the transfer channel 2 includes a clarification chamber 4, a homogenization chamber (stirring chamber) 5, a pot 6, and transfer tubes 7 to 10 that connect these parts.
  • the clarification chamber 4, the homogenization chamber (stirring chamber) 5, the pot 6 and the transfer pipes 7 to 10 can be made of platinum or a platinum alloy, and are energized and heated as necessary.
  • the terms “chamber” and “pot” such as the clarification chamber 4 include those having a tank-like structure and those having a tubular structure.
  • the clarification chamber 4 is for carrying out a clarification process in which the molten glass Gm supplied from the melting furnace 1 is clarified (defoamed) by the action of a clarifier.
  • the homogenization chamber 5 is for carrying out a homogenization step in which the clarified molten glass Gm is stirred by the stirring blade 5a to make it uniform.
  • the homogenization chamber 5 may be a combination of a plurality of homogenization chambers. In this case, it is preferable to connect one upper end part of two adjacent homogenization chambers and the other lower end part with a transfer pipe.
  • the pot 6 is for performing the state adjustment process which adjusts the molten glass Gm to the state (for example, viscosity) suitable for shaping
  • the pot 6 may be omitted.
  • the transfer pipes 7 to 10 are constituted by, for example, cylindrical pipes, and transfer the molten glass Gm in the horizontal direction (substantially horizontal direction).
  • the transfer pipe 7 located in the most upstream part of the transfer flow path 2 is inclined so that the downstream end is positioned higher than the upstream end.
  • the forming apparatus 3 is for carrying out a forming process for forming the molten glass Gm into a desired shape.
  • molding apparatus 3 consists of a molded object which shape
  • the forming apparatus 3 may perform another downdraw method such as a slot downdraw method or a float method.
  • the molten glass Gm supplied to the molding apparatus 3 is sent to the lower end of the molten glass Gm overflowing from a groove formed at the top of the molding apparatus 3 along both side surfaces forming a cross-sectional wedge shape of the molding apparatus 3.
  • the plate-like glass ribbon G is continuously formed by joining together.
  • the formed glass ribbon G is gradually cooled (annealed) and cooled, and then cut into a predetermined size to produce a plate glass as a glass article.
  • the manufactured glass sheet has a thickness of, for example, 0.01 to 10 mm (preferably 0.1 to 3 mm), and is a flat panel display such as a liquid crystal display or an organic EL display, an organic EL illumination, a substrate such as a solar cell, Used for protective cover.
  • a flat panel display such as a liquid crystal display or an organic EL display, an organic EL illumination, a substrate such as a solar cell, Used for protective cover.
  • the melting furnace 1 continuously forms a molten glass Gm by melting glass raw material (which may include cullet) Gr by heating including energization heating in the production stage.
  • the molten glass Gm continuously formed in the melting furnace 1 flows into the transfer pipe 7 from the outlet 1 a of the melting furnace 1.
  • the melting furnace 1 divides and forms a melting space in the furnace by a wall portion made of a refractory.
  • the refractory include zirconia electrocast bricks, alumina electrocast bricks, alumina / zirconia electrocast bricks, AZS (Al—Zr—Si) electrocast bricks, dense fired bricks, etc.
  • the melting furnace 1 includes a zirconia electrocast brick (zirconia refractory) in which at least the wall portion that contacts the molten glass Gm is not easily eroded even at a high temperature.
  • the zirconia refractory is preferably a high zirconia refractory having a zirconia content of 80 to 99%. *
  • the bottom wall 1b of the melting furnace 1 is provided with a plurality of bottom electrodes 11 so as to be immersed in the molten glass Gm for electric heating.
  • all-electric melting is performed in which the glass raw material Gr is continuously melted only by energization heating of the bottom electrode 11.
  • all-electric melting there are advantages such that the environmental load due to the exhaust gas is small, the moisture content of the produced plate glass is low, and the thermal dimensional stability is improved.
  • the bottom electrode 11 is made of, for example, molybdenum (Mo).
  • Mo molybdenum
  • the shape of the bottom electrode 11 is not particularly limited, and may be a plate shape or a block shape, but in the present embodiment, it is a rod shape.
  • the electrode may be a side electrode (not shown) provided on the side wall 1c of the melting furnace 1.
  • the bottom electrode 11 and the side electrode may be used in combination.
  • the side wall portion 1c of the melting furnace 1 is originally a portion that is easily eroded by the influence of convection of the molten glass Gm, and therefore, when the side electrode portion is provided and the side wall portion 1c is heated to a high temperature, the side wall portion 1c is more easily eroded. Therefore, it is preferable to use only the bottom electrode 11 in which the erosion of the melting furnace 1 is difficult to proceed and to extend the life of the melting furnace 1.
  • the service life (life) of the melting furnace 1 tends to be longer than the service life (life) of the transfer channel 2. For this reason, the transfer channel 2 often deteriorates earlier than the melting furnace 1, and it is particularly useful to replace the transfer channel 2 while leaving the melting furnace 1 as it is.
  • a raw material charging device 12 is provided on the upstream side of the melting furnace 1.
  • the raw material charging device 12 is not particularly limited, and may be, for example, a pusher or a vibration feeder, but is a screw feeder in this embodiment.
  • the raw material charging device 12 sequentially supplies the glass raw material Gr so that a part not covered with the glass raw material Gr is formed in a part of the liquid level Gm1 of the molten glass Gm in the production stage. That is, the melting furnace 1 is a so-called semi-hot top type.
  • the melting furnace 1 may be a so-called cold top type in which the entire liquid level Gm1 of the molten glass Gm is covered with the glass raw material Gr in the production stage.
  • the melting furnace 1 is provided with a flue 13 as a gas discharge path for discharging the gas in the melting furnace 1 to the outside.
  • a fan 13a for sending gas to the outside is provided in the flue 13.
  • the melting space of the melting furnace 1 is a single melter composed of a single space, and is a single feeder in which the number of transfer passages 2 connected to the melting furnace 1 is one.
  • this manufacturing method includes a melting process, a transfer process, and a molding process in the production stage.
  • the transfer process includes a clarification process, a homogenization process, and a state adjustment process. Since the melting step, the transfer step, and the molding step are as described in conjunction with the configuration of the manufacturing apparatus described above, detailed description thereof is omitted.
  • the manufacturing method further includes an exchange process for exchanging the transfer flow path 2 in a state where the blocking member 14 is disposed so as to close the outlet 1 a of the melting furnace 1.
  • This replacement process is a process performed in a non-production stage where the transfer process is not performed due to some reason such as failure or deterioration of the transfer flow path 2.
  • the molten glass Gm in the transfer pipe 7 is reduced by reducing the power supply amount for energization heating of the transfer pipe 7 located at the most upstream part from the production stage. Lower the temperature.
  • the term “reducing the amount of power supply for energization heating less than the production stage” includes a case where the energization heating is stopped. From the viewpoint of energy cost, in order to lower the temperature of the molten glass Gm in the transfer pipe 7, it is preferable to stop the energization heating of the transfer pipe 7, and it is more preferable to stop all the energization heating in the transfer flow path 2.
  • the transfer channel 2 may be actively cooled from the outside by a cooling fluid such as water or air.
  • the molten glass Gm around the outlet 1a of the melting furnace 1 becomes highly viscous and its fluidity is lowered.
  • a high-viscosity glass layer Gs is formed in the transfer pipe 7 and around the outlet 1a.
  • the temperature of the molten glass Gm in the transfer pipe 7 is preferably lowered until the flow of the molten glass Gm completely stops in the transfer pipe 7.
  • the high-viscosity glass layer Gs is a glass layer whose fluidity is remarkably lowered as compared with the molten glass Gm in the production stage, or a glass layer having no fluidity (including cooled and solidified glass).
  • the viscosity of the high viscosity glass layer Gs is, for example, 10 6 to 10 30 dPa ⁇ s.
  • the transfer flow path 2 including the transfer pipe 7 and the fining chamber 4 is separated from the melting furnace 1 as shown in FIG. .
  • a blocking member 14 is disposed so as to close the outlet 1a of the melting furnace 1, as shown in FIG.
  • the transfer channel 2 is replaced with a new one while the outlet 1a of the melting furnace 1 is closed with the blocking member 14.
  • the molding apparatus 3 is replaced with a new one together with the transfer channel 2.
  • the blocking member 14 is removed from the outlet 1 a of the melting furnace 1 immediately before joining the new transfer channel 2 to the outlet 1 a of the melting furnace 1.
  • the molten glass Gm in the melting furnace 1 is replaced when the transfer flow path 2 is replaced. Can be prevented from flowing out from the outlet 1a. Therefore, it is possible to safely exchange the transfer flow path 2 while leaving the melting furnace 1 as it is.
  • the high viscosity glass layer Gs is formed in the outflow port 1a periphery of the melting furnace 1 by temperature-falling the molten glass Gm in the transfer pipe 7.
  • FIG. The molten glass Gm in the melting furnace 1 hardly flows out from the outlet 1a.
  • the outlet 1a of the melting furnace 1 is completely blocked by the high-viscosity glass layer Gs, the molten glass Gm in the melting furnace 1 is less likely to flow out of the outlet 1a. Therefore, the arrangement
  • the wall portion of the melting furnace 1 contains a zirconia refractory (particularly, a high zirconia refractory), the crystal structure changes if the temperature is too low in the portion in contact with the molten glass Gm. Thereby, the situation where the surface layer part of a zirconia-type refractory peels in layers may arise. When such delamination occurs, it is necessary to replace the refractory in the melting furnace 1, which increases the cost required for the replacement process. Therefore, it is preferable to keep the temperature in the melting furnace 1 at a predetermined temperature or higher by, for example, energizing and heating the molten glass Gm with the bottom electrode 11 even during the exchange process.
  • the temperature in the melting furnace 1 is preferably 1200 ° C or higher, more preferably 1250 ° C or higher, and further preferably 1300 ° C or higher.
  • the amount of power supply for energization heating is reduced compared with the production stage, and the temperature in the melting furnace 1 is set.
  • the temperature is preferably lower than the production stage temperature.
  • the temperature in the melting furnace 1 is preferably 1600 ° C. or less, more preferably 1500 ° C. or less, and further preferably 1450 ° C. or less.
  • the temperature in the melting furnace 1 means the temperature of the molten glass Gm excluding the high viscosity glass layer Gs and its periphery.
  • the zirconia refractory at the outlet 1a of the melting furnace 1 is also less than 1200 ° C., and the surface layer portion of the zirconia refractory is delaminated. Can occur.
  • the outlet 1a of the melting furnace 1 preferably covers the surface of the zirconia refractory with platinum or a platinum alloy.
  • the surface of the zirconia refractory is made of platinum or a platinum alloy in a portion of the wall portion of the melting furnace 1 that comes into contact with the high-viscosity glass layer Gs and the surrounding low-temperature molten glass Gm and becomes less than 1200 ° C.
  • the zirconia refractory does not come into direct contact with the molten glass Gm, but comes into contact with the molten glass Gm through the platinum or platinum alloy, thereby preventing delamination. it can.
  • the blocking member 14 has an insulating structure.
  • the blocking member 14 has an insulating structure as a main body member 15, an insulating member 16 that contacts the main body member 15, and holds the main body member 15 while pressing the main body member 15 toward the melting furnace 1 via the insulating member 16. Holding member 17. Thereby, even if it continues with the energization heating by an electrode in the melting furnace 1 in an exchange process, the electric leakage to the transfer flow path 2 side can be prevented.
  • the main body member 15 is formed of, for example, a metal plate such as stainless steel, and the insulating member 16 includes, for example, ceramics.
  • the main body member 15 may be formed of glass or refractory. However, in the case of glass or refractory, the main body member 15 easily adheres to the molten glass Gm in the melting furnace 1, and after the replacement process, the main body member 15 is allowed to flow in the melting furnace 1. There is a possibility that separation from the outlet 1a may be difficult. Therefore, the main body member 15 is preferably a metal plate.
  • the blocking member 14 is preferably grounded (earthed).
  • insulation may be performed by sufficiently reducing the temperature of the high-viscosity glass layer Gs. Further, the insulating action of the high-viscosity glass layer Gs and the insulating structure of the blocking member 14 may be used in combination.
  • the blocking member 14 has a cooling structure.
  • the main body member 15 of the blocking member 14 includes a cooling flow path 15a that circulates a cooling fluid such as water or air therein as a cooling structure.
  • the main body member 15 is preferably a water-cooled plate.
  • the cooling flow path 15a is supplied with cooling fluid from one end side and discharged from the other end side.
  • the cooling channel 15 a is formed in a region of the main body member 15 corresponding to at least the outlet 1 a of the melting furnace 1.
  • the supply / discharge pipe 18 connected to the cooling flow path 15a for supplying / discharging the cooling fluid is also preferably made of an insulating pipe made of ceramic or rubber at least partially.
  • the cooling structure of the blocking member 14 is not limited to the structure that allows the cooling fluid to flow through the cooling flow path 15a.
  • the cooling fluid may be blown from the outside to the main body member 15.
  • the transfer channel 2 may be heated by energization heating. Thereby, the molten glass Gm is supplied from the melting furnace 1 to the transfer channel 2. Moreover, the viscosity of the high-viscosity glass layer Gs around the outlet 1a is gradually reduced and disappears.
  • the introduction of the glass material Gr is stopped by the single feeder, the introduction of the glass material is resumed according to the connection between the melting furnace 1 and the transfer flow path 2.
  • the temperature in the melting furnace 1 is made lower than the temperature in the production stage with a single feeder, the temperature in the melting furnace 1 is raised to the temperature in the production stage before the melting furnace 1 and the transfer channel 2 are connected.
  • the glass article manufacturing method according to the second embodiment is different from the glass article manufacturing method according to the first embodiment in an exchange process for exchanging the transfer channel 2. is there. Below, it demonstrates centering around difference with 1st embodiment, and abbreviate
  • the manufacturing apparatus used in the method for manufacturing a glass article according to the second embodiment is provided immediately downstream of the outlet 1a of the melting furnace 1, that is, the outlet 1a of the melting furnace 1, Between the upstream end of the transfer pipe 7 of the transfer flow path 2, there is provided a storage chamber 21 in which the blocking member 14 is stored so as to be movable up and down.
  • the flow path of the storage chamber 21 is opened with the blocking member 14 raised, and the flow path of the storage chamber 21 is closed with the blocking member 14 lowered.
  • the blocking member 14 is not limited to a configuration that moves up and down as long as the flow path of the storage chamber 21 can be opened and closed.
  • the blocking member 14 may be configured to move horizontally, for example.
  • the blocking member 14 preferably has an insulating structure and a cooling structure as in the first embodiment.
  • the temperature of the molten glass Gm is lowered by reducing the amount of power supply for energization heating of the transfer pipe 7 from the production stage. Then, the blocking member 14 is lowered to close the flow path of the storage chamber 21. As a result, the outlet 1 a of the melting furnace 1 is closed by the blocking member 14.
  • the temperature of the storage chamber 21 is raised, the blocking member 14 is raised, the flow path of the storage chamber 21 is opened again, and production is resumed.
  • the blocking member 14 accommodated in the accommodation chamber 21 can easily close the flow path of the accommodation chamber 21 even in the low viscosity state of the molten glass Gm. For this reason, after lowering the blocking member 14 and closing the flow path of the storage chamber 21, the amount of power supplied for energization heating of the transfer pipe 7 is made smaller than that in the production stage, whereby the molten glass Gm in the melting pipe 7 is The temperature may be lowered.
  • the blocking member 14 is arranged outside the storage chamber 21, and an opening (not shown) provided in the storage chamber 21 for inserting the blocking member 14 during the replacement process is closed by a lid or the like. It is preferable that it is removed.
  • the glass article manufacturing method according to the third embodiment is different from the glass article manufacturing method according to the first embodiment in an exchange step of exchanging the transfer channel 2. is there. Below, it demonstrates centering around difference with 1st embodiment, and abbreviate
  • the exchange step included in the method for manufacturing a glass article according to the third embodiment is first performed in the melting furnace 1 from an outlet (not shown) provided in the bottom wall portion 1 b of the melting furnace 1.
  • the molten glass Gm is discharged. Thereby, the height of the liquid level Gm1 of the molten glass Gm is lowered from the outlet 1a.
  • all of the molten glass Gm may be discharged from the melting furnace 1.
  • the transfer flow path 2 is separated from the melting furnace 1, and the outlet 1 a is closed with a blocking member 14.
  • the transfer flow path 2 (or the transfer flow path 2 and the shaping
  • the blocking member 14 preferably has an insulating structure and a cooling structure as in the first embodiment.
  • the blocking member 14 is removed from the outlet 1 a of the melting furnace 1 immediately before joining the new transfer channel 2 to the outlet 1 a of the melting furnace 1.
  • the molten glass Gm is formed in the melting furnace 1 and the liquid level Gm1 of the molten glass Gm is raised again to a predetermined height (for example, the height of the liquid level in the production stage), and then the blocking member 14 is removed.
  • a new transfer channel 2 may be joined to the outlet 1 a of the melting furnace 1.
  • the molten glass Gm is formed in the melting furnace 1, and the liquid surface of the molten glass Gm is formed.
  • Gm1 may be raised again to a predetermined height.
  • the wall portion of the melting furnace 1 contains a zirconia refractory, it is preferable to keep the temperature in the melting furnace 1 at a predetermined temperature or more even during the replacement process in order to prevent delamination.
  • a part of the bottom electrode 11 may be exposed to the air. If energization heating is performed with the bottom electrode 11 in this state, the bottom electrode 11 may be worn out early due to oxidation. Therefore, it is preferable to heat the inside of the melting furnace 1 by another heating means such as a burner without conducting the electric heating by the bottom electrode 11.
  • the blocking member 14 may not have an insulating structure.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-described effects.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the case of a single melter has been described, but a multimelter in which a plurality of melting spaces are connected may be used.
  • a multimelter for example, only the melting space in the most upstream part may be energized and heated by the electrode, and the downstream melting space may not be energized and heated by the electrode.
  • the blocking member since the region that is electrically heated by the electrode and the outlet of the melting furnace are largely separated via the molten glass Gm that functions as a resistor, the blocking member may not have an insulating structure.
  • a multi-feeder in which a plurality of transfer channels extending toward a plurality of molding apparatuses are connected to a melting furnace may be used.
  • a multi-feeder it is possible to continue the production of glass articles by supplying molten glass from the melting furnace to the remaining transfer channels while performing the exchange process for a part of the plurality of transfer channels. it can. Therefore, it is preferable to introduce the glass raw material into the melting furnace even while the exchange process is performed on a part of the plurality of transfer channels.
  • the blocking member is disposed at the outlet of the melting furnace, but the blocking member is also accommodated in the middle of the transfer flow path (for example, between the downstream end of the clarification chamber and the upstream end of the homogenization chamber).
  • a storage chamber may be provided.
  • the flow of the molten glass in the transfer channel can be easily stopped by closing the blocking member of the storage chamber provided in the transfer channel.
  • a method of stopping the flow of the molten glass in the transfer flow path for example, a method of plugging a vertical pipe portion such as a pod on the outer peripheral surface of a rod-like member (plunger) may be used.
  • electric heating may be supplementarily performed by an electric heating means such as a heater in a stage (starting stage of a melting furnace) and / or a production stage before starting the continuous formation of molten glass.
  • an electric heating means such as a heater in a stage (starting stage of a melting furnace) and / or a production stage before starting the continuous formation of molten glass.
  • the melting furnace may use both energization heating and gas fuel combustion in the production stage.
  • gas fuel combustion is used, a burner is provided on the side wall of the melting furnace. Even when all electric melting is performed in the production stage, heating by a burner can be used in the startup stage of the melting furnace.
  • the glass article molded by the molding apparatus may be, for example, a glass roll obtained by winding a glass film into a roll, an optical glass component, a glass tube, a glass block, a glass fiber, or the like, and has an arbitrary shape. Good.

Abstract

Provided is a method for manufacturing a glass article, the method comprising a melting step for melting raw glass Gr in a melting furnace 1 to form molten glass Gm, a delivery step for delivering the molten glass Gm flowing out of an outlet 1a in the melting furnace 1 using a delivery channel 2, and a molding step for molding the molten glass Gm delivered by the delivery channel 2 into a glass ribbon G by using a molding device 3. The method further comprises a replacement step for replacing the delivery channel 2 while a stopper member 14 is disposed so as to stop the outlet 1a.

Description

ガラス物品の製造方法Method for manufacturing glass article
 本発明は、ガラス物品の製造方法に関する。 The present invention relates to a method for manufacturing a glass article.
 ガラス物品の製造方法では、溶融炉でガラス原料を溶融して溶融ガラスを形成した後、溶融炉の下流側に設けられた流出口から流出する溶融ガラスを移送流路(フィーダともいう)によって成形装置まで移送すると共に、移送された溶融ガラスを成形装置でガラス物品に応じた所定形状(例えば、板状)に成形する。 In the glass article manufacturing method, after melting a glass raw material in a melting furnace to form molten glass, molten glass flowing out from an outlet provided on the downstream side of the melting furnace is formed by a transfer channel (also called a feeder). While transferring to an apparatus, the transferred molten glass is shape | molded by the shaping | molding apparatus in the predetermined shape (for example, plate shape) according to the glass article.
 ここで、溶融炉では、電極による通電加熱によって、ガラス原料及び/又は溶融ガラスを加熱する場合がある(例えば、特許文献1を参照)。 Here, in a melting furnace, a glass raw material and / or molten glass may be heated by energization heating with an electrode (see, for example, Patent Document 1).
特開2003-183031号公報JP 2003-183031 A
 ところで、移送流路が急な故障や劣化等によって使用不能となった場合、その使用不能となった移送流路を新しい移送流路と交換し、使用可能な溶融炉についてはそのまま継続使用することが経済的である。 By the way, if the transfer channel becomes unusable due to sudden failure or deterioration, replace the unusable transfer channel with a new transfer channel, and continue to use the usable melting furnace as it is. Is economical.
 しかしながら、従来においては、溶融炉をそのまま残して移送流路を安全に交換する方法がなく、移送流路が使用不能となった時点で、移送流路と共に溶融炉も解体する場合がある。 However, in the prior art, there is no method for safely replacing the transfer channel while leaving the melting furnace as it is, and when the transfer channel becomes unusable, the melting furnace may be dismantled together with the transfer channel.
 本発明は、溶融炉をそのまま残して移送流路を安全に交換することを課題とする。 This invention makes it a subject to leave the melting furnace as it is, and to exchange a transfer channel safely.
 上記の課題を解決するために創案された本発明は、溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、溶融炉の流出口から流出する溶融ガラスを移送流路で移送する移送工程と、移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、流出口を塞ぐように遮断部材を配置した状態で、移送流路を交換する交換工程を更に備えていることを特徴とする。このような構成によれば、遮断部材によって溶融炉の流出口が塞がれるため、移送流路を交換する際に、溶融炉内の溶融ガラスが流出口から流出するのを防止することができる。従って、溶融炉をそのまま残して移送流路を安全に交換することができる。 The present invention, which was created to solve the above problems, is a melting process in which a glass raw material is melted in a melting furnace to continuously form the molten glass, and the molten glass flowing out from the outlet of the melting furnace is transferred in a transfer channel. In a method for producing a glass article comprising a transfer step, and a molding step of forming the molten glass transferred in the transfer flow path into a glass article with a molding device, the blocking member is disposed so as to close the outlet. It further comprises an exchange process for exchanging the transfer flow path. According to such a configuration, since the outlet of the melting furnace is blocked by the blocking member, it is possible to prevent the molten glass in the melting furnace from flowing out of the outlet when the transfer channel is replaced. . Therefore, it is possible to safely exchange the transfer channel while leaving the melting furnace as it is.
 上記の構成において、交換工程では、遮断部材で流出口を塞ぐ前に、少なくとも最上流部の移送流路内で、溶融ガラスを降温することが好ましい。このようにすれば、最上流部の移送流路内で、溶融ガラスを降温するのに伴い、溶融炉の流出口周辺の溶融ガラスが高粘度になり、その流動性が低下する。これにより、溶融炉内の溶融ガラスは、溶融炉の流出口からゆっくりと流れ出すため、遮断部材の配置作業を容易に行うことができる。 In the above configuration, in the replacement step, it is preferable to cool the molten glass at least in the transfer channel of the most upstream part before closing the outlet with the blocking member. If it does in this way, in the transfer channel of the most upstream part, in connection with temperature fall of a molten glass, the molten glass of the outflow port vicinity of a melting furnace will become high viscosity, and the fluidity | liquidity will fall. Thereby, since the molten glass in a melting furnace flows out slowly from the outflow port of a melting furnace, arrangement | positioning work of the interruption | blocking member can be performed easily.
 上記の構成において、遮断部材が冷却構造を備えていることが好ましい。このようにすれば、遮断部材によって溶融炉の流出口周辺の溶融ガラスが冷却され、流出口周辺の溶融ガラスが高粘度に維持される。このため、遮断部材を配置した溶融炉の流出口から溶融ガラスが漏出するのを確実に防止することができる。また、遮断部材の熱変形も防止することができるため、遮断部材によって溶融炉の流出口を塞いだ状態を安定して維持することができる。 In the above configuration, it is preferable that the blocking member has a cooling structure. In this way, the molten glass around the outlet of the melting furnace is cooled by the blocking member, and the molten glass around the outlet is maintained at a high viscosity. For this reason, it can prevent reliably that a molten glass leaks from the outflow port of the melting furnace which has arrange | positioned the interruption | blocking member. Moreover, since the thermal deformation of the blocking member can be prevented, the state where the outlet of the melting furnace is blocked by the blocking member can be stably maintained.
 上記の構成において、溶融炉は、溶融ガラスを通電加熱する電極を備えてもよい。この場合、電極を用いた通電加熱と、バーナー(ガス燃料の燃焼)等の他の加熱手段による加熱とを併用してもよい。 In the above configuration, the melting furnace may include an electrode for energizing and heating the molten glass. In this case, energization heating using electrodes and heating by other heating means such as a burner (combustion of gas fuel) may be used in combination.
 上記の構成において、遮断部材が絶縁構造を備えていることが好ましい。このようにすれば、交換工程中に溶融炉で電極による通電加熱を継続しても、移送流路側への漏電を防止することができる。このため、移送流路の交換作業を安全に行うことができる。 In the above configuration, it is preferable that the blocking member has an insulating structure. If it does in this way, even if it continues with the energization heating by an electrode in a melting furnace during an exchange process, the electric leakage to the transfer channel side can be prevented. For this reason, the exchange work of a transfer channel can be performed safely.
 上記の構成において、電極が溶融炉の底壁に設けられたボトム電極からなることが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化を図ることができる。このため、溶融炉の寿命を移送流路の寿命よりも大幅に長くすることができ、溶解炉を残して移送流路を交換する効果がより顕著となる。 In the above configuration, the electrode is preferably a bottom electrode provided on the bottom wall of the melting furnace. In this way, the erosion of the melting furnace is improved, and the life of the melting furnace can be extended. For this reason, the life of the melting furnace can be made significantly longer than the life of the transfer channel, and the effect of exchanging the transfer channel leaving the melting furnace becomes more remarkable.
 上記の構成において、溶融工程では、電極を用いた通電加熱のみで、ガラス原料を溶融することが好ましい。このようにすれば、溶融炉内におけるガス燃料の燃焼に起因する水蒸気量の上昇がないため、溶融ガラス中の水分量を低下させやすい。従って、ガラス物品の水分量も必然的に低くなり、その熱的寸法安定性が向上するという利点がある。 In the above configuration, in the melting step, it is preferable to melt the glass raw material only by energization heating using an electrode. In this way, there is no increase in the amount of water vapor caused by the combustion of the gas fuel in the melting furnace, so that the amount of water in the molten glass is likely to be reduced. Therefore, there is an advantage that the moisture content of the glass article is inevitably low, and its thermal dimensional stability is improved.
 上記の構成において、溶融炉がジルコニア系耐火物を含むことが好ましい。このようにすれば、溶融炉の浸食が改善され、溶融炉の長寿命化をさらに図ることができるので、溶解炉を残して移送流路を交換する効果がより顕著となる。 In the above configuration, the melting furnace preferably contains a zirconia refractory. By doing so, the erosion of the melting furnace is improved and the life of the melting furnace can be further increased, so that the effect of exchanging the transfer channel leaving the melting furnace becomes more remarkable.
 上記の構成において、溶融炉に接続する移送流路の数が、一つであってもよい。 In the above configuration, the number of transfer flow paths connected to the melting furnace may be one.
 上記の構成において、溶融炉のガラス原料を溶融する溶融空間が単一の空間からなっていてもよい。 In the above configuration, the melting space for melting the glass raw material in the melting furnace may be a single space.
 本発明によれば、溶融炉をそのまま残して移送流路を安全に交換することができる。 According to the present invention, it is possible to safely exchange the transfer channel while leaving the melting furnace as it is.
第一実施形態に係るガラス物品の製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass article which concerns on 1st embodiment. 第一実施形態に係るガラス物品の製造装置の溶融炉周辺を示す断面図である。It is sectional drawing which shows the melting furnace periphery of the manufacturing apparatus of the glass article which concerns on 1st embodiment. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための図であって、溶融炉周辺の状態を示す断面図である。It is a figure for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing which shows the state of a melting furnace periphery. 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の絶縁構造を説明するための図であって、遮断部材周辺の断面図である。It is a figure for demonstrating the insulation structure of the shielding member used for the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is sectional drawing of the shielding member periphery. 第一実施形態に係るガラス物品の製造方法に用いられる遮断部材の冷却構造を説明するための図であって、遮断部材の正面図である。It is a figure for demonstrating the cooling structure of the shielding member used for the manufacturing method of the glass article which concerns on 1st embodiment, Comprising: It is a front view of a shielding member. 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 2nd embodiment. 第二実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 2nd embodiment. 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 3rd embodiment. 第三実施形態に係るガラス物品の製造方法に含まれる交換工程を説明するための断面図である。It is sectional drawing for demonstrating the exchange process included in the manufacturing method of the glass article which concerns on 3rd embodiment.
 以下、本発明の実施形態に係るガラス物品の製造方法について図面を参照しながら説明する。 Hereinafter, a method for manufacturing a glass article according to an embodiment of the present invention will be described with reference to the drawings.
(第一実施形態)
 図1に示すように、第一実施形態に係るガラス物品の製造方法に用いられる製造装置は、上流側から順に、溶融炉1と、移送流路2と、成形装置3とを備えている。
(First embodiment)
As shown in FIG. 1, the manufacturing apparatus used for the manufacturing method of the glass article which concerns on 1st embodiment is equipped with the melting furnace 1, the transfer flow path 2, and the shaping | molding apparatus 3 in an order from the upstream.
 溶融炉1は、溶融ガラスGmを連続形成する溶融工程を実施するためのものである。本実施形態では、溶融ガラスGmは、無アルカリガラスからなる。無アルカリガラスは、ガラス組成として、例えば、質量%で、SiO2 50~70%、Al23 12~25%、B23 0~12%、Li2O+Na2O+K2O(Li2O、Na2O及びK2Oの合量) 0~1%未満、MgO 0~8%、CaO 0~15%、SrO 0~12%、BaO 0~15%を含む。無アルカリガラスからなる溶融ガラスGmの電気抵抗率は、一般的に高く、例えば溶融炉1の加熱温度1500℃において100Ω・cm以上となる。 The melting furnace 1 is for carrying out a melting step for continuously forming the molten glass Gm. In the present embodiment, the molten glass Gm is made of alkali-free glass. The alkali-free glass has a glass composition of, for example, 50% by mass, SiO 2 50 to 70%, Al 2 O 3 12 to 25%, B 2 O 3 0 to 12%, Li 2 O + Na 2 O + K 2 O (Li 2). O, Na 2 O and K 2 O combined) 0 to less than 1%, MgO 0 to 8%, CaO 0 to 15%, SrO 0 to 12%, BaO 0 to 15%. The electrical resistivity of the molten glass Gm made of alkali-free glass is generally high, for example, 100 Ω · cm or more at the heating temperature 1500 ° C. of the melting furnace 1.
 溶融ガラスGmは、無アルカリガラスに限定されるものではなく、例えば、ソーダガラス、ホウケイ酸ガラス、アルミノシリケートガラスなどであってもよい。 The molten glass Gm is not limited to alkali-free glass, and may be, for example, soda glass, borosilicate glass, aluminosilicate glass, or the like.
 移送流路2は、溶融炉1から成形装置3に向けて溶融ガラスGmを移送する移送工程を実施するためのものである。移送流路2は、清澄室4と、均質化室(攪拌室)5と、ポット6と、これら各部を接続する移送管7~10とを備えている。清澄室4、均質化室(攪拌室)5、ポット6及び移送管7~10は、白金又は白金合金から構成することができ、必要に応じて通電加熱される。ここで、清澄室4などの「室」及び「ポット」という用語には、槽状構造を有するものや、管状構造を有するものが含まれるものとする。 The transfer flow path 2 is for carrying out a transfer process of transferring the molten glass Gm from the melting furnace 1 to the molding apparatus 3. The transfer channel 2 includes a clarification chamber 4, a homogenization chamber (stirring chamber) 5, a pot 6, and transfer tubes 7 to 10 that connect these parts. The clarification chamber 4, the homogenization chamber (stirring chamber) 5, the pot 6 and the transfer pipes 7 to 10 can be made of platinum or a platinum alloy, and are energized and heated as necessary. Here, the terms “chamber” and “pot” such as the clarification chamber 4 include those having a tank-like structure and those having a tubular structure.
 清澄室4は、溶融炉1から供給された溶融ガラスGmを清澄剤などの働きによって清澄(泡抜き)する清澄工程を実施するためのものである。 The clarification chamber 4 is for carrying out a clarification process in which the molten glass Gm supplied from the melting furnace 1 is clarified (defoamed) by the action of a clarifier.
 均質化室5は、清澄された溶融ガラスGmを攪拌翼5aによって攪拌し、均一化する均質化工程を実施するためのものである。均質化室5は、複数の均質化室を連ねたものであってもよい。この場合、隣接する二つの均質化室の一方の上端部と、他方の下端部を移送管で連ねることが好ましい。 The homogenization chamber 5 is for carrying out a homogenization step in which the clarified molten glass Gm is stirred by the stirring blade 5a to make it uniform. The homogenization chamber 5 may be a combination of a plurality of homogenization chambers. In this case, it is preferable to connect one upper end part of two adjacent homogenization chambers and the other lower end part with a transfer pipe.
 ポット6は、溶融ガラスGmを成形に適した状態(例えば粘度)に調整する状態調整工程を実施するためのものである。ポット6は省略してもよい。 The pot 6 is for performing the state adjustment process which adjusts the molten glass Gm to the state (for example, viscosity) suitable for shaping | molding. The pot 6 may be omitted.
 移送管7~10は、例えば円筒管で構成されており、溶融ガラスGmを横方向(略水平方向)に移送する。本実施形態では、移送流路2のうち、最上流部に位置する移送管7は、下流端が上流端よりも上方に位置するように傾斜している。 The transfer pipes 7 to 10 are constituted by, for example, cylindrical pipes, and transfer the molten glass Gm in the horizontal direction (substantially horizontal direction). In this embodiment, the transfer pipe 7 located in the most upstream part of the transfer flow path 2 is inclined so that the downstream end is positioned higher than the upstream end.
 成形装置3は、溶融ガラスGmを所望の形状に成形する成形工程を実施するためのものである。本実施形態では、成形装置3は、オーバーフローダウンドロー法によって、溶融ガラスGmからガラスリボンGを連続成形する成形体からなる。 The forming apparatus 3 is for carrying out a forming process for forming the molten glass Gm into a desired shape. In this embodiment, the shaping | molding apparatus 3 consists of a molded object which shape | molds the glass ribbon G continuously from the molten glass Gm by the overflow downdraw method.
 成形装置3は、スロットダウンドロー法などの他のダウンドロー法や、フロート法を実施するものであってもよい。 The forming apparatus 3 may perform another downdraw method such as a slot downdraw method or a float method.
 オーバーフローダウンドロー法の場合、成形装置3に供給された溶融ガラスGmは成形装置3の頂部に形成された溝部から溢れ出た溶融ガラスGmが成形装置3の断面楔状をなす両側面を伝って下端で合流することで、板状のガラスリボンGが連続成形される。成形されたガラスリボンGは、徐冷(アニール)及び冷却された後に所定サイズに切断され、ガラス物品としての板ガラスが製造される。 In the case of the overflow down draw method, the molten glass Gm supplied to the molding apparatus 3 is sent to the lower end of the molten glass Gm overflowing from a groove formed at the top of the molding apparatus 3 along both side surfaces forming a cross-sectional wedge shape of the molding apparatus 3. The plate-like glass ribbon G is continuously formed by joining together. The formed glass ribbon G is gradually cooled (annealed) and cooled, and then cut into a predetermined size to produce a plate glass as a glass article.
 製造された板ガラスは、例えば、厚みが0.01~10mm(好ましくは0.1~3mm)であって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。 The manufactured glass sheet has a thickness of, for example, 0.01 to 10 mm (preferably 0.1 to 3 mm), and is a flat panel display such as a liquid crystal display or an organic EL display, an organic EL illumination, a substrate such as a solar cell, Used for protective cover.
 図2に示すように、溶融炉1は、生産段階において、通電加熱を含む加熱によって、ガラス原料(カレットを含んでもよい)Grを溶融して溶融ガラスGmを連続形成する。溶融炉1で連続形成された溶融ガラスGmは、溶融炉1の流出口1aから移送管7内に流入するようになっている。 As shown in FIG. 2, the melting furnace 1 continuously forms a molten glass Gm by melting glass raw material (which may include cullet) Gr by heating including energization heating in the production stage. The molten glass Gm continuously formed in the melting furnace 1 flows into the transfer pipe 7 from the outlet 1 a of the melting furnace 1.
 溶融炉1は、耐火物で構成された壁部によって炉内の溶融空間を区画形成する。耐火物としては、例えば、ジルコニア系電鋳煉瓦やアルミナ系電鋳煉瓦、アルミナ・ジルコニア系電鋳煉瓦、AZS(Al-Zr-Si)系電鋳煉瓦、デンス焼成煉瓦などが挙げられるが、本実施形態では、溶融炉1は、少なくとも溶融ガラスGmと接触する壁部が高温でも浸食しにくいジルコニア系電鋳煉瓦(ジルコニア系耐火物)を含む。ジルコニア系耐火物は、ジルコニアの含有量が80~99%の高ジルコニア系耐火物であることが好ましい。  The melting furnace 1 divides and forms a melting space in the furnace by a wall portion made of a refractory. Examples of the refractory include zirconia electrocast bricks, alumina electrocast bricks, alumina / zirconia electrocast bricks, AZS (Al—Zr—Si) electrocast bricks, dense fired bricks, etc. In the embodiment, the melting furnace 1 includes a zirconia electrocast brick (zirconia refractory) in which at least the wall portion that contacts the molten glass Gm is not easily eroded even at a high temperature. The zirconia refractory is preferably a high zirconia refractory having a zirconia content of 80 to 99%. *
 溶融炉1の底壁部1bには、通電加熱のために、溶融ガラスGmに浸漬された状態で複数のボトム電極11が設けられている。本実施形態では、溶融ガラスGmを連続形成する生産段階(溶融工程)において、ボトム電極11の通電加熱のみでガラス原料Grを連続溶融する、いわゆる全電気溶融が行われる。全電気溶融の場合、排ガスによる環境負荷が小さいこと、製造される板ガラスの水分量が低くなり、その熱的寸法安定性が向上することなどの利点がある。 The bottom wall 1b of the melting furnace 1 is provided with a plurality of bottom electrodes 11 so as to be immersed in the molten glass Gm for electric heating. In the present embodiment, in the production stage (melting step) in which the molten glass Gm is continuously formed, so-called all-electric melting is performed in which the glass raw material Gr is continuously melted only by energization heating of the bottom electrode 11. In the case of all-electric melting, there are advantages such that the environmental load due to the exhaust gas is small, the moisture content of the produced plate glass is low, and the thermal dimensional stability is improved.
 ボトム電極11は、例えば、モリブデン(Mo)から形成される。ボトム電極11の形状は、特に限定されるものではなく、板状やブロック状などであってもよいが、本実施形態では棒状である。 The bottom electrode 11 is made of, for example, molybdenum (Mo). The shape of the bottom electrode 11 is not particularly limited, and may be a plate shape or a block shape, but in the present embodiment, it is a rod shape.
 電極は、溶融炉1の側壁部1cに設けられたサイド電極(図示省略)であってもよい。あるいは、ボトム電極11とサイド電極を併用してもよい。ただし、溶融炉1の側壁部1cは、もともと溶融ガラスGmの対流等の影響によって浸食されやすい部位であるため、サイド電極を設けて側壁部1cを高温にすると、より浸食されやすくなる。従って、電極は、溶融炉1の浸食が進行しにくいボトム電極11のみとし、溶融炉1の長寿命化を図ることが好ましい。この場合、溶融炉1の耐用年数(寿命)は、移送流路2の耐用年数(寿命)よりも長くなる傾向にある。このため、溶融炉1よりも移送流路2が先に劣化する場合が多くなり、溶融炉1をそのまま残して移送流路2を交換することが特に有用となる。 The electrode may be a side electrode (not shown) provided on the side wall 1c of the melting furnace 1. Alternatively, the bottom electrode 11 and the side electrode may be used in combination. However, the side wall portion 1c of the melting furnace 1 is originally a portion that is easily eroded by the influence of convection of the molten glass Gm, and therefore, when the side electrode portion is provided and the side wall portion 1c is heated to a high temperature, the side wall portion 1c is more easily eroded. Therefore, it is preferable to use only the bottom electrode 11 in which the erosion of the melting furnace 1 is difficult to proceed and to extend the life of the melting furnace 1. In this case, the service life (life) of the melting furnace 1 tends to be longer than the service life (life) of the transfer channel 2. For this reason, the transfer channel 2 often deteriorates earlier than the melting furnace 1, and it is particularly useful to replace the transfer channel 2 while leaving the melting furnace 1 as it is.
 溶融炉1の上流側には、原料投入装置12が設けられている。原料投入装置12は、特に限定されるものではなく、例えばプッシャーや振動フィーダなどであってもよいが、本実施形態ではスクリューフィーダである。 A raw material charging device 12 is provided on the upstream side of the melting furnace 1. The raw material charging device 12 is not particularly limited, and may be, for example, a pusher or a vibration feeder, but is a screw feeder in this embodiment.
 原料投入装置12は、生産段階において、溶融ガラスGmの液面Gm1の一部にガラス原料Grに覆われていない部分が形成されるようにガラス原料Grを順次供給する。すなわち、溶融炉1は、いわゆるセミホットトップタイプである。 The raw material charging device 12 sequentially supplies the glass raw material Gr so that a part not covered with the glass raw material Gr is formed in a part of the liquid level Gm1 of the molten glass Gm in the production stage. That is, the melting furnace 1 is a so-called semi-hot top type.
 溶融炉1は、生産段階において、溶融ガラスGmの液面Gm1の全部がガラス原料Grに覆われた、いわゆるコールドトップタイプでもよい。 The melting furnace 1 may be a so-called cold top type in which the entire liquid level Gm1 of the molten glass Gm is covered with the glass raw material Gr in the production stage.
 溶融炉1には、溶融炉1内の気体を外部に排出するための気体排出路としての煙道13が設けられている。煙道13内には、気体を外部に送るためのファン13aが設けられている。 The melting furnace 1 is provided with a flue 13 as a gas discharge path for discharging the gas in the melting furnace 1 to the outside. A fan 13a for sending gas to the outside is provided in the flue 13.
 本実施形態では、溶融炉1の溶融空間は単一の空間からなるシングルメルターであり、溶融炉1に接続される移送流路2の数が一つであるシングルフィーダである。 In the present embodiment, the melting space of the melting furnace 1 is a single melter composed of a single space, and is a single feeder in which the number of transfer passages 2 connected to the melting furnace 1 is one.
 次に、以上のように構成された製造装置によるガラス物品の製造方法を説明する。 Next, a method for manufacturing a glass article using the manufacturing apparatus configured as described above will be described.
 本製造方法は、上述のように、生産段階において、溶融工程と、移送工程と、成形工程とを備えている。このうち、移送工程は、清澄工程と、均質化工程と、状態調整工程とを含む。溶融工程、移送工程及び成形工程は、上述の製造装置の構成に併せて説明した通りであるので、詳しい説明は省略する。 As described above, this manufacturing method includes a melting process, a transfer process, and a molding process in the production stage. Among these, the transfer process includes a clarification process, a homogenization process, and a state adjustment process. Since the melting step, the transfer step, and the molding step are as described in conjunction with the configuration of the manufacturing apparatus described above, detailed description thereof is omitted.
 図3~図5に示すように、本製造方法は、溶融炉1の流出口1aを塞ぐように遮断部材14を配置した状態で、移送流路2を交換する交換工程を更に備えている。この交換工程は、移送流路2の故障や劣化などの何らかの事由によって、移送工程が実施されない非生産段階で実施する工程である。 As shown in FIGS. 3 to 5, the manufacturing method further includes an exchange process for exchanging the transfer flow path 2 in a state where the blocking member 14 is disposed so as to close the outlet 1 a of the melting furnace 1. This replacement process is a process performed in a non-production stage where the transfer process is not performed due to some reason such as failure or deterioration of the transfer flow path 2.
 交換工程では、まず、図3に示すように、最上流部に位置する移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、移送管7内の溶融ガラスGmを降温する。ここで、「通電加熱のための電力供給量を生産段階よりも少なくする」という用語には、通電加熱を停止する場合も含まれるものとする。エネルギーコストの観点からは、移送管7内の溶融ガラスGmを降温するために、移送管7の通電加熱を停止することが好ましく、移送流路2における全ての通電加熱を停止することが更に好ましい。なお、移送流路2を外部から水や空気等の冷却流体によって積極的に冷却してもよい。 In the exchange process, first, as shown in FIG. 3, the molten glass Gm in the transfer pipe 7 is reduced by reducing the power supply amount for energization heating of the transfer pipe 7 located at the most upstream part from the production stage. Lower the temperature. Here, the term “reducing the amount of power supply for energization heating less than the production stage” includes a case where the energization heating is stopped. From the viewpoint of energy cost, in order to lower the temperature of the molten glass Gm in the transfer pipe 7, it is preferable to stop the energization heating of the transfer pipe 7, and it is more preferable to stop all the energization heating in the transfer flow path 2. . The transfer channel 2 may be actively cooled from the outside by a cooling fluid such as water or air.
 このように移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺の溶融ガラスGmが高粘度になり、その流動性が低下する。この結果、例えば、移送管7内及び流出口1a周辺に、高粘度ガラス層Gsが形成される。なお、移送管7内の溶融ガラスGmの降温は、移送管7内で溶融ガラスGmの流動が完全に停止するまで行うことが好ましい。 Thus, by lowering the temperature of the molten glass Gm in the transfer pipe 7, the molten glass Gm around the outlet 1a of the melting furnace 1 becomes highly viscous and its fluidity is lowered. As a result, for example, a high-viscosity glass layer Gs is formed in the transfer pipe 7 and around the outlet 1a. Note that the temperature of the molten glass Gm in the transfer pipe 7 is preferably lowered until the flow of the molten glass Gm completely stops in the transfer pipe 7.
 ここで、高粘度ガラス層Gsとは、生産段階の溶融ガラスGmと比べて流動性が著しく低下したガラス層、あるいは、流動性が全くないガラス層(冷却固化されたガラスを含む)である。高粘度ガラス層Gsの粘度は、例えば106~1030dPa・sである。 Here, the high-viscosity glass layer Gs is a glass layer whose fluidity is remarkably lowered as compared with the molten glass Gm in the production stage, or a glass layer having no fluidity (including cooled and solidified glass). The viscosity of the high viscosity glass layer Gs is, for example, 10 6 to 10 30 dPa · s.
 シングルフィーダの場合、交換工程中は、溶融ガラスGmを下流側に供給することができないため、図3の状態のように、原料投入装置12によるガラス原料Grの投入は停止することが好ましい。 In the case of a single feeder, since the molten glass Gm cannot be supplied to the downstream side during the exchange process, it is preferable to stop the introduction of the glass raw material Gr by the raw material charging device 12 as shown in FIG.
 次に、溶融炉1の流出口1a周辺に高粘度ガラス層Gsを形成した状態で、図4に示すように、移送管7や清澄室4を含む移送流路2を溶融炉1から分離する。 Next, in the state where the high-viscosity glass layer Gs is formed around the outlet 1a of the melting furnace 1, the transfer flow path 2 including the transfer pipe 7 and the fining chamber 4 is separated from the melting furnace 1 as shown in FIG. .
 更に、移送流路2を溶融炉1から分離すると同時又はその後に、図5に示すように、溶融炉1の流出口1aを塞ぐように遮断部材14を配置する。このように遮断部材14で溶融炉1の流出口1aを塞いだ状態で、移送流路2を新しいものに交換する。本実施形態では、移送流路2と共に成形装置3も新しいものに交換する。ただし、遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。このようにすれば、交換工程のほとんど全ての期間において、遮断部材14によって溶融炉1の流出口1aが塞がれるため、移送流路2を交換する際に、溶融炉1内の溶融ガラスGmが流出口1aから流出するのを防止することができる。従って、溶融炉1をそのまま残して移送流路2を安全に交換することができる。 Further, at the same time or after the transfer flow path 2 is separated from the melting furnace 1, a blocking member 14 is disposed so as to close the outlet 1a of the melting furnace 1, as shown in FIG. Thus, the transfer channel 2 is replaced with a new one while the outlet 1a of the melting furnace 1 is closed with the blocking member 14. In the present embodiment, the molding apparatus 3 is replaced with a new one together with the transfer channel 2. However, the blocking member 14 is removed from the outlet 1 a of the melting furnace 1 immediately before joining the new transfer channel 2 to the outlet 1 a of the melting furnace 1. In this way, since the outlet 1a of the melting furnace 1 is blocked by the blocking member 14 in almost all the periods of the replacement process, the molten glass Gm in the melting furnace 1 is replaced when the transfer flow path 2 is replaced. Can be prevented from flowing out from the outlet 1a. Therefore, it is possible to safely exchange the transfer flow path 2 while leaving the melting furnace 1 as it is.
 また、本実施形態では、遮断部材14を配置する際に、移送管7内の溶融ガラスGmを降温することにより、溶融炉1の流出口1a周辺に高粘度ガラス層Gsが形成されているため、溶融炉1内の溶融ガラスGmが流出口1aから流出しにくい。特に、溶融炉1の流出口1aが高粘度ガラス層Gsによって完全に塞がれていると、溶融炉1内の溶融ガラスGmが流出口1aからより流出しにくくなる。従って、遮断部材14の配置作業を容易に行うことができる。 Moreover, in this embodiment, when arrange | positioning the interruption | blocking member 14, the high viscosity glass layer Gs is formed in the outflow port 1a periphery of the melting furnace 1 by temperature-falling the molten glass Gm in the transfer pipe 7. FIG. The molten glass Gm in the melting furnace 1 hardly flows out from the outlet 1a. In particular, when the outlet 1a of the melting furnace 1 is completely blocked by the high-viscosity glass layer Gs, the molten glass Gm in the melting furnace 1 is less likely to flow out of the outlet 1a. Therefore, the arrangement | positioning operation | work of the interruption | blocking member 14 can be performed easily.
 ここで、溶融炉1の壁部がジルコニア系耐火物(特に、高ジルコニア系耐火物)を含む場合、溶融ガラスGmと接触している部分において、温度が下がりすぎると結晶構造が変化する。これにより、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。このような層状剥離が生じると、溶融炉1の耐火物の交換も必要になるため、交換工程に要する費用が増大する。従って、交換工程中も、溶融ガラスGmをボトム電極11で通電加熱するなどして、溶融炉1内の温度を所定温度以上に保つことが好ましい。 Here, when the wall portion of the melting furnace 1 contains a zirconia refractory (particularly, a high zirconia refractory), the crystal structure changes if the temperature is too low in the portion in contact with the molten glass Gm. Thereby, the situation where the surface layer part of a zirconia-type refractory peels in layers may arise. When such delamination occurs, it is necessary to replace the refractory in the melting furnace 1, which increases the cost required for the replacement process. Therefore, it is preferable to keep the temperature in the melting furnace 1 at a predetermined temperature or higher by, for example, energizing and heating the molten glass Gm with the bottom electrode 11 even during the exchange process.
 溶融炉1の層状剥離を防止する観点からは、溶融炉1内の温度は1200℃以上であることが好ましく、1250℃以上であることがより好ましく、1300℃以上であることが更に好ましい。ただし、シングルフィーダの場合、交換工程中は溶融ガラスGmを連続形成しないため、エネルギーコストの観点からは、生産段階よりも通電加熱のための電力供給量を少なくし、溶融炉1内の温度を、生産段階の温度よりも低くすることが好ましい。溶融炉1内の温度は1600℃以下であることが好ましく、1500℃以下であることがより好ましく、1450℃以下であることが更に好ましい。ここで、溶融炉1内の温度は、高粘度ガラス層Gs及びその周辺を除く溶融ガラスGmの温度を意味する。 From the viewpoint of preventing delamination of the melting furnace 1, the temperature in the melting furnace 1 is preferably 1200 ° C or higher, more preferably 1250 ° C or higher, and further preferably 1300 ° C or higher. However, in the case of a single feeder, since the molten glass Gm is not continuously formed during the exchange process, from the viewpoint of energy cost, the amount of power supply for energization heating is reduced compared with the production stage, and the temperature in the melting furnace 1 is set. The temperature is preferably lower than the production stage temperature. The temperature in the melting furnace 1 is preferably 1600 ° C. or less, more preferably 1500 ° C. or less, and further preferably 1450 ° C. or less. Here, the temperature in the melting furnace 1 means the temperature of the molten glass Gm excluding the high viscosity glass layer Gs and its periphery.
 溶融炉1の流出口1a周辺には高粘度ガラス層Gsを形成するので、溶融炉1の流出口1aのジルコニア系耐火物も1200℃未満となり、ジルコニア系耐火物の表層部が層状剥離する事態が生じ得る。これを防止するため、溶融炉1の流出口1aは、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。また、溶融炉1の壁部のうちで、高粘度ガラス層Gs及びその周辺の低温の溶融ガラスGmと接触して1200℃未満となる部位についても、ジルコニア系耐火物の表面を白金又は白金合金で覆うことが好ましい。ジルコニア系耐火物の表面を白金又は白金合金で覆うことにより、ジルコニア系耐火物が溶融ガラスGmと直接接触することなく、白金又は白金合金を介して溶融ガラスGmと接触するので、層状剥離を防止できる。 Since the high-viscosity glass layer Gs is formed around the outlet 1a of the melting furnace 1, the zirconia refractory at the outlet 1a of the melting furnace 1 is also less than 1200 ° C., and the surface layer portion of the zirconia refractory is delaminated. Can occur. In order to prevent this, the outlet 1a of the melting furnace 1 preferably covers the surface of the zirconia refractory with platinum or a platinum alloy. In addition, the surface of the zirconia refractory is made of platinum or a platinum alloy in a portion of the wall portion of the melting furnace 1 that comes into contact with the high-viscosity glass layer Gs and the surrounding low-temperature molten glass Gm and becomes less than 1200 ° C. It is preferable to cover with. By covering the surface of the zirconia refractory with platinum or a platinum alloy, the zirconia refractory does not come into direct contact with the molten glass Gm, but comes into contact with the molten glass Gm through the platinum or platinum alloy, thereby preventing delamination. it can.
 図6に示すように、遮断部材14は、絶縁構造を有する。本実施形態では、遮断部材14は、絶縁構造として、本体部材15と、本体部材15に当接する絶縁部材16と、絶縁部材16を介して本体部材15を溶融炉1側に押圧しながら保持する保持部材17とを備えている。これにより、交換工程において、溶融炉1で電極による通電加熱を継続しても、移送流路2側への漏電を防止することができる。 As shown in FIG. 6, the blocking member 14 has an insulating structure. In this embodiment, the blocking member 14 has an insulating structure as a main body member 15, an insulating member 16 that contacts the main body member 15, and holds the main body member 15 while pressing the main body member 15 toward the melting furnace 1 via the insulating member 16. Holding member 17. Thereby, even if it continues with the energization heating by an electrode in the melting furnace 1 in an exchange process, the electric leakage to the transfer flow path 2 side can be prevented.
 本体部材15は、例えばステンレス等の金属板で形成され、絶縁部材16は、例えばセラミックスなどを備える。本体部材15は、ガラスや耐火物で形成してもよいが、ガラスや耐火物の場合、溶融炉1内の溶融ガラスGmと接着しやすく、交換工程後に、本体部材15を溶融炉1の流出口1aから分離しにくくなるおそれがある。従って、本体部材15は、金属板であることが好ましい。 The main body member 15 is formed of, for example, a metal plate such as stainless steel, and the insulating member 16 includes, for example, ceramics. The main body member 15 may be formed of glass or refractory. However, in the case of glass or refractory, the main body member 15 easily adheres to the molten glass Gm in the melting furnace 1, and after the replacement process, the main body member 15 is allowed to flow in the melting furnace 1. There is a possibility that separation from the outlet 1a may be difficult. Therefore, the main body member 15 is preferably a metal plate.
 シングルメルターの場合、溶融空間が小さく、電極11で通電加熱する領域と溶融炉1の流出口1aとが接近することが多いため、このような絶縁構造が特に有用になる。遮断部材14は、接地(アース)されていることが好ましい。なお、高粘度ガラス層Gsも絶縁作用を有するので、高粘度ガラス層Gsの温度を十分に低下させることにより、絶縁を行ってもよい。また、高粘度ガラス層Gsの絶縁作用と、遮断部材14の絶縁構造とを併用してもよい。 In the case of a single melter, since the melting space is small and the region to be energized and heated by the electrode 11 is often close to the outlet 1a of the melting furnace 1, such an insulating structure is particularly useful. The blocking member 14 is preferably grounded (earthed). In addition, since the high-viscosity glass layer Gs also has an insulating action, insulation may be performed by sufficiently reducing the temperature of the high-viscosity glass layer Gs. Further, the insulating action of the high-viscosity glass layer Gs and the insulating structure of the blocking member 14 may be used in combination.
 図7に示すように、遮断部材14は、冷却構造を有する。本実施形態では、遮断部材14の本体部材15は、冷却構造として、その内部に水や空気などの冷却流体を流通する冷却流路15aを備えている。本体部材15は、水冷板であることが好ましい。冷却流路15aは、一端側から冷却流体が供給されると共に、他端側から冷却流体が排出されるようになっている。冷却流路15aは、本体部材15のうち、少なくとも溶融炉1の流出口1aに対応する領域に形成される。冷却流体を給排するために冷却流路15aに接続される給排管18も、少なくとも一部がセラミックスやゴム等からなる絶縁管で構成されていることが好ましい。給排管18の一部にゴムからなる絶縁管を用いる場合、熱源である溶融炉1や冷却流路15aから絶縁管を離間し、熱による絶縁管の破損を防止することが好ましい。 As shown in FIG. 7, the blocking member 14 has a cooling structure. In the present embodiment, the main body member 15 of the blocking member 14 includes a cooling flow path 15a that circulates a cooling fluid such as water or air therein as a cooling structure. The main body member 15 is preferably a water-cooled plate. The cooling flow path 15a is supplied with cooling fluid from one end side and discharged from the other end side. The cooling channel 15 a is formed in a region of the main body member 15 corresponding to at least the outlet 1 a of the melting furnace 1. The supply / discharge pipe 18 connected to the cooling flow path 15a for supplying / discharging the cooling fluid is also preferably made of an insulating pipe made of ceramic or rubber at least partially. When an insulating tube made of rubber is used as a part of the supply / discharge tube 18, it is preferable to prevent the insulating tube from being damaged by heat by separating the insulating tube from the melting furnace 1 or the cooling channel 15 a that is a heat source.
 遮断部材14の冷却構造は、冷却流体を冷却流路15aに流通させるものに限定されるものではなく、例えば、本体部材15に対して外部から冷却流体を吹き付けるものであってもよい。 The cooling structure of the blocking member 14 is not limited to the structure that allows the cooling fluid to flow through the cooling flow path 15a. For example, the cooling fluid may be blown from the outside to the main body member 15.
 なお、以上のような交換工程の終了後は、生産(溶融工程、移送工程及び成形工程)を再開する。生産の再開時は、例えば、遮断部材14を取り外し、移送流路2を溶融炉1に接続した後、通電加熱によって移送流路2を昇温すればよい。これにより、溶解炉1から溶融ガラスGmが移送流路2に供給される。また、流出口1a周辺の高粘度ガラス層Gsは、粘度が次第に低下して消滅する。シングルフィーダでガラス原料Grの投入は停止している場合、溶融炉1と移送流路2の接続に応じてガラス原料の投入を再開する。シングルフィーダで溶融炉1内の温度を生産段階の温度よりも低くしている場合、溶融炉1と移送流路2の接続前に、溶融炉1内の温度を生産段階の温度まで上昇させる。 In addition, after completion of the exchange process as described above, production (melting process, transfer process and molding process) is resumed. When restarting production, for example, after removing the blocking member 14 and connecting the transfer channel 2 to the melting furnace 1, the transfer channel 2 may be heated by energization heating. Thereby, the molten glass Gm is supplied from the melting furnace 1 to the transfer channel 2. Moreover, the viscosity of the high-viscosity glass layer Gs around the outlet 1a is gradually reduced and disappears. When the introduction of the glass material Gr is stopped by the single feeder, the introduction of the glass material is resumed according to the connection between the melting furnace 1 and the transfer flow path 2. When the temperature in the melting furnace 1 is made lower than the temperature in the production stage with a single feeder, the temperature in the melting furnace 1 is raised to the temperature in the production stage before the melting furnace 1 and the transfer channel 2 are connected.
(第二実施形態)
 図8及び図9に示すように、第二実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
(Second embodiment)
As shown in FIGS. 8 and 9, the glass article manufacturing method according to the second embodiment is different from the glass article manufacturing method according to the first embodiment in an exchange process for exchanging the transfer channel 2. is there. Below, it demonstrates centering around difference with 1st embodiment, and abbreviate | omits detailed description of a common point with 1st embodiment.
 第二実施形態に係るガラス物品の製造方法に用いられる製造装置は、円滑な交換工程を実施するために、溶融炉1の流出口1aの直下流、すなわち、溶融炉1の流出口1aと、移送流路2の移送管7の上流端との間に、遮断部材14が上下移動可能に収容された収容室21を備えている。遮断部材14を上げた状態で収容室21の流路が開き、遮断部材14を下げた状態で収容室21の流路が閉じるようになっている。 The manufacturing apparatus used in the method for manufacturing a glass article according to the second embodiment is provided immediately downstream of the outlet 1a of the melting furnace 1, that is, the outlet 1a of the melting furnace 1, Between the upstream end of the transfer pipe 7 of the transfer flow path 2, there is provided a storage chamber 21 in which the blocking member 14 is stored so as to be movable up and down. The flow path of the storage chamber 21 is opened with the blocking member 14 raised, and the flow path of the storage chamber 21 is closed with the blocking member 14 lowered.
 遮断部材14は、収容室21の流路を開閉できれば上下移動する構成に限定されない。遮断部材14は、例えば水平移動する構成などであってもよい。 The blocking member 14 is not limited to a configuration that moves up and down as long as the flow path of the storage chamber 21 can be opened and closed. The blocking member 14 may be configured to move horizontally, for example.
 遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。 The blocking member 14 preferably has an insulating structure and a cooling structure as in the first embodiment.
 第二実施形態に係るガラス物品の製造方法に含まれる交換工程では、図8に示すように、移送管7の通電加熱の電力供給量を生産段階よりも少なくして溶融ガラスGmを降温した後に、遮断部材14を下げて収容室21の流路を閉じる。これにより、溶融炉1の流出口1aが遮断部材14によって塞がれた状態となる。 In the exchange step included in the method for manufacturing a glass article according to the second embodiment, as shown in FIG. 8, the temperature of the molten glass Gm is lowered by reducing the amount of power supply for energization heating of the transfer pipe 7 from the production stage. Then, the blocking member 14 is lowered to close the flow path of the storage chamber 21. As a result, the outlet 1 a of the melting furnace 1 is closed by the blocking member 14.
 このように遮断部材14を下げて収容室21の流路を閉じた状態で、図9に示すように、移送流路2を収容室21から分離し、移送流路2(又は移送流路2と成形装置3)を新しいものと交換する。 With the blocking member 14 lowered and the flow path of the storage chamber 21 closed, the transfer flow path 2 is separated from the storage chamber 21 as shown in FIG. Replace the molding device 3) with a new one.
 交換工程の終了後は、収容室21の昇温後に遮断部材14を上げて収容室21の流路を再び開き、生産を再開する。 After completion of the replacement process, the temperature of the storage chamber 21 is raised, the blocking member 14 is raised, the flow path of the storage chamber 21 is opened again, and production is resumed.
 収容室21に収容された遮断部材14は、溶融ガラスGmの低粘度の状態でも、収容室21の流路を簡単に閉じることができる。このため、遮断部材14を下げて収容室21の流路を閉じた後に、移送管7の通電加熱のための電力供給量を生産段階よりも少なくすることにより、溶融管7内の溶融ガラスGmを降温してもよい。 The blocking member 14 accommodated in the accommodation chamber 21 can easily close the flow path of the accommodation chamber 21 even in the low viscosity state of the molten glass Gm. For this reason, after lowering the blocking member 14 and closing the flow path of the storage chamber 21, the amount of power supplied for energization heating of the transfer pipe 7 is made smaller than that in the production stage, whereby the molten glass Gm in the melting pipe 7 is The temperature may be lowered.
 生産段階では、遮断部材14は収容室21の外側に配置されると共に、交換工程の際に遮断部材14を挿入するために収容室21に設けられた開口部(図示省略)は蓋などによって塞がれていることが好ましい。 In the production stage, the blocking member 14 is arranged outside the storage chamber 21, and an opening (not shown) provided in the storage chamber 21 for inserting the blocking member 14 during the replacement process is closed by a lid or the like. It is preferable that it is removed.
(第三実施形態)
 図10及び図11に示すように、第三実施形態に係るガラス物品の製造方法が、第一実施形態に係るガラス物品の製造方法と相違するところは、移送流路2を交換する交換工程である。以下では、第一実施形態との相違点を中心に説明し、第一実施形態との共通点の詳しい説明は省略する。
(Third embodiment)
As shown in FIGS. 10 and 11, the glass article manufacturing method according to the third embodiment is different from the glass article manufacturing method according to the first embodiment in an exchange step of exchanging the transfer channel 2. is there. Below, it demonstrates centering around difference with 1st embodiment, and abbreviate | omits detailed description of a common point with 1st embodiment.
 第三実施形態に係るガラス物品の製造方法に含まれる交換工程は、まず、図10に示すように、溶融炉1の底壁部1bに設けられた排出口(図示省略)から溶融炉1内の溶融ガラスGmを排出する。これにより、溶融ガラスGmの液面Gm1の高さを流出口1aよりも下げる。もちろん、溶融炉1から溶融ガラスGmを全て排出してもよい。 As shown in FIG. 10, the exchange step included in the method for manufacturing a glass article according to the third embodiment is first performed in the melting furnace 1 from an outlet (not shown) provided in the bottom wall portion 1 b of the melting furnace 1. The molten glass Gm is discharged. Thereby, the height of the liquid level Gm1 of the molten glass Gm is lowered from the outlet 1a. Of course, all of the molten glass Gm may be discharged from the melting furnace 1.
 次に、図11に示すように、溶融炉1から移送流路2を分離すると共に、流出口1aを遮断部材14で塞ぐ。このように遮断部材14で流出口1aを塞いだ状態で、移送流路2(又は移送流路2と成形装置3)を新しいものに交換する。 Next, as shown in FIG. 11, the transfer flow path 2 is separated from the melting furnace 1, and the outlet 1 a is closed with a blocking member 14. Thus, the transfer flow path 2 (or the transfer flow path 2 and the shaping | molding apparatus 3) is replaced | exchanged for a new thing in the state which blocked the outflow port 1a with the interruption | blocking member 14.
 遮断部材14は、第一実施形態と同様に、絶縁構造及び冷却構造を有することが好ましい。 The blocking member 14 preferably has an insulating structure and a cooling structure as in the first embodiment.
 遮断部材14は、新しい移送流路2を溶融炉1の流出口1aに接合する直前に、溶融炉1の流出口1aから取り除く。例えば、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さ(例えば、生産段階の液面の高さ)まで再び上昇させた後に、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合してもよい。これとは逆に、例えば、遮断部材14を取り除いて新しい移送流路2を溶融炉1の流出口1aに接合した後に、溶融炉1内で溶融ガラスGmを形成し、溶融ガラスGmの液面Gm1を所定高さまで再び上昇させてもよい。 The blocking member 14 is removed from the outlet 1 a of the melting furnace 1 immediately before joining the new transfer channel 2 to the outlet 1 a of the melting furnace 1. For example, the molten glass Gm is formed in the melting furnace 1 and the liquid level Gm1 of the molten glass Gm is raised again to a predetermined height (for example, the height of the liquid level in the production stage), and then the blocking member 14 is removed. A new transfer channel 2 may be joined to the outlet 1 a of the melting furnace 1. On the contrary, for example, after the blocking member 14 is removed and the new transfer channel 2 is joined to the outlet 1a of the melting furnace 1, the molten glass Gm is formed in the melting furnace 1, and the liquid surface of the molten glass Gm is formed. Gm1 may be raised again to a predetermined height.
 交換工程の終了後は、生産を再開する。本実施形態では、交換工程で溶融炉1内の溶融ガラスGmの量を少なくしているため、生産を再開する際に、異なるガラス組成を有する溶融ガラスGmに入れ替えてもよい。 * After the replacement process, production will resume. In this embodiment, since the amount of the molten glass Gm in the melting furnace 1 is reduced in the replacement step, the molten glass Gm having a different glass composition may be replaced when production is resumed.
 ここで、溶融炉1の壁部がジルコニア系耐火物を含む場合、層状剥離を防止するために、交換工程中も溶融炉1内の温度を所定温度以上に保つことが好ましい。しかしながら、溶融炉1内の溶融ガラスGmの液面Gm1の高さを下げると、ボトム電極11の一部が空気中に露出する場合がある。この状態でボトム電極11による通電加熱を行うと、ボトム電極11が酸化により早期に損耗するおそれがある。従って、ボトム電極11による通電加熱は行わずに、バーナー等の別の加熱手段で溶融炉1内を加熱することが好ましい。このように交換工程中に溶融炉1内で電極による通電加熱を行わない場合、遮断部材14は絶縁構造を有していなくてもよい。 Here, when the wall portion of the melting furnace 1 contains a zirconia refractory, it is preferable to keep the temperature in the melting furnace 1 at a predetermined temperature or more even during the replacement process in order to prevent delamination. However, when the height of the liquid level Gm1 of the molten glass Gm in the melting furnace 1 is lowered, a part of the bottom electrode 11 may be exposed to the air. If energization heating is performed with the bottom electrode 11 in this state, the bottom electrode 11 may be worn out early due to oxidation. Therefore, it is preferable to heat the inside of the melting furnace 1 by another heating means such as a burner without conducting the electric heating by the bottom electrode 11. As described above, when the energization heating by the electrode is not performed in the melting furnace 1 during the exchange process, the blocking member 14 may not have an insulating structure.
 本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-described effects. The present invention can be variously modified without departing from the gist of the present invention.
 上記の実施形態では、シングルメルターである場合を説明したが、複数の溶融空間を連ねたマルチメルターであってもよい。マルチメルターの場合は、例えば、最上流部の溶融空間のみが電極で通電加熱され、その下流側の溶融空間は電極で通電加熱されないことがある。この場合、電極で通電加熱する領域と溶融炉の流出口とが、抵抗体として機能する溶融ガラスGmを介して大きく離反するため、遮断部材は絶縁構造を有していなくてもよい。 In the above embodiment, the case of a single melter has been described, but a multimelter in which a plurality of melting spaces are connected may be used. In the case of a multimelter, for example, only the melting space in the most upstream part may be energized and heated by the electrode, and the downstream melting space may not be energized and heated by the electrode. In this case, since the region that is electrically heated by the electrode and the outlet of the melting furnace are largely separated via the molten glass Gm that functions as a resistor, the blocking member may not have an insulating structure.
 上記の実施形態では、シングルフィーダである場合を説明したが、複数の成形装置に向かって延びる複数の移送流路が溶融炉に接続されたマルチフィーダであってもよい。マルチフィーダの場合、複数の移送流路の一部に対して交換工程を実施している間も、残りの移送流路に溶融炉から溶融ガラスを供給し、ガラス物品の製造を継続することができる。従って、複数の移送流路の一部に対して交換工程を実施している間も、溶融炉にガラス原料を投入することが好ましい。 In the above embodiment, the case of a single feeder has been described, but a multi-feeder in which a plurality of transfer channels extending toward a plurality of molding apparatuses are connected to a melting furnace may be used. In the case of a multi-feeder, it is possible to continue the production of glass articles by supplying molten glass from the melting furnace to the remaining transfer channels while performing the exchange process for a part of the plurality of transfer channels. it can. Therefore, it is preferable to introduce the glass raw material into the melting furnace even while the exchange process is performed on a part of the plurality of transfer channels.
 上記の実施形態では、溶融炉の流出口に遮断部材を配置するが、移送流路の途中(例えば、清澄室の下流端と均質化室の上流端との間)にも、遮断部材を収容する収容室を設けてもよい。この場合、交換工程において、移送流路の途中に設けられた収容室の遮断部材を閉じれば、移送流路内の溶融ガラスの流動を簡単に停止することができる。移送流路内の溶融ガラスの流動を停止させる方法としては、例えば、棒状部材(プランジャー)の外周面でポッドなどの縦管部に栓をするなどの方法であってもよい。 In the above embodiment, the blocking member is disposed at the outlet of the melting furnace, but the blocking member is also accommodated in the middle of the transfer flow path (for example, between the downstream end of the clarification chamber and the upstream end of the homogenization chamber). A storage chamber may be provided. In this case, in the exchange step, the flow of the molten glass in the transfer channel can be easily stopped by closing the blocking member of the storage chamber provided in the transfer channel. As a method of stopping the flow of the molten glass in the transfer flow path, for example, a method of plugging a vertical pipe portion such as a pod on the outer peripheral surface of a rod-like member (plunger) may be used.
 上記の実施形態において、溶融ガラスの連続形成を開始する前の段階(溶融炉の立ち上げ段階)及び/又は生産段階で、例えばヒーター等の電気加熱手段で補助的に電気加熱してもよい。 In the above-described embodiment, electric heating may be supplementarily performed by an electric heating means such as a heater in a stage (starting stage of a melting furnace) and / or a production stage before starting the continuous formation of molten glass.
 上記の実施形態において、溶融炉は、生産段階において、通電加熱とガス燃料の燃焼とを併用してよい。ガス燃料の燃焼を用いる場合、溶融炉の側壁部等にバーナーが設けられる。生産段階において全電気溶融を行う場合でも、溶融炉の立ち上げ段階では、バーナーによる加熱を用いることができる。 In the above-described embodiment, the melting furnace may use both energization heating and gas fuel combustion in the production stage. When gas fuel combustion is used, a burner is provided on the side wall of the melting furnace. Even when all electric melting is performed in the production stage, heating by a burner can be used in the startup stage of the melting furnace.
 上記の実施形態では、成形装置で成形されるガラス物品が板ガラスである場合を説明したが、これに限定されない。成形装置で成形されるガラス物品は、例えば、ガラスフィルムをロール状に巻き取ったガラスロール、光学ガラス部品、ガラス管、ガラスブロック、ガラス繊維などであってもよいし、任意の形状であってよい。 In the above embodiment, the case where the glass article formed by the forming apparatus is a plate glass has been described, but the present invention is not limited to this. The glass article molded by the molding apparatus may be, for example, a glass roll obtained by winding a glass film into a roll, an optical glass component, a glass tube, a glass block, a glass fiber, or the like, and has an arbitrary shape. Good.
1    溶融炉
1a   流出口
1b   底壁部
2    移送流路(フィーダ)
3    成形装置
4    清澄室
5    均質化室
6    ポット
7~10 移送管
11   ボトム電極
12   原料投入装置
13   煙道
14   遮断部材
15   本体部材
15a  冷却流路
16   絶縁部材
17   保持部材
18   給排管
21   収容室
G    ガラスリボン
Gm   溶融ガラス
Gr   ガラス原料
Gs   高粘度ガラス層
DESCRIPTION OF SYMBOLS 1 Melting furnace 1a Outlet 1b Bottom wall part 2 Transfer flow path (feeder)
3 Molding device 4 Clarification chamber 5 Homogenization chamber 6 Pots 7 to 10 Transfer tube 11 Bottom electrode 12 Raw material input device 13 Flue 14 Block member 15 Body member 15a Cooling channel 16 Insulating member 17 Holding member 18 Supply / discharge tube 21 Storage chamber G Glass ribbon Gm Molten glass Gr Glass raw material Gs High viscosity glass layer

Claims (10)

  1.  溶融炉でガラス原料を溶融して溶融ガラスを連続形成する溶融工程と、前記溶融炉の流出口から流出する前記溶融ガラスを移送流路で移送する移送工程と、前記移送流路で移送された溶融ガラスを成形装置でガラス物品に成形する成形工程とを備えたガラス物品の製造方法において、
     前記流出口を塞ぐように遮断部材を配置した状態で、前記移送流路を交換する交換工程を更に備えていることを特徴とするガラス物品の製造方法。
    A melting step of continuously forming a molten glass by melting a glass raw material in a melting furnace, a transfer step of transferring the molten glass flowing out from the outlet of the melting furnace through a transfer channel, and a transfer step of transferring the molten glass. In a method for producing a glass article comprising a molding step of forming molten glass into a glass article with a molding apparatus,
    A method for producing a glass article, further comprising an exchange step of exchanging the transfer channel in a state where a blocking member is disposed so as to block the outflow port.
  2.  前記交換工程では、前記遮断部材で前記流出口を塞ぐ前に、少なくとも最上流部の前記移送流路内の前記溶融ガラスを降温することを特徴とする請求項1に記載のガラス物品の製造方法。 2. The method for producing a glass article according to claim 1, wherein, in the replacement step, the temperature of the molten glass in at least the most upstream portion of the transfer flow path is lowered before the outlet is blocked by the blocking member. .
  3.  前記遮断部材が、冷却構造を備えていることを特徴とする請求項1又は2に記載のガラス物品の製造方法。 The method for producing a glass article according to claim 1 or 2, wherein the blocking member has a cooling structure.
  4.  前記溶融炉は、前記溶融ガラスを通電加熱する電極を備えることを特徴とする請求項1~3のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 3, wherein the melting furnace includes an electrode for electrically heating the molten glass.
  5.  前記遮断部材が、絶縁構造を備えていることを特徴とする請求項4に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 4, wherein the blocking member has an insulating structure.
  6.  前記電極が、前記溶融炉の底壁に設けられたボトム電極からなることを特徴とする請求項4又は5に記載のガラス物品の製造方法。 The method for producing a glass article according to claim 4 or 5, wherein the electrode comprises a bottom electrode provided on a bottom wall of the melting furnace.
  7.  前記溶融工程では、前記電極を用いた通電加熱のみで、前記ガラス原料を溶融することを特徴とする請求項4~6のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 4 to 6, wherein, in the melting step, the glass raw material is melted only by energization heating using the electrode.
  8.  前記溶融炉が、ジルコニア系耐火物を含むことを特徴とする請求項1~7のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 7, wherein the melting furnace contains a zirconia refractory.
  9.  前記溶融炉に接続する前記移送流路の数が、一つであることを特徴とする請求項1~8のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 8, wherein the number of the transfer passages connected to the melting furnace is one.
  10.  前記溶融炉の前記ガラス原料を溶融する溶融空間が、単一の空間からなることを特徴とする請求項1~9のいずれか1項に記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 9, wherein a melting space for melting the glass raw material in the melting furnace is a single space.
PCT/JP2019/017394 2018-05-30 2019-04-24 Method for manufacturing glass article WO2019230277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980029226.5A CN112074488A (en) 2018-05-30 2019-04-24 Method for manufacturing glass article
KR1020207029398A KR20210018195A (en) 2018-05-30 2019-04-24 Glass article manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103483A JP7118359B2 (en) 2018-05-30 2018-05-30 Method for manufacturing glass article
JP2018-103483 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230277A1 true WO2019230277A1 (en) 2019-12-05

Family

ID=68697593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017394 WO2019230277A1 (en) 2018-05-30 2019-04-24 Method for manufacturing glass article

Country Status (4)

Country Link
JP (2) JP7118359B2 (en)
KR (1) KR20210018195A (en)
CN (1) CN112074488A (en)
WO (1) WO2019230277A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022018815A (en) * 2020-07-16 2022-01-27 日本電気硝子株式会社 Method for manufacturing glass article
JP2023082986A (en) * 2021-12-03 2023-06-15 日本電気硝子株式会社 Method for manufacturing glass article
CN114057389A (en) * 2021-12-17 2022-02-18 江苏正威新材料股份有限公司 Point supply type tank furnace wire drawing device and process method thereof
CN114835379A (en) * 2022-06-22 2022-08-02 武汉荣佳达光电科技有限公司 Support plate glass electric kiln system capable of reducing emission

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203133A (en) * 2008-02-28 2009-09-10 Ohara Inc Apparatus and method for feeding molten glass
JP2011162381A (en) * 2010-02-08 2011-08-25 Nippon Electric Glass Co Ltd Method and apparatus for molding glass rod
JP2012162422A (en) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
WO2012133897A1 (en) * 2011-03-31 2012-10-04 旭硝子株式会社 Vacuum degassig apparatus, apparatus for producing glassware, and method for producing glassware
JP2012229153A (en) * 2011-04-26 2012-11-22 Corning Inc Electrode holder for electric glass melting
JP2013028483A (en) * 2011-07-28 2013-02-07 Ihi Corp Furnace bottom nozzle part structure of glass melting furnace
JP2013086991A (en) * 2011-10-14 2013-05-13 Asahi Glass Co Ltd Supply pipe for molten glass and apparatus for forming glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280320A (en) * 1975-12-27 1977-07-06 Central Glass Co Ltd Method of producing plate glass and glass fiber
JPH10297927A (en) * 1997-04-24 1998-11-10 Nippon Electric Glass Co Ltd Discharging device of heterogeneous glass
JP2003183031A (en) 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP2009221106A (en) * 2003-02-10 2009-10-01 Nippon Electric Glass Co Ltd Molten glass supply device and method of producing glass formed product
JP5731438B2 (en) * 2012-04-06 2015-06-10 AvanStrate株式会社 Glass plate manufacturing method and manufacturing apparatus
CN203904196U (en) * 2014-04-09 2014-10-29 台湾玻璃工业股份有限公司 Producing system with one kiln matched with multiple float glass production lines
CN104692646B (en) * 2015-03-26 2017-03-15 山东聚源玄武岩纤维股份有限公司 A kind of kiln system for drawing for producing basalt continuous fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203133A (en) * 2008-02-28 2009-09-10 Ohara Inc Apparatus and method for feeding molten glass
JP2011162381A (en) * 2010-02-08 2011-08-25 Nippon Electric Glass Co Ltd Method and apparatus for molding glass rod
JP2012162422A (en) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
WO2012133897A1 (en) * 2011-03-31 2012-10-04 旭硝子株式会社 Vacuum degassig apparatus, apparatus for producing glassware, and method for producing glassware
JP2012229153A (en) * 2011-04-26 2012-11-22 Corning Inc Electrode holder for electric glass melting
JP2013028483A (en) * 2011-07-28 2013-02-07 Ihi Corp Furnace bottom nozzle part structure of glass melting furnace
JP2013086991A (en) * 2011-10-14 2013-05-13 Asahi Glass Co Ltd Supply pipe for molten glass and apparatus for forming glass

Also Published As

Publication number Publication date
CN112074488A (en) 2020-12-11
JP2019206461A (en) 2019-12-05
JP2022153571A (en) 2022-10-12
JP7118359B2 (en) 2022-08-16
KR20210018195A (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019230277A1 (en) Method for manufacturing glass article
KR101873069B1 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing device, and glass product manufacturing method
JP7025720B2 (en) Manufacturing method of glass articles and glass melting furnace
KR101971755B1 (en) Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method
CN112119043B (en) Method and apparatus for manufacturing glass article
JP2018193268A (en) Production method of glass article, and molten glass leakage detector
JP7174360B2 (en) Glass article manufacturing method, melting furnace and glass article manufacturing apparatus
JP5731437B2 (en) Manufacturing method of glass plate
KR102497517B1 (en) Manufacturing method and melting furnace of glass article
WO2018211975A1 (en) Glass article production method and melting furnace
JP2014069983A (en) Method and apparatus for producing glass substrate
JP7090844B2 (en) Manufacturing method of glass articles and glass substrate group
JP2013095639A (en) Preheating method of glass melting furnace, glass melting apparatus, and method for manufacturing glass article
JP6498546B2 (en) Glass plate manufacturing method and melting tank
JP6749123B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2017178731A (en) Manufacturing method of glass sheet
JP6721311B2 (en) Glass substrate manufacturing method
WO2022255040A1 (en) Method for producing glass article
JP2017178760A (en) Glass plate manufacturing method, and dissolution bath
JP4505720B2 (en) Molten glass supply apparatus, glass molded article, and method for producing glass molded article
KR20190078512A (en) Glass substrate manufacturing apparatus and method for manufacturing glass substrate
JP2015196609A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812002

Country of ref document: EP

Kind code of ref document: A1